1
|
Mei Y, Lei J, Liu W, Yue Z, Hu Q, Tao P, Li B, Zhao Y. Transcriptomic and Proteomic Analyses Unveil the Role of Nitrogen Metabolism in the Formation of Chinese Cabbage Petiole Spot. Int J Mol Sci 2024; 25:1366. [PMID: 38338646 PMCID: PMC10855159 DOI: 10.3390/ijms25031366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Chinese cabbage is the most widely consumed vegetable crop due to its high nutritional value and rock-bottom price. Notably, the presence of the physiological disease petiole spot significantly impacts the appearance quality and marketability of Chinese cabbage. It is well known that excessive nitrogen fertilizer is a crucial factor in the occurrence of petiole spots; however, the mechanism by which excessive nitrogen triggers the formation of petiole spots is not yet clear. In this study, we found that petiole spots initially gather in the intercellular or extracellular regions, then gradually extend into intracellular regions, and finally affect adjacent cells, accompanied by cell death. Transcriptomic and proteomic as well as physiology analyses revealed that the genes/proteins involved in nitrogen metabolism exhibited different expression patterns in resistant and susceptible Chinese cabbage lines. The resistant Chinese cabbage line has high assimilation ability of NH4+, whereas the susceptible one accumulates excessive NH4+, thus inducing a burst of reactive oxygen species (ROS). These results introduce a novel perspective to the investigation of petiole spot induced by the nitrogen metabolism pathway, offering a theoretical foundation for the development of resistant strains in the control of petiole spot.
Collapse
Affiliation(s)
- Ying Mei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Wenqi Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (P.T.)
| |
Collapse
|
2
|
Huang Y, Feng ZF, Li F, Hou YM. Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil. INSECTS 2024; 15:35. [PMID: 38249041 PMCID: PMC10816905 DOI: 10.3390/insects15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Symbiotic systems are intimately integrated at multiple levels. Host-endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil-Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen-Feng Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Z.-F.F.); (F.L.)
- Department of Plant Protection, Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Jorfi S, Ansa-Addo EA, Mariniello K, Warde P, Bin Senian AA, Stratton D, Bax BE, Levene M, Lange S, Inal JM. A Coxsackievirus B1-mediated nonlytic Extracellular Vesicle-to-cell mechanism of virus transmission and its possible control through modulation of EV release. J Gen Virol 2023; 104. [PMID: 37665326 DOI: 10.1099/jgv.0.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Like most non-enveloped viruses, CVB1 mainly uses cell lysis to spread. Details of a nonlytic virus transmission remain unclear. Extracellular Vesicles (EVs) transfer biomolecules between cells. We show that CVB1 entry into HeLa cells results in apoptosis and release of CVB1-induced 'medium-sized' EVs (CVB1i-mEVs). These mEVs (100-300 nm) harbour CVB1 as shown by immunoblotting with anti-CVB1-antibody; viral capsids were detected by transmission electron microscopy and RT-PCR revealed CVB1 RNA. The percentage of mEVs released from CVB1-infected HeLa cells harbouring virus was estimated from TEM at 34 %. Inhibition of CVB1i-mEV production, with calpeptin or siRNA knockdown of CAPNS1 in HeLa cells limited spread of CVB1 suggesting these vesicles disseminate CVB1 virions to new host cells by a nonlytic EV-to-cell mechanism. This was confirmed by detecting CVB1 virions inside HeLa cells after co-culture with CVB1i-mEVs; EV release may also prevent apoptosis of infected cells whilst spreading apoptosis to secondary sites of infection.
Collapse
Affiliation(s)
- Samireh Jorfi
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
| | - Ephraim Abrokwa Ansa-Addo
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: Pelotonia Institute for Immuno-Oncology, The James, Ohio State University, Columbus, OH 43210, USA
| | - Katia Mariniello
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Present address: William Harvey Research Institute, Queen Mary, University of London, London, UK
| | - Purva Warde
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| | - Ahmad Asyraf Bin Senian
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
- Present address: Clinical Research Centre, Sarawak General Hospital, Kuching, Malaysia
| | - Dan Stratton
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes MK7 6AE, UK
| | - Bridget E Bax
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, 116, New Cavendish St., London, UK
- University College London School of Pharmacy, Brunswick Sq., London, UK
| | - Jameel Malhador Inal
- Cell Communication in Disease Pathology, School of Human Sciences, London Metropolitan University, London N7 8DB, UK
- Biosciences Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9EU, UK
| |
Collapse
|
4
|
Wei J, Chen L, Xu Z, Liu P, Zhu Y, Lin T, Yang L, Huang Y, Lv Z. Identification and Characterization of a Novel Quanzhou Mulberry Virus from Mulberry ( Morus alba). Viruses 2023; 15:v15051131. [PMID: 37243217 DOI: 10.3390/v15051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we discovered a new virus named Quanzhou mulberry virus (QMV), which was identified from the leaves of an ancient mulberry tree. This tree is over 1300 years old and is located at Fujian Kaiyuan Temple, a renowned cultural heritage site in China. We obtained the complete genome sequence of QMV using RNA sequencing followed by rapid amplification of complementary DNA ends (RACE). The QMV genome is 9256 nucleotides (nt) long and encodes five open reading frames (ORFs). Its virion was made of icosahedral particles. Phylogenetic analysis suggests that it belongs to the unclassified Riboviria. An infectious clone for QMV was generated and agroinfiltrated into Nicotiana benthamiana and mulberry, resulting in no visible disease symptoms. However, systemic movement of the virus was only observed in mulberry seedlings, suggesting that it has a host-specific pattern of movement. Our findings provide a valuable reference for further studies on QMV and related viruses, contributing to the understanding of viral evolution and biodiversity in mulberry.
