1
|
Ashton LV, Weishaar KM, Séguin B, MacNeill AL. Oclacitinib and Myxoma Virus Therapy in Dogs with High-Grade Soft Tissue Sarcoma. Biomedicines 2023; 11:2346. [PMID: 37760788 PMCID: PMC10525839 DOI: 10.3390/biomedicines11092346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Human rhabdomyosarcomas are rarely cured by surgical resection alone. This is also true for high-grade soft tissue sarcomas in dogs. Dogs with spontaneous sarcoma are good models for clinical responses to new cancer therapies. Strategic combinations of immunotherapy and oncolytic virotherapy (OV) could improve treatment responses in canine and human cancer patients. To develop an appropriate combination of immunotherapy and OV for dogs with soft tissue sarcoma (STS), canine cancer cells were inoculated with myxoma viruses (MYXVs) and gene transcripts were quantified. Next, the cytokine concentrations in the canine cancer cells were altered to evaluate their effect on MYXV replication. These studies indicated that, as in murine and human cells, type I interferons (IFN) play an important role in limiting MYXV replication in canine cancer cells. To reduce type I IFN production during OV, oclacitinib (a JAK1 inhibitor) was administered twice daily to dogs for 14 days starting ~7 days prior to surgery. STS tumors were excised, and MYXV deleted for serp2 (MYXV∆SERP2) was administered at the surgical site at two time points post-operatively to treat any remaining microscopic tumor cells. Tumor regrowth in dogs treated with OV was decreased relative to historical controls. However, regrowth was not further inhibited in patients given combination therapy.
Collapse
Affiliation(s)
- Laura V. Ashton
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kristen M. Weishaar
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Bernard Séguin
- Central Victoria Veterinary Hospital, Victoria, BC V8X 2R3, Canada;
| | - Amy L. MacNeill
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
2
|
Divergent Evolutionary Pathways of Myxoma Virus in Australia: Virulence Phenotypes in Susceptible and Partially Resistant Rabbits Indicate Possible Selection for Transmissibility. J Virol 2022; 96:e0088622. [PMID: 36197107 PMCID: PMC9599488 DOI: 10.1128/jvi.00886-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.
Collapse
|
3
|
Glenn HL, de Matos AL, Villa N, McFadden G. Microscopic Analysis of Viral Infection. Methods Mol Biol 2021; 2225:163-177. [PMID: 33108662 DOI: 10.1007/978-1-0716-1012-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Viruses engineered to express fluorescent proteins can be used with live-cell imaging techniques to monitor the progression of infection in real time. Here we describe a set of methods to track infection spreading from one cell population to another as well as to visualize transfer of virions between cells. This approach is extended to multiplexing with physiological readouts of cell death, which can be correlated with single-cell resolution to viral infection.
Collapse
Affiliation(s)
- Honor L Glenn
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Ana Lemos de Matos
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nancy Villa
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
NSCs are permissive to oncolytic Myxoma virus and provide a delivery method for targeted ovarian cancer therapy. Oncotarget 2020; 11:4693-4698. [PMID: 33473255 PMCID: PMC7771716 DOI: 10.18632/oncotarget.27845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Despite the development of many anticancer agents over the past 20 years, ovarian cancer remains the most lethal gynecologic malignancy. Due to a lack of effective screening, the majority of patients with ovarian cancer are diagnosed at an advanced stage, and only ~20% of patients are cured. Thus, in addition to improved screening methods, there is an urgent need for novel anticancer agents that are effective against late-stage, metastatic disease. Oncolytic virotherapy is a promising approach; unfortunately, systemic delivery of viruses to tumors remains a major challenge. In this regard, neural stem/progenitor cells (NSCs) with well-established tumor-homing properties may serve as an effective delivery platform for oncolytic viruses. In this study, we tested the efficacy of myxoma virus (MYXV), a rabbit-specific poxvirus that has demonstrated efficacy against a variety of tumors, using human and mouse ovarian cancer cell lines. We showed that MYXV effectively lysed ovarian cancer cells in vitro, reducing their viability. We also demonstrated that MYXV can infect human NSCs, specifically the clonal HB1.F3.CD21 NSC line. Taken together, these results suggest that NSC-mediated delivery of MYXV may be a promising strategy for achieving more selectively targeted anti-tumor efficacy.
