1
|
Su Z, Bian L, Zhao H, Yang C, Gu Y, Cai Y, Yang T, Xu X. KIR2DL5 +CD8 + T cells associate with dietary lipid intake and are active in type 1 diabetes. Int Immunopharmacol 2024; 141:112971. [PMID: 39178517 DOI: 10.1016/j.intimp.2024.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Recent studies have shown that KIR+CD8+ T cells play a role in suppressing autoimmunity by eliminating pathogenic CD4+ T cells. However, their specific role in type 1 diabetes (T1D) remains unclear. METHODS In this study, we enrolled 108 patients diagnosed with T1D and 86 healthy individuals. We conducted flow cytometric analysis to examine the various subtypes of KIR+CD8+ T cells derived from peripheral blood mononuclear cells. Additionally, CD8+ T cells were isolated from the peripheral blood of T1D patients to assess the functions of different KIR+CD8+ T cell subtypes. To investigate the influence of lipids on the characteristics and activities of these T cell subtypes, the isolated CD8+ T cells were cultured with varying concentrations of palmitic acid (PA). Furthermore, we utilized an NSG (NOD scid gamma) mouse adoptive transfer model to assess the impact of dietary lipid intake on the functionality of KIR2DL5+CD8+ T cells in vivo. RESULTS We observed variations in circulating KIR+CD8+ T cell subtypes between patients with T1D and healthy controls. Notably, we observed a significant negative correlation between the frequencies of circulating KIR+CD8+ T cells and the titers of ZnT8 autoantibodies in individuals with T1D. Among these subtypes, KIR2DL5+CD8+ T cells demonstrated a positive association with dietary fat intake, characterized by increased perforin expression and reduced PD-1 expression. Importantly, KIR2DL5+CD8+ T cells exhibited enhanced proliferative capacity compared to other KIR+CD8+ T cell subsets. Palmitic acid (PA) was found to enhance the activation of KIR2DL5+CD8+ T cells and strengthened their ability to suppress CD4+ T cell proliferation in T1D patients. Moreover, dietary lipid intake significantly enhanced the functionality of KIR2DL5+CD8+ T cells in an NSG mouse adoptive transfer model. CONCLUSION Our findings suggest that lipid intake enhances the functionality of human KIR2DL5+CD8+ T cells and may offer implications for immunotherapy in T1D.
Collapse
Affiliation(s)
- Zhangyao Su
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lingling Bian
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Endocrinology, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Hang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xinyu Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Palmer WH, Leaton LA, Codo AC, Crute B, Roest J, Zhu S, Petersen J, Tobin RP, Hume PS, Stone M, van Bokhoven A, Gerich ME, McCarter MD, Zhu Y, Janssen WJ, Vivian JP, Trowsdale J, Getahun A, Rossjohn J, Cambier J, Loh L, Norman PJ. Polymorphic KIR3DL3 expression modulates tissue-resident and innate-like T cells. Sci Immunol 2023; 8:eade5343. [PMID: 37390222 PMCID: PMC10360443 DOI: 10.1126/sciimmunol.ade5343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Laura Ann Leaton
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Ana Campos Codo
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Bergren Crute
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - James Roest
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | - Richard P. Tobin
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Patrick S. Hume
- Department of Medicine, National Jewish Health, Denver, CO,
USA
| | - Matthew Stone
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado School of
Medicine, Aurora, CO, USA
| | - Mark E. Gerich
- Division of Gastroenterology and Hepatology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Martin D. McCarter
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology,
University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Julian P. Vivian
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
| | | | - Andrew Getahun
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University,
School of Medicine, Heath Park, Cardiff, UK
| | - John Cambier
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| | - Liyen Loh
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville,
Australia
| | - Paul J. Norman
- Department of Biomedical Informatics, University of
Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology & Microbiology, University of
Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Zhang Y, Yan AW, Boelen L, Hadcocks L, Salam A, Gispert DP, Spanos L, Bitria LM, Nemat-Gorgani N, Traherne JA, Roberts C, Koftori D, Taylor GP, Forton D, Norman PJ, Marsh SG, Busch R, Macallan DC, Asquith B. KIR-HLA interactions extend human CD8+ T cell lifespan in vivo. J Clin Invest 2023; 133:e169496. [PMID: 37071474 PMCID: PMC10266773 DOI: 10.1172/jci169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUNDThere is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell-mediated control of chronic viral infection and that these results are consistent with an increase in the CD8+ T cell lifespan due to iKIR-ligand interactions. Here, we tested this prediction and investigated whether iKIRs affect T cell lifespan in humans in vivo.METHODSWe used stable isotope labeling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections.RESULTSWe showed that an individual's iKIR-ligand genotype was a significant determinant of CD8+ T cell lifespan: in individuals with 2 iKIR-ligand gene pairs, memory CD8+ T cells survived, on average, for 125 days; in individuals with 4 iKIR-ligand gene pairs, the memory CD8+ T cell lifespan doubled to 250 days. Additionally, we showed that this survival advantage was independent of iKIR expression by the T cell of interest and, further, that the iKIR-ligand genotype altered the CD8+ and CD4+ T cell immune aging phenotype.CONCLUSIONSTogether, these data reveal an unexpectedly large effect of iKIR genotype on T cell survival.FUNDINGWellcome Trust; Medical Research Council; EU Horizon 2020; EU FP7; Leukemia and Lymphoma Research; National Institute of Health Research (NIHR) Imperial Biomedical Research Centre; Imperial College Research Fellowship; National Institutes of Health; Jefferiss Trust.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Ada W.C. Yan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Linda Hadcocks
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Arafa Salam
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | | | - Loiza Spanos
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Laura Mora Bitria
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - James A. Traherne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chrissy Roberts
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Danai Koftori
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Graham P. Taylor
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Centre for Human Retrovirology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Daniel Forton
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- Department of Gastroenterology and Hepatology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Paul J. Norman
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Steven G.E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
- UCL Cancer Institute, UCL, London, United Kingdom
| | - Robert Busch
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Derek C. Macallan
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Feldman HA, Cevik H, Waggoner SN. Negativity begets longevity in T cells. J Clin Invest 2023; 133:e171027. [PMID: 37317967 DOI: 10.1172/jci171027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Killer immunoglobulin-like receptors (KIRs) are polymorphic receptors for human leukocyte antigens (HLAs) that provide positive or negative signals controlling lymphocyte activation. Expression of inhibitory KIRs by CD8+ T cells affects their survival and function, which is linked to improved antiviral immunity and prevention of autoimmunity. In this issue of the JCI, Zhang, Yan, and co-authors demonstrate that increased numbers of functional inhibitory KIR-HLA pairs equating to greater negative regulation promoted longer lifespans of human T cells. This effect was independent of direct signals provided to KIR-expressing T cells and was instead driven by indirect mechanisms. Since the long-term maintenance of CD8+ T cells is critical for immune readiness against cancer and infection, this discovery has implications for immunotherapy and the preservation of immune function during aging.
