1
|
Wang T, Luo R, Zhang J, Lan J, Lu Z, Zhai H, Li LF, Sun Y, Qiu HJ. The African swine fever virus MGF300-4L protein is associated with viral pathogenicity by promoting the autophagic degradation of IKK β and increasing the stability of I κB α. Emerg Microbes Infect 2024; 13:2333381. [PMID: 38501350 PMCID: PMC11018083 DOI: 10.1080/22221751.2024.2333381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), which imposes a substantial economic burden on the global pig industry. When screening for the virus replication-regulating genes in the left variable region of the ASFV genome, we observed a notable reduction in ASFV replication following the deletion of the MGF300-4L gene. However, the role of MGF300-4L in ASFV infection remains unexplored. In this study, we found that MGF300-4L could effectively inhibit the production of proinflammatory cytokines IL-1β and TNF-α, which are regulated by the NF-κB signaling pathway. Mechanistically, we demonstrated that MGF300-4L interacts with IKKβ and promotes its lysosomal degradation via the chaperone-mediated autophagy. Meanwhile, the interaction between MGF300-4L and IκBα competitively inhibits the binding of the E3 ligase β-TrCP to IκBα, thereby inhibiting the ubiquitination-dependent degradation of IκBα. Remarkably, although ASFV encodes other inhibitors of NF-κB, the MGF300-4L gene-deleted ASFV (Del4L) showed reduced virulence in pigs, indicating that MGF300-4L plays a critical role in ASFV pathogenicity. Importantly, the attenuation of Del4L was associated with a significant increase in the production of IL-1β and TNF-α early in the infection of pigs. Our findings provide insights into the functions of MGF300-4L in ASFV pathogenicity, suggesting that MGF300-4L could be a promising target for developing novel strategies and live attenuated vaccines against ASF.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
2
|
Fan J, Yu H, Miao F, Ke J, Hu R. Attenuated African swine fever viruses and the live vaccine candidates: a comprehensive review. Microbiol Spectr 2024:e0319923. [PMID: 39377589 DOI: 10.1128/spectrum.03199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/22/2024] [Indexed: 10/09/2024] Open
Abstract
The African swine fever virus (ASFV) is spreading worldwide and causing huge economic losses to the global pig industry. The ASFV genome is 170-193 kb in length, contains approximately 150 open reading frames, and encodes more than 200 proteins, most of which have unknown functions. Owing to the unique viral structure, replication strategy, large number of genes of unknown function, and complicated pathogenesis, vaccine development research is challenging. Several naturally attenuated ASFV isolates have been extensively investigated and many genetically manipulated, gene-deleted, and cell-adapted ASFVs have been reported. Currently, live attenuated viruses prepared from weakly virulent strains are an efficient method to provide effective protection in vaccinated pigs; however, these have seldom been widely approved for vaccine use, except in Vietnam. Herein, we summarize the attenuated isolates or vaccine candidates for live vaccines derived from different sources, including naturally mutated, attenuated, cell-adapted, and genetically modified recombinant ASFVs. This will help to understand the gene function and immunogenicity of attenuated live ASFV, as well as the shortcomings of these viruses as vaccine candidates, and provide clues to prepare live, efficient, and safe vaccines for African swine fever.IMPORTANCEOutbreaks of African swine fever (ASF) have caused devastating losses to the global pig industry. Pigs immunized with ASFV attenuated virus can resist the lethal challenge of a strongly virulent virus. Here, we summarize the virulence of naturally mutated, cell-adapted, and genetically recombinant ASFV for pigs, and the protective effect after facing an attack challenge. We also analyze the advantages and disadvantages of ASFV attenuated viruses as vaccine candidates to provide clues for the preparation of efficient and safe live African swine fever vaccines.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Haisheng Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Faming Miao
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junnan Ke
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
3
|
Pérez-Núñez D, Madden DW, Vigara-Astillero G, Meekins DA, McDowell CD, Libanori-Artiaga B, García-Belmonte R, Bold D, Trujillo JD, Cool K, Kwon T, Balaraman V, Morozov I, Gaudreault NN, Revilla Y, Richt JA. Generation and Genetic Stability of a PolX and 5' MGF-Deficient African Swine Fever Virus Mutant for Vaccine Development. Vaccines (Basel) 2024; 12:1125. [PMID: 39460292 PMCID: PMC11511218 DOI: 10.3390/vaccines12101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The African swine fever virus (ASFV) causes fatal disease in pigs and is currently spreading globally. Commercially safe vaccines are urgently required. Aiming to generate a novel live attenuated vaccine (LAV), a recombinant ASFV was generated by deleting the viral O174L (PolX) gene. However, during in vitro generation, an additional spontaneous deletion of genes belonging to the multigene families (MGF) occurred, creating a mixture of two viruses, namely, Arm-ΔPolX and Arm-ΔPolX-ΔMGF. This mixture was used to inoculate pigs in a low and high dose to assess the viral dynamics of both populations in vivo. Although the Arm-ΔPolX population was a much lower proportion of the inoculum, in the high-dose immunized animals, it was the only resulting viral population, while Arm-ΔPolX-ΔMGF only appeared in low-dose immunized animals, revealing the role of deleted MGFs in ASFV fitness in vivo. Furthermore, animals in the low-dose group survived inoculation, whereas animals in the high-dose group died, suggesting that the lack of MGF and PolX genes, and not the PolX gene alone, led to attenuation. The two recombinant viruses were individually isolated and inoculated into piglets, confirming this hypothesis. However, immunization with the Arm-ΔPolX-ΔMGF virus did not induce protection against challenge with the virulent parental ASFV strain. This study demonstrates that deletion of the PolX gene alone neither leads to attenuation nor induces an increased mutation rate in vivo.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Daniel W. Madden
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - David A. Meekins
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Chester D. McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Bianca Libanori-Artiaga
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Dashzeveg Bold
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Konner Cool
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Taeyong Kwon
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| |
Collapse
|
4
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Le AD, Nguyen GV, Vu AT, Hoang PT, Le TT, Nguyen HT, Nguyen HTT, Lai HLT, Bui DAT, Huynh LMT, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen LT, Shi J. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses 2024; 16:1326. [PMID: 39205300 PMCID: PMC11359042 DOI: 10.3390/v16081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Giap Van Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Trang Thi Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huyen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hang Thu Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huong Lan Thi Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Dao Anh Tran Bui
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Le My Thi Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| |
Collapse
|
5
|
Portugal R, Goldswain H, Moore R, Tully M, Harris K, Corla A, Flannery J, Dixon LK, Netherton CL. Six adenoviral vectored African swine fever virus genes protect against fatal disease caused by genotype I challenge. J Virol 2024; 98:e0062224. [PMID: 38953377 PMCID: PMC11264932 DOI: 10.1128/jvi.00622-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.
Collapse
Affiliation(s)
| | | | - Rebecca Moore
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Matthew Tully
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katie Harris
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Amanda Corla
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - John Flannery
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
6
|
Wu YC, Lai HX, Li JM, Fung KM, Tseng TS. Discovery of a potent inhibitor, D-132, targeting AsfvPolX, via protein-DNA complex-guided pharmacophore screening and in vitro molecular characterizations. Virus Res 2024; 344:199359. [PMID: 38521505 PMCID: PMC10995865 DOI: 10.1016/j.virusres.2024.199359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan
| | - Hui-Xiang Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan
| | - Ji-Min Li
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Kit-Man Fung
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40202, Taiwan.
| |
Collapse
|
7
|
Thaweerattanasinp T, Kaewborisuth C, Viriyakitkosol R, Saenboonrueng J, Wanitchang A, Tanwattana N, Sonthirod C, Sangsrakru D, Pootakham W, Tangphatsornruang S, Jongkaewwattana A. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Vet Microbiol 2024; 291:110016. [PMID: 38340553 DOI: 10.1016/j.vetmic.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chutima Sonthirod
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
8
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Chandana MS, Nair SS, Chaturvedi VK, Abhishek, Pal S, Charan MSS, Balaji S, Saini S, Vasavi K, Deepa P. Recent progress and major gaps in the vaccine development for African swine fever. Braz J Microbiol 2024; 55:997-1010. [PMID: 38311710 PMCID: PMC10920543 DOI: 10.1007/s42770-024-01264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024] Open
Abstract
The swine industry across the globe is recently facing a devastating situation imparted by a highly contagious and deadly viral disease, African swine fever. The disease is caused by a DNA virus, the African swine fever virus (ASFV) of the genus Asfivirus. ASFV affects both wild boars and domestic pigs resulting in an acute form of hemorrhagic fever. Since the first report in 1921, the disease remains endemic in some of the African countries. However, the recent occurrence of ASF outbreaks in Asia led to a fresh and formidable challenge to the global swine production industry. Culling of the infected animals along with the implementation of strict sanitary measures remains the only options to control this devastating disease. Efforts to develop an effective and safe vaccine against ASF began as early as in the mid-1960s. Different approaches have been employed for the development of effective ASF vaccines including inactivated vaccines, subunit vaccines, DNA vaccines, virus-vectored vaccines, and live attenuated vaccines (LAVs). Inactivated vaccines are a non-feasible strategy against ASF due to their inability to generate a complete cellular immune response. However genetically engineered vaccines, such as subunit vaccines, DNA vaccines, and virus vector vaccines, represent tailored approaches with minimal adverse effects and enhanced safety profiles. As per the available data, gene deleted LAVs appear to be the most potential vaccine candidates. Currently, a gene deleted LAV (ASFV-G-∆I177L), developed in Vietnam, stands as the sole commercially available vaccine against ASF. The major barrier to the goal of developing an effective vaccine is the critical gaps in the knowledge of ASFV biology and the immune response induced by ASFV infection. The precise contribution of various hosts, vectors, and environmental factors in the virus transmission must also be investigated in depth to unravel the disease epidemiology. In this review, we mainly focus on the recent progress in vaccine development against ASF and the major gaps associated with it.
