1
|
Kang JS, Zhou K, Wang H, Tang S, Lyles KVM, Luo M, Zhou ZH. Architectural organization and in situ fusion protein structure of lymphocytic choriomeningitis virus. J Virol 2024; 98:e0064024. [PMID: 39329471 PMCID: PMC11495036 DOI: 10.1128/jvi.00640-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Arenaviruses exist globally and can cause hemorrhagic fever and neurological diseases, exemplified by the zoonotic pathogen lymphocytic choriomeningitis virus (LCMV). The structures of individual LCMV proteins or their fragments have been reported, but the architectural organization and the nucleocapsid assembly mechanism remain elusive. Importantly, the in situ structure of the arenavirus fusion protein complex (glycoprotein complex, GPC) as present on the virion prior to fusion, particularly with its integral stable signal peptide (SSP), has not been shown, hindering efforts such as structure-based vaccine design. Here, we have determined the in situ structure of LCMV proteins and their architectural organization in the virion by cryogenic electron tomography. The tomograms reveal the global distribution of GPC, matrix protein Z, and the contact points between the viral envelope and nucleocapsid. Subtomogram averaging yielded the in situ structure of the mature GPC with its transmembrane domain intact, revealing the GP2-SSP interface and the endodomain of GP2. The number of RNA-dependent RNA polymerase L molecules packaged within each virion varies, adding new perspectives to the infection mechanism. Together, these results delineate the structural organization of LCMV and offer new insights into its mechanism of LCMV maturation, egress, and cell entry. IMPORTANCE The impact of COVID-19 on public health has highlighted the importance of understanding zoonotic pathogens. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne human pathogen that causes hemorrhagic fever. Herein, we describe the in situ structure of LCMV proteins and their architectural organization on the viral envelope and around the nucleocapsid. The virion structure reveals the distribution of the surface glycoprotein complex (GPC) and the contact points between the viral envelope and the underlying matrix protein, as well as the association with the nucleocapsid. The morphology and sizes of virions, as well as the number of RNA polymerase L inside each virion vary greatly, highlighting the fast-changing nature of LCMV. A comparison between the in situ GPC trimeric structure and prior ectodomain structures identifies the transmembrane and endo domains of GPC and key interactions among its subunits. The work provides new insights into LCMV assembly and informs future structure-guided vaccine design.
Collapse
Affiliation(s)
- Joon S. Kang
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Kang Zhou
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Hui Wang
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Sijia Tang
- Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Nunberg JH, Westover JB, York J, Jung KH, Bailey KW, Boardman KM, Li M, Furnell RS, Wasson SR, Murray JS, Kaundal R, Thomas AJ, Gowen BB. Restoration of virulence in the attenuated Candid#1 vaccine virus requires reversion at both positions 168 and 427 in the envelope glycoprotein GPC. J Virol 2024; 98:e0011224. [PMID: 38506509 PMCID: PMC11019782 DOI: 10.1128/jvi.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.
Collapse
Affiliation(s)
- Jack H. Nunberg
- Montana Biotechnology Center, University of Montana, Missoula, Montana, USA
| | - Jonna B. Westover
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Joanne York
- Montana Biotechnology Center, University of Montana, Missoula, Montana, USA
| | - Kie Hoon Jung
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kevin W. Bailey
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kirsten M. Boardman
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Minghao Li
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Rachel S. Furnell
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Samantha R. Wasson
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Justin S. Murray
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Aaron J. Thomas
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Brian B. Gowen
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
4
|
Kimura M, Matsuoka R, Taniguchi S, Maruyama J, Paessler S, Oka S, Yamashita A, Fukuhara T, Matsuura Y, Tani H. Inhibitors of cannabinoid receptor 1 suppress the cellular entry of Lujo virus. Virology 2023; 587:109867. [PMID: 37633192 DOI: 10.1016/j.virol.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Lujo virus (LUJV), which belongs to Mammarenavirus, family Arenaviridae, has emerged as a pathogen causing severe hemorrhagic fever with high mortality. Currently, there are no effective treatments for arenaviruses, including LUJV. Here, we screened chemical compound libraries of Food and Drug Administration (FDA)-approved drugs and G protein-coupled receptor-associated drugs to identify effective antivirals against LUJV targeting cell entry using a vesicular stomatitis virus-based pseudotyped virus bearing the LUJV envelope glycoprotein (GP). Cannabinoid receptor 1 (CB1) antagonists, such as rimonabant, AM251 and AM281, have been identified as robust inhibitors of LUJV entry. The IC50 of rimonabant was 0.26 and 0.53 μM in Vero and Huh7 cells, respectively. Analysis of the cell fusion activity of the LUJV GP in the presence of CB1 inhibitors revealed that these inhibitors suppressed the fusion activity of the LUJV GP. Moreover, rimonabant, AM251 and AM281 reduced the infectivity of authentic LUJV in vitro, suggesting that the antiviral activity of CB1 antagonists against LUJV is mediated, at least in part, by inhibition of the viral entry, especially, membrane fusion. These findings suggest promising candidates for developing new therapies against LUJV infections.