Collapse
Affiliation(s)
- H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Immunology Graduate Program
- Medical Scientist Training Program
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, and
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Immunology Graduate Program
- Medical Scientist Training Program
- Molecular and Developmental Biology Graduate Program, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics 2023; 75:269-282. [PMID: 36719466 PMCID: PMC9887252 DOI: 10.1007/s00251-023-01293-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.
Collapse
Affiliation(s)
- Laura Mora-Bitria
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Becca Asquith
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
9
|
Zou J, Kongtim P, Srour SA, Greenbaum U, Schetelig J, Heidenreich F, Baldauf H, Moore B, Saengboon S, Carmazzi Y, Rondon G, Ma Q, Rezvani K, Shpall EJ, Champlin RE, Ciurea SO, Cao K. Donor selection for KIR alloreactivity is associated with superior survival in haploidentical transplant with PTCy. Front Immunol 2022; 13:1033871. [PMID: 36311784 PMCID: PMC9606393 DOI: 10.3389/fimmu.2022.1033871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous increase in the use of haploidentical donors for transplantation, the selection of donors becomes increasingly important. Haploidentical donors have been selected primarily based on clinical characteristics, while the effects of killer cell immunoglobulin-like receptors (KIRs) on outcomes of haploidentical-hematopoietic stem cell transplantation (haplo-HSCT) with post-transplant cyclophosphamide (PTCy) remain inconclusive. The present study aimed to thoroughly evaluate the effect of KIRs and binding ligands assessed by various models, in addition to other patient/donor variables, on clinical outcomes in haplo-HSCT. In a cohort of 354 patients undergoing their first haplo-HSCT, we found that a higher Count Functional inhibitory KIR score (CF-iKIR) was associated with improved progression-free survival (adjusted hazard ratio [HR], 0.71; P = .029) and overall survival (OS) (HR, 0.66; P = .016), while none of the other models predicted for survival in these patients. Moreover, using exploratory classification and regression tree analysis, we found that donor age <58 years combined with cytomegalovirus-nonreactive recipient was associated with the best OS, whereas donor age >58 years was associated with the worst OS. In the rest of our cohort (80%), cytomegalovirus-reactive recipients with a donor <58 years old, a higher CF-iKIR was associated with superior OS. The 3-year OS rates were 73.9%, 54.1% (HR, 1.84; P = .044), 44.5% (HR, 2.01; P = .003), and 18.5% (HR, 5.44; P <.001) in the best, better, poor, and worse donor groups, respectively. Our results suggest that KIR alloreactivity assessed by CF-iKIR score can help optimize donor selection in haplo-HSCT.
Collapse
Affiliation(s)
- Jun Zou
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jun Zou, ; Stefan O. Ciurea,
| | - Piyanuch Kongtim
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, United States
- Center of Excellence in Applied Epidemiology, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uri Greenbaum
- Department of Hematology, Soroka University Medical Center, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- DKMS gemeinnützige GmbH, Tübingen, Germany
| | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- DKMS gemeinnützige GmbH, Tübingen, Germany
| | | | - Brandt Moore
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Supawee Saengboon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yudith Carmazzi
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stefan O. Ciurea
- Division of Hematology/Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, United States
- *Correspondence: Jun Zou, ; Stefan O. Ciurea,
| | - Kai Cao
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Mallajosyula VVA, Bracey NA, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Dekker CL, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Chien YH, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. KIR +CD8 + T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022; 376:eabi9591. [PMID: 35258337 PMCID: PMC8995031 DOI: 10.1126/science.abi9591] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxim Zaslavsky
- Program in Computer Science, Stanford University, Stanford, CA, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J. Sikora
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Shin-Heng Chiou
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Chen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiefu Li
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M. McSween
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Nathan A. Bracey
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopal Krishna R. Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kartik Bhamidipati
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen L. Hauser
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ludvig M. Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Yueh-Hsiu Chien
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Kari C. Nadeau
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naresha Saligrama
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer 2021; 16:24. [PMID: 33865435 PMCID: PMC8052713 DOI: 10.1186/s13027-021-00365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers (NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T (MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity. Methods We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and chemokine receptors. Results We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients. Conclusion TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00365-4.