Collapse
|
5
|
Ashton LV, Graham B, Afzali MF, Gustafson D, MacNeill AL. Treatment of an Alveolar Rhabdomyosarcoma Allograft with Recombinant Myxoma Virus and Oclacitinib. Oncolytic Virother 2020; 9:17-29. [PMID: 32548076 PMCID: PMC7266523 DOI: 10.2147/ov.s252727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Rhabdomyosarcomas (RMS) are difficult tumors to treat with conventional therapies. Publications indicate that oncolytic virotherapy (OV) could benefit cancer patients with tumors that are refractory to conventional treatments. It is believed that the efficacy of OV can be enhanced when used in combination with other treatments. This study evaluated the response of mice with aggressive alveolar RMS (ARMS) allografts to treatment with an OV [recombinant myxoma virus (MYXVΔserp2)] in combination with a Janus kinase (JAK) inhibitor (oclacitinib). Oclacitinib is known to inhibit JAK1 and JAK2 cell signaling pathways, which should limit the antiviral Type I interferon response. However, oclacitinib does not inhibit immune pathways that promote antigen presentation, which help stimulate an anti-cancer immune response. Materials and Methods To determine if MYXVΔserp2 and oclacitinib could improve outcomes in animals with ARMS, nude mice were inoculated subcutaneously with murine ARMS cells to establish tumors. Immune responses, tumor growth, and clinical signs in mice treated with combination therapy were compared to mice given placebo therapy and mice treated with OV alone. Results Combination therapy was safe; no viral DNA was detected in off-target organs, only within tumors. As predicted, viral DNA was detected in tumors of mice given oclacitinib and MYXVΔserp2 for a longer time period than mice treated with OV alone. Although tumor growth rates and median survival times were not significantly different between groups, clinical signs were less severe in mice treated with OV. Conclusion Our data indicate that MYXVΔserp2 treatment benefits mice with ARMS by reducing clinical signs of disease and improving quality of life.
Collapse
Affiliation(s)
- Laura V Ashton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel Gustafson
- Departiment of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Ashton LV, Quackenbush SL, Castle J, Wilson G, McCoy J, Jordan M, MacNeill AL. Recombinant Myxoma Virus Expressing Walleye Dermal Sarcoma Virus orfC Is Attenuated in Rabbits. Viruses 2020; 12:v12050517. [PMID: 32397134 PMCID: PMC7290507 DOI: 10.3390/v12050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
The poxvirus, myxoma virus (MYXV) has shown efficacy as an oncolytic virus (OV) in some cancer models. However, MYXV replication within murine cancer models and spontaneous canine sarcomas is short-lived. In mice, successful treatment of tumors requires frequent injections with MYXV. We hypothesize that treatment of cancer with a recombinant MYXV that promotes apoptosis could improve the efficacy of MYXV. The orfC gene of walleye dermal sarcoma virus (WDSV), which induces apoptosis, was recombined into the MYXV genome (MYXVorfC). A marked increase in apoptosis was observed in cells infected with MYXVorfC. To ensure that expression of WDSV orfC by MYXV does not potentiate the pathogenesis of MYXV, we evaluated the effects of MYXVorfC inoculation in the only known host of MYXV, New Zealand white rabbits. Virus dissemination in rabbit tissues was similar for MYXVorfC and MYXV. Virus titers recovered from tissues were lower in MYXVorfC-infected rabbits as compared to MYXV-infected rabbits. Importantly, rabbits infected with MYXVorfC had a delayed onset of clinical signs and a longer median survival time than rabbits infected with MYXV. This study indicates that MYXVorfC is attenuated and suggests that MYXVorfC will be safe to use as an OV therapy in future studies.
Collapse
Affiliation(s)
- Laura V. Ashton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Sandra L. Quackenbush
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jake Castle
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Garin Wilson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Jasmine McCoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Mariah Jordan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
| | - Amy L. MacNeill
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (L.V.A.); (S.L.Q.); (G.W.); (J.M.); (M.J.)
- Correspondence: ; Tel.: +1-970-297-5112
| |
Collapse
|
7
|
Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:14-21. [PMID: 30997392 PMCID: PMC6453942 DOI: 10.1016/j.omto.2019.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oncolytic viral therapy has gained significant traction as cancer therapy over the past 2 decades. Oncolytic viruses are uniquely designed both to lyse tumor cells through their replication and to recruit immune responses against virally infected cells. Increasingly, investigators are leveraging this immune response to target the immunosuppressive tumor microenvironment and improve immune effector response against bystander tumor cells. In this article, we review the spectrum of preclinical, early-stage clinical, and potential future efforts with cytokine-secreting oncolytic viruses, with a focus on the treatment of brain tumors and solid tumors.
Collapse
Affiliation(s)
- Taylor M. Pearl
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin A. Cassady
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Corresponding author: Kevin A. Cassady, Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA.
| | - Mohammed G. Ghonime
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| |
Collapse
|
8
|
Alves JM, Carneiro M, Cheng JY, Lemos de Matos A, Rahman MM, Loog L, Campos PF, Wales N, Eriksson A, Manica A, Strive T, Graham SC, Afonso S, Bell DJ, Belmont L, Day JP, Fuller SJ, Marchandeau S, Palmer WJ, Queney G, Surridge AK, Vieira FG, McFadden G, Nielsen R, Gilbert MTP, Esteves PJ, Ferrand N, Jiggins FM. Parallel adaptation of rabbit populations to myxoma virus. Science 2019; 363:1319-1326. [PMID: 30765607 DOI: 10.1126/science.aau7285] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.