Collapse
Affiliation(s)
- Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Lei Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Peigang Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Yan Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Lu Yang
- Key Laboratory of Forest Resources and Utilization in Xinjiang of National Forestry and Grassland Administration, Urumqi 830052, China
- Key Laboratory of Fruit Tree Species Breeding and Cultivation in Xinjiang, Urumqi 830052, China
| | - Yuan Huang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| |
Collapse
|
5
|
Jia D, Liang Q, Chen H, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2228-y. [PMID: 36917406 DOI: 10.1007/s11427-022-2228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 03/16/2023]
Abstract
Multiple viral infections in insect vectors with synergistic effects are common in nature, but the underlying mechanism remains elusive. Here, we find that rice gall dwarf reovirus (RGDV) facilitates the transmission of rice stripe mosaic rhabdovirus (RSMV) by co-infected leafhopper vectors. RSMV nucleoprotein (N) alone activates complete anti-viral autophagy, while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy. In co-infected vectors, RSMV exploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction. Furthermore, RSMV could effectively propagate in Sf9 cells. Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux, finally facilitating RSMV propagation. In summary, these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Liang Q, Wan J, Liu H, Jia D, Chen Q, Wang A, Wei T. A plant nonenveloped double-stranded RNA virus activates and co-opts BNIP3-mediated mitophagy to promote persistent infection in its insect vector. Autophagy 2023; 19:616-631. [PMID: 35722949 PMCID: PMC9851205 DOI: 10.1080/15548627.2022.2091904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mitophagy that selectively eliminates damaged mitochondria is an essential mitochondrial quality control mechanism. Recently, mitophagy has been shown to be induced in host cells infected by a few animal viruses. Here, we report that southern rice black-streaked dwarf virus (SRBSDV), a plant nonenveloped double-stranded RNA virus, can also trigger mitophagy in its planthopper vector to prevent mitochondria-dependent apoptosis and promote persistent viral propagation. We find that the fibrillar structures constructed by the nonstructural protein P7-1 of SRBSDV directly target mitochondria via interaction with the mitophagy receptor BNIP3 (BCL2 interacting protein 3), and these mitochondria are then sequestered within autophagosomes to form mitophagosomes. Moreover, SRBSDV infection or P7-1 expression alone can promote BNIP3 dimerization on the mitochondria, and induce autophagy via the P7-1-ATG8 interaction. Furthermore, SRBSDV infection stimulates the phosphorylation of AMP-activated protein kinase (AMPK), resulting in BNIP3 phosphorylation via the AMPKα-BNIP3 interaction. Together, P7-1 induces BNIP3-mediated mitophagy by promoting the formation of phosphorylated BNIP3 dimers on the mitochondria. Silencing of ATG8, BNIP3, or AMPKα significantly reduces virus-induced mitophagy and viral propagation in insect vectors. These data suggest that in planthopper, SRBSDV-induced mitophagosomes are modified to accommodate virions and facilitate persistent viral propagation. In summary, our results demonstrate a previously unappreciated role of a viral protein in the induction of BNIP3-mediated mitophagy by bridging autophagosomes and mitochondria and reveal the functional importance of virus-induced mitophagy in maintaining persistent viral infection in insect vectors.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; BNIP3: BCL2 interacting protein 3; CASP3: caspase 3; dsRNA: double strand RNA; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; FKBP8: FKBP prolyl isomerase 8; FUNDC1: FUN14 domain containing 1; GFP: green fluorescent protein; GST: glutathione S-transferase; padp: post-first access to diseased plants; Phos-tag: Phosphate-binding tag; PINK1: PTEN induced kinase 1; Sf9: Spodoptera frugiperda; SQSTM1: sequestosome 1; SRBSDV: southern rice black-streaked dwarf virus; STK11/LKB1: serine/threonine kinase 11; TOMM20: translocase of outer mitochondrial membrane 20; RBSDV: rice black-streaked dwarf virus; TUNEL: terminal deoxynucleotidyl dUTP nick end labeling; ULK1: unc-51 like autophagy activating kinase 1; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Qifu Liang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiajia Wan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dongsheng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China,CONTACT Taiyun Wei State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Vieira LF, Weinhofer AC, Oltjen WC, Yu C, de Souza Mendes PR, Hore MJA. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation. SOFT MATTER 2022; 18:5218-5229. [PMID: 35770621 DOI: 10.1039/d2sm00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resistive pulse sensing (RPS) measurements of nanoparticle translocation have the ability to provide information on single-particle level characteristics, such as diameter or mobility, as well as ensemble averages. However, interpreting these measurements is complex and requires an understanding of nanoparticle dynamics in confined spaces as well as the ways in which nanoparticles disrupt ion transport while inside a nanopore. Here, we combine Dynamic Monte Carlo (DMC) simulations with Machine Learning (ML) and Poisson-Nernst-Planck calculations to simultaneously simulate nanoparticle dynamics and ion transport during hundreds of independent particle translocations as a function of nanoparticle size, electrophoretic mobility, and nanopore length. The use of DMC simulations allowed us to explicitly investigate the effects of Brownian motion and nanoparticle/nanopore characteristics on the amplitude and duration of translocation signals. Simulation results were verified with experimental RPS measurements and found to be in quantitative agreement.
Collapse
Affiliation(s)
- Luiz Fernando Vieira
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
- Instituto Nacional de Tecnologia, Ministry of Science, Technology & Innovation, Av. Venezuela, 82 - Rio de Janeiro, RJ 20081-312, Brazil
| | - Alexandra C Weinhofer
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - William C Oltjen
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Cindy Yu
- Hathaway Brown School, 19600 North Park Blvd., Shaker Heights, OH 44122, USA
| | - Paulo Roberto de Souza Mendes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
| | - Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Zhang R, Zhang XF, Chi Y, Xu Y, Chen H, Guo Z, Wei T. Nucleoprotein of a Rice Rhabdovirus Serves as the Effector to Attenuate Hemolymph Melanization and Facilitate Viral Persistent Propagation in its Leafhopper Vector. Front Immunol 2022; 13:904244. [PMID: 35655780 PMCID: PMC9152149 DOI: 10.3389/fimmu.2022.904244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Melanization in the hemolymph of arthropods is a conserved defense strategy against infection by invading pathogens. Numerous plant viruses are persistently transmitted by insect vectors, and must overcome hemolymph melanization. Here, we determine that the plant rhabdovirus rice stripe mosaic virus (RSMV) has evolved to evade the antiviral melanization response in the hemolymph in leafhopepr vectors. After virions enter vector hemolymph cells, viral nucleoprotein N is initially synthesized and directly interacts with prophenoloxidase (PPO), a core component of the melanization pathway and this process strongly activates the expression of PPO. Furthermore, such interaction could effectively inhibit the proteolytic cleavage of the zymogen PPO to active phenoloxidase (PO), finally suppressing hemolymph melanization. The knockdown of PPO expression or treatment with the PO inhibitor also suppresses hemolymph melanization and causes viral excessive accumulation, finally causing a high insect mortality rate. Consistent with this function, microinjection of N into leafhopper vectors attenuates melanization and promotes viral infection. These findings demonstrate that RSMV N serves as the effector to attenuate hemolymph melanization and facilitate viral persistent propagation in its insect vector. Our findings provide the insights in the understanding of ongoing arms race of insect immunity defense and viral counter-defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Jia D, Liang Q, Liu H, Li G, Zhang X, Chen Q, Wang A, Wei T. A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors. PLoS Pathog 2022; 18:e1010506. [PMID: 35533206 PMCID: PMC9119444 DOI: 10.1371/journal.ppat.1010506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/19/2022] [Accepted: 04/06/2022] [Indexed: 01/04/2023] Open
Abstract
Viruses can hijack autophagosomes as the nonlytic release vehicles in cultured host cells. However, how autophagosome-mediated viral spread occurs in infected host tissues or organs in vivo remains poorly understood. Here, we report that an important rice reovirus, rice gall dwarf virus (RGDV) hijacks autophagosomes to traverse multiple insect membrane barriers in the midgut and salivary gland of leafhopper vector to enhance viral spread. Such virus-containing double-membraned autophagosomes are prevented from degradation, resulting in increased viral propagation. Mechanistically, viral nonstructural protein Pns11 induces autophagy and embeds itself in the autophagosome membranes. The autophagy-related protein 5 (ATG5)-ATG12 conjugation is essential for initial autophagosome membrane biogenesis. RGDV Pns11 specifically interacts with ATG5, both in vitro and in vivo. Silencing of ATG5 or Pns11 expression suppresses ATG8 lipidation, autophagosome formation, and efficient viral propagation. Thus, Pns11 could directly recruit ATG5-ATG12 conjugation to induce the formation of autophagosomes, facilitating viral spread within the insect bodies. Furthermore, Pns11 potentially blocks autophagosome degradation by directly targeting and mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. Taken together, these results highlight how RGDV remodels autophagosomes to benefit viral propagation in its insect vector. Numerous plant viruses replicate inside the cells of their insect vectors. Here, we demonstrate that the progeny virions of rice gall dwarf virus in leafhopper vector are engulfed within virus-induced double-membraned autophagosomes. Such autophagosomes are modified to evade degradation, thus can be persistently exploited by viruses to safely transport virions across multiple insect membrane barriers. Viral nonstructural protein Pns11 induces the formation of autophagosomes via interaction with ATG5, and potentially blocks autophagosome degradation via mediating the reduced expression of N-glycosylated Lamp1 on lysosomal membranes. For the first time, we reveal that a nonstructural protein encoded by a persistent plant virus can induce an incomplete autophagy to benefit viral propagation in its insect vectors.