Collapse
|
12
|
Rosko AE, Wall S, Baiocchi R, Benson DM, Brammer JE, Byrd JC, Efebera YA, Maddocks K, Rogers KA, Jones D, Sucheston-Campbell L, Tang H, Ozer HG, Huang Y, Burd CE, Naughton MJ. Aging Phenotypes and Restoring Functional Deficits in Older Adults With Hematologic Malignancy. J Natl Compr Canc Netw 2021; 19:1027-1036. [PMID: 33770752 DOI: 10.6004/jnccn.2020.7686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gauging fitness remains a challenge among older adults with hematologic malignancies, and interventions to restore function are lacking. We pilot a structured exercise intervention and novel biologic correlates of aging using epigenetic clocks and markers of immunosenescence to evaluate changes in function and clinical outcomes. METHODS Older adults (n=30) with hematologic malignancy actively receiving treatment were screened and enrolled in a 6-month exercise intervention, the Otago Exercise Programme (OEP). The impact of the OEP on geriatric assessment metrics and health-related quality of life were captured. Clinical outcomes of overall survival and hospital utilization (inpatient length of stay and emergency department use) in relationship to geriatric deficits were analyzed. RESULTS Older adults (median age, 75.5 years [range, 62-83 years]) actively receiving treatment were enrolled in the OEP. Instrumental activities of daily living and physical health scores (PHS) increased significantly with the OEP intervention (median PHS: visit 1, 55 [range, 0-100]; visit 2, 70 [range, 30-100]; P<.01). Patient-reported Karnofsky performance status increased significantly, and the improvement was sustained (median [range]: visit 1, 80 [40-100]; visit 3, 90 [50-100]; P=.05). Quality of life (Patient-Reported Outcome Measurement Information System [PROMIS]) improved significantly by the end of the 6-month period (median [range]: visit 1, 32.4 [19.9-47.7]; visit 3, 36.2 [19.9-47.7]; P=.01]. Enhanced measures of gait speed and balance, using the Short Physical Performance Battery scores, were associated with a 20% decrease in risk of death (hazard ratio, 0.80; 95% CI, 0.65-0.97; P=.03) and a shorter hospital length of stay (decrease of 1.29 days; 95% CI, -2.46 to -0.13; P=.03). Peripheral blood immunosenescent markers were analyzed in relationship to clinical frailty and reports of mPhenoAge epigenetic analysis are preliminarily reported. Chronologic age had no relationship to overall survival, length of stay, or emergency department utilization. CONCLUSIONS The OEP was effective in improving quality of life, and geriatric tools predicted survival and hospital utilization among older adults with hematologic malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christin E Burd
- 4Department of Molecular Genetics, Cancer Biology and Genetics, and
| | | |
Collapse
|
13
|
Shytikov D, Rohila D, Li D, Wang P, Jiang M, Zhang M, Xu Q, Lu L. Functional Characterization of Ly49 +CD8 T-Cells in Both Normal Condition and During Anti-Viral Response. Front Immunol 2021; 11:602783. [PMID: 33488602 PMCID: PMC7817614 DOI: 10.3389/fimmu.2020.602783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The role of Ly49+CD8 T-cells in the immune system is not clear. Previously, several papers suggested Ly49+CD8 T-cells as immunosuppressors, while multiple studies also suggested their role as potent participants of the immune response. The mechanism of Ly49 expression on CD8 T-cells is also not clear. We investigated phenotype, functions, and regulation of Ly49 expression on murine CD8 T-cells in both normal state and during LCMV infection. CD8 T-cells express different Ly49 receptors compared with NK-cells. In intact mice, Ly49+CD8 T-cells have a phenotype similar to resting central memory CD8 T-cells and do not show impaired proliferation and cytokine production. Conventional CD8 T-cells upregulate Ly49 receptors during TCR-induced stimulation, and IL-2, as well as IL-15, affect it. At the same time, Ly49+CD8 T-cells change the Ly49 expression profile dramatically upon re-stimulation downregulating inhibitory and upregulating activating Ly49 receptors. We observed the expression of Ly49 receptors on the virus-specific CD8 T-cells during LCMV infection, especially marked in the early stages, and participation of Ly49+CD8 T-cells in the anti-viral response. Thus, CD8 T-cells acquire Ly49 receptors during the T-cell activation and show dynamic regulation of Ly49 receptors during stimulation.
Collapse
Affiliation(s)
- Dmytro Shytikov
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deepak Rohila
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
15
|
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts CH, Wang ECY, Frater J, Gilmour J, Twigger K, Ladell K, Miners KL, Jayaraman J, Traherne JA, Price DA, Qi Y, Martin MP, Macallan DC, Thio CL, Astemborski J, Kirk G, Donfield SM, Buchbinder S, Khakoo SI, Goedert JJ, Trowsdale J, Carrington M, Kollnberger S, Asquith B. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8 + T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 2018; 3:eaao2892. [PMID: 30413420 PMCID: PMC6277004 DOI: 10.1126/sciimmunol.aao2892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer cells, where they play a key role in the regulation of innate immune responses. Recent studies show that inhibitory KIRs can also affect adaptive T cell-mediated immunity. In mice and in human T cells in vitro, inhibitory KIR ligation enhanced CD8+ T cell survival. To investigate the clinical relevance of these observations, we conducted an extensive immunogenetic analysis of multiple independent cohorts of HIV-1-, hepatitis C virus (HCV)-, and human T cell leukemia virus type 1 (HTLV-1)-infected individuals in conjunction with in vitro assays of T cell survival, analysis of ex vivo KIR expression, and mathematical modeling of host-virus dynamics. Our data suggest that functional engagement of inhibitory KIRs enhances the CD8+ T cell response against HIV-1, HCV, and HTLV-1 and is a significant determinant of clinical outcome in all three viral infections.