Collapse
Affiliation(s)
- Joel M Alves
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. .,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Jade Y Cheng
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Masmudur M Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Liisa Loog
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK.,Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.,Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Anders Eriksson
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, ACT 2601, Australia
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Diana J Bell
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Laura Belmont
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Susan J Fuller
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | | | - William J Palmer
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny (Lyon), France
| | - Alison K Surridge
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park 2006, South Africa
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| |
Collapse
|
9
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
10
|
Phelps MP, Yang H, Patel S, Rahman MM, McFadden G, Chen E. Oncolytic Virus-Mediated RAS Targeting in Rhabdomyosarcoma. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:52-61. [PMID: 30364635 PMCID: PMC6197336 DOI: 10.1016/j.omto.2018.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Aberrant activation of the receptor tyrosine kinase-mediated RAS signaling cascade is the primary driver of embryonal rhabdomyosarcoma (ERMS), a pediatric cancer characterized by a block in myogenic differentiation. To investigate the cellular function of activated RAS signaling in regulating the growth and differentiation of ERMS cells, we genetically ablated activated RAS oncogenes with high-efficiency genome-editing technology. Knockout of NRAS in CRISPR-inducible ERMS xenograft models resulted in near-complete tumor regression through a combination of cell death and myogenic differentiation. Utilizing this strategy for therapeutic RAS targeting in ERMS, we developed a recombinant oncolytic myxoma virus (MYXV) engineered with CRISPR/Cas9 gene-editing capability. Treatment of pre-clinical human ERMS tumor xenografts with an NRAS-targeting version of this MYXV significantly reduced tumor growth and increased overall survival. Our data suggest that targeted gene-editing cancer therapies have promising translational applications, especially with improvements to gene-targeting specificity and oncolytic vector technology.
Collapse
Affiliation(s)
- Michael P Phelps
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Heechang Yang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shivani Patel
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Masmudur M Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA
| | - Eleanor Chen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Myxoma Virus M083 Is a Virulence Factor Which Mediates Systemic Dissemination. J Virol 2018; 92:JVI.02186-17. [PMID: 29343569 DOI: 10.1128/jvi.02186-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large, DNA viruses whose protein capsid is surrounded by one or more lipid envelopes. Embedded into these lipid envelopes are three conserved viral proteins which are thought to mediate binding of virions to target cells. While the function of these proteins has been studied in vitro, their specific roles during the pathogenesis of poxviral disease remain largely unclear. Here we present data demonstrating that the putative chondroitin binding protein M083 from the leporipoxvirus myxoma virus is a significant virulence factor during infection of susceptible Oryctolagus rabbits. Removal of M083 results in a reduced capacity of virus to spread beyond the regional lymph nodes and completely eliminates infection-mediated mortality. In vitro, removal of M083 results in only minor intracellular replication defects but causes a significant reduction in the ability of myxoma virus to spread from infected epithelial cells onto primary lymphocytes. We hypothesize that the physiological role of M083 is therefore to mediate the spread of myxoma virus onto rabbit lymphocytes, allowing these cells to disseminate virus throughout infected rabbits.IMPORTANCE Poxviruses represent both a class of human pathogens and potential therapeutic agents for the treatment of human malignancy. Understanding the basic biology of these agents is therefore significant to human health in a variety of ways. While the mechanisms mediating poxviral binding have been well studied in vitro, how these mechanisms impact poxviral pathogenesis in vivo remains unclear. The current study advances our understanding of how poxviral binding impacts viral pathogenesis by demonstrating that the putative chondroitin binding protein M083 plays a critical role during the pathogenesis of myxoma virus in susceptible Oryctolagus rabbits by impacting viral dissemination through changes in the transfer of virions onto primary splenocytes.
Collapse
|
12
|
Villa NY, Bais S, Chan WM, Meacham AM, Wise E, Rahman MM, Moreb JS, Rosenau EH, Wingard JR, McFadden G, Cogle CR. Ex vivo virotherapy with myxoma virus does not impair hematopoietic stem and progenitor cells. Cytotherapy 2016; 18:465-80. [PMID: 26857235 DOI: 10.1016/j.jcyt.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Relapsing disease is a major challenge after hematopoietic cell transplantation for hematological malignancies. Myxoma virus (MYXV) is an oncolytic virus that can target and eliminate contaminating cancer cells from auto-transplant grafts. The aims of this study were to examine the impact of MYXV on normal hematopoietic stem and progenitor cells and define the optimal treatment conditions for ex vivo virotherapy. METHODS Bone marrow (BM) and mobilized peripheral blood stem cells (mPBSCs) from patients with hematologic malignancies were treated with MYXV at various time, temperature and incubation media conditions. Treated BM cells from healthy normal donors were evaluated using flow cytometry for MYXV infection, long-term culture-initiating cell (LTC-IC) assay and colony-forming cell (CFC) assay. RESULTS MYXV initiated infection in up to 45% of antigen-presenting monocytes, B cells and natural killer cells; however, these infections were uniformly aborted in >95% of all cells. Fresh graft sources showed higher levels of MYXV infection initiation than cryopreserved specimens, but in all cases less than 10% of CD34(+) cells could be infected after ex vivo MYXV treatment. MYXV did not impair LTC-IC colony numbers compared with mock treatment. CFC colony types and numbers were also not impaired by MYXV treatment. MYXV incubation time, temperature or culture media did not significantly change the percentage of infected cells, LTC-IC colony formation or CFC colony formation. CONCLUSIONS Human hematopoietic cells are non-permissive for MYXV. Human hematopoietic stem and progenitor cells were not infected and thus unaffected by MYXV ex vivo treatment.
