1
|
Chaudhari J, Lai DC, Vu HLX. African swine fever viral proteins that inhibit cGAS-STING pathway and type-I interferon production. Virology 2025; 602:110317. [PMID: 39616703 DOI: 10.1016/j.virol.2024.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of a lethal disease in pigs. Highly virulent strains of ASFV are known to suppress the induction of type I interferons (IFNs), while naturally attenuated strains do not exhibit this capability. Thus, the ability to suppress IFN is assumed to be associated with viral virulence. ASFV genome encodes many proteins capable of disrupting crucial components of host immune response pathways. Notably, these viral proteins interfere with the induction of type I IFNs by targeting various steps of the cGAS-STING signaling pathway. Additionally, certain viral proteins impede the expression of interferon-stimulated genes by interfering with the JAK-STAT pathway. Consequently, ASFV proteins hamper both IFN production and the induction of antiviral responses by IFNs. This review article summarizes the viral proteins responsible for suppressing various steps of the cGAS-STING and JAK-STAT signaling pathways and discusses the potential application of this knowledge to the rational design of a live-attenuated ASFV vaccine.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA
| | - Danh C Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA
| | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA; Department of Animal Science, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA.
| |
Collapse
|
2
|
Koltsov A, Sukher M, Krutko S, Belov S, Korotin A, Rudakova S, Morgunov S, Koltsova G. Construction of the First Russian Recombinant Live Attenuated Vaccine Strain and Evaluation of Its Protection Efficacy Against Two African Swine Fever Virus Heterologous Strains of Serotype 8. Vaccines (Basel) 2024; 12:1443. [PMID: 39772103 PMCID: PMC11680325 DOI: 10.3390/vaccines12121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The spread of African swine fever virus (ASFV) has led to major economic losses to pork worldwide. In Russia, there are no developed or registered vaccines against ASFV genotype II, which is associated with numerous ASFV outbreaks in populations of domestic pigs and wild boars in the country. Methods: We introduced deletions of the six MGF360 and MGF505 genes of the ASFV virulent Stavropol_01/08 strain, isolated in Russia in 2008. Results: We show here that this deletion did lead to full attenuation of the ASFV virulent Stavropol_01/08 strain. Animals intramuscularly inoculated with 104 HAD50 of ΔMGF360/505_Stav developed a strong immune response and short period of viremia (at 3-7 days post-inoculation). Recombinant ΔMGF360/505_Stav strain provides complete protection of pigs against the ASFV parental Stavropol_01/08 strain (103 HAD50). Therefore, in our experiment, we did not detect the genome of both the virulent and the recombinant strains in the blood and organs post-challenge with the Stavropol_01/08. In contrast, we found only partial protection (40%) of the ΔMGF360/505_Stav-immunized pigs against challenge with the ASFV heterologous Rhodesia strain. Additionally, the surviving animals had a prolonged fever, and their condition was depressed for most of the experiment. Conclusions: Thus, the ASFV recombinant ΔMGF360/505_Stav strain is the first live attenuated vaccine (LAV) in Russia that induces complete protection in pigs challenged with the highly virulent, epidemiologically relevant strains genotype II and serotype 8. However, this ASF LAV is not able to provide a high level of protection against other variants of serotype 8.
Collapse
Affiliation(s)
- Andrey Koltsov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia (S.K.); (A.K.)
| | | | | | | | | | | | | | - Galina Koltsova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia (S.K.); (A.K.)
| |
Collapse
|
3
|
Zhang X, Zhou L, Ge X, Gao P, Zhou Q, Han J, Guo X, Zhang Y, Yang H. Advances in the diagnostic techniques of African swine fever. Virology 2024; 603:110351. [PMID: 39693789 DOI: 10.1016/j.virol.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
African swine fever (ASF) is a highly contagious disease of pigs caused by African swine fever virus, which poses a huge threat to the global swine industry and is therefore listed as a notifiable disease by the World Organization for Animal Health. Due to the global lack of safe and efficacious vaccines and therapeutic drugs, early diagnosis of cases, whether on-site or laboratory, are crucial for the prevention and control of ASF. Therefore, rapid and reliable diagnosis and detection have become the main means to combat ASF. In this paper, various diagnostic techniques developed globally for ASF diagnosis, including etiological, molecular biological and serological diagnostic techniques, as well as conventional and novel diagnostic techniques, were comprehensively reviewed, and the main advantages and disadvantages of currently commonly used diagnostic techniques were introduced. It is expected that this paper will provide references for selecting appropriate ASF diagnostic techniques in different application scenarios, and also provide directions for the development of innovative diagnostic techniques for ASF in the future.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Thaweerattanasinp T, Saenboonrueng J, Wanitchang A, Srisutthisamphan K, Tanwattana N, Viriyakitkosol R, Kaewborisuth C, Jongkaewwattana A. Serologic differentiation between wild-type and cell-adapted African swine fever virus infections: A novel DIVA strategy using the MGF100-1L protein. Virology 2024; 603:110349. [PMID: 39675188 DOI: 10.1016/j.virol.2024.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
African swine fever virus (ASFV) poses a significant threat to the global swine industry and requires improved control strategies. Here, we developed a Differentiating Infected from Vaccinated Animals (DIVA) assay based on the MGF100-1L protein, which is absent in a cell-adapted ASFV strain lacking several multigene family (MGF) genes. We analyzed seven deleted genes, including MGF genes, from the right variable region of the ASFV genome against sera from convalescent pigs. MGF100-1L showed significant reactivity and was produced as a recombinant protein for use in an enzyme-linked immunosorbent assay (ELISA). The assay, with a cut-off value of 0.284, successfully differentiated between naive and infected pigs with 100% accuracy. More importantly, pigs infected with the cell-adapted ASFV showed no significant change in ELISA readouts after 27 days post-infection. However, when these pigs were subsequently challenged with wild-type virus, MGF100-1L reactivity increased significantly by 21 days post-challenge. This study demonstrates the potential of MGF100-1L as a DIVA marker for ASFV, which offers a promising tool to distinguish between infections with wild-type ASFV and those with cell-adapted variants lacking specific MGF genes, thereby improving ASFV surveillance and control strategies.
Collapse
Affiliation(s)
- Theeradej Thaweerattanasinp
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Janya Saenboonrueng
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Asawin Wanitchang
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Nathiphat Tanwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Ratchanont Viriyakitkosol
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
5
|
Zhang S, Zuo Y, Gu W, Zhao Y, Liu Y, Fan J. A triple protein-based ELISA for differential detection of ASFV antibodies. Front Vet Sci 2024; 11:1489483. [PMID: 39723184 PMCID: PMC11669292 DOI: 10.3389/fvets.2024.1489483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
African swine fever (ASF) caused by the ASF virus (ASFV) is a severe and highly contagious viral disease that poses a significant threat to the global pig industry. As no vaccines or effective drugs are available to aid prevention and control, early detection is crucial. The emergence of the low-virulence ASFV strain not expressing CD2v/MGFs (ASFVΔCD2v/ΔMGFs) has been identified domestically and internationally and has even become an epidemic in China, resulting in a complex epidemic. The commercialized ASFV ELISA kits available can detect the presence of ASFV infection in pigs, but they are unable to distinguish wild-type ASFV from gene-deleted strains. The current published ELISA assays can distinguish between the wild-type and CD2v gene-deleted ASFV but cannot differentiate wild-type and MGF505 gene-deleted ASFV or CD2v and MGF505 double-gene deleted ASFV infection, posing new challenges for an effective prevention and control of ASFV. In this study, the ASFV-p30, ASFV-CD2v, and ASFV-MGF505 proteins were expressed using a prokaryotic expression system, and a triple protein-based ELISA antibody detection method based on these proteins was successfully established to effectively differentiate between wild-type ASFV and ASFVΔCD2v and/or ASFVΔMGF505 virus infection. This triple protein-based ELISA showed good analytical specificity without cross-reactivity with antibodies against PRRSV, CSFV, PRV, and PCV2. Moreover, it demonstrates remarkable analytical sensitivity by allowing the identification of clinical samples even at dilutions as high as 1:800. The coefficient of variation the intra-assay and inter-assay were below 5%, indicating strong repeatability and reproducibility. To evaluate the performance of the triple protein-based ELISA, a total of 59 clinical serum samples were detected using the triple protein-based ELISA. The results showed that 22 samples were positive for ASFV, of which 19 were ASFV wild-type, one was ASFVΔCD2v, and two were ASFVΔMGF505. Compared with the commercialized triplex qPCR kit, the triple protein-based ELISA exhibited high diagnostic sensitivity and diagnostic specificity. The test accuracy with the commercialized triplex qPCR kit was 98.31% (58/59), and the test accuracy with the commercialized ELISA kit was 96.61% (57/59). These results indicated that the developed triple protein-based ELISA performs well in detection and differentiation. Therefore, it will be useful for the ASFV serological differential diagnosis and epidemiology study.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuzhu Zuo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wenyuan Gu
- Hebei Animal Disease Control Center, Shijiazhuang, China
| | - Yunhuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jinghui Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Baoding, China
| |
Collapse
|
6
|
Kim MH, Subasinghe A, Kim Y, Kwon HI, Cho Y, Chathuranga K, Cha JW, Moon JY, Hong JH, Kim J, Lee SC, Dodantenna N, Gamage N, Chathuranga WAG, Kim Y, Yoon IJ, Lee JY, Mo IP, Jheong W, Yoo SS, Lee JS. Development and characterization of high-efficiency cell-adapted live attenuated vaccine candidate against African swine fever. Emerg Microbes Infect 2024; 13:2432372. [PMID: 39584308 DOI: 10.1080/22221751.2024.2432372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
African swine fever (ASF), a contagious and lethal haemorrhagic disease of domestic pigs and wild boars, poses a significant threat to the global pig industry. Although experimental vaccine candidates derived from naturally attenuated, genetically engineered, or cell culture-adapted ASF virus have been tested, no commercial vaccine is accepted globally. We developed a safe and effective cell-adapted live attenuated vaccine candidate (ASFV-MEC-01) by serial passage of a field isolate in CA-CAS-01-A cells. ASFV-MEC-01, isolated via repeated plaque purification using next-generation sequencing analysis, was obtained at passage 18 and showed significant attenuation in 4- and 6-week-old pigs. ASFV-MEC-01 conferred 100% protection against challenge with lethal parental ASFV, which correlated with high ASFV-specific humoral and cellular immune responses. Additionally, ASFV-MEC-01 was not detected in blood until 28 days post-inoculation. Global transcriptome analysis showed that ASFV-MEC-01 lacking 12 genes triggered stronger innate antiviral responses than the parental virus, as exemplified by high levels of mRNA encoding interferon regulatory and inflammatory genes in PAM cells. Ectopic expression of most deleted genes increased replication of DNA viruses by suppressing production of interferons and pro-inflammatory cytokines. Among the genes deleted from ASFV-MEC-01, MGF100-1R interacted specifically with the scaffold dimerization domain of TBK1, thereby preventing TBK1 dimerization and impairing TBK1-mediated type I IFN and NF-κB signalling. These results suggest that attenuation of ASFV-MEC-01 may be mediated by induction of stronger type I IFN and NF-κB signalling within the host innate immune system. Thus, ASFV-MEC-01 could be a safe and effective live attenuated ASFV vaccine candidate with commercial potential.