Collapse
Affiliation(s)
- Lies Boelen
- Department of Medicine, Imperial College London, London, UK
| | - Bisrat Debebe
- Department of Medicine, Imperial College London, London, UK
| | - Marcos Silveira
- Department of Medicine, Imperial College London, London, UK
- Faculty of Engineering, São Paulo State University-UNESP, São Paulo, Brazil
| | - Arafa Salam
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julia Makinde
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Chrissy H Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Katie Twigger
- Department of Medicine, Imperial College London, London, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jyothi Jayaraman
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - James A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | | | | | | | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA, USA
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Zhang X, Lu X, Moog C, Yuan L, Liu Z, Li Z, Xia W, Zhou Y, Wu H, Zhang T, Su B. KIR3DL1-Negative CD8 T Cells and KIR3DL1-Negative Natural Killer Cells Contribute to the Advantageous Control of Early Human Immunodeficiency Virus Type 1 Infection in HLA-B Bw4 Homozygous Individuals. Front Immunol 2018; 9:1855. [PMID: 30147699 PMCID: PMC6096002 DOI: 10.3389/fimmu.2018.01855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Bw4 homozygosity in human leukocyte antigen class B alleles has been associated with a delayed acquired immunodeficiency syndrome (AIDS) development and better control of human immunodeficiency virus type 1 (HIV-1) viral load (VL) than Bw6 homozygosity. Efficient CD8 T cell and natural killer (NK) cell functions have been described to restrain HIV-1 replication. However, the role of KIR3DL1 expression on these cells was not assessed in Bw4-homozygous participants infected with HIV-1 CRF01_A/E subtype, currently the most prevalent subtype in China. Here, we found that the frequency of KIR3DL1-expressing CD8 T cells of individuals homozygous for Bw6 [1.53% (0–4.56%)] was associated with a higher VL set point (Spearman rs = 0.59, P = 0.019), but this frequency of KIR3DL1+CD8+ T cells [1.37% (0.04–6.14%)] was inversely correlated with CD4 T-cell count in individuals homozygous for Bw4 (rs = −0.59, P = 0.011). Moreover, CD69 and Ki67 were more frequently expressed in KIR3DL1−CD8+ T cells in individuals homozygous for Bw4 than Bw6 (P = 0.046 for CD69; P = 0.044 for Ki67), although these molecules were less frequently expressed in KIR3DL1+CD8+ T cells than in KIR3DL1−CD8+ T cells in both groups (all P < 0.05). KIR3DL1−CD8+ T cells have stronger p24-specific CD8+ T-cell responses secreting IFN-γ and CD107a than KIR3DL1+CD8+ T cells in both groups (all P < 0.05). Thus, KIR3DL1 expression on CD8 T cells were associated with the loss of multiple functions. Interestingly, CD69+NK cells lacking KIR3DL1 expression were inversely correlated with HIV-1 VL set point in Bw4-homozygous individuals (rs = −0.52, P = 0.035). Therefore, KIR3DL1−CD8+ T cells with strong early activation and proliferation may, together with KIR3DL1−CD69+NK cells, play a protective role during acute/early HIV infection in individuals homozygous for Bw4. These findings highlight the superior functions of KIR3DL1−CD8+ T cells and KIR3DL1−CD69+NK cells being a potential factor contributing to delayed disease progression in the early stages of HIV-1 infection.
Collapse
Affiliation(s)
- Xin Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xiaofan Lu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| | - Lin Yuan
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhiying Liu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yuefang Zhou
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
17
|
Pita-López ML, Pera A, Solana R. Adaptive Memory of Human NK-like CD8 + T-Cells to Aging, and Viral and Tumor Antigens. Front Immunol 2016; 7:616. [PMID: 28066426 PMCID: PMC5165258 DOI: 10.3389/fimmu.2016.00616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Human natural killer (NK)-like CD8+ T-cells are singular T-cells that express both T and NK cell markers such as CD56; their frequencies depend on their differentiation and activation during their lifetime. There is evidence of the presence of these innate CD8+ T-cells in the human umbilical cord, highlighting the necessity of investigating whether the NK-like CD8+ T-cells arise in the early stages of life (gestation). Based on the presence of cell surface markers, these cells have also been referred to as CD8+KIR+ T-cells, innate CD8+ T-cells, CD8+CD28−KIR+ T-cells or NKT-like CD8+CD56+ cells. However, the functional and co-signaling significance of these NK cell receptors on NK-like CD8+ T-cells is less clear. Also, the diverse array of costimulatory and co-inhibitory receptors are spatially and temporally regulated and may have distinct overlapping functions on NK-like CD8+ T-cell priming, activation, differentiation, and memory responses associated with different cell phenotypes. Currently, there is no consensus regarding the functional properties and phenotypic characterization of human NK-like CD8+ T-cells. Environmental factors, such as aging, autoimmunity, inflammation, viral antigen re-exposure, or the presence of persistent tumor antigens have been shown to allow differentiation (“adaptation”) of the NK-like CD8+ T-cells; the elucidation of this differentiation process and a greater understanding of the characteristics of these cells could be important for their eventual in potential therapeutic applications aimed at improving protective immunity. This review will attempt to elucidate an understanding of the characteristics of these cells with the goal toward their eventual use in potential therapeutic applications aimed at improving protective immunity.