Collapse
Affiliation(s)
- Dongsheng Jia
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qifu Liang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan Liu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guangjun Li
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
10
|
Jia D, Liu H, Zhang J, Wan W, Wang Z, Zhang X, Chen Q, Wei T. Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. STRESS BIOLOGY 2022; 2:10. [PMID: 37676339 PMCID: PMC10441986 DOI: 10.1007/s44154-021-00032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 09/08/2023]
Abstract
Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jian Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenqiang Wan
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Zongwen Wang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Jia D, Luo G, Shi W, Liu Y, Liu H, Zhang X, Wei T. Rice Gall Dwarf Virus Promotes the Propagation and Transmission of Rice Stripe Mosaic Virus by Co-infected Insect Vectors. Front Microbiol 2022; 13:834712. [PMID: 35222343 PMCID: PMC8874222 DOI: 10.3389/fmicb.2022.834712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV), a newly discovered plant cytorhabdovirus, and rice gall dwarf virus (RGDV), a plant reovirus, are transmitted by leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, field surveys in Luoding city, Guangdong province of southern China, showed that RSMV and RGDV frequently co-infected rice plants. Furthermore, this co-infection had a synergistic effect on viral replication potential and pathogenicity in rice plants. Meanwhile, RSMV and RGDV also co-infected R. dorsalis vectors, and RGDV significantly promoted the propagation of RSMV in co-infected vectors. Accordingly, co-infection significantly promoted the acquisition and transmission efficiencies of RSMV by R. dorsalis. However, such co-infection did not significantly affect the propagation of RGDV in vectors. More importantly, we also observed that non-viruliferous R. dorsalis preferred to feed on co-infected rice plants, and this process further affected the feeding behavior of R. dorsalis to enhance viral release into rice phloem. These results provided the clues as to why RSMV had been a gradually expanding problem, creating an increasing risk of damage to rice production. Our findings revealed that synergism between RSMV and RGDV in their host and vector enhanced the propagation and transmission of RSMV, which will help guide the formulation of viral control strategies.
Collapse
|
12
|
Zhang L, Liu W, Zhang X, Li L, Wang X. Southern rice black-streaked dwarf virus hijacks SNARE complex of its insect vector for its effective transmission to rice. MOLECULAR PLANT PATHOLOGY 2021; 22:1256-1270. [PMID: 34390118 PMCID: PMC8435234 DOI: 10.1111/mpp.13109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Vesicular trafficking is an important dynamic process that facilitates intracellular transport of biological macromolecules and their release into the extracellular environment. However, little is known about whether or how plant viruses utilize intracellular vesicles to their advantage. Here, we report that southern rice black-streaked dwarf virus (SRBSDV) enters intracellular vesicles in epithelial cells of its insect vector by engaging VAMP7 and Vti1a proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. The major outer capsid protein P10 of SRBSDV was shown to interact with VAMP7 and Vti1a of the white-backed planthopper and promote the fusion of vesicles into a large vesicle, which finally fused with the plasma membrane to release virions from midgut epithelial cells. Downregulation of the expression of either VAMP7 or Vti1a did not affect viral entry and accumulation in the gut, but significantly reduced viral accumulation in the haemolymph. It also did not affect virus acquisition, but significantly reduced the virus transmission efficiency to rice. Our data reveal a critical mechanism by which a plant reovirus hijacks the vesicle transport system to overcome the midgut escape barrier in vector insects and provide new insights into the role of the SNARE complex in viral transmission and the potential for developing novel strategies of viral disease control.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Li Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
13
|
Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021; 13:v13081658. [PMID: 34452522 PMCID: PMC8402729 DOI: 10.3390/v13081658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.
Collapse
|
14
|
Chen Q, Liu Y, Ren J, Zhong P, Chen M, Jia D, Chen H, Wei T. Exosomes mediate horizontal transmission of viral pathogens from insect vectors to plant phloem. eLife 2021; 10:64603. [PMID: 34214032 PMCID: PMC8253596 DOI: 10.7554/elife.64603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous piercing-sucking insects can horizontally transmit viral pathogens together with saliva to plant phloem, but the mechanism remains elusive. Here, we report that an important rice reovirus has hijacked small vesicles, referred to as exosomes, to traverse the apical plasmalemma into saliva-stored cavities in the salivary glands of leafhopper vectors. Thus, virions were horizontally transmitted with exosomes into rice phloem to establish the initial plant infection during vector feeding. The purified exosomes secreted from cultured leafhopper cells were enriched with virions. Silencing the exosomal secretion-related small GTPase Rab27a or treatment with the exosomal biogenesis inhibitor GW4869 strongly prevented viral exosomal release in vivo and in vitro. Furthermore, the specific interaction of the 15-nm-long domain of the viral outer capsid protein with Rab5 induced the packaging of virions in exosomes, ultimately activating the Rab27a-dependent exosomal release pathway. We thus anticipate that exosome-mediated viral horizontal transmission is the conserved strategy hijacked by vector-borne viruses.
Collapse
Affiliation(s)
- Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuyan Liu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiping Ren
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Zhong
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Manni Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Yu X, Jia D, Wang Z, Li G, Chen M, Liang Q, Zhou Y, Liu H, Xiao M, Li S, Chen Q, Chen H, Wei T. A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions. PLoS Pathog 2021; 17:e1009347. [PMID: 33647067 PMCID: PMC7951979 DOI: 10.1371/journal.ppat.1009347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/11/2021] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.
Collapse
Affiliation(s)
- Xiangzhen Yu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhen Wang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Guangjun Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manni Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qifu Liang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yanyan Zhou
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Mi Xiao
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Siting Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| |
Collapse
|
17
|
Chen Q, Liu Y, Long Z, Yang H, Wei T. Viral Release Threshold in the Salivary Gland of Leafhopper Vector Mediates the Intermittent Transmission of Rice Dwarf Virus. Front Microbiol 2021; 12:639445. [PMID: 33613509 PMCID: PMC7890075 DOI: 10.3389/fmicb.2021.639445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 11/30/2022] Open
Abstract
Numerous piercing-sucking insects can persistently transmit viral pathogens in combination with saliva to plant phloem in an intermittent pattern. Insect vectors maintain viruliferous for life. However, the reason why insect vectors discontinuously transmit the virus remains unclear. Rice dwarf virus (RDV), a plant reovirus, was found to replicate and assemble the progeny virions in salivary gland cells of the leafhopper vector. We observed that the RDV virions moved into saliva-stored cavities in the salivary glands of leafhopper vectors via an exocytosis-like mechanism, facilitating the viral horizontal transmission to plant hosts during the feeding of leafhoppers. Interestingly, the levels of viral accumulation in the salivary glands of leafhoppers during the transmitting period were significantly lower than those of viruliferous individuals during the intermittent period. A putative viral release threshold, which was close to 1.79 × 104 copies/μg RNA was proposed from the viral titers in the salivary glands of 52 leafhoppers during the intermittent period. Thus, the viral release threshold was hypothesized to mediate the intermittent release of RDV from the salivary gland cells of leafhoppers. We anticipate that viral release threshold-mediated intermittent transmission by insect vectors is the conserved strategy for the epidemic and persistence of vector-borne viruses in nature.
Collapse
Affiliation(s)
| | | | | | | | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Gao F, Zhao S, Men S, Kang Z, Hong J, Wei C, Hong W, Li Y. A non-structural protein encoded by Rice Dwarf Virus targets to the nucleus and chloroplast and inhibits local RNA silencing. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1703-1713. [PMID: 32303960 DOI: 10.1007/s11427-019-1648-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.
Collapse
Affiliation(s)
- Feng Gao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Shanshan Zhao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- College of Plant Protection, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Shuzhen Men
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhensheng Kang
- Department of Plant Protection, Northwestern Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Hong
- College of Agriculture, Zhejiang University, Hangzhou, 310029, China
| | - Chunhong Wei
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Hong
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Yi Li
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Abstract
Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.