Collapse
Affiliation(s)
- Min Ho Kim
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Ashan Subasinghe
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Hyeok-Il Kwon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Yehjin Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Yoon Moon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Ji-Hyeon Hong
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Jin Kim
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Seung-Chul Lee
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nuwan Gamage
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeonji Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Joo Young Lee
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - In Pil Mo
- AviNext, Cheongju, Republic of Korea
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Sung-Sik Yoo
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Zhang J, Li F, Zhang Z, Chen W, Zhang X, Sun E, Zhu Y, Liu R, He X, Bu Z, Zhao D. The attenuated African swine fever vaccine HLJ/18-7GD provides protection against emerging prevalent genotype II variants in China. Emerg Microbes Infect 2024; 13:2300464. [PMID: 38164797 PMCID: PMC10810661 DOI: 10.1080/22221751.2023.2300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.
Collapse
Affiliation(s)
- Zilong Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Weiye Chen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianfeng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xijun He
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
8
|
Wang T, Luo R, Zhang J, Lan J, Lu Z, Zhai H, Li LF, Sun Y, Qiu HJ. The African swine fever virus MGF300-4L protein is associated with viral pathogenicity by promoting the autophagic degradation of IKK β and increasing the stability of I κB α. Emerg Microbes Infect 2024; 13:2333381. [PMID: 38501350 PMCID: PMC11018083 DOI: 10.1080/22221751.2024.2333381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), which imposes a substantial economic burden on the global pig industry. When screening for the virus replication-regulating genes in the left variable region of the ASFV genome, we observed a notable reduction in ASFV replication following the deletion of the MGF300-4L gene. However, the role of MGF300-4L in ASFV infection remains unexplored. In this study, we found that MGF300-4L could effectively inhibit the production of proinflammatory cytokines IL-1β and TNF-α, which are regulated by the NF-κB signaling pathway. Mechanistically, we demonstrated that MGF300-4L interacts with IKKβ and promotes its lysosomal degradation via the chaperone-mediated autophagy. Meanwhile, the interaction between MGF300-4L and IκBα competitively inhibits the binding of the E3 ligase β-TrCP to IκBα, thereby inhibiting the ubiquitination-dependent degradation of IκBα. Remarkably, although ASFV encodes other inhibitors of NF-κB, the MGF300-4L gene-deleted ASFV (Del4L) showed reduced virulence in pigs, indicating that MGF300-4L plays a critical role in ASFV pathogenicity. Importantly, the attenuation of Del4L was associated with a significant increase in the production of IL-1β and TNF-α early in the infection of pigs. Our findings provide insights into the functions of MGF300-4L in ASFV pathogenicity, suggesting that MGF300-4L could be a promising target for developing novel strategies and live attenuated vaccines against ASF.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
9
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Chu X, Ge S, Zuo Y, Cui J, Sha Z, Han N, Wu B, Ni B, Zhang H, Lv Y, Wang Z, Xiao Y. Thoughts on the research of African swine fever live-attenuated vaccines. Vaccine 2024; 42:126052. [PMID: 38906762 DOI: 10.1016/j.vaccine.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
African swine fever (ASF) is a contagious and fatal disease caused by the African swine fever virus (ASFV), which can infect pigs of all breeds and ages. Most infected pigs have poor prognosis, leading to substantial economic losses for the global pig industry. Therefore, it is imperative to develop a safe and efficient commercial vaccine against ASF. The development of ASF vaccine can be traced back to 1960. However, because of its large genome, numerous encoded proteins, and complex virus particle structure, currently, no effective commercial vaccine is available. Several strategies have been applied in vaccine design, some of which are potential candidates for vaccine development. This review provides a comprehensive analysis on the safety and effectiveness, suboptimal immunization effects at high doses, absence of standardized evaluation criteria, notable variations among strains of the same genotype, and the substantial impact of animal health on the protective efficacy against viral challenge. All the information will be helpful to the ASF vaccine development.
Collapse
Affiliation(s)
- Xuefei Chu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China; Qingdao Key Laboratory of Modern Bioengineering and Animal Disease Research, Qingdao 266032, China; Key Laboratory of Animal Biosafety Risk Warning Prevention and Control (South China), Ministry of Agriculture and Rural Affairs, Qingdao, Shandong 266032, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Jin Cui
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhou Sha
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hui Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yan Lv
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China.
| | - Yihong Xiao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
11
|
Fan J, Yu H, Miao F, Ke J, Hu R. Attenuated African swine fever viruses and the live vaccine candidates: a comprehensive review. Microbiol Spectr 2024; 12:e0319923. [PMID: 39377589 PMCID: PMC11537121 DOI: 10.1128/spectrum.03199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/22/2024] [Indexed: 10/09/2024] Open
Abstract
The African swine fever virus (ASFV) is spreading worldwide and causing huge economic losses to the global pig industry. The ASFV genome is 170-193 kb in length, contains approximately 150 open reading frames, and encodes more than 200 proteins, most of which have unknown functions. Owing to the unique viral structure, replication strategy, large number of genes of unknown function, and complicated pathogenesis, vaccine development research is challenging. Several naturally attenuated ASFV isolates have been extensively investigated and many genetically manipulated, gene-deleted, and cell-adapted ASFVs have been reported. Currently, live attenuated viruses prepared from weakly virulent strains are an efficient method to provide effective protection in vaccinated pigs; however, these have seldom been widely approved for vaccine use, except in Vietnam. Herein, we summarize the attenuated isolates or vaccine candidates for live vaccines derived from different sources, including naturally mutated, attenuated, cell-adapted, and genetically modified recombinant ASFVs. This will help to understand the gene function and immunogenicity of attenuated live ASFV, as well as the shortcomings of these viruses as vaccine candidates, and provide clues to prepare live, efficient, and safe vaccines for African swine fever.IMPORTANCEOutbreaks of African swine fever (ASF) have caused devastating losses to the global pig industry. Pigs immunized with ASFV attenuated virus can resist the lethal challenge of a strongly virulent virus. Here, we summarize the virulence of naturally mutated, cell-adapted, and genetically recombinant ASFV for pigs, and the protective effect after facing an attack challenge. We also analyze the advantages and disadvantages of ASFV attenuated viruses as vaccine candidates to provide clues for the preparation of efficient and safe live African swine fever vaccines.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Haisheng Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Faming Miao
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junnan Ke
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
12
|
Cadenas-Fernández E, Barroso-Arévalo S, Kosowska A, Díaz-Frutos M, Gallardo C, Rodríguez-Bertos A, Bosch J, Sánchez-Vizcaíno JM, Barasona JA. Challenging boundaries: is cross-protection evaluation necessary for African swine fever vaccine development? A case of oral vaccination in wild boar. Front Immunol 2024; 15:1388812. [PMID: 39411716 PMCID: PMC11473374 DOI: 10.3389/fimmu.2024.1388812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
African swine fever (ASF) poses a significant threat to domestic pigs and wild boar (Sus scrofa) populations, with the current epidemiological situation more critical than ever. The disease has spread across five continents, causing devastating losses in the swine industry. Although extensive research efforts are ongoing to develop an effective and safe vaccine, this goal remains difficult to achieve. Among the potential vaccine candidates, live attenuated viruses (LAVs) have emerged as the most promising option due to their ability to provide strong protection against experimental challenges. However, ASF virus (ASFV) is highly diverse, with genetic and phenotypic variations across different isolates, which differ in virulence. This study highlights the limitations of a natural LAV strain (Lv17/WB/Rie1), which showed partial efficacy against a highly virulent and partially heterologous isolate (Arm07; genotype II). However, the LAV's effectiveness was incomplete when tested against a more phylogenetically distant virus (Ken06.Bus; genotype IX). These findings raise concerns about the feasibility of developing a universal vaccine for ASFV in the near future, emphasizing the urgent need to assess the protective scope of LAV candidates across different ASFV isolates to better define their limitations.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Carmina Gallardo
- European Union Reference Laboratory for African Swine Fever (ASF), Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Pérez-Núñez D, Madden DW, Vigara-Astillero G, Meekins DA, McDowell CD, Libanori-Artiaga B, García-Belmonte R, Bold D, Trujillo JD, Cool K, Kwon T, Balaraman V, Morozov I, Gaudreault NN, Revilla Y, Richt JA. Generation and Genetic Stability of a PolX and 5' MGF-Deficient African Swine Fever Virus Mutant for Vaccine Development. Vaccines (Basel) 2024; 12:1125. [PMID: 39460292 PMCID: PMC11511218 DOI: 10.3390/vaccines12101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The African swine fever virus (ASFV) causes fatal disease in pigs and is currently spreading globally. Commercially safe vaccines are urgently required. Aiming to generate a novel live attenuated vaccine (LAV), a recombinant ASFV was generated by deleting the viral O174L (PolX) gene. However, during in vitro generation, an additional spontaneous deletion of genes belonging to the multigene families (MGF) occurred, creating a mixture of two viruses, namely, Arm-ΔPolX and Arm-ΔPolX-ΔMGF. This mixture was used to inoculate pigs in a low and high dose to assess the viral dynamics of both populations in vivo. Although the Arm-ΔPolX population was a much lower proportion of the inoculum, in the high-dose immunized animals, it was the only resulting viral population, while Arm-ΔPolX-ΔMGF only appeared in low-dose immunized animals, revealing the role of deleted MGFs in ASFV fitness in vivo. Furthermore, animals in the low-dose group survived inoculation, whereas animals in the high-dose group died, suggesting that the lack of MGF and PolX genes, and not the PolX gene alone, led to attenuation. The two recombinant viruses were individually isolated and inoculated into piglets, confirming this hypothesis. However, immunization with the Arm-ΔPolX-ΔMGF virus did not induce protection against challenge with the virulent parental ASFV strain. This study demonstrates that deletion of the PolX gene alone neither leads to attenuation nor induces an increased mutation rate in vivo.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Daniel W. Madden