Collapse
Affiliation(s)
- María Luisa Pita-López
- Research Center in Molecular Biology of Chronic Diseases (CIBIMEC), CUSUR University of Guadalajara , Guzmán , Mexico
| | - Alejandra Pera
- Clinical Division, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba, Córdoba, Spain
| | - Rafael Solana
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba , Córdoba , Spain
| |
Collapse
|
18
|
Elevated levels of invariant natural killer T-cell and natural killer cell activation correlate with disease progression in HIV-1 and HIV-2 infections. AIDS 2016; 30:1713-22. [PMID: 27163705 PMCID: PMC4925311 DOI: 10.1097/qad.0000000000001147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: In this study, we aimed to investigate the frequency and activation of invariant natural killer T (iNKT) cells and natural killer (NK) cells among HIV-1, HIV-2, or dually HIV-1/HIV-2 (HIV-D)-infected individuals, in relation to markers of disease progression. Design: Whole blood samples were collected from treatment-naive HIV-1 (n = 23), HIV-2 (n = 34), and HIV-D (n = 11) infected individuals, as well as HIV-seronegative controls (n = 25), belonging to an occupational cohort in Guinea-Bissau. Methods: Frequencies and activation levels of iNKT and NK cell subsets were analysed using multicolour flow cytometry, and results were related to HIV-status, CD4+ T-cell levels, viral load, and T-cell activation. Results: HIV-1, HIV-D, and viremic HIV-2 individuals had lower numbers of CD4+ iNKT cells in circulation compared with seronegative controls. Numbers of CD56bright NK cells were also reduced in HIV-infected individuals as compared with control study participants. Notably, iNKT cell and NK cell activation levels, assessed by CD38 expression, were increased in HIV-1 and HIV-2 single, as well as dual, infections. HIV-2 viremia was associated with elevated activation levels in CD4+ iNKT cells, CD56bright, and CD56dim NK cells, as compared with aviremic HIV-2 infection. Additionally, disease markers such as CD4+ T-cell percentages, viral load, and CD4+ T-cell activation were associated with CD38 expression levels of both iNKT and NK cells, which activation levels also correlated with each other. Conclusion: Our data indicate that elevated levels of iNKT-cell and NK-cell activation are associated with viremia and disease progression markers in both HIV-1 and HIV-2 infections.
Collapse
|
19
|
Naranbhai V, de Assis Rosa D, Werner L, Moodley R, Hong H, Kharsany A, Mlisana K, Sibeko S, Garrett N, Chopera D, Carr WH, Abdool Karim Q, Hill AVS, Abdool Karim SS, Altfeld M, Gray CM, Ndung'u T. Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect Dis 2016; 16:27. [PMID: 26809736 PMCID: PMC4727384 DOI: 10.1186/s12879-016-1361-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Killer-cell Immunoglobulin-like Receptors (KIR) interact with Human Leukocyte Antigen (HLA) to modify natural killer- and T-cell function. KIR are implicated in HIV acquisition by small studies that have not been widely replicated. A role for KIR in HIV disease progression is more widely replicated and supported by functional studies. METHODS To assess the role of KIR and KIR ligands in HIV acquisition and disease course, we studied at-risk women in South Africa between 2004-2010. Logistic regression was used for nested case-control analysis of 154 women who acquired vs. 155 who did not acquire HIV, despite high exposure. Linear mixed-effects models were used for cohort analysis of 139 women followed prospectively for a median of 54 months (IQR 31-69) until 2014. RESULTS Neither KIR repertoires nor HLA alleles were associated with HIV acquisition. However, KIR haplotype BB was associated with lower viral loads (-0.44 log10 copies/ml; SE = 0.18; p = 0.03) and higher CD4+ T-cell counts (+80 cells/μl; SE = 42; p = 0.04). This was largely explained by the protective effect of KIR2DL2/KIR2DS2 on the B haplotype and reciprocal detrimental effect of KIR2DL3 on the A haplotype. CONCLUSIONS Although neither KIR nor HLA appear to have a role in HIV acquisition, our data are consistent with involvement of KIR2DL2 in HIV control. Additional studies to replicate these findings are indicated.
Collapse
Affiliation(s)
- V Naranbhai
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - D de Assis Rosa
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of the Witwatersrand, Johannesburg, South Africa.
| | - L Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - R Moodley
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - H Hong
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - A Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - K Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - S Sibeko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - N Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - D Chopera
- University of Cape Town, Cape Town, South Africa.
| | - W H Carr
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,City University of New York - Medgar Evers College, New York, USA. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA.
| | - Q Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - A V S Hill
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - S S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - M Altfeld
- Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,Leibniz Institute for Experimental Virology, Heinrich Pette Institute, Hamburg, Germany.
| | - C M Gray
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of Cape Town, Cape Town, South Africa.
| | - T Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa. .,Max Planck Institute for Infection Biology, Chariteplatz, D-10117, Berlin, Germany.
| |
Collapse
|
20
|
Protective genotypes in HIV infection reflect superior function of KIR3DS1+ over KIR3DL1+ CD8+ T cells. Immunol Cell Biol 2014; 93:67-76. [PMID: 25112829 PMCID: PMC4500641 DOI: 10.1038/icb.2014.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 01/19/2023]
Abstract
Certain human class I histocompatibility-linked leukocyte antigen (HLA)/killer cell immunoglobulin-like receptor (KIR) genotypic combinations confer more favourable prognoses upon exposure to human immunodeficiency virus (HIV). These combinations influence natural killer (NK) cell function, thereby implicating NK cells in protection from HIV infection or disease progression. Because CD8(+) T cells restrict HIV replication, depend upon HLA class I antigen presentation and can also express KIR molecules, we investigated how these HLA/KIR combinations relate to the phenotype and function of CD8(+) T cells from uninfected controls and individuals with chronic HIV infection. CD8(+) T cells from KIR3DL1 and KIR3DS1 homozygous individuals, and expressing the corresponding KIR, were enumerated and phenotyped for CD127, CD57 and CD45RA expression. Ex vivo and in vitro responsiveness to antigen-specific and polyclonal stimulation was compared between KIR-expressing and non-expressing CD8(+) T cells by interferon-γ production. There were higher numbers and fractions of KIR3DL1-expressing CD8(+) T cells in HIV-infected individuals independent of HLA-Bw4 co-expression, whereas expansion of KIR3DS1-expressing CD8(+) T cells reflected HLA-Bw4*80I co-expression. KIR3DL1(+) and S1(+) CD8(+) T cells were predominantly CD127(-)CD57(+)CD45RA(+). KIR3DL1-expressing CD8(+) T cells were insensitive to ex vivo stimulation with peptides from HIV or common viruses, but responded to anti-CD3 and recovered responsiveness to common viruses in vitro. Ex vivo non-responsiveness of KIR3DL1-expressing CD8(+) T cells was also independent of HLA-Bw4. KIR3DS1-expressing T cells responded normally to ex vivo antigenic stimulation, illustrating functional superiority over KIR3DL1(+) CD8(+) T cells.