Collapse
Affiliation(s)
- Nancy Y Villa
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Swarna Bais
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Winnie M Chan
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amy M Meacham
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Elizabeth Wise
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jan S Moreb
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Emma H Rosenau
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - John R Wingard
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christopher R Cogle
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
13
|
Kinn VG, Hilgenberg VA, MacNeill AL. Myxoma virus therapy for human embryonal rhabdomyosarcoma in a nude mouse model. Oncolytic Virother 2016; 5:59-71. [PMID: 27579297 PMCID: PMC4996258 DOI: 10.2147/ov.s108831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a devastating tumor of young people that is difficult to cure. To determine if oncolytic virus therapy can improve outcomes in individuals with RMS, myxoma virus expressing a red fluorescent protein (MYXV-red) was evaluated for antitumoral effects using a murine model of RMS. Fluorescent protein was expressed in four RMS cell lines inoculated with MYXV-red, indicating that these cells were semipermissive to MYXV infection. MYXV-red replication and cytopathic effects were further evaluated using human embryonal RMS (CCL-136) cells. Logarithmic growth of MYXV-red and significant cell death were observed 72 hours after inoculation with MYXV. The oncolytic effects of MYXV-red were then studied in nude mice that were injected subcutaneously with CCL-136 cells to establish RMS xenografts. Once tumors measured 5 mm in diameter, mice were treated with multiple intratumoral injections of MXYV-red or saline. The average final tumor volume and rate of tumor growth were significantly decreased, and median survival time was significantly increased in MYXV-red-treated mice (P-values =0.0416, 0.0037, and 0.0004, respectively). Histologic sections of MYXV-red-treated tumors showed increased inflammation compared to saline-treated tumors (P-value =0.0002). In conclusion, MXYV-red treatment of RMS tumors was successful in individual mice as it resulted in decreased tumor burden in eight of eleven mice with nearly complete tumor remission in five of eleven mice. These data hold promise that MYXV-red treatment may be beneficial for people suffering from RMS. To our knowledge, this is the first report of successful treatment of RMS tumors using an oncolytic poxvirus.
Collapse
Affiliation(s)
- Veronica G Kinn
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Valerie A Hilgenberg
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
15
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
16
|
Neves F, Abrantes J, Almeida T, de Matos AL, Costa PP, Esteves PJ. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immun 2015; 21:787-801. [PMID: 26395994 PMCID: PMC4609935 DOI: 10.1177/1753425915606209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Tereza Almeida
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paulo P Costa
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal Departmento Genética, CSPGF, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
17
|
Boutard B, Vankerckhove S, Markine-Goriaynoff N, Sarlet M, Desmecht D, McFadden G, Vanderplasschen A, Gillet L. The α2,3-sialyltransferase encoded by myxoma virus is a virulence factor that contributes to immunosuppression. PLoS One 2015; 10:e0118806. [PMID: 25705900 PMCID: PMC4338283 DOI: 10.1371/journal.pone.0118806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Myxoma virus (MYXV) induces a lethal disease called Myxomatosis in European rabbits. MYXV is one of the rare viruses that encodes an α2,3-sialyltransferase through its M138L gene. In this study, we showed that although the absence of the enzyme was not associated with any in vitro deficit, the M138L deficient strains are highly attenuated in vivo. Indeed, while all rabbits infected with the parental and the revertant strains died within 9 days post-infection from severe myxomatosis, all but one rabbit inoculated with the M138L deficient strains survived the infection. In primary lesions, this resistance to the infection was associated with an increased ability of innate immune cells, mostly neutrophils, to migrate to the site of virus replication at 4 days post-infection. This was followed by the development of a better specific immune response against MYXV. Indeed, at day 9 post-infection, we observed an important proliferation of lymphocytes and an intense congestion of blood vessels in lymph nodes after M138L knockouts infection. Accordingly, in these rabbits, we observed an intense mononuclear cell infiltration throughout the dermis in primary lesions and higher titers of neutralizing antibodies. Finally, this adaptive immune response provided protection to these surviving rabbits against a challenge with the MYXV WT strain. Altogether, these results show that expression of the M138L gene contributes directly or indirectly to immune evasion by MYXV. In the future, these results could help us to better understand the pathogenesis of myxomatosis but also the importance of glycans in regulation of immune responses.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- DNA, Viral/blood
- DNA, Viral/genetics
- DNA, Viral/immunology
- Gene Knockout Techniques
- Host-Pathogen Interactions/immunology
- Immune Tolerance/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Myxoma virus/immunology
- Myxoma virus/pathogenicity
- Myxoma virus/physiology
- Myxomatosis, Infectious/blood
- Myxomatosis, Infectious/immunology
- Myxomatosis, Infectious/virology
- Rabbits
- Sialyltransferases/genetics
- Sialyltransferases/immunology
- Sialyltransferases/metabolism
- Survival Analysis
- Time Factors
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virulence/genetics
- Virulence/immunology
- Virulence Factors/genetics
- Virulence Factors/immunology
- Virulence Factors/metabolism
Collapse
Affiliation(s)
- Bérengère Boutard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Sophie Vankerckhove
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Nicolas Markine-Goriaynoff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Mickaël Sarlet
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
| | - Laurent Gillet
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
18
|
Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li L, Liang K, Liang W, Sun H, Li R. Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol 2015; 36:4535-43. [PMID: 25627006 DOI: 10.1007/s13277-015-3098-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Addition of immunoregulation factor to an oncolytic adenovirus being constructed is a developmental step in tumor gene therapy; however, cytokine IL-15 has not been frequently used as a potential cancer therapy agent. Here, we constructed an E2F-1 promoter oncolytic adenovirus based on type 5 adenovirus, which induces viral replication and proliferation in targeted tumor cells. We inserted the IL-15 gene into the E3 region of the model and found that human IL-15 expressing oncolytic adenovirus (Ad-E2F/IL15) shows a more intense antitumor effect than simple oncolytic viruses (Ad-E2F) do. Precisely because IL-15 can activate natural killer (NK) cells, CD8(+)T cells, and other immune cells, in antitumor therapy, Ad-E2F/IL15 was used in combination with cytotoxic T lymphocytes (CTL) to create a virus that can induce IL-15 gene expression while lysing tumors and stimulating the activity and function of adoptive immune cells. The therapeutic effect of this therapy is clearly stronger than that of a single application of oncolytic viruses or CTL, and hence, it could be a potential new tumor therapy.