Collapse
Affiliation(s)
- Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Risa Matsuoka
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology, Toyama Institute of Health, Toyama, 939-0363, Japan.
| |
Collapse
|
5
|
Moon-Walker A, Zhang Z, Zyla DS, Buck TK, Li H, Diaz Avalos R, Schendel SL, Hastie KM, Crotty S, Saphire EO. Structural basis for antibody-mediated neutralization of lymphocytic choriomeningitis virus. Cell Chem Biol 2023; 30:403-411.e4. [PMID: 36990092 PMCID: PMC11090681 DOI: 10.1016/j.chembiol.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
The mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a globally distributed zoonotic pathogen that can be lethal in immunocompromised patients and can cause severe birth defects if acquired during pregnancy. The structure of the trimeric surface glycoprotein, essential for entry, vaccine design, and antibody neutralization, remains unknown. Here, we present the cryoelectron microscopy (cryo-EM) structure of the LCMV surface glycoprotein (GP) in its trimeric pre-fusion assembly both alone and in complex with a rationally engineered monoclonal neutralizing antibody termed 18.5C-M28 (M28). Additionally, we show that passive administration of M28, either as a prophylactic or therapeutic, protects mice from LCMV clone 13 (LCMVcl13) challenge. Our study illuminates not only the overall structural organization of LCMV GP and the mechanism for its inhibition by M28 but also presents a promising therapeutic candidate to prevent severe or fatal disease in individuals who are at risk of infection by a virus that poses a threat worldwide.
Collapse
Affiliation(s)
- Alex Moon-Walker
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MI 63110, USA
| | - Zeli Zhang
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Dawid S Zyla
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | - Tierra K Buck
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoyang Li
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA
| | | | | | | | - Shane Crotty
- La Jolla Institute for Immunology; La Jolla, CA 92037, USA.
| | | |
Collapse
|
6
|
Pseudotyped Viruses for Mammarenavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:279-297. [PMID: 36920703 DOI: 10.1007/978-981-99-0113-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.
Collapse
|
7
|
Keating PM, Pennington HN, Collins SD, Lee J. Purification and characterization of the Lassa virus transmembrane domain. Biochem Biophys Rep 2022; 33:101409. [PMID: 36583076 PMCID: PMC9792740 DOI: 10.1016/j.bbrep.2022.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Lassa virus (LASV) is the most prevalent arenavirus afflicting humans and has high potential to become a threat to global public health. The transmembrane domain (TM) of the LASV glycoprotein complex forms critical interactions with the LASV stable signal peptide that are important for the maturation and fusion activity of the virus. A further study of the structure-based molecular mechanisms is required to understand the role of the TM in the lifecycle of LASV in greater detail. However, it is challenging to obtain the TM in high quantity and purity due to its hydrophobic nature which results in solubility issues that makes it prone to aggregation in typical buffer systems. Here, we designed a purification and detergent screen protocol for the highly insoluble TM to enhance the yield and purity for structural studies. Based on the detergents tested, the TM had the highest incorporation in LMPG. Circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy were utilized to confirm the best detergent system for structural studies. Through CD spectroscopy, we were able to characterize the secondary structure of the TM as largely alpha-helical, while NMR spectroscopy showed a well-structured and stable TM in LMPG. From these results, LMPG was determined to be the optimal detergent for further structural studies.