Collapse
|
21
|
Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, Ramos SB, Staines DR, Marshall-Gradisnik SM. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol 2013; 26:233-42. [PMID: 24343819 DOI: 10.1093/intimm/dxt068] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
Collapse
Affiliation(s)
- Ekua Weba Brenu
- School of Medical Science, Griffith University, Gold Coast, QLD 4215, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cook LB, Elemans M, Rowan AG, Asquith B. HTLV-1: persistence and pathogenesis. Virology 2013; 435:131-40. [PMID: 23217623 DOI: 10.1016/j.virol.2012.09.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
MESH Headings
- Adolescent
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HTLV-I Infections/immunology
- HTLV-I Infections/pathology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Immunity, Innate
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/virology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Lucy B Cook
- Section of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK
| | | | | | | |
Collapse
|
23
|
Moesta AK, Parham P. Diverse functionality among human NK cell receptors for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. Front Immunol 2012. [PMID: 23189078 PMCID: PMC3504360 DOI: 10.3389/fimmu.2012.00336] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interactions between killer immunoglobulin-like receptors (KIRs) and their HLA-A, -B, and -C ligands diversify the functions of human natural killer cells. Consequently, combinations of KIR and HLA genotypes affect resistance to infection and autoimmunity, success of reproduction and outcome of hematopoietic cell transplantation. HLA-C, with its C1 and C2 epitopes, evolved in hominids to be specialized KIR ligands. The system’s foundation was the C1 epitope, with C2 a later addition, by several million years. The human inhibitory receptor for C1 is encoded by KIR2DL2/3, a gene having two divergent allelic lineages: KIR2DL2 is a B KIR haplotype component and KIR2DL3 an A KIR haplotype component. Although KIR2DL2 and KIR2DL3 exhibit quantitative differences in specificity and avidity for HLA-C, they qualitatively differ in their genetics, functional effect, and clinical influence. This is due to linkage disequilibrium between KIR2DL2 and KIR2DS2, a closely related activating receptor that was selected for lost recognition of HLA-C.
Collapse
Affiliation(s)
- Achim K Moesta
- Genome Analysis Unit, Discovery Research, Amgen Inc., South San Francisco , CA, USA
| | | |
Collapse
|
24
|
CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood 2012; 120:3455-65. [PMID: 22968455 DOI: 10.1182/blood-2012-03-416867] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epistatic interactions between killer cell immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands have important implications for reproductive success, antiviral immunity, susceptibility to autoimmune conditions and cancer, as well as for graft-versus-leukemia reactions in settings of allogeneic stem cell transplantation. Although CD8 T cells are known to acquire KIRs when maturing from naive to terminally differentiated cells, little information is available about the constitution of KIR repertoires on human CD8 T cells. Here, we have performed a high-resolution analysis of KIR expression on CD8 T cells. The results show that most CD8 T cells possess a restricted KIR expression pattern, often dominated by a single activating or inhibitory KIR. Furthermore, the expression of KIR, and its modulation of CD8 T-cell function, was independent of expression of self-HLA class I ligands. Finally, despite similarities in the stochastic regulation of KIRs by the bidirectional proximal promoter, the specificity of inhibitory KIRs on CD8 T cells was often distinct from that of natural killer cells in the same individual. The results provide new insight into the formation of KIR repertoires on human T cells.
Collapse
|
25
|
Zipeto D, Beretta A. HLA-C and HIV-1: friends or foes? Retrovirology 2012; 9:39. [PMID: 22571741 PMCID: PMC3386009 DOI: 10.1186/1742-4690-9-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | | |
Collapse
|
26
|
Stephens HAF. Immunogenetic surveillance of HIV/AIDS. INFECTION GENETICS AND EVOLUTION 2012; 12:1481-91. [PMID: 22575339 DOI: 10.1016/j.meegid.2012.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/28/2022]
Abstract
Evolutionary pressure by viruses is most likely responsible for the extraordinary allelic polymorphism of genes encoding class I human leukocyte antigens (HLA) and killer immunoglobulin-like receptors (KIR). Such genetic diversity has functional implications for the immune response to viruses and generates population-based variations in HLA class I allele frequencies and KIR gene profiles. The HIV-1 virus has relatively recently established itself as a major human pathogen, rapidly diversifying into a variety of phylogenetic subtypes or clades (A-G) and recombinants in different populations. HIV-1 clade C is the most common subtype in circulation accounting for 48% of all infections, followed by HIV-1 clades A and B which are responsible for 13% and 11% of infections in the current pandemic, respectively. Candidate gene studies of large cohorts of predominantly HIV-1 clade B but also clades C and A infected patients, have consistently shown significant associations between certain HLA class I alleles namely HLA-B*57, B*58, B*27, B*51 and relatively low viraemia. However, there is evidence that other associations between HLA-B*15, B*18 or B*53 and levels of HIV-1 viraemia are clade-specific. Recent genome-wide association studies of HIV-1 clade B exposed cohorts have confirmed that HLA-B, which is the most polymorphic locus in the human genome, is the major genetic locus contributing to immune control of viraemia. Moreover, the presence of natural killer cell receptors encoded by KIR-3DL1 and 3DS1 genes together with certain HLA class I alleles carrying the KIR target motif Bw4Ile80, provides an enhanced ability to control HIV-1 viraemia in some individuals. It is likely that rapid co-evolution of HIV-1 immune escape variants together with an adjustment of human immune response gene profiles has occurred in some exposed populations. Taken together, immunogenetic surveillance of HIV-1 exposed cohorts has revealed important correlates of natural immunity, which could provide a rational platform for the design and testing of future vaccines aimed at controlling the current AIDS pandemic.