Collapse
Affiliation(s)
- M S Chandana
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Sonu S Nair
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Santanu Pal
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | | | - Shilpa Balaji
- Division of Virology, ICAR-Indian Veterinary Research Institute, Muktheswhar 263138, Utharakand, India
| | - Shubham Saini
- Division of Veterinary Public Health and Epidemiology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Koppu Vasavi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Poloju Deepa
- Division of CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| |
Collapse
|
10
|
Gao H, Di D, Wu Q, Li J, Liu X, Xu Z, Xu S, Wu C, Gong L, Sun Y, Zhang G, Chen H, Wang H. Pathogenicity and horizontal transmission evaluation of a novel isolated African swine fever virus strain with a three-large-fragment-gene deletion. Vet Microbiol 2024; 290:110002. [PMID: 38295489 DOI: 10.1016/j.vetmic.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.
Collapse
Affiliation(s)
- Han Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Jie Li
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Zhiying Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Chengyu Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People's Republic of China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China.
| |
Collapse
|
11
|
Lee SC, Kim Y, Cha JW, Chathuranga K, Dodantenna N, Kwon HI, Kim MH, Jheong W, Yoon IJ, Lee JY, Yoo SS, Lee JS. CA-CAS-01-A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus. J Microbiol 2024; 62:125-134. [PMID: 38480615 PMCID: PMC11021262 DOI: 10.1007/s12275-024-00116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeok-Il Kwon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Min Ho Kim
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Joo Young Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Sung-Sik Yoo
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Fan J, Zhang J, Wang F, Miao F, Zhang H, Jiang Y, Qi Y, Zhang Y, Hui L, Zhang D, Yue H, Zhou X, Li Q, Wang Y, Chen T, Hu R. Identification of L11L and L7L as virulence-related genes in the African swine fever virus genome. Front Microbiol 2024; 15:1345236. [PMID: 38328426 PMCID: PMC10848158 DOI: 10.3389/fmicb.2024.1345236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction African swine fever (ASF) is an infectious disease that causes considerable economic losses in pig farming. The agent of this disease, African swine fever virus (ASFV), is a double-stranded DNA virus with a capsid membrane and a genome that is 170-194 kb in length encoding over 150 proteins. In recent years, several live attenuated strains of ASFV have been studied as vaccine candidates, including the SY18ΔL7-11. This strain features deletion of L7L, L8L, L9R, L10L and L11L genes and was found to exhibit significantly reduced pathogenicity in pigs, suggesting that these five genes play key roles in virulence. Methods Here, we constructed and evaluated the virulence of ASFV mutations with SY18ΔL7, SY18ΔL8, SY18ΔL9, SY18ΔL10, and SY18ΔL11L. Results Our findings did not reveal any significant differences in replication efficiency between the single-gene deletion strains and the parental strains. Pigs inoculated with SY18ΔL8L, SY18ΔL9R and SY18ΔL10L exhibited clinical signs similar to those inoculated with the parental strains. Survival rate of pigs inoculated with 103.0TCID50 of SY18ΔL7L was 25%, while all pigs inoculated with 103.0TCID50 of SY18ΔL11L survived, and 50% inoculated with 106.0TCID50 SY18ΔL11L survived. Discussion The results indicate that L8L, L9R and L10L do not affect ASFV SY18 virulence, while the L7L and L11L are associated with virulence.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Jingyuan Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengjie Wang
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Faming Miao
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Han Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yiqian Jiang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yu Qi
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yanyan Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Lili Hui
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Dan Zhang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Huixian Yue
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xintao Zhou
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Qixuan Li
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Yu Wang
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Teng Chen
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Rongliang Hu
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, Jilin, China
- Chinese Academy of Agricultural Sciences Changchun Veterinary Research Institute, Changchun, Jilin, China
| |
Collapse
|
13
|
Lim JW, Vu TTH, Le VP, Yeom M, Song D, Jeong DG, Park SK. Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses 2023; 15:2169. [PMID: 38005846 PMCID: PMC10674204 DOI: 10.3390/v15112169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever (ASF) is one of the most lethal infectious diseases affecting domestic pigs and wild boars of all ages. Over a span of 100 years, ASF has continued to spread over continents and adversely affects the global pig industry. To date, no vaccine or treatment has been approved. The complex genome structure and diverse variants facilitate the immune evasion of the ASF virus (ASFV). Recently, advanced technologies have been used to design various potential vaccine candidates and effective diagnostic tools. This review updates vaccine platforms that are currently being used worldwide, with a focus on genetically modified live attenuated vaccines, including an understanding of their potential efficacy and limitations of safety and stability. Furthermore, advanced ASFV detection technologies are presented that discuss and incorporate the challenges that remain to be addressed for conventional detection methods. We also highlight a nano-bio-based system that enhances sensitivity and specificity. A combination of prophylactic vaccines and point-of-care diagnostics can help effectively control the spread of ASFV.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Thi Thu Hang Vu
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam;
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (J.-W.L.); (M.Y.); (D.S.)
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
| |
Collapse
|
14
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Tran SD, Vu AT, Le AD, Nguyen VG, Hoang PT, Nguyen YT, Le TL, Van TN, Huynh TML, Lai HTL, Madera R, Li Y, Shi J, Nguyen LT. A Cell-Adapted Live-Attenuated Vaccine Candidate Protects Pigs against the Homologous Strain VNUA-ASFV-05L1, a Representative Strain of the Contemporary Pandemic African Swine Fever Virus. Viruses 2023; 15:2089. [PMID: 37896866 PMCID: PMC10612049 DOI: 10.3390/v15102089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever (ASF) is a lethal and highly contagious transboundary animal disease with the potential for rapid international spread. Currently, there is no ASF vaccine commercially available. All infected animals must be isolated and culled immediately upon the confirmation of the presence of the virus. Studies leading to the rational development of protective ASF vaccines are urgently needed. Here, we generated a safe and efficacious live-attenuated vaccine (LAV) VNUA-ASFV-LAVL2 by serially passaging a field isolate (VNUA-ASFV-05L1, genotype II) in porcine alveolar macrophages (PAMs, 65 passages) and an immortalized porcine alveolar macrophage cell line (3D4/21, 55 passages). VNUA-ASFV-LAVL2 can efficiently replicate in both PAMs and 3D4/21 cells. It provides 100% protection, even with the low dose of 102 HAD50, to the vaccinated pigs against the challenge of contemporary pandemic ASFV field isolate. Pigs vaccinated with this LAV in a dose range of 102 to 105 HAD50 remained clinically healthy during both the 28-day observation period of immunization and the 28-day observation period of challenge. VNUA-ASFV-LAVL2 was eliminated from blood by 28 days post-inoculation (DPI), and from feces or oral fluids by 17 DPI. Although the vaccine strain in serum remained a safe and attenuated phenotype after five passages in swine, a reversion-to-virulence study using blood or tissue homogenates at peak viremia will be conducted in the future. ASFV-specific IgG antibodies and significant cellular immunity were detected in vaccinated pigs before the ASFV challenge. These results indicate that the VNUA-ASFV-LAVL2 strain is a safe and efficacious LAV against the genotype II ASFV strain responsible for current ASF outbreaks in Asia.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Lihua Wang
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Son Danh Tran
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Yen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi Luyen Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thang Nguyen Van
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Huong Thi Lan Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Rachel Madera
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jishu Shi
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| |
Collapse
|
15
|
Vlasova NN, Chernykh OY, Krivonos RA, Verkhovsky OA, Aliper TI, Anoyatbekova AM, Zhukova EV, Kucheruk OD, Yuzhakov AG, Gulyukin MI, Gulyukin AM. [Adaptation of african swine fever virus (Asfarviridae: Asfivirus)to growth in the continuous culture PPK-66b cells by the method of accelerated passaging]. Vopr Virusol 2023; 68:334-342. [PMID: 38156590 DOI: 10.36233/0507-4088-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION African swine fever virus (ASF) is a large, enveloped virus with an icosahedral capsid morphology and a double-stranded DNA genome ranging in size from 170 to 190 kb. The replication cycle proceeds in two phases, the early phase lasting 4-6 hours and the late 8-20 hours after infection. The adaptation of the ASF virus to growth in continuous cell lines makes efficient and reliable genetic analysis and more accurate interpretation of its results. OBJECTIVE Adaptation of a new isolate of the ASF virus to growth in a continuous cell line by the method of accelerated passages and preliminary genetic analysis of the resulting strain. MATERIALS AND METHODS For virus isolation and passaging of the ASF virus, a porcine leukocyte cell culture (PL) and continuous cell cultures of porcine origin (ST, PK, PPK-66b) were used with Eagle MEM and HLA essential media with 10% porcine or fetal serum. RESULTS The article presents data on the isolation and analysis of the changes in the reproductive properties of a new African swine fever (ASF) virus isolate in the process of adaptation to growth in a continuous piglet kidney cell culture clone b (PPK-66b). The current state of the problem of cultivation of the ASF virus, the features of its reproduction, and the basis of the genetic differentiation of its isolates are described in detail. Understanding the uniqueness of the nature of the ASF virus determined the approaches to the processes of its cultivation and adaptation. In this regard, the results of studies of cultural properties, and analysis of the nucleotide sequence of 6 genes of the new isolate, as well as phylogenetic analysis of these genes with already known strains and isolates of the ASF virus are presented. CONCLUSION A new strain obtained in the process of cell adaptation of ASVF/Znaury/PPK-23 ASF virus by the accelerated passaging method reaches a high level of reproduction in 72 hours with an accumulation titer of 7.07 lg HAdE50/cm3. Primary genetic analysis allowed to establish the main phylogenetic relationships of the newly isolated strain with previously known variants of the current ASF panzootic.