Collapse
|
8
|
Hou Y, Liu Y, Jia X, Zhou M, Mao W, Dong S, Zhang Y, Xiao G, Wang W. Screening and Identification of Lassa Virus Entry Inhibitors from a Fragment-Based Drug Discovery Library. Viruses 2022; 14:v14122649. [PMID: 36560653 PMCID: PMC9782912 DOI: 10.3390/v14122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa virus (LASV) is a highly pathogenic virus that is categorized as a biosafety level-4 pathogen. Currently, there are no approved drugs or vaccines specific to LASV. In this study, high-throughput screening of a fragment-based drug discovery library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two compounds, F1920 and F1965, were identified as LASV entry inhibitors that block GPC-mediated membrane fusion. Analysis of adaptive mutants demonstrated that the transient mutants L442F and I445S, as well as the constant mutant F446L, were located on the same side on the transmembrane domain of the subunit GP2 of GPC, and all the mutants conferred resistance to both F1920 and F1965. Furthermore, F1920 antiviral activity extended to other highly pathogenic mammarenaviruses, whereas F1965 was LASV-specific. Our study showed that both F1920 and F1965 provide a potential backbone for the development of lead drugs for preventing LASV infection.
Collapse
Affiliation(s)
- Yuxia Hou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenting Mao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Dong
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
9
|
Raabe V, Mehta AK, Evans JD. Lassa Virus Infection: a Summary for Clinicians. Int J Infect Dis 2022; 119:187-200. [PMID: 35395384 DOI: 10.1016/j.ijid.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This summary on Lassa virus (LASV) infection and Lassa fever disease (LF) was developed from a clinical perspective to provide clinicians a condensed, accessible understanding of the current literature. The information provided highlights pathogenesis, clinical features, and diagnostics with an emphasis on therapies and vaccines that have demonstrated potential value for use in clinical or research environments. METHODS An integrative literature review was conducted on the clinical and pathological features, vaccines, and treatments for LASV infection, with a focus on recent studies and in vivo evidence from humans and/or non-human primates (NHPs), when available. RESULTS Two antiviral medications with potential benefit for the treatment of LASV infection and one for post-exposure prophylaxis were identified, although a larger number of potential candidates are currently being evaluated. Multiple vaccine platforms are in pre-clinical development for LASV prevention, but data from human clinical trials are not yet available. CONCLUSION We provide succinct summaries of medical countermeasures against LASV to give the busy clinician a rapid reference. Although there are no approved drugs or vaccines for LF, we provide condensed information from a literature review for measures that can be taken when faced with a suspected infection, including investigational treatment options and hospital engineering controls.
Collapse
Affiliation(s)
- Vanessa Raabe
- New York University Grossman School of Medicine, New York, NY.
| | | | - Jared D Evans
- Johns Hopkins Applied Physics Laboratory, Laurel, MD.
| |
Collapse
|
10
|
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and has been utilized for decades as a model to understand the host immune response against viral infection. LCMV infection can lead to fatal meningitis in immunocompromised people and can lead to congenital birth defects and spontaneous abortion if acquired during pregnancy. Using a genetic screen, we uncover host factors involved in LCMV entry that were previously unknown and are candidate therapeutic targets to combat LCMV infection. This study expands our understanding of the entry pathway of LCMV, revealing that its glycoprotein switches from utilizing the known receptor α-DG and heparan sulfate at the plasma membrane to binding the lysosomal mucin CD164 at pH levels found in endolysosomal compartments, facilitating membrane fusion. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Collapse
|
11
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
12
|