Collapse
Affiliation(s)
- Henry A F Stephens
- UCL Centre for Nephrology and the Anthony Nolan Laboratories, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
27
|
Seich al Basatena NK, MacNamara A, Vine AM, Thio CL, Astemborski J, Usuku K, Osame M, Kirk GD, Donfield SM, Goedert JJ, Bangham CR, Carrington M, Khakoo SI, Asquith B. KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog 2011; 7:e1002270. [PMID: 22022261 PMCID: PMC3192839 DOI: 10.1371/journal.ppat.1002270] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/01/2011] [Indexed: 12/14/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) influence both innate and adaptive immunity. But while the role of KIRs in NK-mediated innate immunity is well-documented, the impact of KIRs on the T cell response in human disease is not known. Here we test the hypothesis that an individual's KIR genotype affects the efficiency of their HLA class I-mediated antiviral immune response and the outcome of viral infection. We show that, in two unrelated viral infections, hepatitis C virus and human T lymphotropic virus type 1, possession of the KIR2DL2 gene enhanced both protective and detrimental HLA class I-restricted anti-viral immunity. These results reveal a novel role for inhibitory KIRs. We conclude that inhibitory KIRs, in synergy with T cells, are a major determinant of the outcome of persistent viral infection.
Collapse
MESH Headings
- Female
- Genes, MHC Class I
- HTLV-I Infections/genetics
- HTLV-I Infections/immunology
- HTLV-I Infections/virology
- Hepacivirus/immunology
- Hepacivirus/physiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Histocompatibility Antigens Class I/immunology
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/physiology
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Male
- Receptors, KIR/immunology
- Receptors, KIR2DL2/genetics
- Receptors, KIR2DL2/metabolism
- T-Lymphocytes/immunology
- Viral Load
Collapse
Affiliation(s)
| | | | | | - Chloe L. Thio
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | | | | - Gregory D. Kirk
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - James J. Goedert
- National Cancer Institute, Rockville, Maryland, United States of America
| | | | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | | | |
Collapse
|
28
|
Cavanagh MM, Qi Q, Weyand CM, Goronzy JJ. Finding Balance: T cell Regulatory Receptor Expression during Aging. Aging Dis 2011; 2:398-413. [PMID: 22396890 PMCID: PMC3295076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023] Open
Abstract
Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.
Collapse
Affiliation(s)
| | | | | | - Jörg J. Goronzy
- Correspondence should be addressed to: Jörg J. Goronzy, M.D., Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
29
|
An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol 2011; 85:5415-22. [PMID: 21430058 DOI: 10.1128/jvi.00238-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations within MHC class I-restricted epitopes have been studied in relation to T cell-mediated immune escape, but their impact on NK cells via interaction with killer Ig-like receptors (KIRs) during early HIV infection is poorly understood. In two patients acutely infected with HIV-1, we observed the appearance of a mutation within the B*57-restricted TW10 epitope (G9E) that did not facilitate strong escape from T cell recognition. The NK cell receptor KIR3DL1, carried by these patients, is known to recognize HLA-B*5703 and is associated with good control of HIV-1. Therefore, we tested whether the G9E mutation influenced the binding of HLA-B*5703 to soluble KIR3DL1 protein by surface plasmon resonance, and while the wild-type sequence and a second (T3N) variant were recognized, the G9E variant abrogated KIR3DL1 binding. We extended the study to determine the peptide sensitivity of KIR3DL1 interaction with epitopes carrying mutations near the C termini of TW10 and a second HLA-B*57-restricted epitope, IW9. Several amino acid changes interfered with KIR3DL1 binding, the most extreme of which included the G9E mutation commonly selected by HLA-B*57. Our results imply that during HIV-1 infection, some early-emerging variants could affect KIR-HLA interaction, with possible implications for immune recognition.
Collapse
|
30
|
Colantonio AD, Bimber BN, Neidermyer WJ, Reeves RK, Alter G, Altfeld M, Johnson RP, Carrington M, O'Connor DH, Evans DT. KIR polymorphisms modulate peptide-dependent binding to an MHC class I ligand with a Bw6 motif. PLoS Pathog 2011; 7:e1001316. [PMID: 21423672 PMCID: PMC3053351 DOI: 10.1371/journal.ppat.1001316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/08/2011] [Indexed: 12/01/2022] Open
Abstract
Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05(+) macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.