Collapse
Affiliation(s)
- N N Vlasova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O Y Chernykh
- Department of Veterinary Medicine of the Krasnodar Territory
| | - R A Krivonos
- Department of Veterinary Medicine of the Krasnodar Territory
| | - O A Verkhovsky
- Research Institute for Diagnosis and Prevention of Human and Animal Diseases
| | - T I Aliper
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Anoyatbekova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - E V Zhukova
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - O D Kucheruk
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A G Yuzhakov
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - M I Gulyukin
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| | - A M Gulyukin
- Federal Scientific Center - All-Russian Research Institute of Experimental Veterinary Medicine named after V.I. K.I. Scriabin and Ya.R. Kovalenko of the Russian Academy of Sciences
| |
Collapse
|
16
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Yang J, Zhu R, Zhang Y, Fan J, Zhou X, Yue H, Li Q, Miao F, Chen T, Mi L, Zhang F, Zhang S, Qian A, Hu R. SY18ΔL60L: a new recombinant live attenuated African swine fever virus with protection against homologous challenge. Front Microbiol 2023; 14:1225469. [PMID: 37621401 PMCID: PMC10445127 DOI: 10.3389/fmicb.2023.1225469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction African swine fever (ASF) is an acute and highly contagious disease and its pathogen, the African swine fever virus (ASFV), threatens the global pig industry. At present, management of ASF epidemic mainly relies on biological prevention and control methods. Moreover, due to the large genome of ASFV, only half of its genes have been characterized in terms of function. Methods Here, we evaluated a previously uncharacterized viral gene, L60L. To assess the function of this gene, we constructed a deletion strain (SY18ΔL60L) by knocking out the L60L gene of the SY18 strain. To evaluate the growth characteristics and safety of the SY18ΔL60L, experiments were conducted on primary macrophages and pigs, respectively. Results The results revealed that the growth trend of the recombinant strain was slower than that of the parent strain in vitro. Additionally, 3/5 (60%) pigs intramuscularly immunized with a 105 50% tissue culture infectious dose (TCID50) of SY18ΔL60L survived the 21-day observation period. The surviving pigs were able to protect against the homologous lethal strain SY18 and survive. Importantly, there were no obvious clinical symptoms or viremia. Discussion These results suggest that L60L could serve as a virulence- and replication-related gene. Moreover, the SY18ΔL60L strain represents a new recombinant live-attenuated ASFV that can be employed in the development of additional candidate vaccine strains and in the elucidation of the mechanisms associated with ASF infection.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Jiaqi Fan
- Life Science College, Ningxia University, Yinchuan, China
| | - Xintao Zhou
- Life Science College, Ningxia University, Yinchuan, China
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Qixuan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| |
Collapse
|
18
|
Chen Y, Song Z, Chang H, Guo Y, Wei Z, Sun Y, Gong L, Zheng Z, Zhang G. Dihydromyricetin inhibits African swine fever virus replication by downregulating toll-like receptor 4-dependent pyroptosis in vitro. Vet Res 2023; 54:58. [PMID: 37438783 DOI: 10.1186/s13567-023-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/27/2023] [Indexed: 07/14/2023] Open
Abstract
African swine fever (ASF), caused by ASF virus (ASFV) infection, poses a huge threat to the pork industry owing to ineffective preventive and control measures. Hence, there is an urgent need to develop strategies, including antiviral drugs targeting ASFV, for preventing ASFV spread. This study aimed to identify novel compounds with anti-ASFV activity. To this end, we screened a small chemical library of 102 compounds, among which the natural flavonoid dihydromyricetin (DHM) exhibited the most potent anti-ASFV activity. DHM treatment inhibited ASFV replication in a dose- and time-dependent manner. Furthermore, it inhibited porcine reproductive and respiratory syndrome virus and swine influenza virus replication, which suggested that DHM exerts broad-spectrum antiviral effects. Mechanistically, DHM treatment inhibited ASFV replication in various ways in the time-to-addition assay, including pre-, co-, and post-treatment. Moreover, DHM treatment reduced the levels of ASFV-induced inflammatory mediators by regulating the TLR4/MyD88/MAPK/NF-κB signaling pathway. Meanwhile, DHM treatment reduced the ASFV-induced accumulation of reactive oxygen species, further minimizing pyroptosis by inhibiting the ASFV-induced NLRP3 inflammasome activation. Interestingly, the effects of DHM on ASFV were partly reversed by treatment with polyphyllin VI (a pyroptosis agonist) and RS 09 TFA (a TLR4 agonist), suggesting that DHM inhibits pyroptosis by regulating TLR4 signaling. Furthermore, targeting TLR4 with resatorvid (a specific inhibitor of TLR4) and small interfering RNA against TLR4 impaired ASFV replication. Taken together, these results reveal the anti-ASFV activity of DHM and the underlying mechanism of action, providing a potential compound for developing antiviral drugs targeting ASFV.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhi Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Tenaya WM, Swacita IBN, Wirata K, Damriyasa M, Besung NK, Suarsana N, Sari TK, Agustina KK. A study of African swine fever virus in Regional VI of the Disease Investigation Center of Denpasar Bali in Indonesia. Vet World 2023; 16:844-850. [PMID: 37235158 PMCID: PMC10206974 DOI: 10.14202/vetworld.2023.844-850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aims African swine fever (ASF) is a highly contagious viral disease that causes major economic losses due to morbidity and fatality rates of up to 100% in wild boar and domestic pigs. The disease emerged in Africa in 1921 and then entered several European countries by 1957. In Indonesia, the first outbreak of ASF in 2019 in North Sumatra killed thousands of pigs and quickly spread to 10 out of 34 pig-producing provinces, including Bali and Eastern Nusa Tenggara. As no commercial ASF vaccine is available, the disease has become endemic and continues killing pigs. This study aimed to investigate the epidemiological and virological studies of ASF virus (ASFV) conducted in 2020 and 2021 by the Disease Investigation Center Regional VI of Denpasar Bali, which covers three provinces in Indonesia, including Bali, Western Nusa Tenggara, and Eastern Nusa Tenggara. Materials and Methods A total of 5402 blood samples were sent to the laboratory to detect ASFV infection using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay tests. The virological studies were performed by culturing local ASFV isolates obtained from field cases in primary macrophages and confirmation of viral growth by qPCR. Results The qPCR results show that only 156/4528 (3.4%) of samples originating from Bali and Eastern Nusa Tenggara were ASFV-positive with cycle threshold value of 18 to 23, while the virus was not detected in Western Nusa Tenggara. Of 874 serum samples tested, 114 (13%) were antibody positive and were all collected from the two ASFV-affected provinces in 2020. A Bali ASFV isolate (BL21) was isolated and characterized molecularly. Conclusion These findings suggest that during the time of sampling, ASFV was detected only in Bali and East Nusa Tenggara but not in Western Nusa Tenggara. These findings support the symptomology of ASFV reported in the two regions. Moreover, BL21 may be useful for developing subculture-attenuated vaccines using commercial cell lines. However, the current study has some limitations namely the investigation was not performed during the initial outbreak and no pathological examination of internal organs was conducted.
Collapse
Affiliation(s)
- Wayan Masa Tenaya
- Department of Disease Prevention, Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Ida Bagus Ngurah Swacita
- Department of Disease Prevention, Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Ketut Wirata
- Disease Investigation Center, Regional VI Denpasar Bali, Jl. Raya Sesetan No. 266, Sesetan, Denpasar Selatan, Kota Denpasar, Bali 80223, Indonesia
| | - Made Damriyasa
- Laboratory of Clinical Pathology, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Nengah Kerta Besung
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Nyoman Suarsana
- Laboratory of Biochemical, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Tri Komala Sari
- Laboratory of Virology, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| | - Kadek Karang Agustina
- Department of Disease Prevention, Veterinary Public Health, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali of Indonesia, Jl. PB Sudirman, Denpasar, Bali 80234, Indonesia
| |
Collapse
|
20
|
Li Y, Sun R, Li S, Tan Z, Li Z, Liu Y, Guo Y, Huang J. ASFV proteins presented at the surface of T7 phages induce strong antibody responses in mice. J Virol Methods 2023; 316:114725. [PMID: 36965632 DOI: 10.1016/j.jviromet.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
African swine fever virus (ASFV) infection causes substantial economic losses to the swine industry worldwide, and there are still no safe and effective vaccines or therapeutics available. The granulated virus antigen improves the antigen present process and elicits high antibody reaction than the subunit antigen. In this study, the SpyTag peptide-p10 fusion protein was altered and displayed on the surface of the T7 phage to construct an engineered phage (T7-ST). At the same time, ASFV antigen-Spycatcher C-terminal-fused protein (antigen-SC) was expressed and purified by an E. coli prokaryotic expression system. Five virus-like particles (VLPs) displaying the main ASFV antigenic proteins P30, P54, P72, CD2v, and K145R were reconstructed by the isopeptide bond between SpyTag and antigen-SC proteins. The stability of five ASFV VLPs in high temperature and extreme pH conditions was evaluated by transmission electron microscopy (TEM) and plaque analysis. All ASFV VLPs induced a high titer antigen-specific antibody response in mice. Our results showed that the granulated antigen displaying ASFV protein on the surface of the T7 phage provides a robust potential vaccine and diagnostic tool to address the challenge of the ASFV pandemic.