Collapse
|
21
|
Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. Sci Rep 2020; 10:4291. [PMID: 32152370 PMCID: PMC7062745 DOI: 10.1038/s41598-020-61042-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.
Collapse
|
22
|
Lenart WR, Kong W, Oltjen WC, Hore MJA. Translocation of soft phytoglycogen nanoparticles through solid-state nanochannels. J Mater Chem B 2019; 7:6428-6437. [PMID: 31465081 DOI: 10.1039/c9tb01048c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytoglycogen nanoparticles are soft, naturally-derived nanomaterials with a highly uniform size near 35 nm. Their interior is composed of a highly-branched polysaccharide core that contains more than 200% of its dry mass in water. In this work, we measure the translocation of phytoglycogen particles by observing blockade events they create when occluding solid-state nanochannels with diameters between 60 and 100 nm. The translocation signals are interpreted using Poisson-Nernst-Planck calculations with a "hardness parameter" that describes the extent to which solvent can penetrate through the interior of the particles. Theory and experiment were found to be in quantitative agreement, allowing us to extract physical characteristics of the particles on a per particle basis.
Collapse
Affiliation(s)
- William R Lenart
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiwei Kong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - William C Oltjen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
24
|
A Nonstructural Protein Responsible for Viral Spread of a Novel Insect Reovirus Provides a Safe Channel for Biparental Virus Transmission to Progeny. J Virol 2019; 93:JVI.00702-19. [PMID: 31092577 PMCID: PMC6639290 DOI: 10.1128/jvi.00702-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important pest in the worldwide citrus industry. It is the vector of “Candidatus Liberibacter asiaticus,” the bacterial pathogen of Huanglongbing, which is currently considered the most destructive disease of citrus worldwide. DcRV was previously identified based on metagenomics surveys for virus discovery. Here, we found that this novel and persistent insect reovirus took advantage of a virus-encoded nonstructural protein, P10, for efficient vertical transmission from parents to progeny. P10 assembled into a virion-packaging tubular structure and was associated with oocytes of female D. citri and sperm of males. Consistent with this, knockdown of P10 for either male or female D. citri insects inhibited DcRV transmission to offspring. This tubular strategy for viral spread and biparental transmission might serve as a target for controlling viral vertical transmission and population expansion. Diaphorina citri reovirus (DcRV) was previously identified based on metagenomics surveys for virus discovery. Here, we demonstrated that DcRV induces persistent infection in its psyllid host, Diaphorina citri. DcRV was efficiently vertically passed to offspring in a biparental manner. Transmission electron microscopic and immunological analyses showed that the DcRV-encoded nonstructural protein P10 assembled into a virion-packaging tubular structure which is associated with the spread of DcRV throughout the bodies of D. citri insects. P10 tubules containing virions were associated with oocytes of female and sperm of male D. citri insects, suggesting a role in the highly efficient biparental transmission of DcRV. Knocking down P10 by RNA interference for males reduced the percentage of DcRV-infected progeny and for females reduced the viral accumulation in progeny. These results, for the first time, show that a nonstructural protein of a novel insect reovirus provides a safe and pivotal channel for virus spread and biparental transmission to progeny. IMPORTANCE The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important pest in the worldwide citrus industry. It is the vector of “Candidatus Liberibacter asiaticus,” the bacterial pathogen of Huanglongbing, which is currently considered the most destructive disease of citrus worldwide. DcRV was previously identified based on metagenomics surveys for virus discovery. Here, we found that this novel and persistent insect reovirus took advantage of a virus-encoded nonstructural protein, P10, for efficient vertical transmission from parents to progeny. P10 assembled into a virion-packaging tubular structure and was associated with oocytes of female D. citri and sperm of males. Consistent with this, knockdown of P10 for either male or female D. citri insects inhibited DcRV transmission to offspring. This tubular strategy for viral spread and biparental transmission might serve as a target for controlling viral vertical transmission and population expansion.
Collapse
|
25
|
Tan L, Yuan X, Liu Y, Cai X, Guo S, Wang A. Non-muscle Myosin II: Role in Microbial Infection and Its Potential as a Therapeutic Target. Front Microbiol 2019; 10:401. [PMID: 30886609 PMCID: PMC6409350 DOI: 10.3389/fmicb.2019.00401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/15/2019] [Indexed: 01/11/2023] Open
Abstract
Currently, the major measures of preventing and controlling microbial infection are vaccinations and drugs. However, the appearance of drug resistance microbial mounts is main obstacle in current anti-microbial therapy. One of the most ubiquitous actin-binding proteins, non-muscle myosin II (NM II) plays a crucial role in a wide range of cellular physiological activities in mammals, including cell adhesion, migration, and division. Nowadays, growing evidence indicates that aberrant expression or activity of NM II can be detected in many diseases caused by microbes, including viruses and bacteria. Furthermore, an important role for NM II in the infection of some microbes is verified. Importantly, modulating the expression of NM II with small hairpin RNA (shRNA) or the activity of it by inhibitors can affect microbial-triggered phenotypes. Therefore, NM II holds the promise to be a potential target for inhibiting the infection of microbes and even treating microbial-triggered discords. In spite of these, a comprehensive view on the functions of NM II in microbial infection and the regulators which have an impact on the roles of NM II in this context, is still lacking. In this review, we summarize our current knowledge on the roles of NM II in microbial-triggered discords and provide broad insights into its regulators. In addition, the existing challenge of investigating the multiple roles of NM II in microbial infection and developing NM II inhibitors for treating these microbial-triggered discords, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaomin Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yisong Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research and Development Center for Animal Reverse Vaccinology of Hunan Province, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Chen Q, Zheng L, Mao Q, Liu J, Wang H, Jia D, Chen H, Wu W, Wei T. Fibrillar structures induced by a plant reovirus target mitochondria to activate typical apoptotic response and promote viral infection in insect vectors. PLoS Pathog 2019; 15:e1007510. [PMID: 30653614 PMCID: PMC6353215 DOI: 10.1371/journal.ppat.1007510] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/30/2019] [Accepted: 12/07/2018] [Indexed: 11/19/2022] Open
Abstract
Numerous plant viruses that cause significant agricultural problems are persistently transmitted by insect vectors. We wanted to see if apoptosis was involved in viral infection process in the vector. We found that a plant reovirus (rice gall dwarf virus, RGDV) induced typical apoptotic response during viral replication in the leafhopper vector and cultured vector cells, as demonstrated by mitochondrial degeneration and membrane potential decrease. Fibrillar structures formed by nonstructural protein Pns11 of RGDV targeted the outer membrane of mitochondria, likely by interaction with an apoptosis-related mitochondrial protein in virus-infected leafhopper cells or nonvector insect cells. Such association of virus-induced fibrillar structures with mitochondria clearly led to mitochondrial degeneration and membrane potential decrease, suggesting that RGDV Pns11 was the inducer of apoptotic response in insect vectors. A caspase inhibitor treatment and knockdown of caspase gene expression using RNA interference each reduced apoptosis and viral accumulation, while the knockdown of gene expression for the inhibitor of apoptosis protein improved apoptosis and viral accumulation. Thus, RGDV exploited caspase-dependent apoptotic response to promote viral infection in insect vectors. For the first time, we directly confirmed that a nonstructural protein encoded by a persistent plant virus can induce the typical apoptotic response to benefit viral transmission by insect vectors.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Limin Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jiejie Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector-borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