Collapse
Affiliation(s)
- Arnaud D. Colantonio
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Benjamin N. Bimber
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - William J. Neidermyer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., NCI Frederick, Frederick, Maryland, United States of America
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Microbiology and Molecular Genetics, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| |
Collapse
|
31
|
Downey JS, Imami N. T-cell dysfunction in HIV-1 infection: targeting the inhibitors. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.09.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since AIDS emerged almost three decades ago, there have been considerable advances in the field of antiretroviral chemotherapy for those chronically infected with HIV-1. However, this therapy is noncurative and as our understanding of HIV-1 immunopathogenesis increases, it is becoming apparent that further therapeutic interventions are required to reverse the devastating effects of HIV-1 infection worldwide. While viral clearance remains the principle goal of HIV-1 treatment, this article describes immunotherapeutic options that target the immunological effects of the virus, to reduce its presence in the body and counteract viral-induced T-cell dysfunction and inhibition. Such approaches may augment existing antiretroviral therapy to overturn virus-induced T-cell anergy in the infected host, improving levels of immune control that reduce viremia and decrease the rate of transmission.
Collapse
Affiliation(s)
- Jocelyn S Downey
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | - Nesrina Imami
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
32
|
David G, Morvan M, Gagne K, Kerdudou N, Willem C, Devys A, Bonneville M, Folléa G, Bignon JD, Retière C. Discrimination between the main activating and inhibitory killer cell immunoglobulin-like receptor positive natural killer cell subsets using newly characterized monoclonal antibodies. Immunology 2009; 128:172-84. [PMID: 19740374 DOI: 10.1111/j.1365-2567.2009.03085.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cells are key components of the innate anti-viral and anti-tumour immune responses. NK cell function is regulated by the interaction of killer cell immunoglobulin-like receptors (KIR) with human leucocyte antigen (HLA) class I molecules. In this study, we report on the generation of KIR-specific antibodies allowing for discrimination between activating and inhibitory KIR. For this purpose, BALB/c mice were immunized with human KIR2DS2 recombinant protein. The precise specificity of KIR2DS2-specific clones was determined on KIR-transfected BW cells and KIR-genotyped NK cells. When used in combination with EB6 (KIR2DL1/2DS1) or GL183 (KIR2DL2/2DL3/2DS2), two KIR-specific monoclonal antibodies (mAbs), 8C11 (specific for KIR2DL1/2DL2/2DL3/2DS2) and 1F12 (specific for KIR2DL3/2DS2), discriminated activating KIR2DS1 (8C11(-) EB6(+)) from inhibitory KIR2DL1 (8C11(+) GL183(-)) and KIR2DL2 (1F12(-) GL183(+)), while excluding the main HLA-Cw-specific KIR. Using these mAbs, KIR2DS1 was shown to be expressed on the surface of NK cells from all individuals genotyped as KIR2DS1(+) (n = 23). Moreover, KIR2DS1 and KIR2DL1 were independently expressed on NK cells. We also determined the amino acid position recognized by the 8C11 and 1F12 mAbs, which revealed that some KIR2DL1 allele-encoded proteins are not recognized by 8C11. Because most available anti-KIR mAbs recognize both inhibitory and activating forms of KIR, these newly characterized antibodies should help assess the expression of activating and inhibitory KIR and their functional relevance to NK biology.
Collapse
Affiliation(s)
- Gaëlle David
- Etablissement Français du Sang, Université de Nantes, Immunovirologie et polymorphisme génétique, EA4271 Nantes, F-44000 France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hermann E, Berthe A, Truyens C, Alonso-Vega C, Parrado R, Torrico F, Carlier Y, Braud VM. Killer cell immunoglobulin-like receptor expression induction on neonatal CD8(+) T cells in vitro and following congenital infection with Trypanosoma cruzi. Immunology 2009; 129:418-26. [PMID: 19922420 DOI: 10.1111/j.1365-2567.2009.03194.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex (MHC) class I-specific inhibitory natural killer receptors (iNKRs) are expressed by subsets of T cells but the mechanisms inducing their expression are poorly understood, particularly for killer-cell immunoglobulin-like receptors (KIRs). The iNKRs are virtually absent from the surface of cord blood T cells but we found that KIR expression could be induced upon interleukin-2 stimulation in vitro. In addition, KIR expression was enhanced after treatment with 5-aza-2'-deoxycytidine, suggesting a role for DNA methylation. In vivo induction of KIR expression on cord blood T cells was also observed during a human congenital infection with Trypanosoma cruzi which triggers activation of fetal CD8(+) T cells. These KIR(+) T cells had an effector and effector/memory phenotype suggesting that KIR expression was consecutive to the antigenic stimulation; however, KIR was not preferentially found on parasite-specific CD8(+) T cells secreting interferon-gamma upon in vitro restimulation with live T. cruzi. These findings show that KIR expression is likely regulated by epigenetic mechanisms that occur during the maturation process of cord blood T cells. Our data provide a molecular basis for the appearance of KIRs on T cells with age and they have implications for T-cell homeostasis and the regulation of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Emmanuel Hermann
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O'Connor DH. Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. THE JOURNAL OF IMMUNOLOGY 2009; 181:6301-8. [PMID: 18941221 DOI: 10.4049/jimmunol.181.9.6301] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisites to evaluate NK cell responses in macaques. In this study, we present a complete characterization of KIRs in Mauritian cynomolgus macaques, a geographically isolated population. In this study we demonstrate that only eight KIR haplotypes are present in the entire population and characterize the gene content of each. Using the simplified genetics of this population, we construct a model for macaque KIR genomic organization, defining four putative KIR3DL loci, one KIR3DH, two KIR2DL, and one KIR1D. We further demonstrate that loci defined in Mauritian cynomolgus macaques can be applied to rhesus macaques. The findings from this study fundamentally advance our understanding of KIR genetics in nonhuman primates and establish a foundation from which to study KIR signaling in disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin N Bimber
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|