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - David A. Meekins
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Chester D. McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Bianca Libanori-Artiaga
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Dashzeveg Bold
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Konner Cool
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Taeyong Kwon
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| |
Collapse
|
14
|
Diep NV, Duc NV, Ngoc NT, Dang VX, Tiep TN, Nguyen VD, Than TT, Maydaniuk D, Goonewardene K, Ambagala A, Le VP. Genotype II Live-Attenuated ASFV Vaccine Strains Unable to Completely Protect Pigs against the Emerging Recombinant ASFV Genotype I/II Strain in Vietnam. Vaccines (Basel) 2024; 12:1114. [PMID: 39460281 PMCID: PMC11511409 DOI: 10.3390/vaccines12101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: African swine fever virus (ASFV) continues to spread globally, causing severe economic losses to pig farmers. Vietnam licensed two live attenuated vaccines based on the ASFV strains ASFV-G-ΔI177L and ASFV-G-ΔMGF to control the ongoing ASF outbreaks. In 2023, newly emerging highly virulent recombinant ASF viruses (rASFV I/II) containing genetic elements from both p72 genotype I and II ASF viruses were reported from Northern Vietnam. Objective: This study evaluated whether the two vaccine strains were able to protect the pigs against the emerging rASFV I/II strain VNUA/rASFV/TN1/23. Results: Pigs vaccinated with ASFV-G-ΔMGF or ASFV-G-ΔI177L, when challenged with rASFV I/II, succumbed to the infection, or developed signs of chronic ASF. Conclusions: The findings from this study show that both vaccine strains that are licensed and used in Vietnam are unlikely to protect pigs from the emerging highly virulent rASFV I/II. This complicates the ongoing efforts to control ASF in Asia and globally and emphasizes the urgent need for a novel vaccine that can effectively protect pigs from the rASFV I/II.
Collapse
Affiliation(s)
- Nguyen Van Diep
- AVAC Vietnam Joint Stock Company, Ngoc Lich Village, Trung Trac Commune, Van Lam District, Hung Yen 160000, Vietnam; (N.V.D.); (N.V.D.); (N.T.N.); (V.X.D.); (T.N.T.)
| | - Nguyen Van Duc
- AVAC Vietnam Joint Stock Company, Ngoc Lich Village, Trung Trac Commune, Van Lam District, Hung Yen 160000, Vietnam; (N.V.D.); (N.V.D.); (N.T.N.); (V.X.D.); (T.N.T.)
| | - Nguyen Thi Ngoc
- AVAC Vietnam Joint Stock Company, Ngoc Lich Village, Trung Trac Commune, Van Lam District, Hung Yen 160000, Vietnam; (N.V.D.); (N.V.D.); (N.T.N.); (V.X.D.); (T.N.T.)
| | - Vu Xuan Dang
- AVAC Vietnam Joint Stock Company, Ngoc Lich Village, Trung Trac Commune, Van Lam District, Hung Yen 160000, Vietnam; (N.V.D.); (N.V.D.); (N.T.N.); (V.X.D.); (T.N.T.)
| | - Tran Ngoc Tiep
- AVAC Vietnam Joint Stock Company, Ngoc Lich Village, Trung Trac Commune, Van Lam District, Hung Yen 160000, Vietnam; (N.V.D.); (N.V.D.); (N.T.N.); (V.X.D.); (T.N.T.)
| | - Viet Dung Nguyen
- Faculty of Animal Science and Veterinary Medicine, Bac Giang Agriculture and Forestry University, Bac Giang 230000, Vietnam;
| | - Thi Tam Than
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Dustin Maydaniuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (D.M.); (K.G.)
| | - Kalhari Goonewardene
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (D.M.); (K.G.)
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (D.M.); (K.G.)
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
- Laboratory of Viral Infectious Diseases, Center for Research Excellence and Innovation, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| |
Collapse
|
15
|
Yang S, Wang Y, Yang J, Tian Z, Wu M, Sun H, Zhang X, Zhao Y, Luo J, Guan G, Yin H, Hao R, Niu Q. African swine fever virus RNA polymerase subunits C315R and H359L inhibition host translation by activating the PKR-eIF2a pathway and suppression inflammatory responses. Front Microbiol 2024; 15:1469166. [PMID: 39380677 PMCID: PMC11458487 DOI: 10.3389/fmicb.2024.1469166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
ASFV C315R is homologous to the transcription factor TFIIB of large unclassified DNA viruses, and H359L is identical to the subunit 3 (RPB3) of eukaryotic RNA polymerase II. The C315R and H359L may play an important role in ASFV replication and transcription. Here, we evaluated the biological function of the C315R and H359L genes during virus replication in vitro and during infection in pigs. Results showed that C315R and H359L are highly conserved among ASFV genotype II strains; quantitative PCR (qPCR) and western blotting analyses revealed that C315R and H359L are early transcribed genes prior to viral DNA replication, but their protein expression is delayed. The immunofluorescence and western blotting analysis revealed that both proteins localized in the cell cytoplasm and nucleus at 24 h post infection, however, pH359L was mainly detected in the cell cytoplasm. Furthermore, overexpression of pH359L in MA104 cells significantly increased viral titer, RNA transcription levels, and viral protein expression levels, while overexpression of pC315R slightly enhanced ASFV replication. In contrast, siRNA targeting ASFV-H359L or C315R reduced replication efficiency in porcine macrophage culture compared to the parent ASFV-CN/SC/2019, demonstrating that C315R and H359L genes are necessary for ASFV replication. Finally, the functional role of C315R or H359L on PKR and eIF2α phosphorylation status and SG formation, as well as cytokine production were evaluated. These studies demonstrated that C315R and H359L are involved in virus replication processes in swine and play important roles in ASFV replication.
Collapse
Affiliation(s)
- Saixia Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yiwang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hualin Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Xiaoqiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yaru Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Kuai L, Sun J, Peng Q, Zhao X, Yuan B, Liu S, Bi Y, Shi Y. Cryo-EM structure of DNA polymerase of African swine fever virus. Nucleic Acids Res 2024; 52:10717-10729. [PMID: 39189451 PMCID: PMC11417396 DOI: 10.1093/nar/gkae739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
African swine fever virus (ASFV) is one of the most important causative agents of animal diseases and can cause highly fatal diseases in swine. ASFV DNA polymerase (DNAPol) is responsible for genome replication and highly conserved in all viral genotypes showing an ideal target for drug development. Here, we systematically determined the structures of ASFV DNAPol in apo, replicating and editing states. Structural analysis revealed that ASFV DNAPol had a classical right-handed structure and showed the highest similarity to the structure of human polymerase delta. Intriguingly, ASFV DNAPol has a much longer fingers subdomain, and the thumb and palm subdomain form a unique interaction that has never been seen. Mutagenesis work revealed that the loss of this unique interaction decreased the enzymatic activity. We also found that the β-hairpin of ASFV DNAPol is located below the template strand in the editing state, which is different from the editing structures of other known B family DNAPols with the β-hairpin above the template strand. It suggests that B family DNAPols have evolved two ways to facilitate the dsDNA unwinding during the transition from replicating into editing state. These findings figured out the working mechanism of ASFV DNAPol and will provide a critical structural basis for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Junqing Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Xuejin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Life Science Academy, Beijing 102209, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Liu
- Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Life Science Academy, Beijing 102209, China
| |
Collapse
|
17
|
Yang J, Zhu R, Li N, Zhang Y, Zhou X, Yue H, Li Q, Wang Y, Miao F, Chen T, Zhang F, Zhang S, Qian A, Hu R. Protection Evaluation of a New Attenuated ASFV by Deletion of the L60L and CD2v Genes against Homologous Challenge. Viruses 2024; 16:1464. [PMID: 39339941 PMCID: PMC11437506 DOI: 10.3390/v16091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
African swine fever (ASF) is an acute infectious disease with a high mortality rate in both domestic and wild boars. Commercial vaccines or antiviral drugs for ASF were not available due to the complex diversity of the structure and genome of its pathogen African swine fever virus (ASFV). In recent years, there have been many reports on candidate strains of attenuated vaccines for ASFV. In this study, we obtained a recombinant virus named SY18ΔL60LΔCD2v by simultaneously deleting the L60L gene and CD2v gene from highly virulent strain SY18. In vitro, SY18ΔL60LΔCD2v displayed a decreased growth kinetic compared to that of parental SY18. In vivo, high doses (105 TCID50) of SY18ΔL60LΔCD2v can protect pigs (5/5) from attacks by the parental SY18 strain (102 TCID50). Low doses (102 TCID50) of SY18ΔL60LΔCD2v only protected 20% of pigs (1/5) from attacks by the parental SY18 strain (102 TCID50). The results indicated that the absence of these two genes in SY18 could induce protection against the homologous parental strain, and there were no obvious clinical symptoms or viremia. These results indicate that the SY18ΔL60LΔCD2v strain can serve as a new live attenuated vaccine candidate for the prevention and control of ASFV infection.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Rongnian Zhu
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Nan Li
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Yanyan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Xintao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Huixian Yue
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Qixuan Li
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
| | - Faming Miao
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Teng Chen
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Shoufeng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130022, China; (J.Y.); (Y.W.)