Cao J, Dong S, Liu Y, Zhou M, Guo J, Jia X, Zhang Y, Hou Y, Tian M, Xiao G, Wang W. Screening and Identification of Lujo Virus Entry Inhibitors From an Food and Drug Administration-Approved Drugs Library. Front Microbiol 2021; 12:793519. [PMID: 34925303 PMCID: PMC8675865 DOI: 10.3389/fmicb.2021.793519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Lujo virus (LUJV) belongs to the Old World (OW) genus Mammarenavirus (family Arenaviridae). It is categorized as a biosafety level (BSL) 4 agent. Currently, there are no U.S. Food and Drug Administration (FDA)-approved drugs or vaccines specifically for LUJV or other pathogenic OW mammarenaviruses. Here, a high-throughput screening of an FDA-approved drug library was conducted using pseudotype viruses bearing LUJV envelope glycoprotein (GPC) to identify inhibitors of LUJV entry. Three hit compounds, trametinib, manidipine, and lercanidipine, were identified as LUJV entry inhibitors in the micromolar range. Mechanistic studies revealed that trametinib inhibited LUJV GPC-mediated membrane fusion by targeting C410 [located in the transmembrane (TM) domain], while manidipine and lercanidipine inhibited LUJV entry by acting as calcium channel blockers. Meanwhile, all three hits extended their antiviral spectra to the entry of other pathogenic mammarenaviruses. Furthermore, all three could inhibit the authentic prototype mammarenavirus, lymphocytic choriomeningitis virus (LCMV), and could prevent infection at the micromolar level. This study shows that trametinib, manidipine, and lercanidipine are candidates for LUJV therapy and highlights the critical role of calcium in LUJV infection. The presented findings reinforce the notion that the key residue(s) located in the TM domain of GPC provide an entry-targeted platform for designing mammarenavirus inhibitors.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Dong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuxia Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Tian
- College of Chemistry, Central China Normal University, Wuhan, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Second-Generation Live-Attenuated Candid#1 Vaccine Virus Resists Reversion and Protects against Lethal Junín Virus Infection in Guinea Pigs. J Virol 2021; 95:e0039721. [PMID: 33952638 DOI: 10.1128/jvi.00397-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live-attenuated virus vaccines are highly effective in preventing viral disease but carry intrinsic risks of residual virulence and reversion to pathogenicity. The classically derived Candid#1 virus protects seasonal field workers in Argentina against zoonotic infection by Junín virus (JUNV) but is not approved in the United States, in part due to the potential for reversion at the attenuating locus, a phenylalanine-to-isoleucine substitution at position 427 in the GP2 subunit of the GPC envelope glycoprotein. Previously, we demonstrated facile reversion of recombinant Candid#1 (rCan) in cell culture and identified an epistatic interaction between the attenuating I427 and a secondary K33S mutation in the stable signal peptide (SSP) subunit of GPC that imposes an evolutionary barrier to reversion. The magnitude of this genetic barrier is manifest in our repeated failures to rescue the hypothetical revertant virus. In this study, we show that K33S rCan is safe and attenuated in guinea pigs and capable of eliciting potent virus-neutralizing antibodies. Immunized animals are fully protected against lethal challenge with virulent JUNV. In addition, we employed a more permissive model of infection in neonatal mice to investigate genetic reversion. RNA sequence analysis of the recovered virus identified revertant viruses in pups inoculated with the parental rCan virus and none in mice receiving K33S rCan (P < 0.0001). Taken together, our findings support the further development of K33S rCan as a safe second-generation JUNV vaccine. IMPORTANCE Our most successful vaccines comprise weakened strains of virus that initiate a limited and benign infection in immunized persons. The live-attenuated Candid#1 strain of Junín virus (JUNV) was developed to protect field workers in Argentina from rodent-borne hemorrhagic fever but is not licensed in the United States, in part due to the likelihood of genetic reversion to virulence. A single-amino-acid change in the GPC envelope glycoprotein of the virus is responsible for attenuation, and a single nucleotide change may regenerate the pathogenic virus. Here, we take advantage of a unique genetic interaction between GPC subunits to design a mutant Candid#1 virus that establishes an evolutionary barrier to reversion. The mutant virus (K33S rCan) is fully attenuated and protects immunized guinea pigs against lethal JUNV infection. We find no instances of reversion in mice inoculated with K33S rCan. This work supports the further development of K33S rCan as a second-generation JUNV vaccine.