Collapse
Affiliation(s)
- Yuanfang Li
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Shujun Li
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Yebin Liu
- China Institute of Veterinary Drug Control, Beijing, China, 100081
| | - Yanyu Guo
- School of Life Sciences, Tianjin University, Tianjin, China, 300072.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072.
| |
Collapse
|
21
|
Zhang X, Wang Z, Ge S, Zuo Y, Lu H, Lv Y, Han N, Cai Y, Wu X, Wang Z. Attenuated African swine fever virus through serial passaging of viruses in cell culture: a brief review on the knowledge gathered during 60 years of research. Virus Genes 2023; 59:13-24. [PMID: 36229722 PMCID: PMC9560881 DOI: 10.1007/s11262-022-01939-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/01/2022] [Indexed: 01/13/2023]
Abstract
African swine fever virus (ASFV) is a highly pathogenic double-stranded DNA virus. It affects various breeds of pigs, causing serious economic losses and health threats because of its rapid spread and high pathogenicity and infectivity. This situation is not helped by the lack of a validated vaccine or effective therapies. Since the 1960s, different strains of ASFV have been subjected to serial passage in a variety of cell lines. The attenuated ASFV strains obtained through serial passage are not only candidates for ASF vaccine research, but also are useful to study the molecular genetic characteristics and pathogenic mechanism of the virus. This review summarizes related studies on the attenuated strains of ASFV acquired through cell passage over the last 60 years, with the aim of providing inspiration for the rational design of vaccines in future.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Zhenzhong Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
- MOE Joint International Research Laboratory for Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Haodong Lu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yan Lv
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Naijun Han
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yumei Cai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| | - Xiaodong Wu
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| | - Zhiliang Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| |
Collapse
|
22
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan,
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Xiulei Cai,
| |
Collapse
|
23
|
Oronasal or Intramuscular Immunization with a Thermo-Attenuated ASFV Strain Provides Full Clinical Protection against Georgia 2007/1 Challenge. Viruses 2022; 14:v14122777. [PMID: 36560781 PMCID: PMC9784117 DOI: 10.3390/v14122777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989. Compared to Georgia, the ASFV-989 strain genome has a deletion of 7458 nucleotides located in the 5'-end encoding region of MGF 505/360, which allowed for developing a DIVA PCR system. In vitro, in porcine alveolar macrophages, the replication kinetics of the ASFV-989 and Georgia strains were identical. In vivo, specific-pathogen-free (SPF) pigs inoculated with the ASFV-989 strain, either intramuscularly or oronasally, exhibited transient hyperthermia and slightly decreased growth performance. Animals immunized with the ASFV-989 strain showed viremia 100 to 1000 times lower than those inoculated with the Georgia strain and developed a rapid antibody and cell-mediated response. In ASFV-989-immunized pigs challenged 2 or 4 weeks later with the Georgia strain, no symptoms were recorded and no viremia for the challenge strain was detected. These results show that the ASFV-989 strain is a promising non-GMO vaccine candidate that is usable either intramuscularly or oronasally.
Collapse
|
24
|
Brake DA. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022; 14:2619. [PMID: 36560623 PMCID: PMC9788307 DOI: 10.3390/v14122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The recent centennial anniversary of R.E. Montgomery's seminal published description of "a form of swine fever" disease transmitted from wild African pigs to European domestic pigs is a call to action to accelerate African Swine Fever (ASF) vaccine research and development. ASF modified live virus (MLV) first-generation gene deleted vaccine candidates currently offer the most promise to meet international and national guidelines and regulatory requirements for veterinary product licensure and market authorization. A major, rate-limiting impediment to the acceleration of current as well as future vaccine candidates into regulatory development is the absence of internationally harmonized standards for assessing vaccine purity, potency, safety, and efficacy. This review summarizes the asymmetrical landscape of peer-reviewed published literature on ASF MLV vaccine approaches and lead candidates, primarily studied to date in the research laboratory in proof-of-concept or early feasibility clinical safety and efficacy studies. Initial recommendations are offered toward eventual consensus of international harmonized guidelines and standards for ASF MLV vaccine purity, potency, safety, and efficacy. To help ensure the successful regulatory development and approval of ASF MLV first generation vaccines by national regulatory associated government agencies, the World Organisation for Animal Health (WOAH) establishment and publication of harmonized international guidelines is paramount.
Collapse
Affiliation(s)
- David A Brake
- BioQuest Associates, LLC, P.O. Box 787, Stowe, VT 05672, USA
| |
Collapse
|
25
|
Pérez-Núñez D, Sunwoo SY, García-Belmonte R, Kim C, Vigara-Astillero G, Riera E, Kim DM, Jeong J, Tark D, Ko YS, You YK, Revilla Y. Recombinant African Swine Fever Virus Arm/07/CBM/c2 Lacking CD2v and A238L Is Attenuated and Protects Pigs against Virulent Korean Paju Strain. Vaccines (Basel) 2022; 10:vaccines10121992. [PMID: 36560402 PMCID: PMC9784410 DOI: 10.3390/vaccines10121992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
African swine fever (ASF) is an obligated declaration swine disease, provoking farm isolation measures and the closing of affected country boarders. ASF virus (ASFV) is currently the cause of a pandemic across China and Eurasia. By the end of 2019, ASF was detected in nine EU Member States: Bulgaria, Romania, Slovakia, Estonia, Hungary, Latvia, Lithuania, Poland and Belgium. The affected area of the EU extended progressively, moving mostly in a southwestern direction (EFSA). Inactivated and/or subunit vaccines have proven to fail since certain virus replication is needed for protection. LAVs are thus the most realistic option, which must be safe, effective and industrially scalable. We here generated a vaccine prototype from the Arm/07/CBM/c2 genotype II strain, in which we have deleted the EP402R (CD2v) and A238L genes by CRISPR/Cas9 in COS-1 cells, without detectable further genetic changes. The successful immunization of pigs has proven this vaccine to be safe and fully protective against the circulating Korean Paju genotype II strain, opening the possibility of a new vaccine on the market in the near future.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Sun-Young Sunwoo
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Chansong Kim
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Riera
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Dae-min Kim
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Jiyun Jeong
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Dongseob Tark
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Young-Seung Ko
- Laboratory for infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea
| | - Young-Kook You
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-911964570
| |
Collapse
|
26
|
Deletion of an African Swine Fever Virus ATP-Dependent RNA Helicase QP509L from the Highly Virulent Georgia 2010 Strain Does Not Affect Replication or Virulence. Viruses 2022; 14:v14112548. [PMID: 36423157 PMCID: PMC9694930 DOI: 10.3390/v14112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-∆QP509L, having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). It is shown that ASFV-G-∆QP509L replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 102 HAD50 by the intramuscular route produced a slightly protracted but lethal clinical disease when compared to that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with ASFV-G-∆QP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in virus replication and virulence in domestic pigs.
Collapse
|
27
|
Gao Q, Yang Y, Luo Y, Zheng J, Gong L, Wang H, Feng Y, Gong T, Wu D, Wu R, Zheng X, Zheng Z, Zhang G. Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1. Front Immunol 2022; 13:1015224. [PMID: 36389805 PMCID: PMC9647134 DOI: 10.3389/fimmu.2022.1015224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 08/12/2023] Open
Abstract
African swine fever virus (ASFV) is a complex large DNA enveloped virus that causes African swine fever (ASF) with a fatality rate of up to 100%, seriously threatening the global swine industry. Due to the strict cell tropism of ASFV, there is no effective in vitro cell line, which hinders its prevention and control. Herein, we analyzed genome-wide transcriptional profiles of ASFV-susceptible porcine alveolar macrophages (PAMs) and non-susceptible cell lines PK15 and 3D4-21, an found that PAM surface pattern recognition receptors (PRRs) were significantly higher and common differential genes were significantly enriched in phagocytosis compared with that observed in PK15 and 3D4-21 cell lines. Therefore, endocytosis functions of host cell surface PRRs may play key roles in ASFV infection in vitro. ASFV was found to be infective to PK15 and 3D4-21 cell lines overexpressing CD163 and Siglec1, and to the PK15S1-CD163 cell line stably expressing CD163 and Siglec1. However, the PK15 and 3D4-21 cell lines overexpressing CD163 or Siglec1 alone were not infectious. Simultaneous interference of CD163 and Siglec1 in PAMs with small interfering RNA (siRNA) significantly reduced the infectivity of ASFV. However, siRNA interference of CD163 and Siglec1 respectively did not affect ASFV infectivity. ASFV significantly inhibited IFN expression levels in PAMs and PK15S1-CD163 cells, but had no effect on PK15 and 3D4-21 cell lines. These results indicate that CD163 and Siglec1 are key receptors for ASFV-infected host cells, and both play a synergistic role in the process of ASFV infection. ASFV inhibits IFN expression in susceptible cells, thereby downregulating the host immune response and evading the immune mechanism. The discovery of the ASFV receptor provides novel ideas to study ASFV and host cell interactions, pathogenic mechanisms, development of receptor blockers, vaccine design, and disease resistance breeding.