| | - Rongliang Hu
- State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130117, China; (R.Z.); (N.L.); (Y.Z.); (X.Z.); (H.Y.); (Q.L.); (F.M.); (T.C.); (F.Z.); (S.Z.)
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130117, China
| |
Collapse
|
18
|
Wang Z, He Y, Huang Y, Zhai W, Tao C, Chu Y, Pang Z, Zhu H, Zhao P, Jia H. African swine fever virus MGF360-4L protein attenuates type I interferon response by suppressing the phosphorylation of IRF3. Front Immunol 2024; 15:1382675. [PMID: 39346919 PMCID: PMC11427277 DOI: 10.3389/fimmu.2024.1382675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and lethal disease of swine caused by African swine fever virus (ASFV), and the mortality rate caused by virulent stains can approach 100%. Many ASFV viral proteins suppress the interferon production to evade the host's innate immune responses. However, whether ASFV MGF360-4L could inhibit type I interferon (IFN-I) signaling pathway and the underlying molecular mechanisms remain unknown. Our study, indicated that ASFV MGF360-4L could negatively regulates the cGAS-STING mediated IFN-I signaling pathway. Overexpressing ASFV MGF360-4L could inhibit the cGAS/STING signaling pathway by inhibiting the interferon-β promoter activity, which was induced by cGAS/STING, TBK1, and IRF3-5D, and further reduced the transcriptional levels of ISG15, ISG54, ISG56, STAT1, STAT2, and TYK2. Confocal microscopy and immunoprecipitation revealed that MGF360-4L co-localized and interacted with IRF3, and WB revealed that ASFV MGF360-4L suppressed the phosphorylation of IRF3. 4L-F2 (75-162 aa) and 4L-F3 (146-387 aa) were the crucial immunosuppressive domains and sites. Altogether, our study reveals ASFV MGF360-4L inhibited cGAS-STING mediated IFN-I signaling pathways, which provides insights into an evasion strategy of ASFV involving in host's innate immune responses.
Collapse
Affiliation(s)
- Zhen Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuheng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenzhu Zhai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongbao Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Kudryashov DA, Nefedeva MV, Malogolovkin AS, Titov IA. Multigenic family 110 (1 L-5-6 L) of African swine fever virus modulate cytokine genes expression in vitro. Mol Biol Rep 2024; 51:948. [PMID: 39222287 DOI: 10.1007/s11033-024-09884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND African swine fever (ASF) is a viral disease that affects pigs and wild boars providing economic burden in swine industry. METHODS AND RESULTS In this study, we investigated the effect of deleting the ASFV multigene family 110 (MGF110) fragment (1 L-5-6 L) on apoptosis modulation and the expression of proinflammatory cytokines. Gene expression in swine peripheral blood macrophages infected with either the parental "Volgograd/14c" strain or the gene-deleted "Volgograd/D(1L-5-6L) MGF110" strain was analyzed. Caspase-3 activity was 1.15 times higher in macrophages infected with the parental ASFV strain compared to the gene-deleted strain. Gene expression analysis of Caspase-3 (Cas-3), Interferon-A (IFN-A), Tumor Necrosis Factor A (TNF-A), B-cell Lymphoma-2 (Bcl-2), Nuclear Factor Kappa B (NF-kB), Interleukin-12 (IL-12), and Heat Shock Protein-70 (HSP-70) using RT-qPCR at various time points after infection revealed significant differences in expression profiles between the strains. The peak expression of cytokines (except NF-kB) occurred at 24 h post-infection with the "Volgograd/D(1L-5-6L) MGF110" strain. In samples infected with the ASFV "Volgograd/14c" strain, the most intense expression was observed at 72 and 96 h, except for Bcl-2 and NF-kB, which peaked at 6 h post-infection. The cytokine expression trend for the "Volgograd/D(1L-5-6L) MGF110" strain was more stable with higher expression values. CONCLUSION The expression trend for the parental strain increased over time, reaching maximum values at 72 and 96 h post-infection, but the overall expression level was lower than that of the gene-deleted strain. These findings suggest that deleting the multigene family 110 members (1 L-5-6 L) contributes to ASFV attenuation without affecting virus replication kinetics.
Collapse
Affiliation(s)
- Dmitriy A Kudryashov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Maria V Nefedeva
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia
| | - Alexander S Malogolovkin
- Sirius University of Science and Technology, 354340, Sochi, Russia
- Sechenov First Moscow State Medical University, 119048, Moscow, Russia
| | - Ilya A Titov
- Federal Research Center for Virology and Microbiology, 601125, Volginsky, Russia.
| |
Collapse
|
20
|
Koltsov A, Sukher M, Krutko S, Belov S, Korotin A, Rudakova S, Morgunov S, Koltsova G. Towards Safe African Swine Fever Vaccines: The A137R Gene as a Tool to Reduce Virulence and a Promising Serological DIVA Marker Candidate. Animals (Basel) 2024; 14:2469. [PMID: 39272254 PMCID: PMC11394529 DOI: 10.3390/ani14172469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
African swine fever (ASF) is an emerging disease caused by the African swine fever virus (ASFV), which is a great threat to the swine industry worldwide. Currently registered vaccines that have demonstrated protection against the homologous ASFV strains are live attenuated vaccines based on recombinant ASFV strains with the deletions of virulence-associated genes. In this study, we evaluated the deletion of the A137R gene in the ASFV virulent Stavropol_01/08 strain isolated in Russia in 2008. Our animal experiment results demonstrated that the deletion of the A137R gene did not lead to the full attenuation of this strain, and increasing the dose of the A137R-deletion mutant during infection led to the death of 87.5% of the infected animals. In this report, we also demonstrated that immunofluorescence (IFA) and Western blotting assays based on the recombinant p11.5 protein can be used to detect antibodies in animals infected with the attenuated ASFV variants of several genotypes/serotypes. Both assays were specific to ASFV p11.5 protein and showed negative results when examining the sera of the non-infected animals or those infected with the A137R-deletion mutant. Therefore, we propose to use the p11.5 protein along with other previously proposed ASFV proteins, such as CD2v, as negative antigenic DIVA markers for an attenuated ASF vaccine.
Collapse
Affiliation(s)
- Andrey Koltsov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Mikhail Sukher
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sergey Krutko
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sergey Belov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Alexey Korotin
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sofia Rudakova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Sergey Morgunov
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| | - Galina Koltsova
- Federal Research Centre for Virology and Microbiology, Academician Bakoulov Street 1, 601125 Volginsky, Russia
| |
Collapse
|
21
|
Auer A, Cattoli G, Padungtod P, Lamien CE, Oh Y, Jayme S, Rozstalnyy A. Challenges in the Application of African Swine Fever Vaccines in Asia. Animals (Basel) 2024; 14:2473. [PMID: 39272258 PMCID: PMC11393951 DOI: 10.3390/ani14172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This paper explores the significance of quality vaccines in managing ASF in Asia, where it poses a substantial threat to the pork industry. It emphasizes the risks associated with substandard vaccines, including the emergence of new virus strains that complicate disease control. Highlighting recent advancements in vaccine deployment in Vietnam, the paper calls for rigorous testing and regulations to guarantee vaccine effectiveness and safety. The authors advocate for the implementation of vaccines with the inclusion of differentiating infected from vaccinated animals (DIVA), which enhances disease management strategies in both endemic and non-endemic regions. The conclusion underscores the necessity of stringent standards in vaccine development and strict adherence to regulatory guidelines to ensure successful ASF management and maintain public trust in the vaccines.