Collapse
Affiliation(s)
- Yang Yan
- General Surgery Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tosic V, Thomas DL, Kranz DM, Liu J, McFadden G, Shisler JL, MacNeill AL, Roy EJ. Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity. PLoS One 2014; 9:e109801. [PMID: 25329832 PMCID: PMC4199602 DOI: 10.1371/journal.pone.0109801] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/14/2014] [Indexed: 12/20/2022] Open
Abstract
Myxoma virus, a rabbit poxvirus, can efficiently infect various types of mouse and human cancer cells. It is a strict rabbit-specific pathogen, and is thought to be safe as a therapeutic agent in all non-rabbit hosts tested including mice and humans. Interleukin-15 (IL15) is an immuno-modulatory cytokine with significant potential for stimulating anti-tumor T lymphocytes and NK cells. Co-expression of IL15 with the α subunit of IL15 receptor (IL15Rα) greatly enhances IL15 stability and bioavailability. Therefore, we engineered a new recombinant myxoma virus (vMyx-IL15Rα-tdTr), which expresses an IL15Rα-IL15 fusion protein plus tdTomato red fluorescent reporter protein. Permissive rabbit kidney epithelial (RK-13) cells infected with vMyx-IL15Rα-tdTr expressed and secreted the IL15Rα-IL15 fusion protein. Functional activity was confirmed by demonstrating that the secreted fusion protein stimulated proliferation of cytokine-dependent CTLL-2 cells. Multi-step growth curves showed that murine melanoma (B16-F10 and B16.SIY) cell lines were permissive to vMyx-IL15Rα-tdTr infection. In vivo experiments in RAG1-/- mice showed that subcutaneous B16-F10 tumors treated with vMyx-IL15Rα-tdTr exhibited attenuated tumor growth and a significant survival benefit for the treated group compared to the PBS control and the control viruses (vMyx-IL15-tdTr and vMyx-tdTr). Immunohistological analysis of the subcutaneous tumors showed dramatically increased infiltration of NK cells in vMyx-IL15Rα-tdTr treated tumors compared to the controls. In vivo experiments with immunocompetent C57BL/6 mice revealed a strong infiltrate of both NK cells and CD8+ T cells in response to vMyx-IL15Rα-tdTr, and prolonged survival. We conclude that delivery of IL15Rα-IL15 in a myxoma virus vector stimulates both innate and adaptive components of the immune system.
Collapse
Affiliation(s)
- Vesna Tosic
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Diana L. Thomas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - David M. Kranz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Joanna L. Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amy L. MacNeill
- Department of Pathobiology at College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Edward J. Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
21
|
Gaston DC, Odom CI, Li L, Markert JM, Roth JC, Cassady KA, Whitley RJ, Parker JN. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS One 2013; 8:e81768. [PMID: 24312353 PMCID: PMC3842420 DOI: 10.1371/journal.pone.0081768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/16/2013] [Indexed: 12/27/2022] Open
Abstract
Oncolytic type-1 herpes simplex viruses (oHSVs) lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15) holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK) cell-mediated and CD8(+) T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (m)IL-15 alone (J100) or with the mIL-15 receptor α (mIL-15Rα, J100D) to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i) both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii) Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii) Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv) The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v) J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7) plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well as the lack of neurovirulence, renders J100D suitable for investigating the combined effects of oHSV and mIL-15/IL-15Rα in various cancer models.