Collapse
Affiliation(s)
- Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Yunlong Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Yizhuo Luo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Jiachen Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Yongzhi Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Ting Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongdong Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ruixia Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
28
|
Jean-Pierre RP, Hagerman AD, Rich KM. An analysis of African Swine Fever consequences on rural economies and smallholder swine producers in Haiti. Front Vet Sci 2022; 9:960344. [PMID: 36311651 PMCID: PMC9597192 DOI: 10.3389/fvets.2022.960344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
African Swine Fever (ASF) causes high mortality and often results in strict culling policies for affected pigs and international market restrictions. It took more than 25 years for swine inventories in Haiti and the Dominican Republic to recover from an ASF outbreak that took place from 1978 to 1984. The 2021 outbreaks in the Dominican Republic and Haiti pose threats to animal health, livestock markets, and producer livelihoods. A partial equilibrium Haitian pig sector model (HPM-2021) was developed to assess the economic impacts of a 2021 Haitian ASF outbreak of a similar size to the 1980s outbreak. The dynamic model examines ASF impacts from 2021 to 2024, through 100 iterations of stochastic supply shocks, and three specific demand shocks. Recovery alternatives are assessed through 2030, and outbreaks and recovery outcomes are compared to a baseline reflecting 2019 trends. The analysis includes economic effects on national pork and maize in Haiti, the Dominican Republic, the rest of the Caribbean, and the rest of the world. Findings demonstrate higher vulnerabilities of the traditional sector to ASF-related disruptions. The inflated prices generated by pork production shortfalls are an opportunity to accelerate income growth for remaining traditional pig producers. When there is no consumer avoidance, the production losses caused by ASF generate high prices and contribute to a minimum of 49% increase in traditional sector revenue, and a minimum of 2.22% revenue growth in the commercial sector from the 2019 base year. Nevertheless, the potential for consumer avoidance of pork cause prices to decrease and offset those gains by as much as 90% in the traditional sector and 44% in the commercial sector. Smaller commercial sector impacts derive from different elasticities. ASF-induced high prices also lead to increased consumer expenditure losses by up to 200% over the outbreak period. Nevertheless, consumer expenditures tend to recover instantaneously with ASF eradication. Due to persisting demand shocks, producers will earn up to 0.3% lower than baseline levels income from 2027 to 2030. Few models evaluate the economic impacts of health response policies in less developed countries like Haiti. HPM-2021 results highlight ASF impacts on prices, which can benefit certain producers and disincentivize on-farm disease reporting. Slow recovery and consumer avoidance of pork are detrimental to long-term swine industry survival, producer livelihoods, and the overall rural economy.
Collapse
Affiliation(s)
- Ralph P. Jean-Pierre
- Department of Agricultural Economics, Oklahoma State University, Stillwater, OK, United States,*Correspondence: Ralph P. Jean-Pierre
| | - Amy D. Hagerman
- Department of Agricultural Economics, Oklahoma State University, Stillwater, OK, United States
| | - Karl M. Rich
- Department of Agricultural Economics, Oklahoma State University, Stillwater, OK, United States,Master of International Agriculture Program, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
29
|
Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M, Aguilar PV. African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front Microbiol 2022; 13:1011891. [PMID: 36274746 PMCID: PMC9581234 DOI: 10.3389/fmicb.2022.1011891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia,*Correspondence: Julian Ruiz-Saenz ;
| | - Andres Diaz
- PIC—Pig Improvement Company, Querétaro, Mexico
| | - D. Katterine Bonilla-Aldana
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Alfonso J. Rodríguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia,Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States,Center for Tropical Diseases, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
30
|
Luo R, Wang T, Sun M, Pan L, Huang S, Sun Y, Qiu HJ. The 24.5-kb Left Variable Region Is Not a Determinant for African Swine Fever Virus to Replicate in Primary Porcine Alveolar Macrophages. Viruses 2022; 14:2119. [PMID: 36298673 PMCID: PMC9607283 DOI: 10.3390/v14102119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 08/13/2023] Open
Abstract
African swine fever (ASF) is a widespread hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), currently threatening the pig industry worldwide. Here, we demonstrated that the cell-adapted strain ASFV-P121 with a 24.5-kb deletion in the left variable region (LVR) lost the ability to replicate in primary porcine alveolar macrophages (PAMs). To explore whether this deletion determines the inability of ASFV-P121 replication in PAMs, a mutant virus (ASFV-ΔLVR) with the same LVR deletion as ASFV-P121 was constructed based on the wild-type ASFV HLJ/18 (ASFV-WT). However, the growth titer of ASFV-ΔLVR only reduced 10-fold compared with ASFV-WT in PAMs. Furthermore, we found that the large deletion of the LVR does not affect the formation of virus factories and virion morphogenesis. These findings reveal important implications for analyzing the molecular mechanism of ASFV cell tropism change.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Maowen Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Li Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Shujian Huang
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| | - Yun Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
31
|
Oh SI, Nguyen TTH, Yang MS, Nga BTT, Bui VN, Le VP, Yi SW, Kim E, Hur TY, Lee HS, Kim B. Blood parameters and pathological lesions in pigs experimentally infected with Vietnam's first isolated African swine fever virus. Front Vet Sci 2022; 9:978398. [PMID: 36157181 PMCID: PMC9495444 DOI: 10.3389/fvets.2022.978398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
African swine fever virus (ASFV) is a notable virus and one of the most serious global threats to the pig industry. Improving awareness about host–virus interactions could facilitate the understanding of the disease pathogenesis. Therefore, we investigated changes in blood parameters, viral loads, and pathological changes in ASFV-inoculated pigs according to the time of death after the onset of viremia. For the analyses, the ASFV-infected pigs (n = 10) were divided into two groups (five pigs/group) according to their time of death after the onset of viremia. The blood cell count dynamics and serum biochemistry profiles were similar between the groups; however, viral load distribution was different. A comparison of the histopathological changes and immunohistochemistry results between the two groups indicated that the lymphoid system, particularly the spleen, was more damaged in the early stage of the disease than in the last stage. Additionally, the virus-induced lesions in other organs (liver and kidney) were more severe in the late stage than in the early stage. Our findings provide invaluable information on the characteristics of blood parameters and pathological lesions in pigs infected with the Asia-epidemic ASFV strain and the course of ASF, targeting internal organs in pigs. Overall, this study characterizes the host-pathogen interaction in ASFV infection, offering insight for the establishment of ASF control strategies.
Collapse
Affiliation(s)
- Sang-Ik Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Sang-Ik Oh
| | - Thi Thu Huyen Nguyen
- Bac Giang Agriculture and Forestry University, Hanoi, Vietnam
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bui Thi To Nga
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Vuong Nghia Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Seung-Won Yi
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Eunju Kim
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Tai-Young Hur
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Hu Suk Lee
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Bumseok Kim
| |
Collapse
|
32
|
Taking a Promising Vaccine Candidate Further: Efficacy of ASFV-G-ΔMGF after Intramuscular Vaccination of Domestic Pigs and Oral Vaccination of Wild Boar. Pathogens 2022; 11:pathogens11090996. [PMID: 36145428 PMCID: PMC9504512 DOI: 10.3390/pathogens11090996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is a pandemic threat to the global pig industry and wild suids. A safe and efficacious vaccine could monumentally assist in disease eradication. In the past years, promising live attenuated vaccine candidates emerged in proof-of-concept experiments, among which was “ASFV-G-∆MGF”. In our study, we tested the vaccine candidate in three animal experiments intramuscularly in domestic pigs and orally in wild boar. Further, a macrophage-grown vaccine virus and a virus grown on permanent cells could be employed. Irrespective of the production system of the vaccine virus, a two-dose intramuscular immunization could induce close-to-sterile immunity with full clinical protection against challenge infection. After oral immunization, 50% of the vaccinees seroconverted and all responders were completely protected against subsequent challenge. All nonresponders developed ASF upon challenge with two acute lethal infections and two mild and transient courses. The latter results show a lower efficiency after oral administration that would have to be taken into consideration when designing vaccination-based control measures. Overall, our findings confirm that “ASFV-G-∆MGF” is a most promising vaccine candidate that could find its way into well-organized and controlled immunization campaigns. Further research is needed to characterize safety aspects and define possible improvements of oral efficiency.