Collapse
|
14
|
Wan W, Zhu S, Li S, Shang W, Zhang R, Li H, Liu W, Xiao G, Peng K, Zhang L. High-Throughput Screening of an FDA-Approved Drug Library Identifies Inhibitors against Arenaviruses and SARS-CoV-2. ACS Infect Dis 2021; 7:1409-1422. [PMID: 33183004 PMCID: PMC7671101 DOI: 10.1021/acsinfecdis.0c00486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Arenaviruses are a large family of enveloped negative-strand RNA viruses that include several causative agents of severe hemorrhagic fevers. Currently, there are no FDA-licensed drugs to treat arenavirus infection except for the off-labeled use of ribavirin. Here, we performed antiviral drug screening against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) using an FDA-approved drug library. Five drug candidates were identified, including mycophenolic acid, benidipine hydrochloride, clofazimine, dabrafenib, and apatinib, for having strong anti-LCMV effects. Further analysis indicated that benidipine hydrochloride inhibited LCMV membrane fusion, and an adaptive mutation on the LCMV glycoprotein D414 site was found to antagonize the anti-LCMV activity of benidipine hydrochloride. Mycophenolic acid inhibited LCMV replication by depleting GTP production. We also found mycophenolic acid, clofazimine, dabrafenib, and apatinib can inhibit the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Owing to their FDA-approved status, these drug candidates can potentially be used rapidly in the clinical treatment of arenavirus and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Weiwei Wan
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Shenglin Zhu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Shufen Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Weijuan Shang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Ruxue Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Hao Li
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Wei Liu
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Gengfu Xiao
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Ke Peng
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Leike Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| |
Collapse
|
15
|
Abstract
Lassa virus (LASV) belongs to the Old World Mammarenavirus genus (family Arenaviridae). At present, there are no approved drugs or vaccines specific for LASV. In this study, high-throughput screening of a botanical drug library was performed against LASV entry using a pseudotype virus bearing the LASV envelope glycoprotein complex (GPC). Two hit compounds, bergamottin and casticin, were identified as micromolar range inhibitors of LASV entry. A mechanistic study revealed that casticin inhibited LASV entry by blocking low pH-induced membrane fusion. Analysis of adaptive mutants demonstrated that the F446L mutation, located in the transmembrane domain of GP2, conferred resistance to casticin. Furthermore, casticin antiviral activity extends to the New World (NW) pathogenic mammarenaviruses, and mutation of the conserved F446 also conferred resistance to casticin in these viruses. Unlike casticin, bergamottin showed little effect on LASV GPC-mediated membrane fusion, instead inhibiting LASV entry by blocking endocytic trafficking. Notably, both compounds showed inhibitory effects on authentic lymphocytic choriomeningitis virus. Our study shows that both casticin and bergamottin are candidates for LASV therapy and that the conserved F446 in LASV GPC is important in drug resistance in mammarenaviruses.IMPORTANCE: Currently, there is no approved therapy to treat Lassa fever (LASF). Our goal was to identify potential candidate molecules for LASF therapy. Herein, we screened a botanical drug library and identified two compounds, casticin and bergamottin, that inhibited LASV entry via different mechanisms.
Collapse
|
16
|
Cao J, Zhang G, Zhou M, Liu Y, Xiao G, Wang W. Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity. Virol Sin 2020; 36:273-280. [PMID: 32897505 DOI: 10.1007/s12250-020-00286-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022] Open
Abstract
The membrane-proximal external region (MPER) of Lassa virus (LASV) glycoprotein complex (GPC) is critical in modulating its functionality. Till now, the high-resolution structure of the intact GPC, including MPER is not available. In this study, we used alanine substitution to scan all 16 residues located in LASV MPER. Western blotting and quantification fusion assay showed that the residues located at the C terminus of the HR2 (M414 and L415) and N terminus of the MPER (K417 and Y419) are critical for GPC-mediated membrane fusion function. Furthermore, cell surface biotinylation experiments revealed that M414A, K417A and Y419A expressed similar levels as WT, whereas L415A mutant led to a reduction of mature GPC on the cell surface. Moreover, substitution of these residues with the similar residue such as M414L, L415I, K417R and Y419F would partly compensate the loss of the fusion activity caused by the alanine mutant in these sites. Results from this study showed that several key residues in the MPER region are indispensable to promote the conformational changes that drive fusion events and shed light on the structure analysis of LASV GPC and anti-LASV therapeutics.
Collapse
Affiliation(s)
- Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangshun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Life Sciences, Nankai University, Tianjin, 300353, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Tang K, Zhang X, Guo Y. Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry. Acta Pharm Sin B 2020; 10:789-798. [PMID: 32528827 PMCID: PMC7276894 DOI: 10.1016/j.apsb.2020.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The limited treatment options for the increasing occurrence of Lassa hemorrhagic fever in West Africa poses an urgent need for the discovery and development of novel therapeutics. Dietary supplements, especially natural products that are edible and safe for human use, are a good source of drug discovery with potential for uncovering novel applications. In this study, we tested 40 natural products of dietary supplements and identified capsaicin, a common dietary supplement abundant in chili peppers, as an inhibitor of Lassa virus (LASV) entry with EC50 of 6.9-10.0 μmol/L using an HIV based pseudovirus platform. Capsaicin inhibits the entry of five LASV strains but not against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV), showing a preferential activity against LASV. Capsaicin inhibits LASV entry by blocking the pH dependent viral fusion through affecting the stable signal peptide (SSP)-GP2 transmembrane (GP2TM) region of the LASV surface glycoprotein. Mutational study revealed the key residues Ala25, Val431, Phe434 and Val435 in SSP-GP2TM region in capsaicin's antiviral effect. This study for the first time reveals a direct acting antiviral effect of capsaicin against the hemorrhagic fever causing LASV, providing detailed interaction hot spots in the unique SSP-GP2TM interface of LASV glycoprotein that is crucial in fusion inhibition, and offering a new strategy in discovering and developing antivirals from natural products that are safe for human use.