27
|
Zhang XF, Xie Y, Wang H, Wang J, Chen H, Zeng T, Zhao Y, Wei T. Exploration of an Actin Promoter-Based Transient Expression Vector to Trace the Cellular Localization of Nucleorhabdovirus Proteins in Leafhopper Cultured Cells. Front Microbiol 2018; 9:3034. [PMID: 30619126 PMCID: PMC6306041 DOI: 10.3389/fmicb.2018.03034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Continuously cultured cell lines derived from planthopper and leafhopper have greatly facilitated the investigation of rice viruses transmitted by these insects. However, the lack of a suitable transient expression vector has limited their utility. Here, by cloning and analyzing the promoter sequence of the gene encoding cytoplasmic actin from the leafhopper Nephotettix cincticeps, we successfully developed the first efficient transient expression vector for cultured leafhopper cells, which can also be used to express exogenous proteins in other insect culture cell lines, including those derived from Recilia dorsalis leafhopper and Spodoptera frugiperda (Sf9). Furthermore, insertion of the Hr5 viral enhancer element and knockdown of the endogenous Dicer2 gene notably improved the vector's expression efficiency in leafhopper cells. Using the optimized vector, we have for the first time traced the cellular localization of the proteins encoded by rice yellow stunt virus (RYSV) in cells of its insect vector and demonstrated that P6 protein is a component of the viroplasm.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou,China
| |
Collapse
|
28
|
Chen Y, Chen Q, Li M, Mao Q, Chen H, Wu W, Jia D, Wei T. Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLoS Pathog 2017; 13:e1006727. [PMID: 29125860 PMCID: PMC5708841 DOI: 10.1371/journal.ppat.1006727] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/30/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023] Open
Abstract
Many viral pathogens are persistently transmitted by insect vectors and cause agricultural or health problems. Generally, an insect vector can use autophagy as an intrinsic antiviral defense mechanism against viral infection. Whether viruses can evolve to exploit autophagy to promote their transmission by insect vectors is still unknown. Here, we show that the autophagic process is triggered by the persistent replication of a plant reovirus, rice gall dwarf virus (RGDV) in cultured leafhopper vector cells and in intact insects, as demonstrated by the appearance of obvious virus-containing double-membrane autophagosomes, conversion of ATG8-I to ATG8-II and increased level of autophagic flux. Such virus-containing autophagosomes seem able to mediate nonlytic viral release from cultured cells or facilitate viral spread in the leafhopper intestine. Applying the autophagy inhibitor 3-methyladenine or silencing the expression of Atg5 significantly decrease viral spread in vitro and in vivo, whereas applying the autophagy inducer rapamycin or silencing the expression of Torc1 facilitate such viral spread. Furthermore, we find that activation of autophagy facilitates efficient viral transmission, whereas inhibiting autophagy blocks viral transmission by its insect vector. Together, these results indicate a plant virus can induce the formation of autophagosomes for carrying virions, thus facilitating viral spread and transmission by its insect vector. We believe that such a role for virus-induced autophagy is common for vector-borne persistent viruses during their transmission by insect vectors.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
29
|
Liao Z, Mao Q, Li J, Lu C, Wu W, Chen H, Chen Q, Jia D, Wei T. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector. Front Microbiol 2017; 8:475. [PMID: 28382031 PMCID: PMC5360704 DOI: 10.3389/fmicb.2017.00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
30
|
Chen Q, Zhang L, Zhang Y, Mao Q, Wei T. Tubules of plant reoviruses exploit tropomodulin to regulate actin-based tubule motility in insect vector. Sci Rep 2017; 7:38563. [PMID: 28067229 PMCID: PMC5220352 DOI: 10.1038/srep38563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Plant reoviruses are known to exploit virion-packaging tubules formed by virus-encoding non-structural proteins for viral spread in insect vectors. Tubules are propelled by actin-based tubule motility (ABTM) to overcome membrane or tissue barriers in insect vectors. To further understand which insect factors mediate ABTM, we utilized yeast two-hybrid and bimolecular fluorescence complementation assays to test interactions between tubule protein Pns10 of rice dwarf virus (RDV), a plant reovirus, and proteins of its insect vector, the leafhopper Nephotettix cincticeps. Tropomodulin (Tmod), vitellogenin, and lipophorin precursor of N. cincticep displayed positive and strong interaction with Pns10, and actin-associated protein Tmod interacted with Pns10 in pull-down assay and the co-immunoprecipitation system. Further, we determined Pns10 tubules associated with Tmod in cultured cells and midgut of N. cincticep. The expression dynamic of Tmod was consistent with that of Pns10 and the fluctuation of RDV accumulation. Knockdown of Tmod inhibited the Pns10 expression and viral accumulation, thus decreasing the viruliferous rates of leafhopper. These results suggested that Tmod was involved in viral spread by directly interacting with Pns10 tubules, finally promoting RDV infection. This study provided direct evidence of plant reoviruses utilizing an actin-associated protein to manipulate ABTM in insect vectors, thus facilitating viral spread.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Linghua Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Yanshuang Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
31
|
Jia D, Han Y, Sun X, Wang Z, Du Z, Chen Q, Wei T. The speed of tubule formation of two fijiviruses corresponds with their dissemination efficiency in their insect vectors. Virol J 2016; 13:174. [PMID: 27760544 PMCID: PMC5069929 DOI: 10.1186/s12985-016-0632-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/05/2016] [Indexed: 11/15/2022] Open
Abstract
Background Rice black-streaked dwarf virus (RBSDV) and Southern rice black-streaked dwarf virus (SRBSDV) are two closely related fijiviruses transmitted by the small brown planthopper (SBPH) and white-backed planthopper (WBPH), respectively. SRBSDV has a latent period 4 days shorter than that of RBSDV, implying a more efficient spread in insect vector. Currently, the mechanisms underlying this higher efficiency are poorly understood. However, our recent studies have implicated a role of virus induced tubular structures in the dissemination of fijiiruses within their insect vectors. Methods Immunofluorescence labeling was performed to visualize and compare the dynamics of P7-1 tubule formation of the RBSDV and SRBSDV in their own vector insects and nonhost Spodoptera frugiperda (Sf9) cells. Results Tubule formation of SRBSDV P7-1 was faster than that of RBSDV P7-1. For RBSDV, P7-1 formed tubules were observed at 3-days post-first access to diseased plants (padp) in SBPH. For SRBSDV, these structures were detected as early as 1 day padp in WBPH. Importantly, similar phenomena were observed when P7-1 proteins from the two viruses were expressed alone in Sf9 cells. Conclusions Our research revealed a relationship between the speed of P7-1 tubule formation and virus dissemination efficiency and also supports a role of such tubular structures in the spread of reoviruses within insect vectors.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Yu Han
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Xiang Sun
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Zhenzhen Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| |
Collapse
|
32
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
33
|