Collapse
|
33
|
Examination of immunogenic properties of recombinant antigens based on p22 protein from African swine fever virus. J Vet Res 2022; 66:297-304. [PMID: 36349136 PMCID: PMC9597933 DOI: 10.2478/jvetres-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
The single member of the Asfarviridae family is African swine fever virus (ASFV). This double-stranded DNA virus infects wild and farmed swine and loses the pig industry large sums of money. An inner envelope, capsid, and outer envelope are parts of the ASFV particle containing structural proteins playing different roles in the process of infection or host immune defence evasion. When expressed by the baculovirus system, the p22 protein from the inner envelope was found to induce partial protection against a virulent virus strain. This study aimed to express a part of this protein in a different system and evaluate its immunogenicity.
Material and Methods
We designed two proteins, the extracellular (C terminal) part of the p22 protein (p22Ct) and its fusion with the heat-labile enterotoxin B subunit from Escherichia coli (LTB-p22Ct), which is supposed to be a potent enhancer of the immune response. Both proteins were produced in the E. coli expression system and subsequently used for mice immunisation to analyse their safety and immunogenicity.
Results
The protein fused with LTB did not show the expected adjuvant properties and did not prove safe, because abscess formation was observed after immunisation. In contrast, immunisation with the p22Ct protein alone induced a higher antibody titre but caused no adverse symptoms.
Conclusion
These results show the high potential of the p22Ct region as an immunogenic protein for ASFV serological detection purposes.
Collapse
|
34
|
The African Swine Fever Isolate ASFV-Kenya-IX-1033 Is Highly Virulent and Stable after Propagation in the Wild Boar Cell Line WSL. Viruses 2022; 14:v14091912. [PMID: 36146718 PMCID: PMC9505471 DOI: 10.3390/v14091912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 02/04/2023] Open
Abstract
We describe the characterization of an African swine fever genotype IX virus (ASFV-Kenya-IX-1033), which was isolated from a domestic pig in western Kenya during a reported outbreak. This includes the efficiency of virus replication and in vivo virulence, together with genome stability and virulence, following passage in blood macrophages and in a wild boar lung cell line (WSL). The ASFV-Kenya-IX-1033 stock retained its ability to replicate in primary macrophages and retained virulence in vivo, following more than 20 passages in a WSL. At the whole genome level, a few single-nucleotide differences were observed between the macrophage and WSL-propagated viruses. Thus, we propose that the WSL is suitable for the production of live-attenuated ASFV vaccine candidates based on the modification of this wild-type isolate. The genome sequences for ASFV-Kenya-IX-1033 propagated in macrophages and in WSL cells were submitted to GenBank, and a challenge model based on the isolate was developed. This will aid the development of vaccines against the genotype IX ASFV circulating in eastern and central Africa.
Collapse
|
35
|
Mason J, Primavera V, Martignette L, Clark B, Barrera J, Simmons J, Hurtle W, Neilan JG, Puckette M. Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research. Viruses 2022; 14:v14091875. [PMID: 36146682 PMCID: PMC9503874 DOI: 10.3390/v14091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Senecavirus A (SVA) is a member of the family Picornaviridae and enzootic in domestic swine. SVA can induce vesicular lesions that are clinically indistinguishable from Foot-and-mouth disease, a major cause of global trade barriers and agricultural productivity losses worldwide. The LF-BK αVβ6 cell line is a porcine-derived cell line transformed to stably express an αVβ6 bovine integrin and primarily used for enhanced propagation of Foot-and-mouth disease virus (FMDV). Due to the high biosecurity requirements for working with FMDV, SVA has been considered as a surrogate virus to test and evaluate new technologies and countermeasures. Herein we conducted a series of comparative evaluation in vitro studies between SVA and FMDV using the LF-BK αVβ6 cell line. These include utilization of LF-BK αVβ6 cells for field virus isolation, production of high virus titers, and evaluating serological reactivity and virus susceptibility to porcine type I interferons. These four methodologies utilizing LF-BK αVβ6 cells were applicable to research with SVA and results support the current use of SVA as a surrogate for FMDV.
Collapse
Affiliation(s)
- Jessica Mason
- SAIC, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | | | | | - Benjamin Clark
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Jose Barrera
- SAIC, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Janine Simmons
- SAIC, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - William Hurtle
- U.S. Department of Homeland Security Science & Technology Directorate, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - John G. Neilan
- U.S. Department of Homeland Security Science & Technology Directorate, Plum Island Animal Disease Center, Greenport, NY 11944, USA
| | - Michael Puckette
- U.S. Department of Homeland Security Science & Technology Directorate, Plum Island Animal Disease Center, Greenport, NY 11944, USA
- Correspondence:
| |
Collapse
|
36
|
Kameyama KI, Kitamura T, Okadera K, Ikezawa M, Masujin K, Kokuho T. Usability of Immortalized Porcine Kidney Macrophage Cultures for the Isolation of ASFV without Affecting Virulence. Viruses 2022; 14:v14081794. [PMID: 36016416 PMCID: PMC9414656 DOI: 10.3390/v14081794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Immortalized porcine kidney macrophage (IPKM) cells are highly susceptible to major African swine fever virus (ASFV) isolates. To clarify the compatibility of this cell line for ASFV isolation from biomaterials, animal experiments and in vitro isolation were performed. Pork products seized at international airports were subjected to virus inoculation in pigs (in vivo) and IPKM cell cultures (in vitro) to examine the viability and virulence of the contaminating viruses. Moreover, the viruses isolated using IPKM cells were inoculated into pigs to assess the virulence shift from the original materials. All pigs that were inoculated with either homogenate samples of seized pork product or IPKM-isolated ASFVs developed typical symptoms of ASF and died (or were euthanized) within the term of the animal experiments. The success rate of virus isolation in IPKM cells was comparable to that observed in porcine primary alveolar macrophage (PAM) cells. The IPKM cell line would be an ideal tool for the isolation and propagation of live ASFVs with high efficiency and enhanced usability, such as immortal, proliferative, and adhesive properties. The isolated viruses retained biologically similar characteristics to those of the original ones during isolation in vitro.
Collapse
|
37
|
Abstract
African swine fever (ASF) is a lethal and highly contagious viral disease of domestic and wild pigs, listed as a notifiable disease reported to the World Organization for Animal Health (OIE). Despite its limited host range and absent zoonotic potential, the socio-economic and environmental impact of ASF is very high, representing a serious threat to the global swine industry and the many stakeholders involved. Currently, only control and eradication measures based mainly on early detection and strict stamping-out policies are available, however, the rapid spread of the disease in new countries, and in new regions in countries already affected, show these strategies to be lacking. In this review, we discuss approaches to ASF vaccinology, with emphasis on the advances made over the last decade, including the development of virulence-associated gene deleted strains such as the very promising ASFV-G-ΔI177L/ΔLVR, that replicates efficiently in a stable porcine epithelial cell line, and the cross-protecting BA71ΔCD2 capable of stably growing in the commercial COS-1 cell line, or the naturally attenuated Lv17/WB/Rie1 which shows solid protection in wild boar. We also consider the key constraints involved in the scale-up and commercialization of promising live attenuated and virus-vectored vaccine candidates, namely cross-protection, safety, lack of suitable animal models, compatibility with wildlife immunization, availability of established and licensed cell lines, and differentiating infected from vaccinated animals (DIVA) strategy.
Collapse
Affiliation(s)
- Ana Catarina Urbano
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| | - Fernando Ferreira
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS)
| |
Collapse
|
38
|
Vuono EA, Ramirez-Medina E, Pruitt S, Rai A, Espinoza N, Spinard E, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of the EP296R Gene from the Genome of Highly Virulent African Swine Fever Virus Georgia 2010 Does Not Affect Virus Replication or Virulence in Domestic Pigs. Viruses 2022; 14:1682. [PMID: 36016304 PMCID: PMC9415450 DOI: 10.3390/v14081682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth A. Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Oxford, MS 39762, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| |
Collapse
|
39
|
Evaluation of the Deletion of MGF110-5L-6L on Swine Virulence from the Pandemic Strain of African Swine Fever Virus and Use as a DIVA Marker in Vaccine Candidate ASFV-G-ΔI177L. J Virol 2022; 96:e0059722. [PMID: 35862688 PMCID: PMC9327674 DOI: 10.1128/jvi.00597-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) is responsible for an ongoing pandemic that is affecting central Europe, Asia, and recently the Dominican Republic, the first report of the disease in the Western Hemisphere in over 40 years. ASFV is a large, complex virus with a double-stranded DNA (dsDNA) genome that carries more than 150 genes, most of which have not been studied. Here, we assessed the role of the MGF110-5L-6L gene during virus replication in cell cultures and experimental infection in swine. A recombinant virus with MGF110-5L-6L deleted (ASFV-G-ΔMGF110-5L-6L) was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. ASFV-G-ΔMGF110-5L-6L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the MGF110-5L-6L gene is nonessential for virus replication. Similarly, domestic pigs inoculated with ASFV-G-ΔMGF110-5L-6L presented with a clinical disease undistinguishable from that caused by the parental ASFV-G, confirming that the MGF110-5L-6L gene is not involved in producing disease in swine. Sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognized the protein encoded by the MGF110-5L-6L gene as a potential target for the development of an antigenic marker differentiation of infected from vaccinated animals (DIVA) vaccine. To test this hypothesis, the MGF110-5L-6L gene was deleted from the highly efficacious ASFV vaccine candidate ASFV-G-ΔI177L, generating the recombinant ASFV-G-ΔI177L/ΔMGF110-5L-6L. Animals inoculated with ASFV-G-ΔI177L/ΔMGF110-5L-6L developed an ASFV-specific antibody response detected by enzyme-linked immunosorbent assay (ELISA). The sera strongly recognized ASFV p30 expressed in eukaryotic cells but did not recognize ASFV MGF110-5L-6L protein, demonstrating that deletion of the MGF110-5L-6L gene can enable DIVA capabilities in preexisting vaccine candidates. IMPORTANCE Currently, there are no African swine fever (ASF) commercial vaccines that can be used to prevent or control the spread of ASF. The only effective experimental vaccines against ASF are live-attenuated vaccines. However, these experimental vaccines, which rely on a deletion of a specific gene of the current circulating strain of ASF, make it hard to tell the difference between a vaccinated and an infected animal. In our search for a serological marker, we identified that the virus protein encoded by the MGF110-5L-6L gene induced an immune response, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that deletion of MGF110-5L-6L does not affect virulence or virus replication. However, when the deletion of MGF110-5L-6L was added to vaccine candidate ASFV-G-ΔI177L, a reduction in the effectiveness of the vaccine occurred.