Collapse
Affiliation(s)
- Agathe Auer
- Joint FAO/IAEA Center, 2444 Seibersdorf, Austria
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Representation in Vietnam, Hanoi 11112, Vietnam
| | | | - Yooni Oh
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok 10200, Thailand
| | - Sarah Jayme
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok 10200, Thailand
| | - Andriy Rozstalnyy
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| |
Collapse
|
22
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Le AD, Nguyen GV, Vu AT, Hoang PT, Le TT, Nguyen HT, Nguyen HTT, Lai HLT, Bui DAT, Huynh LMT, Madera R, Li Y, Retallick J, Matias-Ferreyra F, Nguyen LT, Shi J. A Non-Hemadsorbing Live-Attenuated Virus Vaccine Candidate Protects Pigs against the Contemporary Pandemic Genotype II African Swine Fever Virus. Viruses 2024; 16:1326. [PMID: 39205300 PMCID: PMC11359042 DOI: 10.3390/v16081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Lihua Wang
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Giap Van Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Trang Thi Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huyen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Hang Thu Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Huong Lan Thi Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Dao Anh Tran Bui
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Le My Thi Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (G.V.N.); (L.M.T.H.)
| | - Rachel Madera
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jamie Retallick
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (J.R.); (F.M.-F.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (A.D.L.); (A.T.V.); (P.T.H.); (T.T.L.); (H.T.N.); (H.T.T.N.); (H.L.T.L.); (D.A.T.B.)
| | - Jishu Shi
- Center on Biologics Development and Evaluation, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| |
Collapse
|
23
|
Alotaibi BS, Wu CH, Khan M, Nawaz M, Chen CC, Ali A. African swine fever; insights into genomic aspects, reservoirs and transmission patterns of virus. Front Vet Sci 2024; 11:1413237. [PMID: 39193370 PMCID: PMC11347335 DOI: 10.3389/fvets.2024.1413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 08/29/2024] Open
Abstract
African swine fever is a hemorrhagic disease of pigs with high mortality rates. Since its first characterization in 1921, there has been sufficient information about African swine fever virus (ASFV) and related diseases. The virus has been found and maintained in the sylvatic cycle involving ticks and domestic and wild boars in affected regions. The ASFV is spread through direct and indirect contact with infected pigs, their products and carrier vectors especially Ornithodoros ticks. Severe economic losses and a decline in pig production have been observed in ASFV affected countries, particularly in sub-Saharan Africa and Europe. At the end of 2018, the ASFV adversely affected China, the world's leading pork-producer. Control strategies for the disease remained challenging due to the unavailability of effective vaccines and the lack of successful therapeutic measures. However, considerable efforts have been made in recent years to understand the biology of the virus, surveillance and effective control measures. This review emphasizes and summarizes the current state of information regarding the knowledge of etiology, epidemiology, transmission, and vaccine-based control measures against ASFV.
Collapse
Affiliation(s)
- Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Chia-Hung Wu
- Division of General Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Majid Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohsin Nawaz
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
24
|
Vu HD, Luong HQ, Lai HTL, Nguyen HT, Pham TH, Truong LQ, Nguyen GV, Vu HLX. Evaluation of the diagnostic sensitivity and specificity of two pen-side tests for detecting African swine fever virus in experimentally infected pigs. Arch Virol 2024; 169:170. [PMID: 39080100 PMCID: PMC11289199 DOI: 10.1007/s00705-024-06098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
African swine fever virus (ASFV) has spread through many countries and regions worldwide, causing significant losses. Timely detection of ASFV-infected pigs is crucial for disease control. In this study, we assessed the performance of two pen-side tests: a portable real-time PCR (qPCR) test for detecting viral genomic DNA and a lateral flow immunoassay (LFIA) for detecting viral antigens. To determine the time from infection to the earliest detection, 10 ASFV-seronegative pigs were inoculated intramuscularly with 104.0 hemadsorption dose 50 of a highly virulent ASFV strain. Whole blood and oral swab samples were alternately collected from each group of five pigs daily until all succumbed to the infection. Samples were promptly subjected to the two pen-side tests upon collection, and a subset was transported to a veterinary diagnostic laboratory for analysis using a reference qPCR assay. Viral genomic DNA was consistently detected by the reference qPCR assay in all blood samples from 2 days postinfection (dpi), preceding the onset of clinical signs, and in oral swabs from 4 dpi onwards. The portable qPCR test demonstrated comparable performance to the reference qPCR assay for both whole blood and oral swab samples. The LFIA exhibited 100% specificity when testing with whole blood samples but showed reduced sensitivity, particularly for blood samples collected early or late after infection. The antigen test did not perform well with oral swabs.
Collapse
Affiliation(s)
- Hanh D Vu
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Hung Q Luong
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Huong T L Lai
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Hoa T Nguyen
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Trang H Pham
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Lam Q Truong
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Giap V Nguyen
- Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Hiep L X Vu
- Department of Animal Science, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
25
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen S, Wang T, Luo R, Lu Z, Lan J, Sun Y, Fu Q, Qiu HJ. Genetic Variations of African Swine Fever Virus: Major Challenges and Prospects. Viruses 2024; 16:913. [PMID: 38932205 PMCID: PMC11209373 DOI: 10.3390/v16060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF) is a contagious viral disease affecting pigs and wild boars. It typically presents as a hemorrhagic fever but can also manifest in various forms, ranging from acute to asymptomatic. ASF has spread extensively globally, significantly impacting the swine industry. The complex and highly variable character of the ASFV genome makes vaccine development and disease surveillance extremely difficult. The overall trend in ASFV evolution is towards decreased virulence and increased transmissibility. Factors such as gene mutation, viral recombination, and the strain-specificity of virulence-associated genes facilitate viral variations. This review deeply discusses the influence of these factors on viral immune evasion, pathogenicity, and the ensuing complexities encountered in vaccine development, disease detection, and surveillance. The ultimate goal of this review is to thoroughly explore the genetic evolution patterns and variation mechanisms of ASFV, providing a theoretical foundation for advancement in vaccine and diagnostic technologies.
Collapse
Affiliation(s)
- Shengmei Chen
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hua-Ji Qiu
- College of Life Science and Engineering, Foshan University, Foshan 528231, China
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
27
|
Lai DC, Chaudhari J, Vu HLX. African swine fever virus early protein pI73R suppresses the type-I IFN promoter activities. Virus Res 2024; 343:199342. [PMID: 38408646 PMCID: PMC10918272 DOI: 10.1016/j.virusres.2024.199342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-β promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-β was independent of Z-DNA binding activity. Instead, the α3 and β1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-β. These findings offer insights into the protein's functions and support its role as a virulence factor.
Collapse
Affiliation(s)
- Danh Cong Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | | | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, United States; Department of Animal Science, University of Nebraska-Lincoln, United States.
| |
Collapse
|
28
|
Wang Z, Wang Y, Zhang Y, Qin G, Sun W, Wang A, Wang Y, Zhang G, Zhao J. On-site detection and differentiation of African swine fever virus variants using an orthogonal CRISPR-Cas12b/Cas13a-based assay. iScience 2024; 27:109050. [PMID: 38571763 PMCID: PMC10987800 DOI: 10.1016/j.isci.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024] Open
Abstract
The African swine fever virus (ASFV) and its variants have induced substantial economic losses in China, prompting a critical need for efficient detection methods. Several PCR-based methods have been developed to discriminate between wild-type ASFV and gene-deleted variants. However, the requirement for sophisticated equipment and skilled operators limits their use in field settings. Here, we developed a CRISPR-Cas12b/Cas13a-based detection assay that can identify ASFV variants with minimal equipment requirements and a short turnaround time. The assay utilizes the distinct DNA/RNA collateral cleavage preferences of Cas12b/Cas13a to detect two amplified targets from multiplex recombinase polymerase amplification (RPA) in a single tube, and the results can be visualized through fluorescent or lateral-flow readouts. When tested with clinical samples in field settings, our assay successfully detected all ASFV-positive samples in less than 60 min. This assay provides a rapid on-site surveillance tool for detecting ASFV and its emerging variants.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yu Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jianguo Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Ramirez-Medina E, Rai A, Espinoza N, Spinard E, Silva E, Burton L, Clark J, Meyers A, Valladares A, Velazquez-Salinas L, Gay CG, Gladue DP, Borca MV. Recombinant Vaccine Strain ASFV-G-Δ9GL/ΔUK Produced in the IPKM Cell Line Is Genetically Stable and Efficacious in Inducing Protection in Pigs Challenged with the Virulent African Swine Fever Virus Field Isolate Georgia 2010. Pathogens 2024; 13:319. [PMID: 38668274 PMCID: PMC11055038 DOI: 10.3390/pathogens13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
We have previously reported that the recombinant African Swine Fever (ASF) vaccine candidate ASFV-G-Δ9GL/ΔUK efficiently induces protection in domestic pigs challenged with the virulent strain Georgia 2010 (ASFV-G). As reported, ASFV-G-Δ9GL/ΔUK induces protection, while intramuscularly (IM), administered at doses of 104 HAD50 or higher, prevents ASF clinical disease in animals infected with the homologous ASFV g strain. Like other recombinant vaccine candidates obtained from ASFV field isolates, ASFV-G-Δ9GL/ΔUK stocks need to be produced in primary cultures of swine macrophages, which constitutes an important limitation in the production of large virus stocks at the industrial level. Here, we describe the development of ASFV-G-Δ9GL/ΔUK stocks using IPKM (Immortalized Porcine Kidney Macrophage) cells, which are derived from swine macrophages. We show that ten successive passages of ASFV-G-Δ9GL/ΔUK in IPKM cells induced small changes in the virus genome. The produced virus, ASFV-G-Δ9GL/ΔUKp10, presented a similar level of replication in swine macrophages cultures to that of the original ASFV-G-Δ9GL/ΔUK (ASFV-G-Δ9GL/ΔUKp0). The protective efficacy of ASFV-G-Δ9GL/ΔUKp10 was evaluated in pigs that were IM-inoculated with either 104 or 106 HAD50 of ASFV-G-Δ9GL/ΔUKp10. While animals inoculated with 104 HAD50 present a partial protection against the experimental infection with the virulent parental virus ASFV-G, those inoculated with 106 HAD50 were completely protected. Therefore, as was just recently reported for another ASF vaccine candidate, ASFV-G-ΔI177L, IPKM cells are an effective alternative to produce stocks for vaccine strains which only grow in swine macrophages.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ayushi Rai
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Edward Spinard
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ediane Silva
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Leeanna Burton
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Jason Clark
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Amanda Meyers
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Alyssa Valladares
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Lauro Velazquez-Salinas
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Cyril G. Gay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Manuel V. Borca
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| |
Collapse
|
30
|
Sunwoo SY, García-Belmonte R, Walczak M, Vigara-Astillero G, Kim DM, Szymankiewicz K, Kochanowski M, Liu L, Tark D, Podgórska K, Revilla Y, Pérez-Núñez D. Deletion of MGF505-2R Gene Activates the cGAS-STING Pathway Leading to Attenuation and Protection against Virulent African Swine Fever Virus. Vaccines (Basel) 2024; 12:407. [PMID: 38675789 PMCID: PMC11054455 DOI: 10.3390/vaccines12040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
African swine fever virus (ASFV) is the etiological agent causing African swine fever (ASF), affecting domestic pigs and wild boar, which is currently the biggest animal epidemic in the world and a major threat to the swine sector. At present, some safety concerns about using LAVs against ASFV still exist despite a commercial vaccine licensed in Vietnam. Therefore, the efforts to identify virulence factors and their mechanisms, as well as to generate new vaccine prototypes, are of major interest. In this work, we have identified the MGF505-2R gene product as an inhibitor of the cGAS/STING pathway, specifically through its interaction with STING protein, controlling IFN-β production. In addition, immunization of a recombinant virus lacking this gene, Arm/07-ΔMGF505-2R, resulted in complete attenuation, demonstrating its involvement in ASFV virulence. Finally, immunization with Arm/07-ΔMGF505-2R induced the generation of antibodies and proved to be partially protective against virulent ASFV strains. These results identify MGF505-2R, as well as its mechanism of action, as a gene contributing to understanding the molecular mechanisms of ASFV virulence, which will be of great value in the design of future vaccine prototypes.