Chen Q, Wei T. Viral receptors of the gut: insect-borne propagative plant viruses of agricultural importance. CURRENT OPINION IN INSECT SCIENCE 2016; 16:9-13. [PMID: 27720057 DOI: 10.1016/j.cois.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Insect-borne propagative plant viruses of agricultural importance are transmitted by sap-sucking insects. Although the infection routes of these viruses within the bodies of insect vectors are well established, cellular receptors on the microvilli, intercellular junctions, and basal lamina for mediating viral entry or spread in insect gut epithelium have not been well identified or characterized. Recent trends in the field are opening questions on how viruses exploit actin-based tubule motility to overcome insect gut epithelium barriers after viral entry in epithelium. Advances in insect cell lines, genome sequencing, reverse genetic systems and others not yet developed technologies are needed to find and characterize the counterpart receptors in vectors and to design strategies to interfere with viral transmission.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
34
|
Lan H, Chen H, Liu Y, Jiang C, Mao Q, Jia D, Chen Q, Wei T. Small Interfering RNA Pathway Modulates Initial Viral Infection in Midgut Epithelium of Insect after Ingestion of Virus. J Virol 2016; 90:917-29. [PMID: 26537672 PMCID: PMC4702677 DOI: 10.1128/jvi.01835-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Numerous viruses are transmitted in a persistent manner by insect vectors. Persistent viruses establish their initial infection in the midgut epithelium, from where they disseminate to the midgut visceral muscles. Although propagation of viruses in insect vectors can be controlled by the small interfering RNA (siRNA) antiviral pathway, whether the siRNA pathway can control viral dissemination from the midgut epithelium is unknown. Infection by a rice virus (Southern rice black streaked dwarf virus [SRBSDV]) of its incompetent vector (the small brown planthopper [SBPH]) is restricted to the midgut epithelium. Here, we show that the siRNA pathway is triggered by SRBSDV infection in continuously cultured cells derived from the SBPH and in the midgut of the intact insect. Knockdown of the expression of the core component Dicer-2 of the siRNA pathway by RNA interference strongly increased the ability of SRBSDV to propagate in continuously cultured SBPH cells and in the midgut epithelium, allowing viral titers in the midgut epithelium to reach the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) needed for viral dissemination into the SBPH midgut muscles. Our results thus represent the first elucidation of the threshold for viral dissemination from the insect midgut epithelium. Silencing of Dicer-2 further facilitated the transmission of SRBSDV into rice plants by SBPHs. Taken together, our results reveal the new finding that the siRNA pathway can control the initial infection of the insect midgut epithelium by a virus, which finally affects the competence of the virus's vector. IMPORTANCE Many viral pathogens that cause significant global health and agricultural problems are transmitted via insect vectors. The first bottleneck in viral infection, the midgut epithelium, is a principal determinant of the ability of an insect species to transmit a virus. Southern rice black streaked dwarf virus (SRBSDV) is restricted exclusively to the midgut epithelium of an incompetent vector, the small brown planthopper (SBPH). Here, we show that silencing of the core component Dicer-2 of the small interfering RNA (siRNA) pathway increases viral titers in the midgut epithelium past the threshold (1.99 × 10(9) copies of the SRBSDV P10 gene/μg of midgut RNA) for viral dissemination into the midgut muscles and then into the salivary glands, allowing the SBPH to become a competent vector of SRBSDV. This result is the first evidence that the siRNA antiviral pathway has a direct role in the control of viral dissemination from the midgut epithelium and that it affects the competence of the virus's vector.
Collapse
Affiliation(s)
- Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Chaoyang Jiang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
35
|
Chen Q, Zhang L, Chen H, Xie L, Wei T. Nonstructural protein Pns4 of rice dwarf virus is essential for viral infection in its insect vector. Virol J 2015; 12:211. [PMID: 26646953 PMCID: PMC4673743 DOI: 10.1186/s12985-015-0438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/25/2015] [Indexed: 01/04/2023] Open
Abstract
Background Rice dwarf virus (RDV), a plant reovirus, is mainly transmitted by the green rice leafhopper, Nephotettix cincticeps, in a persistent-propagative manner. Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. Nonstructural protein Pns4 of RDV, a phosphoprotein, is localized around the viroplasm matrix and forms minitubules in insect vector cells. However, the functional role of Pns4 minitubules during viral infection in insect vector is still unknown yet. Methods RNA interference (RNAi) system targeting Pns4 gene of RDV was conducted. Double-stranded RNA (dsRNA) specific for Pns4 gene was synthesized in vitro, and introduced into cultured leafhopper cells by transfection or into insect body by microinjection. The effects of the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene on viral replication and spread in cultured cells and insect vector were analyzed using immunofluorescence, western blotting or RT-PCR assays. Results In cultured leafhopper cells, the knockdown of Pns4 expression due to RNAi induced by synthesized dsRNA from Pns4 gene strongly inhibited the formation of minitubules, preventing the accumulation of viroplasms and efficient viral infection in insect vector cells. RNAi induced by microinjection of dsRNA from Pns4 gene significantly reduced the viruliferous rate of N. cincticeps. Furthermore, it also strongly inhibited the formation of minitubules and viroplasms, preventing efficient viral spread from the initially infected site in the filter chamber of intact insect vector. Conclusions Pns4 of RDV is essential for viral infection and replication in insect vector. It may directly participate in the functional role of viroplasm for viral replication and assembly of progeny virions during viral infection in leafhopper vector.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Linghua Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| |
Collapse
|
36
|
Chen Q, Chen H, Jia D, Mao Q, Xei L, Wei T. Nonstructural protein Pns12 of rice dwarf virus is a principal regulator for viral replication and infection in its insect vector. Virus Res 2015. [PMID: 26200955 DOI: 10.1016/j.virusres.2015.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant reoviruses are thought to replicate and assemble within cytoplasmic structures called viroplasms. The molecular mechanisms underling the formation of the viroplasm during infection of rice dwarf virus (RDV), a plant reovirus, in its leafhopper vector cells remain poorly understood. Viral nonstructural protein Pns12 forms viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix is basically composed of Pns12. Here, we demonstrated that core capsid protein P3 and nonstructural protein Pns11 were recruited in the viroplasm by direct interaction with Pns12, whereas nonstructural protein Pns6 was recruited through interaction with Pns11. The introduction of dsRNA from Pns12 gene into cultured insect vector cells or intact insect strongly inhibited such viroplasm formation, preventing efficient viral spread in the leafhopper in vitro and in vivo. Thus, nonstructural protein Pns12 of RDV is a principal regulator for viral replication and infection in its insect vector.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lianhui Xei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
37
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|
38
|
Chen Q, Wang H, Ren T, Xie L, Wei T. Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. J Gen Virol 2015; 96:933-938. [DOI: 10.1099/jgv.0.000022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tangyu Ren
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
39
|
Cassone BJ, Cisneros Carter FM, Michel AP, Stewart LR, Redinbaugh MG. Genetic insights into Graminella nigrifrons Competence for maize fine streak virus infection and transmission. PLoS One 2014; 9:e113529. [PMID: 25420026 PMCID: PMC4242632 DOI: 10.1371/journal.pone.0113529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/29/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. METHODOLOGY RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. RESULTS/SIGNIFICANCE Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process.