Collapse
|
40
|
Huang Z, Xu Z, Cao H, Zeng F, Wang H, Gong L, Zhang S, Cao S, Zhang G, Zheng Z. A Triplex PCR Method for Distinguishing the Wild-Type African Swine Fever Virus From the Deletion Strains by Detecting the Gene Insertion. Front Vet Sci 2022; 9:921907. [PMID: 35836498 PMCID: PMC9274085 DOI: 10.3389/fvets.2022.921907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
To date, there is no effective vaccine or antiviral therapy available to prevent or treat African swine fever virus (ASFV) infections. ASFV gene deletion strains have been proposed as promising anti-ASFV vaccine candidates. In recent years, most ASFV gene deletion strains worldwide have been recombinant strains expressing EGFP or mCherry as markers. Therefore, in this study, a new triplex real-time PCR (RT-PCR) method was established for the broad and accurate differentiation of ASFV wild-type vs. gene deletion strains. We designed three pairs of primers and probes to target B646L, EGFP, and mCherry, and RT-PCR was used to detect these three genes simultaneously. The detection method prevented non-specific amplification of porcine reproductive and respiratory syndrome virus, porcine epidemic diarrhea virus, circovirus type 2, pseudorabies virus, and classical swine fever virus genes. The minimum copy number of standard plasmid DNA detected using triplex RT-PCR was 9.49, 15.60, and 9.60 copies for B646L, EGFP, and mCherry, respectively. Importantly, of the 1646 samples analyzed in this study, 67 were positive for ASFV, all corresponding to the wild-type virus. Overall, our data show that the triplex RT-PCR method established in this study can specifically identify both ASFV wild-type and gene deletion strains.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
| | - Zhiying Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
| | - Haoxuan Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China, Guangzhou, China
| | | | - Sen Cao
- Haifeng Animal Disease Prevention and Control Center, Shanwei, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guihong Zhang
| | - Zezhong Zheng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Zezhong Zheng
| |
Collapse
|
41
|
Mai TN, Sekiguchi S, Huynh TML, Cao TBP, Le VP, Dong VH, Vu VA, Wiratsudakul A. Dynamic Models of Within-Herd Transmission and Recommendation for Vaccination Coverage Requirement in the Case of African Swine Fever in Vietnam. Vet Sci 2022; 9:vetsci9060292. [PMID: 35737344 PMCID: PMC9228824 DOI: 10.3390/vetsci9060292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 01/09/2023] Open
Abstract
African swine fever (ASF) is a highly contagious disease that is caused by the ASF virus (ASFV) with a high fatality rate in domestic pigs resulting in a high socio-economic impact. The pig business in Vietnam was recently affected by ASF for the first time. This study thus aimed to develop a disease dynamic model to explain how ASFV spreads in Vietnamese pig populations and suggest a protective vaccine coverage level required to prevent future outbreaks. The outbreak data were collected from ten private small-scale farms within the first wave of ASF outbreaks in Vietnam. Three methods were used to estimate the basic reproduction number (R0), including the exponential growth method, maximum likelihood method, and attack rate method. The average R0 values were estimated at 1.49 (95%CI: 1.05–2.21), 1.58 (95%CI: 0.92–2.56), and 1.46 (95%CI: 1.38–1.57), respectively. Based on the worst-case scenario, all pigs in a herd would be infected and removed within 50 days. We suggest vaccinating at least 80% of pigs on each farm once a commercially approved ASF vaccine is available. However, an improvement in biosecurity levels in small-scale farms is still greatly encouraged to prevent the introduction of the virus.
Collapse
Affiliation(s)
- Thi Ngan Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.N.M.); (T.M.L.H.); (T.B.P.C.); (V.P.L.); (V.H.D.)
| | - Satoshi Sekiguchi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Thi My Le Huynh
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.N.M.); (T.M.L.H.); (T.B.P.C.); (V.P.L.); (V.H.D.)
| | - Thi Bich Phuong Cao
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.N.M.); (T.M.L.H.); (T.B.P.C.); (V.P.L.); (V.H.D.)
| | - Van Phan Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.N.M.); (T.M.L.H.); (T.B.P.C.); (V.P.L.); (V.H.D.)
| | - Van Hieu Dong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.N.M.); (T.M.L.H.); (T.B.P.C.); (V.P.L.); (V.H.D.)
| | - Viet Anh Vu
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +662-441-5242
| |
Collapse
|
42
|
Ramirez-Medina E, O’Donnell V, Silva E, Espinoza N, Velazquez-Salinas L, Moran K, Daite DA, Barrette R, Faburay B, Holland R, Gladue DP, Borca MV. Experimental Infection of Domestic Pigs with an African Swine Fever Virus Field Strain Isolated in 2021 from the Dominican Republic. Viruses 2022; 14:v14051090. [PMID: 35632831 PMCID: PMC9145207 DOI: 10.3390/v14051090] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a disease of domestic and wild swine that has spread throughout a large geographical area including Central Europe, East and Southeast Asia, and Southern Africa. Typically, the clinical presentation of the disease in affected swine heavily depends on the virulence of the ASFV strain. Very recently, ASFV was detected in the Dominican Republic (DR) and Haiti, constituting the first diagnosis of ASFV in more than 40 years in the Western hemisphere. In this report, the clinical presentation of the disease in domestic pigs inoculated with an ASFV field strain isolated from samples collected in the DR (ASFV-DR21) was observed. Two groups of domestic pigs were inoculated either intramuscularly (IM) or oronasally (ON) with ASFV-DR21 (104 hemadsorbing dose-50% (HAD50)). A group of naïve pigs (designated as the contact group) was co-housed with the ASFV-DR21 IM-inoculated animals to evaluate ASFV transmission and disease manifestation. Animals inoculated IM with ASFV-DR21 developed an acute disease leading to humane euthanasia at approximately day 7 post-inoculation (pi). Interestingly, animals inoculated via the ON route with ASFV-DR21 developed a heterogeneous pattern of disease kinetics. One animal developed an acute form of the disease and was euthanized on day 7 pi, another animal experienced a protracted presentation of the disease with euthanasia by day 16 pi, and the remaining two animals presented a milder form of the disease, surviving through the 28-day observational period. The contact animals also presented with a heterogenous presentation of the disease. Three of the animals presented protracted but severe forms of the disease being euthanized at days 14, 15 and 21 pi. The other two animals presented with a milder form of the disease, surviving the entire observational period. In general, virus titers in the blood of animals in all study groups closely followed the clinical presentation of the disease, both in length and extent. Importantly, all animals presenting with a prolonged form of the disease, as well as those surviving throughout the observational period, developed a strong ASFV-specific antibody response. These results suggest that ASFV-DR21, unless inoculated parenterally, produces a spectrum of clinical disease, with some animals experiencing an acute fatal form while others presented with a mild transient disease accompanied by the induction of a strong antibody response. At the time of publication, this is the first report characterizing the virulent phenotype of an ASFV field strain isolated from samples collected in the DR during the 2021 outbreak and provides information that may be used in developing epidemiological management measures to control ASF on the island of Hispaniola.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
| | - Vivian O’Donnell
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
| | - Karen Moran
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Dee Ann Daite
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Roger Barrette
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Bonto Faburay
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Robin Holland
- Plum Island Animal Disease Center, Animal and Plant Health Inspection Service, USDA, Greenport, NY 11944, USA; (V.O.); (K.M.); (D.A.D.); (R.B.); (B.F.); (R.H.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
- Correspondence: (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY 11944, USA; (E.R.-M.); (E.S.); (N.E.); (L.V.-S.)
- Correspondence: (D.P.G.); (M.V.B.)
| |
Collapse
|
43
|
Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines (Basel) 2022; 10:707. [PMID: 35632463 PMCID: PMC9144233 DOI: 10.3390/vaccines10050707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.