Collapse
Affiliation(s)
- Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Zhang X, Tang K, Guo Y. The antifungal isavuconazole inhibits the entry of lassa virus by targeting the stable signal peptide-GP2 subunit interface of lassa virus glycoprotein. Antiviral Res 2020; 174:104701. [DOI: 10.1016/j.antiviral.2019.104701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
|
19
|
Zhang G, Cao J, Cai Y, Liu Y, Li Y, Wang P, Guo J, Jia X, Zhang M, Xiao G, Guo Y, Wang W. Structure-activity relationship optimization for lassa virus fusion inhibitors targeting the transmembrane domain of GP2. Protein Cell 2020; 10:137-142. [PMID: 30632089 PMCID: PMC6340895 DOI: 10.1007/s13238-018-0604-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Guangshun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cai
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanli Li
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Peilin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300450, China.,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300450, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Stass R, Ng WM, Kim YC, Huiskonen JT. Structures of enveloped virions determined by cryogenic electron microscopy and tomography. Adv Virus Res 2019; 105:35-71. [PMID: 31522708 PMCID: PMC7112279 DOI: 10.1016/bs.aivir.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enveloped viruses enclose their genomes inside a lipid bilayer which is decorated by membrane proteins that mediate virus entry. These viruses display a wide range of sizes, morphologies and symmetries. Spherical viruses are often isometric and their envelope proteins follow icosahedral symmetry. Filamentous and pleomorphic viruses lack such global symmetry but their surface proteins may display locally ordered assemblies. Determining the structures of enveloped viruses, including the envelope proteins and their protein-protein interactions on the viral surface, is of paramount importance. These structures can reveal how the virions are assembled and released by budding from the infected host cell, how the progeny virions infect new cells by membrane fusion, and how antibodies bind surface epitopes to block infection. In this chapter, we discuss the uses of cryogenic electron microscopy (cryo-EM) in elucidating structures of enveloped virions. Starting from a detailed outline of data collection and processing strategies, we highlight how cryo-EM has been successfully utilized to provide unique insights into enveloped virus entry, assembly, and neutralization.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Young Chan Kim
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Helsinki Institute of Life Science HiLIFE and Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
21
|
Zhang X, Yan F, Tang K, Chen Q, Guo J, Zhu W, He S, Banadyga L, Qiu X, Guo Y. Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Res 2019; 167:68-77. [PMID: 30953674 PMCID: PMC7111477 DOI: 10.1016/j.antiviral.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/31/2022]
Abstract
Lassa virus (LASV) causes Lassa hemorrhagic fever in humans and poses a significant threat to public health in West Africa. Current therapeutic treatments for Lassa fever are limited, making the development of novel countermeasures an urgent priority. In this study, we identified losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, from 102 screened compounds as an inhibitor of LASV infection. Losmapimod exerted its inhibitory effect against LASV after p38 MAPK down-regulation, and, interestingly, had no effect on other arenaviruses capable of causing viral hemorrhagic fever. Mechanistic studies showed that losmapimod inhibited LASV entry by affecting the stable signal peptide (SSP)-GP2 subunit interface of the LASV glycoprotein, thereby blocking pH-dependent viral fusion. As an aryl heteroaryl bis-carboxyamide derivative, losmapimod represents a novel chemical scaffold with anti-LASV activity, and it provides a new lead structure for the future development of LASV fusion inhibitors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, China
| | - Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiamei Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
22
|
Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J Virol 2019; 93:JVI.02185-18. [PMID: 30700611 DOI: 10.1128/jvi.02185-18] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Antiviral therapies that impede virus entry are attractive because they act on the first phase of the infectious cycle. Drugs that target pathways common to multiple viruses are particularly desirable when laboratory-based viral identification may be challenging, e.g., in an outbreak setting. We are interested in identifying drugs that block both Ebola virus (EBOV) and Lassa virus (LASV), two unrelated but highly pathogenic hemorrhagic fever viruses that have caused outbreaks in similar regions in Africa and share features of virus entry: use of cell surface attachment factors, macropinocytosis, endosomal receptors, and low pH to trigger fusion in late endosomes. Toward this goal, we directly compared the potency of eight drugs known to block EBOV entry with their potency as inhibitors of LASV entry. Five drugs (amodiaquine, apilimod, arbidol, niclosamide, and zoniporide) showed roughly equivalent degrees of inhibition of LASV and EBOV glycoprotein (GP)-bearing pseudoviruses; three (clomiphene, sertraline, and toremifene) were more potent against EBOV. We then focused on