Collapse
Affiliation(s)
- Sun-Young Sunwoo
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea;
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Dae-Min Kim
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea; (D.-M.K.); (D.T.)
| | - Krzesimir Szymankiewicz
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Maciej Kochanowski
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Lihong Liu
- Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden;
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea; (D.-M.K.); (D.T.)
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| |
Collapse
|
31
|
Ambagala A, Goonewardene K, Kanoa IE, Than TT, Nguyen VT, Lai TNH, Nguyen TL, Erdelyan CNG, Robert E, Tailor N, Onyilagha C, Lamboo L, Handel K, Nebroski M, Vernygora O, Lung O, Le VP. Characterization of an African Swine Fever Virus Field Isolate from Vietnam with Deletions in the Left Variable Multigene Family Region. Viruses 2024; 16:571. [PMID: 38675912 PMCID: PMC11054794 DOI: 10.3390/v16040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.
Collapse
Affiliation(s)
- Aruna Ambagala
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kalhari Goonewardene
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Ian El Kanoa
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Thi Tam Than
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.T.T.); (T.N.H.L.); (T.L.N.)
| | - Van Tam Nguyen
- Institute of Veterinary Science and Technology, Hanoi 100000, Vietnam;
| | - Thi Ngoc Ha Lai
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.T.T.); (T.N.H.L.); (T.L.N.)
| | - Thi Lan Nguyen
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.T.T.); (T.N.H.L.); (T.L.N.)
| | - Cassidy N. G. Erdelyan
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Erin Robert
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Nikesh Tailor
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Chukwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Lindsey Lamboo
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Katherine Handel
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Michelle Nebroski
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Oksana Vernygora
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (K.G.); (I.E.K.); (C.N.G.E.); (E.R.); (N.T.); (C.O.); (L.L.); (K.H.); (M.N.); (O.V.); (O.L.)
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.T.T.); (T.N.H.L.); (T.L.N.)
| |
Collapse
|
32
|
Orosco FL. African swine fever virus proteins against host antiviral innate immunity and their implications for vaccine development. Open Vet J 2024; 14:941-951. [PMID: 38808296 PMCID: PMC11128636 DOI: 10.5455/ovj.2024.v14.i4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/30/2024] Open
Abstract
African swine fever virus (ASFV) poses a significant threat to global swine populations, necessitating a profound understanding of viral strategies against host antiviral innate immunity. This review synthesizes current knowledge regarding ASFV proteins and their intricate interactions with host defenses. Noteworthy findings encompass the modulation of interferon signaling, manipulation of inflammatory pathways, and the impact on cellular apoptosis. The implications of these findings provide a foundation for advancing vaccine strategies against ASFV. In conclusion, this review consolidates current knowledge, emphasizing the adaptability of ASFV in subverting host immunity. Identified research gaps underscore the need for continued exploration, presenting opportunities for developing targeted vaccines. This synthesis provides a roadmap for future investigations, aiming to enhance our preparedness against the devastating impact of ASFV on global swine populations.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Metro Manila, Philippines
| |
Collapse
|
33
|
Liu X, Chen H, Ye G, Liu H, Feng C, Chen W, Hu L, Zhou Q, Zhang Z, Li J, Zhang X, He X, Guan Y, Wu Z, Zhao D, Bu Z, Weng C, Huang L. African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS Pathog 2024; 20:e1012136. [PMID: 38620034 PMCID: PMC11018288 DOI: 10.1371/journal.ppat.1012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.
Collapse
Affiliation(s)
- Xiaohong Liu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hefeng Chen
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangqiang Ye
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyang Liu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunying Feng
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiye Chen
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liang Hu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiongqiong Zhou
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoxia Zhang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jiangnan Li
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xianfeng Zhang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntao Guan
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhengshuang Wu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjiang Weng
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
34
|
Muzykina L, Barrado-Gil L, Gonzalez-Bulnes A, Crespo-Piazuelo D, Cerón JJ, Alonso C, Montoya M. Overview of Modern Commercial Kits for Laboratory Diagnosis of African Swine Fever and Swine Influenza A Viruses. Viruses 2024; 16:505. [PMID: 38675848 PMCID: PMC11054272 DOI: 10.3390/v16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Rapid and early detection of infectious diseases in pigs is important, especially for the implementation of control measures in suspected cases of African swine fever (ASF), as an effective and safe vaccine is not yet available in most of the affected countries. Additionally, analysis for swine influenza is of significance due to its high morbidity rate (up to 100%) despite a lower mortality rate compared to ASF. The wide distribution of swine influenza A virus (SwIAV) across various countries, the emergence of constantly new recombinant strains, and the danger of human infection underscore the need for rapid and accurate diagnosis. Several diagnostic approaches and commercial methods should be applied depending on the scenario, type of sample and the objective of the studies being implemented. At the early diagnosis of an outbreak, virus genome detection using a variety of PCR assays proves to be the most sensitive and specific technique. As the disease evolves, serology gains diagnostic value, as specific antibodies appear later in the course of the disease (after 7-10 days post-infection (DPI) for ASF and between 10-21 DPI for SwIAV). The ongoing development of commercial kits with enhanced sensitivity and specificity is evident. This review aims to analyse recent advances and current commercial kits utilised for the diagnosis of ASF and SwIAV.
Collapse
Affiliation(s)
- Larysa Muzykina
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Lucía Barrado-Gil
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - Antonio Gonzalez-Bulnes
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Daniel Crespo-Piazuelo
- R&D Department, Cuarte S.L., Grupo Jorge, Ctra. de Logroño km 9.2, Monzalbarba, 50120 Zaragoza, Spain; (A.G.-B.); (D.C.-P.)
| | - Jose Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), University of Murcia, 30100 Murcia, Spain;
| | - Covadonga Alonso
- Department of Biotechnology, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (L.B.-G.); (C.A.)
| | - María Montoya
- Molecular Biomedicine Department, The Margarita Salas Centre for Biological Research (CIB) of the Spanish National Research Council (CSIC), C. Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
35
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
36
|
Chandana MS, Nair SS, Chaturvedi VK, Abhishek, Pal S, Charan MSS, Balaji S, Saini S, Vasavi K, Deepa P. Recent progress and major gaps in the vaccine development for African swine fever. Braz J Microbiol 2024; 55:997-1010. [PMID: 38311710 PMCID: PMC10920543 DOI: 10.1007/s42770-024-01264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024] Open
Abstract
The swine industry across the globe is recently facing a devastating situation imparted by a highly contagious and deadly viral disease, African swine fever. The disease is caused by a DNA virus, the African swine fever virus (ASFV) of the genus Asfivirus. ASFV affects both wild boars and domestic pigs resulting in an acute form of hemorrhagic fever. Since the first report in 1921, the disease remains endemic in some of the African countries. However, the recent occurrence of ASF outbreaks in Asia led to a fresh and formidable challenge to the global swine production industry. Culling of the infected animals along with the implementation of strict sanitary measures remains the only options to control this devastating disease. Efforts to develop an effective and safe vaccine against ASF began as early as in the mid-1960s. Different approaches have been employed for the development of effective ASF vaccines including inactivated vaccines, subunit vaccines, DNA vaccines, virus-vectored vaccines, and live attenuated vaccines (LAVs). Inactivated vaccines are a non-feasible strategy against ASF due to their inability to generate a complete cellular immune response. However genetically engineered vaccines, such as subunit vaccines, DNA vaccines, and virus vector vaccines, represent tailored approaches with minimal adverse effects and enhanced safety profiles. As per the available data, gene deleted LAVs appear to be the most potential vaccine candidates. Currently, a gene deleted LAV (ASFV-G-∆I177L), developed in Vietnam, stands as the sole commercially available vaccine against ASF. The major barrier to the goal of developing an effective vaccine is the critical gaps in the knowledge of ASFV biology and the immune response induced by ASFV infection. The precise contribution of various hosts, vectors, and environmental factors in the virus transmission must also be investigated in depth to unravel the disease epidemiology. In this review, we mainly focus on the recent progress in vaccine development against ASF and the major gaps associated with it.