Collapse
Affiliation(s)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (D.M.); (A.O.)
| | | |
Collapse
|
44
|
Gladue DP, Borca MV. Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses 2022; 14:v14050878. [PMID: 35632620 PMCID: PMC9146452 DOI: 10.3390/v14050878] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is causing a pandemic affecting swine in a large geographical area of the Eastern Hemisphere, from Central Europe to East and Southeast Asia, and recently in the Americas, the Dominican Republic and Haiti. The etiological agent, ASF virus (ASFV), infects both domestic and wild swine and produces a variety of clinical presentations depending on the virus strain and the genetics of the pigs infected. No commercial vaccines are currently available, although experimental recombinant live attenuated vaccine candidates have been shown to be efficacious in protecting animals against disease when challenged with homologous virulent strains. This review attempts to systematically provide an overview of all the live attenuated strains that have been shown to be experimental vaccine candidates. Moreover, it aims to analyze the development of these vaccine candidates, obtained by deleting specific genes or group of genes, and their efficacy in preventing virus infection and clinical disease after being challenged with virulent isolates. This report summarizes all the experimental vaccine strains that have shown promise against the contemporary pandemic strain of African swine fever.
Collapse
|
45
|
Wang Z, Ai Q, Huang S, Ou Y, Gao Y, Tong T, Fan H. Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus. Vaccines (Basel) 2022; 10:vaccines10030344. [PMID: 35334976 PMCID: PMC8949402 DOI: 10.3390/vaccines10030344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body’s inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body’s immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yating Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tiezhu Tong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| |
Collapse
|
46
|
Shimmon GL, Shah PNM, Fry E, Stuart DI, Hawes P, Netherton CL. Purification of African Swine Fever Virus. Methods Mol Biol 2022; 2503:179-186. [PMID: 35575895 DOI: 10.1007/978-1-0716-2333-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
African swine fever virus is a cytolytic virus that leads to the apoptosis of both cultured cells and primary macrophages. Cell culture supernatants of virus-infected cells are routinely used for virological and immunological studies, despite differences in the biological behavior between such preparations and highly purified virus. In addition, more recent data suggests that exosomes containing viral proteins may be secreted from infected cells. While African swine fever virus can be purified through a number of methods, in our hands Percoll provides the most robust method of separating virus from cellular contaminants.
Collapse
Affiliation(s)
- Gareth L Shimmon
- African Swine Fever Vaccinology Group, The Pirbright Institute, Pirbright, Woking, UK
| | - Pranav N M Shah
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, UK
| | - Elizabeth Fry
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, UK
| | - Pippa Hawes
- Bioimaging, The Pirbright Institute, Pirbright, Woking, UK
| | | |
Collapse
|
47
|
Goatley LC, Nash R, Netherton CL. Primary Macrophage Culture from Porcine Blood and Lungs. Methods Mol Biol 2022; 2503:63-72. [PMID: 35575886 DOI: 10.1007/978-1-0716-2333-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary cultures represent the most reliable method to isolate and propagate field isolates of African swine fever virus (ASFV ). Within the pig ASFV predominantly targets the reticuloendothelial system for replication; therefore, primary macrophage cell cultures are commonly used to isolate, propagate, and study the virus life cycle in the laboratory. In this chapter we will describe methods for the direct isolation of pulmonary alveolar macrophages by lung lavage and the culture of monocyte-derived macrophages from pig blood. We also include a method for the positive selection of CD14+ monocytes as a source for monocyte-derived macrophages from pig blood using microbeads.
Collapse
Affiliation(s)
- Lynnette C Goatley
- African Swine Fever Vaccinology Group, The Pirbright Institute, Pirbright, Woking, UK.
| | | | | |
Collapse
|
48
|
Wang T, Luo R, Sun Y, Qiu HJ. Current efforts towards safe and effective live attenuated vaccines against African swine fever: challenges and prospects. Infect Dis Poverty 2021; 10:137. [PMID: 34949228 PMCID: PMC8702042 DOI: 10.1186/s40249-021-00920-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a fatal hemorrhagic disease in domestic pigs and wild boar caused by African swine fever virus (ASFV). Since ASF has been introduced into Europe and Asia, the major pig-raising areas, posing a huge threat to the pork industry worldwide. Currently, prevention and control of ASF are basically dependent on strict biosecurity measures and stamping-out policy once ASF occurs. Main text The major risks of ASF spread are insufficient biosecurity measures and human behaviors. Therefore, a safe and effective vaccine seems to be a reasonable demand for the prevention and control of ASF. Due to the efficacy advantage over other types of vaccines, live attenuated vaccines (LAVs), especially virulence-associated genes deleted vaccines, are likely to be put into emergency and conditional use in restricted areas if ASF is out of control in a country with a huge pig population and pork consumption, like China. However, the safety, efficacy, and genetic stability of current candidate ASF LAVs require comprehensive clinical evaluations prior to country-wide field application. Several critical issues need to be addressed to commercialize an ideal ASF LAV, including a stable cell line for manufacturing vaccines, differentiation of infected from vaccinated animals (DIVA), and cross-protection from different genotypes. Conclusion A safe and effective DIVA vaccine and an accompanying diagnostic assay will facilitate the prevention, control, and eradication of ASF, which is quite challenging in the near future. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rui Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,School of Life Science Engineering, Foshan University, Foshan, 528231, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China. .,School of Life Science Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
49
|
African swine fever virus regulates host energy and amino acid metabolism to promote viral replication. J Virol 2021; 96:e0191921. [PMID: 34908441 DOI: 10.1128/jvi.01919-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever is one of the most serious viral diseases caused by African swine fever virus (ASFV). The metabolic changes induced by ASFV infection remain unknown. Here, PAMs infected with ASFV was analyzed by ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) in combination with multivariate statistical analysis. A total of 90 metabolites were significantly changed after ASFV infection, and most of them belong to amino acids and TCA cycle intermediates. ASFV infection induced increase of most of amino acids in host during the early stages of infection, and amino acids decreased in the late stages of infection. ASFV infection did not significantly affected glycolysis pathway, whereas it induced the increase of citrate, succinate, α-ketoglutarate, and oxaloacetate levels in the TCA cycle, suggesting that ASFV infection promoted TCA cycle. The activity of aspartate aminotransferase and glutamate production were significantly elevated in ASFV-infected cells and pigs, resulting in reversible transition between TCA cycle and amino acids synthesis. Aspartate, glutamate, and TCA cycle were essential for ASFV replication. In addition, ASFV infection induced an increase in lactate level using lactate dehydrogenase, which led to low expression of IFN-β and increased of ASFV replication. Our data, for the first time, indicated that ASFV infection controls IFN-β production through RIG-I-mediated signaling pathways. These data identified a novel mechanism evolved by ASFV to inhibit host innate immune responses, and will provide insights for development of new preventive or therapeutic strategies targeting the altered metabolic pathways. IMPORTANCE In order to promote viral replication, viruses often cause severe immunosuppression and seize organelles to synthesize a large number of metabolites required for self-replication. African swine fever virus (ASFV) has developed many strategies to evade host innate immune responses. However, the impact of ASFV infection on host cellular metabolism remains unknown. Here, for the first time, we analyzed the metabolomic profiles of ASFV-infected PAMs cells. ASFV infection increased host TCA cycle and amino acids metabolism. Aspartate, glutamate, and TCA cycle promoted ASFV replication. ASFV infection also induced the increase of lactate production to inhibit innate immune responses for self-replication. This study identified novel immune evasion mechanisms utilized by ASFV and provided viewpoints on ASFV-host interactions, which is critical for guiding the design of new prevention strategies against ASFV targeting the altered metabolic pathways.
Collapse
|
50
|
Velazquez-Salinas L, Ramirez-Medina E, Rai A, Pruitt S, Vuono EA, Espinoza N, Gladue DP, Borca MV. Development Real-Time PCR Assays to Genetically Differentiate Vaccinated Pigs From Infected Pigs With the Eurasian Strain of African Swine Fever Virus. Front Vet Sci 2021; 8:768869. [PMID: 34778441 PMCID: PMC8579032 DOI: 10.3389/fvets.2021.768869] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, African swine fever virus (ASFV) represents one of the most important economic threats for the global pork industry. Recently, significant advances have been made in the development of potential vaccine candidates to protect pigs against this virus. We have previously developed attenuated vaccine candidates by deleting critical viral genes associated with virulence. Here, we present the development of the accompanying genetic tests to discriminate between infected and vaccinated animals (DIVA), a necessity during an ASFV vaccination campaign. We describe here the development of three independent real-time polymerase chain reaction (qPCR) assays that detect the presence of MGF-360-12L, UK, and I177L genes, which were previously deleted from the highly virulent Georgia strain of ASFV to produce the three recombinant live attenuated vaccine candidates. When compared with the diagnostic reference qPCR that detects the p72 gene, all assays demonstrated comparable levels of sensitivity, specificity, and efficiency of amplification to detect presence/absence of the ASFV Georgia 2007/1 strain (prototype virus of the Eurasian lineage) from a panel of blood samples from naïve, vaccinated, and infected pigs. Collectively, the results of this study demonstrate the potential of these real-time PCR assays to be used as genetic DIVA tests, supporting vaccination campaigns associated with the use of ASFV-ΔMGF, ASFV-G-Δ9GL/ΔUK, and ASFV-ΔI177L or cell culture adapted ASFV-ΔI177LΔLVR live attenuated vaccines in the field.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth Ramirez-Medina
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Ayushi Rai
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Sarah Pruitt
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Elizabeth A Vuono
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi, MS, United States
| | - Nallely Espinoza
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Douglas P Gladue
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Manuel V Borca
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|