arbidol, which is licensed abroad as an anti-influenza drug and exhibits activity against a diverse array of clinically relevant viruses. We found that arbidol inhibits infection by authentic LASV, inhibits LASV GP-mediated cell-cell fusion and virus-cell fusion, and, reminiscent of its activity on influenza virus hemagglutinin, stabilizes LASV GP to low-pH exposure. Our findings suggest that arbidol inhibits LASV fusion, which may partly involve blocking conformational changes in LASV GP. We discuss our findings in terms of the potential to develop a drug cocktail that could inhibit both LASV and EBOV.IMPORTANCE Lassa and Ebola viruses continue to cause severe outbreaks in humans, yet there are only limited therapeutic options to treat the deadly hemorrhagic fever diseases they cause. Because of overlapping geographic occurrences and similarities in mode of entry into cells, we seek a practical drug or drug cocktail that could be used to treat infections by both viruses. Toward this goal, we directly compared eight drugs, approved or in clinical testing, for the ability to block entry mediated by the glycoproteins of both viruses. We identified five drugs with approximately equal potencies against both. Among these, we investigated the modes of action of arbidol, a drug licensed abroad to treat influenza infections. We found, as shown for influenza virus, that arbidol blocks fusion mediated by the Lassa virus glycoprotein. Our findings encourage the development of a combination of approved drugs to treat both Lassa and Ebola virus diseases.
Collapse
|
23
|
Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion. J Virol 2019; 93:JVI.01744-18. [PMID: 30626681 DOI: 10.1128/jvi.01744-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.
Collapse
|
24
|
Madu IG, Files M, Gharaibeh DN, Moore AL, Jung KH, Gowen BB, Dai D, Jones KF, Tyavanagimatt SR, Burgeson JR, Korth MJ, Bedard KM, Iadonato SP, Amberg SM. A potent Lassa virus antiviral targets an arenavirus virulence determinant. PLoS Pathog 2018; 14:e1007439. [PMID: 30576397 PMCID: PMC6322784 DOI: 10.1371/journal.ppat.1007439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/07/2019] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
Arenaviruses are a significant cause of hemorrhagic fever, an often-fatal disease for which there is no approved antiviral therapy. Lassa fever in particular generates high morbidity and mortality in West Africa, where the disease is endemic, and a recent outbreak in Nigeria was larger and more geographically diverse than usual. We are developing LHF-535, a small-molecule viral entry inhibitor that targets the arenavirus envelope glycoprotein, as a therapeutic candidate for Lassa fever and other hemorrhagic fevers of arenavirus origin. Using a lentiviral pseudotype infectivity assay, we determined that LHF-535 had sub-nanomolar potency against the viral envelope glycoproteins from all Lassa virus lineages, with the exception of the glycoprotein from the LP strain from lineage I, which was 100-fold less sensitive than that of other strains. This reduced sensitivity was mediated by a unique amino acid substitution, V434I, in the transmembrane domain of the envelope glycoprotein GP2 subunit. This position corresponds to the attenuation determinant of Candid#1, a live-attenuated Junín virus vaccine strain used to prevent Argentine hemorrhagic fever. Using a virus-yield reduction assay, we determined that LHF-535 potently inhibited Junín virus, but not Candid#1, and the Candid#1 attenuation determinant, F427I, regulated this difference in sensitivity. We also demonstrated that a daily oral dose of LHF-535 at 10 mg/kg protected mice from a lethal dose of Tacaribe virus. Serial passage of Tacaribe virus in LHF-535-treated Vero cells yielded viruses that were resistant to LHF-535, and the majority of drug-resistant viruses exhibited attenuated pathogenesis. These findings provide a framework for the clinical development of LHF-535 as a broad-spectrum inhibitor of arenavirus entry and provide an important context for monitoring the emergence of drug-resistant viruses. Lassa fever is a viral hemorrhagic fever disease that is transmitted to humans primarily through contact with the urine or feces of infected rodents. The disease is endemic in West Africa, and an unusually large outbreak occurred in Nigeria in early 2018. The case fatality rate was 25% among confirmed cases, underscoring the need for an effective antiviral therapy. Here, we evaluated the small-molecule drug LHF-535, which targets the arenavirus envelope glycoprotein, for broad-spectrum activity against Lassa viruses of different lineages and related arenaviruses that cause hemorrhagic fever diseases in South America. We also selected for LHF-535-resistant viruses and characterized their genotype and phenotype. Using a combination of surrogate systems and wild-type viruses, we determined that all tested Lassa virus strains and New World hemorrhagic fever arenaviruses were sensitive to LHF-535. Sensitivity to the drug was modulated by specific amino acid changes in the viral envelope glycoprotein, and the majority of emerging drug-resistant viruses were attenuated for virulence. Similarly, the live-attenuated vaccine strain for Argentine hemorrhagic fever was also resistant to LHF-535. These findings indicate that LHF-535 targets a viral virulence determinant, the mutation of which may result in the emergence of drug-resistant viruses, but with reduced capacity for virulence.