Collapse
Affiliation(s)
- Bryan J. Cassone
- United States Department of Agriculture- Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio, United States of America
| | - Fiorella M. Cisneros Carter
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America
| | - Andrew P. Michel
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America
| | - Lucy R. Stewart
- United States Department of Agriculture- Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio, United States of America
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America
| | - Margaret G. Redinbaugh
- United States Department of Agriculture- Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio, United States of America
- Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
40
|
Jia D, Mao Q, Chen H, Wang A, Liu Y, Wang H, Xie L, Wei T. Virus-induced tubule: a vehicle for rapid spread of virions through basal lamina from midgut epithelium in the insect vector. J Virol 2014; 88:10488-500. [PMID: 24965461 PMCID: PMC4178856 DOI: 10.1128/jvi.01261-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The plant reoviruses, plant rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent propagative manner. These viruses induce the formation of viral inclusions to facilitate viral propagation in insect vectors. The intestines of insect vectors are formed by epithelial cells that lie on the noncellular basal lamina surrounded by visceral muscle tissue. Here, we demonstrate that a recently identified plant reovirus, southern rice black-streaked dwarf virus (SRBSDV), exploits virus-containing tubules composed of virus-encoded nonstructural protein P7-1 to directly cross the basal lamina from the initially infected epithelium toward visceral muscle tissues in the intestine of its vector, the white-backed planthopper (Sogatella furcifera). Furthermore, such tubules spread along visceral muscle tissues through a direct interaction of P7-1 and actin. The destruction of tubule assembly by RNA interference with synthesized double-stranded RNA targeting the P7-1 gene inhibited viral spread in the insect vector in vitro and in vivo. All these results show for the first time that a virus employs virus-induced tubule as a vehicle for viral spread from the initially infected midgut epithelium through the basal lamina, facilitating the rapid dissemination of virus from the intestine of the insect vector. IMPORTANCE Numerous plant viruses are transmitted in a persistent manner by sap-sucking insects, including thrips, aphids, planthoppers, and leafhoppers. These viruses, ingested by the insects, establish their primary infection in the intestinal epithelium of the insect vector. Subsequently, the invading virus manages to transverse the basal lamina, a noncellular layer lining the intestine, a barrier that may theoretically hinder viral spread. The mechanism by which plant viruses cross the basal lamina is unknown. Here, we report that a plant virus has evolved to exploit virus-induced tubules to pass through the basal lamina from the initially infected midgut epithelium of the insect vector, thus revealing the previously undescribed pathway adapted by the virus for rapid dissemination of virions from the intestine of the insect vector.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
41
|
Hiraguri A, Netsu O, Sasaki N, Nyunoya H, Sasaya T. Recent progress in research on cell-to-cell movement of rice viruses. Front Microbiol 2014; 5:210. [PMID: 24904532 PMCID: PMC4033013 DOI: 10.3389/fmicb.2014.00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/20/2014] [Indexed: 11/25/2022] Open
Abstract
To adapt to plants as hosts, plant viruses have evolutionally needed the capacity to modify the host plasmodesmata (PD) that connect adjacent cells. Plant viruses have acquired one or more genes that encode movement proteins (MPs), which facilitate the cell-to-cell movement of infectious virus entities through PD to adjacent cells. Because of the diversity in their genome organization and in their coding sequences, rice viruses may each have a distinct cell-to-cell movement strategy. The complexity of their unusual genome organizations and replication strategies has so far hampered reverse genetic research on their genome in efforts to investigate virally encoded proteins that are involved in viral movement. However, the MP of a particular virus can complement defects in cell-to-cell movement of other distantly related or even unrelated viruses. Trans-complementation experiments using a combination of a movement-defective virus and viral proteins of interest to identify MPs of several rice viruses have recently been successful. In this article, we reviewed recent research that has advanced our understanding of cell-to-cell movement of rice viruses.
Collapse
Affiliation(s)
- Akihiro Hiraguri
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Osamu Netsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Nobumitsu Sasaki
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and TechnologyFuchu, Tokyo, Japan
| | - Takahide Sasaya
- Plant Disease Group, Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research OrganizationKoshi, Kumamoto, Japan
| |
Collapse
|
42
|
Yang L, Du Z, Gao F, Wu K, Xie L, Li Y, Wu Z, Wu J. Transcriptome profiling confirmed correlations between symptoms and transcriptional changes in RDV infected rice and revealed nucleolus as a possible target of RDV manipulation. Virol J 2014; 11:81. [PMID: 24885215 PMCID: PMC4032362 DOI: 10.1186/1743-422x-11-81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/22/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which limits rice production in many areas of south East Asia. Transcriptional changes of rice in response to RDV infection have been characterized by Shimizu et al. and Satoh et al.. Both studies found induction of defense related genes and correlations between transcriptional changes and symptom development in RDV-infected rice. However, the same rice cultivar, namely Nipponbare belonging to the Japonic subspecies of rice was used in both studies. METHODS Gene expression changes of the indica subspecies of rice, namely Oryza sativa L. ssp. indica cv Yixiang2292 that show moderate resistance to RDV, in response to RDV infection were characterized using an Affymetrix Rice Genome Array. Differentially expressed genes (DEGs) were classified according to their Gene Ontology (GO) annotation. The effects of transient expression of Pns11 in Nicotiana benthaminana on the expression of nucleolar genes were studied using real-time PCR (RT-PCR). RESULTS 856 genes involved in defense or other physiological processes were identified to be DEGs, most of which showed up-regulation. Ribosome- and nucleolus related genes were significantly enriched in the DEGs. Representative genes related to nucleolar function exhibited altered expression in N. benthaminana plants transiently expressing Pns11 of RDV. CONCLUSIONS Induction of defense related genes is common for rice infected with RDV. There is a co-relation between symptom severity and transcriptional alteration in RDV infected rice. Besides ribosome, RDV may also target nucleolus to manipulate the translation machinery of rice. Given the tight links between nucleolus and ribosome, it is intriguing to speculate that RDV may enhance expression of ribosomal genes by targeting nucleolus through Pns11.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | | |
Collapse
|
43
|
Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission. J Proteomics 2014; 102:83-97. [DOI: 10.1016/j.jprot.2014.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 01/06/2023]
|
44
|
Cassone BJ, Michel AP, Stewart LR, Bansal R, Mian MR, Redinbaugh MG. Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect. Genome Biol Evol 2014; 6:873-85. [PMID: 24682151 PMCID: PMC4007533 DOI: 10.1093/gbe/evu057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogens and their vectors have coevolutionary histories that are intricately intertwined with their ecologies, environments, and genetic interactions. The soybean aphid, Aphis glycines, is native to East Asia but has quickly become one of the most important aphid pests in soybean-growing regions of North America. In this study, we used bioassays to examine the effects of feeding on soybean infected with a virus it vectors (Soybean mosaic virus [SMV]) and a virus it does not vector (Bean pod mottle virus [BPMV]) have on A. glycines survival and fecundity. The genetic underpinnings of the observed changes in fitness phenotype were explored using RNA-Seq. Aphids fed on SMV-infected soybean had transcriptome and fitness profiles that were similar to that of aphids fed on healthy control plants. Strikingly, a significant reduction in fecundity was seen in aphids fed on BPMV-infected soybean, concurrent with a large and persistent downregulation of A. glycines transcripts involved in regular cellular activities. Although molecular signatures suggested a small regulatory RNA pathway defense response was repressed in aphids feeding on infected plants, BPMV did not appear to be replicating in the vector. These results suggest that incompatibilities with BPMV or the effects of BPMV infection on soybean caused A. glycines to allot available energy resources to survival rather than reproduction and other core cellular processes. Ultimately, the detrimental impacts to A. glycines may reflect the short tritrophic evolutionary histories between the insect, plant, and virus.
Collapse
Affiliation(s)
- Bryan J. Cassone
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Present address: Center for Applied Plant Sciences, Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH
| | - Andrew P. Michel
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Lucy R. Stewart
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| | - Raman Bansal
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - M.A. Rouf Mian
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Entomology, The Ohio State University, OARDC, Wooster
| | - Margaret G. Redinbaugh
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, Ohio
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster
| |
Collapse
|
45
|
Wu W, Zheng L, Chen H, Jia D, Li F, Wei T. Nonstructural protein NS4 of Rice Stripe Virus plays a critical role in viral spread in the body of vector insects. PLoS One 2014; 9:e88636. [PMID: 24523924 PMCID: PMC3921211 DOI: 10.1371/journal.pone.0088636] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Rice stripe virus (RSV), a tenuivirus, is transmitted by small brown planthopper (SBPH) in a persistent-propagative manner. In this study, sequential infection of RSV in the internal organs of SBPH after ingestion of virus indicated that RSV initially infected the midgut epithelium, and then progressed to the visceral muscle tissues, through which RSV spread to the entire alimentary canal. Finally, RSV spread into the salivary glands and reproductive system. During viral infection, the nonstructural protein NS4 of RSV formed cytoplasmic inclusions in various tissues of viruliferous SBPH. We demonstrated that the ribonucleoprotein particles of RSV were closely associated with NS4-specific inclusions in the body of viruliferous SBPH through a direct interaction between NS4 and nucleoprotein of RSV. Moreover, the knockdown of NS4 expression due to RNA interference induced by dsRNA from NS4 gene significantly prevented the spread of RSV in the bodies of SBPHs without a significant effect on viral replication in continuous cell culture derived from SBPH. All these results suggest that the nonstructural protein NS4 of RSV plays a critical role in viral spread by the vector insects.