Collapse
Affiliation(s)
- David C Gaston
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America ; School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612. [PMID: 23894720 PMCID: PMC3716755 DOI: 10.4161/onci.24612] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising approach for the treatment of several neoplasms. The term "oncolytic viruses" is generally employed to indicate naturally occurring or genetically engineered attenuated viral particles that cause the demise of malignant cells while sparing their non-transformed counterparts. From a conceptual standpoint, oncolytic viruses differ from so-called "oncotropic viruses" in that only the former are able to kill cancer cells, even though both display a preferential tropism for malignant tissues. Of note, such a specificity can originate at several different steps of the viral cycle, including the entry of virions (transductional specificity) as well as their intracellular survival and replication (post-transcriptional and transcriptional specificity). During the past two decades, a large array of replication-competent and replication-incompetent oncolytic viruses has been developed and engineered to express gene products that would specifically promote the death of infected (cancer) cells. However, contrarily to long-standing beliefs, the antineoplastic activity of oncolytic viruses is not a mere consequence of the cytopathic effect, i.e., the lethal outcome of an intense, productive viral infection, but rather involves the elicitation of an antitumor immune response. In line with this notion, oncolytic viruses genetically modified to drive the local production of immunostimulatory cytokines exert more robust therapeutic effects than their non-engineered counterparts. Moreover, the efficacy of oncolytic virotherapy is significantly improved by some extent of initial immunosuppression (facilitating viral replication and spread) followed by the administration of immunostimulatory molecules (boosting antitumor immune responses). In this Trial Watch, we will discuss the results of recent clinical trials that have evaluated/are evaluating the safety and antineoplastic potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Doty RA, Liu J, McFadden G, Roy EJ, MacNeill AL. Histological evaluation of intratumoral myxoma virus treatment in an immunocompetent mouse model of melanoma. Oncolytic Virother 2013; 2:1-17. [PMID: 25866742 DOI: 10.2147/ov.s37971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two recombinant myxoma viruses (MYXV expressing a fluorescent protein [MYXV-Tred] and MYXV-Tred encoding murine interleukin-15 [MYXV-IL15]) were evaluated for therapeutic effects in an aggressive B16F10 melanoma model in immunocompetent mice. It was hypothesized that continuous expression of IL-15 within a tumor would recruit cytotoxic effector cells to induce an antitumor immune response and improve treatment efficacy. Weekly intratumoral injections were given to evaluate the effect of treatment on the median survival time of C57BL/6 mice bearing established B16F10 melanomas. Mice that received MYXV-Tred or MYXV-IL15 lived significantly longer than mice given treatment controls. Unexpectedly, the median survival time of MYXV-IL15-treated mice was similar to that of MYXV-treated mice. At 1, 2, and 4 days postinoculation, viral plaque assays detected replicating MYXV-Tred and MYXV-IL15 within treated tumors. At these time points in MYXV-IL15-treated tumors, IL-15 concentration, lymphocyte grades, and cluster of differentiation-3+ cell counts were significantly increased when compared to other treatment groups. However, viral titers, recombinant protein expression, and lymphocyte numbers within the tumors diminished rapidly at 7 days postinoculation. These data indicate that treatment with recombinant MYXV should be repeated at least every 4 days to maintain recombinant protein expression within a murine tumor. Additionally, neutrophilic inflammation was significantly increased in MYXV-Tred- and MYXV-IL15-treated tumors at early time points. It is speculated that neutrophilic inflammation induced by intratumoral replication of recombinant MXYV contributes to the antitumoral effect of MYXV treatment in this melanoma model. These findings support the inclusion of neutrophil chemotaxins in recombinant poxvirus oncolytic virotherapy.
Collapse
Affiliation(s)
| | - Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL
| | - Amy L MacNeill
- Department of Pathobiology, University of Illinois, Urbana, IL
| |
Collapse
|
24
|
Urbasic AS, Hynes S, Somrak A, Contakos S, Rahman MM, Liu J, MacNeill AL. Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene. Am J Vet Res 2012; 73:1252-61. [PMID: 22849686 DOI: 10.2460/ajvr.73.8.1252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the oncolytic efficacy of an attenuated form of myxoma virus lacking the serp2 gene in canine tumor cells. SAMPLE Primary cells were isolated from tumors that were surgically removed from dogs and from connective tissue obtained from the cadaver of a dog. Cells of various established cell lines from tumors and nontumorous tissues were obtained. PROCEDURES Experiments were performed with cells in monolayer culture. Cell cultures were inoculated with wild-type myxoma viruses or myxoma viruses lacking the serp2 gene, and measures of cytopathic effects, viral growth kinetics, and cell death and apoptosis were determined. RESULTS Myxoma viruses replicated in cells of many of the primary and established canine tumor cell lines. Canine tumor cells in which expression of activated protein kinase B was upregulated were more permissive to myxoma virus infection than were cells in which expression of activated protein kinase B was not upregulated. Myxoma viruses lacking the serp2 gene caused more cytopathic effects in canine tumor cells because of apoptosis than did wild-type myxoma viruses. CONCLUSIONS AND CLINICAL RELEVANCE Results of the present study indicated myxoma viruses lacking the serp2 gene may be useful for treatment of cancer in dogs. Impact for Human Medicine-Results of the present study may be useful for development of novel oncolytic treatments for tumors in humans.
Collapse
Affiliation(s)
- Ashlee S Urbasic
- Department of Pathobiology, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Myxoma virus M064 is a novel member of the poxvirus C7L superfamily of host range factors that controls the kinetics of myxomatosis in European rabbits. J Virol 2012; 86:5371-5. [PMID: 22379095 DOI: 10.1128/jvi.06933-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.