Collapse
Affiliation(s)
- M S Chandana
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Sonu S Nair
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - V K Chaturvedi
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Abhishek
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Santanu Pal
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | | | - Shilpa Balaji
- Division of Virology, ICAR-Indian Veterinary Research Institute, Muktheswhar 263138, Utharakand, India
| | - Shubham Saini
- Division of Veterinary Public Health and Epidemiology, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Koppu Vasavi
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Poloju Deepa
- Division of CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| |
Collapse
|
37
|
Gao H, Di D, Wu Q, Li J, Liu X, Xu Z, Xu S, Wu C, Gong L, Sun Y, Zhang G, Chen H, Wang H. Pathogenicity and horizontal transmission evaluation of a novel isolated African swine fever virus strain with a three-large-fragment-gene deletion. Vet Microbiol 2024; 290:110002. [PMID: 38295489 DOI: 10.1016/j.vetmic.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.
Collapse
Affiliation(s)
- Han Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Jie Li
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Zhiying Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Chengyu Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People's Republic of China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China.
| |
Collapse
|
38
|
Borca MV, Ramirez-Medina E, Espinoza N, Rai A, Spinard E, Velazquez-Salinas L, Valladares A, Silva E, Burton L, Meyers A, Clark J, Wu P, Gay CG, Gladue DP. Deletion of the EP402R Gene from the Genome of African Swine Fever Vaccine Strain ASFV-G-∆I177L Provides the Potential Capability of Differentiating between Infected and Vaccinated Animals. Viruses 2024; 16:376. [PMID: 38543742 PMCID: PMC10974803 DOI: 10.3390/v16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.
Collapse
Affiliation(s)
- Manuel V. Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Elizabeth Ramirez-Medina
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Nallely Espinoza
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ayushi Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Edward Spinard
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Alyssa Valladares
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Leeanna Burton
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Amanda Meyers
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Jason Clark
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ping Wu
- Plum Island Animal Disease Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Orient, NY 11957, USA;
| | - Cyril G. Gay
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| |
Collapse
|
39
|
Johnston CM, Olesen AS, Lohse L, le Maire Madsen A, Bøtner A, Belsham GJ, Rasmussen TB. A Deep Sequencing Strategy for Investigation of Virus Variants within African Swine Fever Virus-Infected Pigs. Pathogens 2024; 13:154. [PMID: 38392892 PMCID: PMC10893071 DOI: 10.3390/pathogens13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.
Collapse
Affiliation(s)
- Camille Melissa Johnston
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Ann Sofie Olesen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Louise Lohse
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Agnete le Maire Madsen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 København, Denmark
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Graham J. Belsham
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Thomas Bruun Rasmussen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| |
Collapse
|
40
|
Desmet C, Coelho-Cruz B, Mehn D, Colpo P, Ruiz-Moreno A. ASFV epitope mapping by high density peptides microarrays. Virus Res 2024; 339:199287. [PMID: 38029799 PMCID: PMC10711508 DOI: 10.1016/j.virusres.2023.199287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
African swine fever (ASF) is an acute, highly contagious and deadly infectious disease. It is a threat to animal health with major potential economic and societal impact. Despite decades of ASF vaccine research, still some gaps in knowledge are hindering the development of a functional vaccine. Worth mentioning are gaps in understanding the mechanism of ASF infection and immunity, as well as the fact that - in case of this disease - virus proteins, so-called protective antigens, responsible for inducing protective immune responses in pigs are not identified yet. In this paper we elaborate on a methodology to identify protective antigens based on epitope mapping by microarray technology. High density peptide microarrays, combined with fluorescence scanning, have been used to analyze the interaction of peptide sequences of African swine fever virus (ASFV) proteins with antibodies present in inactivated serum from infected and healthy animals. The study evidenced ASFV proteins already under the radar for vaccine development, such as p54, and identified specific sequences in those proteins that may become the focus for future vaccine candidates. Such methodology is amenable to automation and high-throughput and may help developing better targeting for next generation vaccines.
Collapse
Affiliation(s)
- Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Pascal Colpo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ana Ruiz-Moreno
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
41
|
Wei J, Liu C, He X, Abbas B, Chen Q, Li Z, Feng Z. Generation and Characterization of Recombinant Pseudorabies Virus Delivering African Swine Fever Virus CD2v and p54. Int J Mol Sci 2023; 25:335. [PMID: 38203508 PMCID: PMC10779401 DOI: 10.3390/ijms25010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
African swine fever (ASF) leads to high mortality in domestic pigs and wild boar, and it is caused by the African swine fever virus (ASFV). Currently, no commercially available vaccine exists for its prevention in China. In this study, we engineered a pseudorabies recombinant virus (PRV) expressing ASFV CD2v and p54 proteins (PRV-∆TK-(CD2v)-∆gE-(p54)) using CRISPR/Cas9 and homologous recombination technology. PRV-∆TK-(CD2v)-∆gE-(p54) effectively delivers CD2v and p54, and it exhibits reduced virulence. Immunization with PRV-∆TK-(CD2v)-∆gE-(p54) neither induces pruritus nor causes systemic infection and inflammation. Furthermore, a double knockout of the TK and gE genes eliminates the depletion of T, B, and monocytes/macrophages in the blood caused by wild-type viral infection, decreases the proliferation of granulocytes to eliminate T-cell immunosuppression from granulocytes, and enhances the ability of the immune system against PRV infection. An overexpression of CD2v and p54 proteins does not alter the characteristics of PRV-∆TK/∆gE. Moreover, PRV-∆TK-(CD2v)-∆gE-(p54) successfully induces antibody production via intramuscular (IM) vaccination and confers effective protection for vaccinated mice upon challenge. Thus, PRV-∆TK-(CD2v)-∆gE-(p54) demonstrates good immunogenicity and safety, providing highly effective protection against PRV and ASFV. It potentially represents a suitable candidate for the development of a bivalent vaccine against both PRV and ASFV infections.
Collapse
Affiliation(s)
- Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| |
Collapse
|
42
|
Wu Q, Lei Y, Zuo Y, Zhang J, Guo F, Xu W, Xie T, Wang D, Peng G, Wang X, Chen H, Fu Z, Cao G, Dai J. Interactome between ASFV and host immune pathway proteins. mSystems 2023; 8:e0047123. [PMID: 37966252 PMCID: PMC10734461 DOI: 10.1128/msystems.00471-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE African swine fever (ASF), caused by African swine fever virus (ASFV), has become a major crisis for the pork industry in recent years. The mechanism for ASFV pathology and the clinical symptoms difference of ASF between domestic pigs and reservoir hosts remain to be elucidated. We deciphered the comprehensive protein-protein interaction (PPI) network between ASFV and host immune pathways. The intensive PPI network contained both ASFV-host immune pathway PPI and ASFV-ASFV PPI information, providing a comprehensive ASFV-host interaction landscape. Furthermore, the ASFV-host PPI difference between domestic pigs and warthogs was explored, which will be instructive for exploring essential candidates involved in ASFV pathology. Moreover, we screened the inhibitory effect of ASFV proteins in the PPI with cGAS-STING pathway on IFN-I and NF-κB, further providing possible functions of ASFV-host PPI network in innate immune regulation.
Collapse
Affiliation(s)
- Qijun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ya Zuo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ji Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fenglin Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tanghui Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Liu Y, Xie Z, Li Y, Song Y, Di D, Liu J, Gong L, Chen Z, Wu J, Ye Z, Liu J, Yu W, Lv L, Zhong Q, Tian C, Song Q, Wang H, Chen H. Evaluation of an I177L gene-based five-gene-deleted African swine fever virus as a live attenuated vaccine in pigs. Emerg Microbes Infect 2023; 12:2148560. [PMID: 36378022 PMCID: PMC9769145 DOI: 10.1080/22221751.2022.2148560] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
African swine fever (ASF) is a highly contagious disease of domestic and wild pigs caused by the African swine fever virus (ASFV). The current research on ASF vaccines focuses on the development of naturally attenuated, isolated, or genetically engineered live viruses that have been demonstrated to produce reliable immunity. As a result, a genetically engineered virus containing five genes deletion was synthesized based on ASFV Chinese strain GZ201801, named ASFV-GZΔI177LΔCD2vΔMGF. The five-gene-deleted ASFV was safe and fully attenuated in pigs and provides reliable protection against the parental ASFV strain challenge. This indicates that the five-gene-deleted ASFV is a potential candidate for a live attenuated vaccine that could control the spread of ASFV.