Collapse
Affiliation(s)
- Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Agricultural Biodiversity for Pest Management of China’s Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, PR China
| | - Limin Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Fan Li
- Key Laboratory of Agricultural Biodiversity for Pest Management of China’s Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, PR China
- * E-mail: (FL); (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (FL); (TW)
| |
Collapse
|
46
|
Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector cells. J Virol 2014; 88:4265-74. [PMID: 24478421 DOI: 10.1128/jvi.03466-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rice ragged stunt virus (RRSV), an oryzavirus in the family Reoviridae, is transmitted by the brown planthopper, Nilaparvata lugens, in a persistent-propagative manner. Here, we established a continuous cell line of brown planthopper to investigate the mechanism underlying the formation of the viroplasm, the putative site for viral replication and assembly, during infection of RRSV in its insect vector cells. Within 24 h of viral infection of cultured cells, the viroplasm had formed and contained the viral nonstructural proteins Pns6 and Pns10, known to be constituents of viroplasm. Core capsid protein P3, core particles, and newly synthesized viral RNAs were accumulated inside the viroplasm, while outer capsid protein P8 and virions were accumulated at the periphery of the viroplasm, confirming that the viroplasm induced by RRSV infection was the site for viral replication and assembly. Pns10 formed viroplasm-like inclusions in the absence of viral infection, suggesting that the viroplasm matrix was largely composed of Pns10. Pns6 was recruited in the viroplasm by direct interaction with Pns10. Core capsid protein P3 was recruited to the viroplasm through specific association with Pns6. Knockdown of Pns6 and Pns10 expression using RNA interference inhibited viroplasm formation, virion assembly, viral protein expression, and viral double-stranded RNA synthesis. Thus, the present study shows that both Pns6 and Pns10 of RRSV play important roles in the early stages of viral life cycle in its insect vector cells, by recruiting or retaining components necessary for viral replication and assembly. IMPORTANCE The brown planthopper, a commonly distributed pest of rice in Asia, is the host of numerous insect endosymbionts, and the major vector of two rice viruses (RRSV and rice grassy stunt virus). For the first time, we successfully established the continuous cell line of brown planthopper. The unique uniformity of brown planthopper cells in the monolayer can support a consistent, synchronous infection by endosymbionts or viral pathogens, improving our understanding of molecular insect-microbe interactions.
Collapse
|
47
|
Abstract
The family Reoviridae separates two subfamilies and consists of 15 genera. Fourteen viruses in three genera (Phytoreovirus, Oryzavirus, and Fijivirus) infect plants. The outbreaks of the plant-infecting reoviruses cause sometime the serious yield loss of rice and maize, and are a menace to safe and efficient food production in the Southeast Asia. The plant-infecting reoviruses are double-shelled icosahedral particles, from 50 to 80nm in diameter, and include from 10 to 12 segmented double-stranded genomic RNAs depending on the viruses. These viruses are transmitted in a persistent manner by the vector insects and replicated in both plants and in their vectors. This review provides a brief overview of the plant-infecting reoviruses and their recent research progresses including the strategy for viral controls using transgenic rice plants.
Collapse
Affiliation(s)
- Takahide Sasaya
- Agro-Environment Research Division,NARO Kyushu Okinawa Agricultural Research Center
| |
Collapse
|
48
|
Miyazaki N, Akita F, Nakagawa A, Murata K, Omura T, Iwasaki K. Cryo-electron tomography: moving towards revealing the viral life cycle of Rice dwarf virus. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:826-8. [PMID: 24121321 PMCID: PMC3795537 DOI: 10.1107/s090904951302219x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
It is well known that viruses utilize the host cellular systems for their infection and replication processes. However, the molecular mechanisms underlying these processes are poorly understood for most viruses. To understand these molecular mechanisms, it is essential to observe the viral and virus-related structures and analyse their molecular interactions within a cellular context. Cryo-electron microscopy and tomography offer the potential to observe macromolecular structures and to analyse their molecular interactions within the cell. Here, using cryo-electron microscopy and tomography, the structures of Rice dwarf virus are reported within fully hydrated insect vector cells grown on electron microscopy grids towards revealing the viral infection and replication mechanisms.
Collapse
Affiliation(s)
- Naoyuki Miyazaki
- National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Institute for Protein Research, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fusamichi Akita
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
- Division of Bioscience, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Toshihiro Omura
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Miyazaki N, Nakagawa A, Iwasaki K. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front Microbiol 2013; 4:306. [PMID: 24137159 PMCID: PMC3797527 DOI: 10.3389/fmicb.2013.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022] Open
Abstract
Rice dwarf virus and Rice gall dwarf virus, members of the genus Phytoreovirus in the family Reoviridae,are known as agents of rice disease, because their spread results in substantial economic damage in many Asian countries. These viruses are transmitted via insect vectors, and they multiply both in the plants and in the insect vectors. Structural information about the viruses and their interactions with cellular components in the life cycle are essential for understanding viral infection and replication mechanisms. The life cycle of the viruses involves various cellular events such as cell entry, synthesis of viral genome and proteins, assembly of viral components, viral egress from infected cells, and intra- and intercellular transports. This review focuses on the major events underlying the life cycle of phytoreoviruses, which has been visualized by various electron microscopy (EM) imaging techniques, including cryo-electron microscopy and tomography, and demonstrates the advantage of the advanced EM imaging techniques to investigate the viral infection and replication mechanisms.
Collapse
Affiliation(s)
- Naoyuki Miyazaki
- Institute for Protein Research, Osaka University Osaka, Japan ; National Institute for Physiological Sciences Okazaki, Japan
| | | | | |
Collapse
|
50
|
Mao Q, Zheng S, Han Q, Chen H, Ma Y, Jia D, Chen Q, Wei T. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells. J Virol 2013; 87:6819-28. [PMID: 23576499 PMCID: PMC3676135 DOI: 10.1128/jvi.00409-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/01/2013] [Indexed: 11/20/2022] Open
Abstract
Plant reoviruses are thought to replicate and assemble within cytoplasmic, nonmembranous structures called viroplasms. Here, we established continuous cell cultures of the white-backed planthopper (Sogatella furcifera Horváth) to investigate the mechanisms for the genesis and maturation of the viroplasm induced by Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus in the family Reoviridae, during infection of its insect vector. Electron and confocal microscopy revealed that the viroplasm consisted of a granular region, where viral RNAs and nonstructural proteins P6 and P9-1 accumulated, and a filamentous region, where viral RNAs, progeny cores, viral particles, as well as nonstructural proteins P5 and P6 accumulated. Our results suggested that the filamentous viroplasm matrix was the site for the assembly of progeny virions. Because viral RNAs were produced by assembled core particles within the filamentous viroplasm matrix, we propose that these viral RNAs might be transported to the granular viroplasm matrix. P5 formed filamentous inclusions and P9-1 formed granular inclusions in the absence of viral infection, suggesting that the filamentous and granular viroplasm matrices were formed primarily by P5 and P9-1, respectively. P6 was apparently recruited in the whole viroplasm matrix by direct interaction with P9-1 and P5. Thus, the present results suggested that P5, P6, and P9-1 are collectively required for the genesis and maturation of the filamentous and granular viroplasm matrix induced by SRBSDV infection. Based on these results, we propose a new model to explain the genesis and maturation of the viroplasms induced by fijiviruses in insect vector cells.
Collapse
Affiliation(s)
- Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|