Collapse
|
26
|
Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer. Mol Ther 2012; 20:759-68. [PMID: 22233582 DOI: 10.1038/mt.2011.293] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myxoma virus (MYXV) is a novel oncolytic virus that has been shown to replicate in pancreatic cancer cells, but its efficacy in animal models of pancreatic cancer has not been determined. The efficacy of MYXV as monotherapy or in combination with gemcitabine was evaluated in intraperitoneal dissemination (IPD) models of pancreatic cancer. The effects of an intact immune system on the efficacy of MYXV therapy was tested by comparing immunodeficient versus immunocompetent murine models and combination therapy with gemcitabine was also evaluated. In cell culture, MYXV replication was robust in a broad range of pancreatic cancer cells and also showed increased oncolysis in combination with gemcitabine. In animal models, MYXV treatment conferred survival benefits over control or gemcitabine-treated cohorts regardless of the cell line or animal model used. MYXV monotherapy was most effective in an immunocompetent IPD model, and resulted in 60% long-term survivors. In Pan02 engrafted immunocompetent IPD models, sequential treatment in which MYXV was administered first, followed by gemcitabine, was the most effective and resulted in 100% long-term survivors. MYXV is an effective oncolytic virus for pancreatic cancer and can be combined with gemcitabine to enhance survival, particularly in the presence of an intact host immune system.
Collapse
|
27
|
Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther 2011; 19:238-46. [PMID: 22158521 DOI: 10.1038/cgt.2011.81] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we sought to enhance the potency of an oncolytic virus, vesicular stomatitis virus (VSV), by inserting a transgene encoding a highly secreted version of human interleukin-15 (IL-15). IL-15 has shown promise as an immunotherapeutic cytokine, as it is able to enhance both natural killer (NK) and T-cell responses, but it has not yet been tested as a therapeutic transgene in the context of viral oncolysis. The transgene was modified to ensure enhanced secretion of IL-15 from infected cells, leading to strong localized expression from infected CT-26 tumors in vivo. This localized expression in the tumor microenvironment led to a clear enhancement to anti-tumoral T-cell responses and enhanced survival, while additional IL-15 administration systemically failed to further enhance the therapy. Overall, the transient localized expression of IL-15 in the tumour by an oncolytic virus was able to induce stronger anti-tumoral immunity in a murine model of colon carcinoma.
Collapse
|
28
|
MacNeill AL, Moldenhauer T, Doty R, Mann T. Myxoma virus induces apoptosis in cultured feline carcinoma cells. Res Vet Sci 2011; 93:1036-8. [PMID: 22100245 DOI: 10.1016/j.rvsc.2011.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/02/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
There is growing interest in utilizing replicating oncolytic viruses as cancer therapeutics agents. The effectiveness of myxoma virus-induced oncolysis was evaluated in two feline cancer cell cultures. Although myxoma virus is a rabbit-specific pathogen, protein expression driven by myxoma virus and production of infectious viral particles were detected. Cell death occurred in primary feline cancer cells within 48 h of inoculation with myxoma virus. Future studies to determine if other feline neoplasms are susceptible to myxoma virus infection are warranted.
Collapse
Affiliation(s)
- A L MacNeill
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | | | | | | |
Collapse
|
29
|
Thomas DL, Doty R, Tosic V, Liu J, Kranz DM, McFadden G, Macneill AL, Roy EJ. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 2011; 60:1461-72. [PMID: 21656158 DOI: 10.1007/s00262-011-1045-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/20/2011] [Indexed: 12/11/2022]
Abstract
Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.
Collapse
Affiliation(s)
- Diana L Thomas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Spiesschaert B, McFadden G, Hermans K, Nauwynck H, Van de Walle GR. The current status and future directions of myxoma virus, a master in immune evasion. Vet Res 2011; 42:76. [PMID: 21658227 PMCID: PMC3131250 DOI: 10.1186/1297-9716-42-76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/09/2011] [Indexed: 01/12/2023] Open
Abstract
Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century. Table of contents Abstract 1. The virus 2. History 3. Pathogenesis and disease symptoms 4. Immunomodulatory proteins of MYXV 4.1. MYXV proteins with anti-apoptotic functions 4.1.1. Inhibition of pro-apoptotic molecules 4.1.2. Inhibition by protein-protein interactions by ankyrin repeat viral proteins 4.1.3. Inhibition of apoptosis by enhancing the degradation of cellular proteins 4.1.4. Inhibition of apoptosis by blocking host Protein Kinase R (PKR) 4.2. MYXV proteins interfering with leukocyte chemotaxis 4.3. MYXV serpins that inhibit cellular pro-inflammatory or pro-apoptotic proteases 4.4. MYXV proteins that interfere with leukocyte activation 4.5. MYXV proteins with sequence similarity to HIV proteins 4.6. MYXV proteins with unknown immune function 5. Vaccination strategies against myxomatosis 5.1. Current MYXV vaccines 5.2. Vaccination campaigns to protect European rabbits in the wild 6. Applications of myxoma virus for human medicine 6.1. MYXV proteins as therapeutics for allograft vasculopathy and atherosclerosis 6.2. Applications for MYXV as a live oncolytic virus to treat cancer 7. Discussion and Conclusions 8. List of Abbreviations References Author Details Authors' contributions Competing interests Figure Legends Acknowledgements
Collapse