Collapse
Affiliation(s)
- Yingnan Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Zhenhua Xie
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Yao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Yingying Song
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Lang Gong
- South China Agricultural University, Guangdong, People’s Republic of China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China
| | - Jinxian Wu
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Zhengqin Ye
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Jianqi Liu
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Wanqi Yu
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Lu Lv
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Qiuping Zhong
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Chuanwen Tian
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China
| | - Qingqing Song
- The Spirit Jinyu Biological Pharmaceutical Co. Ltd, Hohhot, People’s Republic of China
| | - Heng Wang
- South China Agricultural University, Guangdong, People’s Republic of China, Hongjun Chen ; Heng Wang
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People’s Republic of China,Biosafety Research Center, CAAS, Shanghai, People’s Republic of China, Hongjun Chen ; Heng Wang
| |
Collapse
|
44
|
Rathakrishnan A, Reis AL, Petrovan V, Goatley LC, Moffat K, Lui Y, Vuong MT, Ikemizu S, Davis SJ, Dixon LK. A protective multiple gene-deleted African swine fever virus genotype II, Georgia 2007/1, expressing a modified non-haemadsorbing CD2v protein. Emerg Microbes Infect 2023; 12:2265661. [PMID: 37781934 PMCID: PMC10588529 DOI: 10.1080/22221751.2023.2265661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
African swine fever virus is a complex DNA virus that causes high fatality in pigs and wild boar and has a great socio-economic impact. An attenuated genotype II strain was constructed by replacing the gene for wildtype CD2v protein with versions in which single or double amino acid substitutions were introduced to reduce or abrogate the binding to red blood cells and reduce virus persistence in blood. The mutant CD2v proteins were expressed at similar levels to the wildtype protein on the surface of infected cells. Three recombinant viruses also had K145R, EP153R, and in one virus DP148R genes deleted. Following immunization of pigs, the virus with a single amino acid substitution in CD2v, Q96R, induced moderate levels of replication, and 100% protection against virulent ASFV. Two additional recombinant viruses had two amino acid substitutions in CD2v, Q96R, and K108D, and induced no binding to red blood cells in vitro. In immunized pigs, reduced levels of virus in blood and strong early ASFV-specific antibody and cellular responses were detected. After challenge low to moderate replication of challenge virus was observed. Reduced clinical signs post-challenge were observed in pigs immunized with the virus from which DP148R gene was deleted. Protection levels of 83-100% were maintained across a range of doses. Further experiments with virus GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D showed low levels of virus dissemination in tissue and transient clinical signs at high doses. The results support further evaluation of GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D as a vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Lui
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mai T. Vuong
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Simon J. Davis
- Radcliffe Department of Medicine and Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Forth JH, Calvelage S, Fischer M, Hellert J, Sehl-Ewert J, Roszyk H, Deutschmann P, Reichold A, Lange M, Thulke HH, Sauter-Louis C, Höper D, Mandyhra S, Sapachova M, Beer M, Blome S. African swine fever virus - variants on the rise. Emerg Microbes Infect 2023; 12:2146537. [PMID: 36356059 PMCID: PMC9793911 DOI: 10.1080/22221751.2022.2146537] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.
Collapse
Affiliation(s)
- Jan H. Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Jan Hellert
- Centre for Structural System Biology (CSSB), Leibnitz-Institut für Virologie, Hamburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Hanna Roszyk
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Paul Deutschmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Adam Reichold
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Lange
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Svitlana Mandyhra
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kiev, Ukraine
| | - Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kiev, Ukraine
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany, Sandra Blome Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald – Insel Riems, Germany
| |
Collapse
|
46
|
Luong HQ, Lai HTL, Truong LQ, Nguyen TN, Vu HD, Nguyen HT, Nguyen LT, Pham TH, McVey DS, Vu HLX. Comparative Analysis of Swine Antibody Responses following Vaccination with Live-Attenuated and Killed African Swine Fever Virus Vaccines. Vaccines (Basel) 2023; 11:1687. [PMID: 38006019 PMCID: PMC10674706 DOI: 10.3390/vaccines11111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever virus (ASFV) is circulating in many swine-producing countries, causing significant economic losses. It is observed that pigs experimentally vaccinated with a live-attenuated virus (LAV) but not a killed virus (KV) vaccine develop solid homologous protective immunity. The objective of this study was to comparatively analyze antibody profiles between pigs vaccinated with an LAV vaccine and those vaccinated with a KV vaccine to identify potential markers of vaccine-induced protection. Thirty ASFV seronegative pigs were divided into three groups: Group 1 received a single dose of an experimental LAV, Group 2 received two doses of an experimental KV vaccine, and Group 3 was kept as a non-vaccinated (NV) control. At 42 days post-vaccination, all pigs were challenged with the parental virulent ASFV strain and monitored for 21 days. All pigs vaccinated with the LAV vaccine survived the challenge. In contrast, eight pigs from the KV group and seven pigs from the NV group died within 14 days post-challenge. Serum samples collected on 41 days post-vaccination were analyzed for their reactivity against a panel of 29 viral structural proteins. The sera of pigs from the LAV group exhibited a strong antibody reactivity against various viral structural proteins, while the sera of pigs in the KV group only displayed weak antibody reactivity against the inner envelope (p32, p54, p12). There was a negative correlation between the intensity of antibody reactivity against five ASFV antigens, namely p12, p14, p15, p32, and pD205R, and the viral DNA titers in the blood of animals after the challenge infection. Thus, antibody reactivities against these five antigens warrant further evaluation as potential indicators of vaccine-induced protection.
Collapse
Affiliation(s)
- Hung Q. Luong
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Huong T. L. Lai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lam Q. Truong
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - The N. Nguyen
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hanh D. Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Hoa T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Lan T. Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - Trang H. Pham
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (H.T.L.L.); (L.Q.T.); (H.D.V.); (H.T.N.); (L.T.N.); (T.H.P.)
| | - D. Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (H.Q.L.); (T.N.N.)
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
47
|
Nguyen TL, Samuel Leon Magdaleno J, Rajjak Shaikh A, Choowongkomon K, Li V, Lee Y, Kim H. Designing a multi-epitope candidate vaccine by employing immunoinformatics approaches to control African swine fever spread. J Biomol Struct Dyn 2023; 41:10214-10229. [PMID: 36510707 DOI: 10.1080/07391102.2022.2153922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The African swine fever virus has been circulating for decades and is highly infectious, often fatal to farmed and wild pigs. There is currently no approved vaccine or treatment for the disease, making prevention even more difficult. Therefore, vaccine development is necessary and urgent to limit the consequences of ASF and ensure the food chain and sustainability of the swine industry. This research study was conducted to design a multi-epitope vaccine for controlling veterinary diseases caused by the African swine fever virus. We employed the immunoinformatics approaches to reveal 37 epitopes from different viral proteins of ASFV. These epitopes were linked to adjuvants and linkers to form a full-fledged immunogenic vaccine construct. The tertiary structure of the final vaccine was predicted using a deep-learning approach. The molecular docking and molecular dynamics predicted stable interactions between the vaccine and immune receptor TLR5 of Sus scrofa (Pig). The MD simulation studies reflect that the calculated parameters like RMSD, RMSF, number of hydrogen bonds, and finally, the buried interface surface area for the complex remained stable throughout the simulation time. This analysis suggests the stability of interface interactions between the TLR5 and the multi-epitope vaccine construct. Further, the physiochemical analysis demonstrated that our designed vaccine construct was expected to have high stability and prolonged half-life time in mammalian cells. Traditional vaccine design experiments require significant time and financial input from the development stage to the final product. Studies like this can assist in accelerating vaccine development while minimizing the cost.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| |
Collapse
|
48
|
Reis AL, Rathakrishnan A, Goulding LV, Barber C, Goatley LC, Dixon LK. Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases virus uptake and apoptosis but decreases virus spread in macrophages and reduces virulence in pigs. J Virol 2023; 97:e0110623. [PMID: 37796125 PMCID: PMC10617521 DOI: 10.1128/jvi.01106-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.
Collapse
Affiliation(s)
| | | | | | - Claire Barber
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | | |
Collapse
|
49
|
Zhang K, Ge H, Zhou P, Li LF, Dai J, Cao H, Luo Y, Sun Y, Wang Y, Li J, Yu S, Li S, Qiu HJ. The D129L protein of African swine fever virus interferes with the binding of transcriptional coactivator p300 and IRF3 to prevent beta interferon induction. J Virol 2023; 97:e0082423. [PMID: 37724880 PMCID: PMC10617517 DOI: 10.1128/jvi.00824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/13/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE African swine fever (ASF) is an acute, hemorrhagic, and severe porcine infectious disease caused by African swine fever virus (ASFV). ASF outbreaks severely threaten the global pig industries and result in serious economic losses. No safe and efficacious commercial vaccine is currently available except in Vietnam. To date, large gaps in the knowledge concerning viral biological characteristics and immunoevasion strategies have hindered the ASF vaccine design. In this study, we demonstrate that pD129L negatively regulates the type I interferon (IFN) signaling pathway by interfering with the interaction of the transcriptional coactivator p300 and IRF3, thereby inhibiting the induction of type I IFNs. This study reveals a novel immunoevasion strategy employed by ASFV, shedding new light on the intricate mechanisms for ASFV to evade the host immune responses.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hailiang Ge
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingping Zhou
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Harbin Medical University, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingwen Dai
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongwei Cao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shaoxiong Yu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
50
|
Li J, Song J, Zhou S, Li S, Liu J, Li T, Zhang Z, Zhang X, He X, Chen W, Zheng J, Zhao D, Bu Z, Huang L, Weng C. Development of a new effective African swine fever virus vaccine candidate by deletion of the H240R and MGF505-7R genes results in protective immunity against the Eurasia strain. J Virol 2023; 97:e0070423. [PMID: 37768081 PMCID: PMC10617561 DOI: 10.1128/jvi.00704-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE African swine fever (ASF) caused by ASF virus (ASFV) is a highly contagious and acute hemorrhagic viral disease in domestic pigs. Until now, no effective commercial vaccine and antiviral drugs are available for ASF control. Here, we generated a new live-attenuated vaccine candidate (ASFV-ΔH240R-Δ7R) by deleting H240R and MGF505-7R genes from the highly pathogenic ASFV HLJ/18 genome. Piglets immunized with ASFV-ΔH240R-Δ7R were safe without any ASF-related signs and produced specific antibodies against p30. Challenged with a virulent ASFV HLJ/18, the piglets immunized with high-dose group (105 HAD50) exhibited 100% protection without clinical symptoms, showing that low levels of virus replication with no observed pathogenicity by postmortem and histological analysis. Overall, our results provided a new strategy by designing live-attenuated vaccine candidate, resulting in protection against ASFV infection.
Collapse
Affiliation(s)
- Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Jie Song
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Shijun Zhou
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Shuai Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Jia Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Tingting Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Zhaoxia Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Xianfeng Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xijun He
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Weiye Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Dongming Zhao
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhigao Bu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| |
Collapse
|