Affiliation(s)
- Bart Spiesschaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
31
|
M062 is a host range factor essential for myxoma virus pathogenesis and functions as an antagonist of host SAMD9 in human cells. J Virol 2011; 85:3270-82. [PMID: 21248034 DOI: 10.1128/jvi.02243-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myxoma virus (MYXV) M062R is a functional homolog of the C7L family of host range genes from orthopoxviruses. We constructed a targeted M062R-knockout-MYXV (vMyxM062-KO) and characterized its properties in vitro and in vivo. In European rabbits, infection by vMyxM062-KO was completely asymptomatic. The surviving rabbits did not gain full protection against the subsequent lethal-dose challenge with wild-type MYXV. We also looked for cellular tropism defects in a variety of cultured cells. In all of the rabbit cells tested, vMyxM062-KO conducts an abortive infection, although it initiates viral DNA replication. In many, but not all, human cancer cells that are permissive for wild-type MYXV, vMyxM062-KO exhibited a profound replication defect. We categorized human cells tested into two groups: (i) type A, which support productive replication for wild-type MYXV but are unable to produce significant levels of progeny virus by vMyxM062-KO, and (ii) type B, which are permissive to infections by both wild-type MYXV and vMyxM062-KO. Furthermore, using proteomic strategies, we identified sterile α motif domain containing 9 (SAMD9), an interferon-regulated cellular protein implicated in human inflammatory disorders, as a unique host binding partner of M062 in human cells. Significantly, knocking down SAMD9 in type A human cancer cells led to a substantial rescue of vMyxM062-KO infection. In summary, M062 is a novel host range factor that controls productive MYXV replication in rabbit cells and in a wide variety of human cells. M062 also binds and antagonizes cellular SAMD9 in human cells, suggesting that SAMD9 is a novel innate antiviral factor against poxviruses.
Collapse
|
32
|
France MR, Thomas DL, Liu J, McFadden G, MacNeill AL, Roy EJ. Intraventricular injection of myxoma virus results in transient expression of viral protein in mouse brain ependymal and subventricular cells. J Gen Virol 2011; 92:195-9. [PMID: 20861319 DOI: 10.1099/vir.0.026690-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oncolytic viruses that selectively infect and lyse cancer cells have potential as therapeutic agents. Myxoma virus, a poxvirus that is known to be pathogenic only in rabbits, has not been reported to infect normal tissues in humans or mice. We observed that when recombinant virus was injected directly into the lateral ventricle of the mouse brain, virally encoded red fluorescent protein was expressed in ependymal and subventricular cells. Cells were positive for nestin, a marker of neural stem cells. Rapamycin increased the number of cells expressing the virally encoded protein. However, protein expression was transient. Cells expressing the virally encoded protein did not undergo apoptosis and the ependymal lining remained intact. Myxoma virus appears to be safe when injected into the brain despite the transient expression of virally derived protein in a small population of periventricular cells.
Collapse
Affiliation(s)
- Megan R France
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
33
|
Liu J, Wennier S, McFadden G. The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics. Microbes Infect 2010; 12:1144-52. [PMID: 20832500 DOI: 10.1016/j.micinf.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/20/2022]
Abstract
Myxoma virus (MYXV) is a poxvirus with a strict rabbit-specific host-tropism for pathogenesis. The immunoregulatory factors encoded by MYXV can suppress some functions of immune effectors from other species. We review their mechanisms of action, implications in therapeutics and the potential to improve MYXV as an oncolytic agent in humans.
Collapse
Affiliation(s)
- Jia Liu
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 1600 SW Archer Rd, P.O. box 100266, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
34
|
Boisgerault N, Tangy F, Gregoire M. New perspectives in cancer virotherapy: bringing the immune system into play. Immunotherapy 2010; 2:185-99. [DOI: 10.2217/imt.10.6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite constant advances in medically orientated cancer studies, conventional treatments by surgery, chemotherapy or radiotherapy remain partly ineffective against numerous cancers. Oncolytic virotherapy – the use of replication-competent viruses that specifically target tumor cells – has opened up new perspectives for improved treatment of these pathologies. Certain viruses demonstrate a natural, preferential tropism for tumor cells, while others can be genetically modified to show such an effect. Several of these viruses have already been used in preclinical and clinical trials in different tumor models; these studies have provided encouraging results and, thus, confirm the growing interest presented by this therapeutic strategy. The role of the immune system in the efficacy of cancer virotherapy has been poorly documented for a long time; however, several recent reports have presented evidence of synergistic effects between both direct viral oncolysis and the activation of specific, anti-tumor immune responses. These findings offer an exciting outlook for the future of cancer virotherapy.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Inserm, U892, CRCNA, IRTUN, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| | - Frédéric Tangy
- Pasteur Institute, LGVV, 28 rue du Docteur Roux, 75015 Paris, France
| | - Marc Gregoire
- Inserm, U892, CRCNA, IRTUN, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
| |
Collapse
|