Collapse
Affiliation(s)
- Ikenna G. Madu
- Kineta, Inc., Seattle, Washington, United States of America
| | - Megan Files
- Kineta, Inc., Seattle, Washington, United States of America
| | - Dima N. Gharaibeh
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Amy L. Moore
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Kie-Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Brian B. Gowen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Dongcheng Dai
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | - Kevin F. Jones
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | | | - James R. Burgeson
- SIGA Technologies, Inc., Corvallis, Oregon, United States of America
| | | | | | | | - Sean M. Amberg
- Kineta, Inc., Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. J Virol 2018; 92:JVI.00954-18. [PMID: 29899092 PMCID: PMC6069169 DOI: 10.1128/jvi.00954-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/25/2022] Open
Abstract
Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. At present, there are no Food and Drug Administration (FDA)-approved drugs or vaccines specific for LASV. Here, high-throughput screening of an FDA-approved drug library was performed against LASV entry by using pseudotype virus bearing LASV envelope glycoprotein (GPC). Two hit compounds, lacidipine and phenothrin, were identified as LASV entry inhibitors in the micromolar range. A mechanistic study revealed that both compounds inhibited LASV entry by blocking low-pH-induced membrane fusion. Accordingly, lacidipine showed virucidal effects on the pseudotype virus of LASV. Adaptive mutant analyses demonstrated that replacement of T40, located in the ectodomain of the stable-signal peptide (SSP), with lysine (K) conferred LASV resistance to lacidipine. Furthermore, lacidipine showed antiviral activity against LASV, the closely related Mopeia virus (MOPV), and the New World arenavirus Guanarito virus (GTOV). Drug-resistant variants indicated that V36M in the ectodomain of the SSP mutant and V436A in the transmembrane domain of the GP2 mutant conferred GTOV resistance to lacidipine, suggesting the interface between SSP and GP2 is the target of lacidipine. This study shows that lacidipine is a candidate for LASV therapy, reinforcing the notion that the SSP-GP2 interface provides an entry-targeted platform for arenavirus inhibitor design.IMPORTANCE Currently, there is no approved therapy to treat Lassa fever; therefore, repurposing of approved drugs will accelerate the development of a therapeutic stratagem. In this study, we screened an FDA-approved library of drugs and identified two compounds, lacidipine and phenothrin, which inhibited Lassa virus entry by blocking low-pH-induced membrane fusion. Additionally, both compounds extended their inhibition against the entry of Guanarito virus, and the viral targets were identified as the SSP-GP2 interface.
Collapse
|
26
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Cleavage of the Glycoprotein of Arenaviruses. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7121819 DOI: 10.1007/978-3-319-75474-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arenaviruses are a large family of emerging negative-stranded RNA viruses that include several severe human pathogens causing hemorrhagic fevers with high mortality. During the arenavirus life cycle, processing of the viral envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is crucial for productive infection. The ability of newly emerging arenaviruses to hijack human SKI-1/S1P is a key factor for zoonotic transmission and human disease potential. Apart from being an essential host factor for arenavirus infection, SKI-1/S1P is involved in the regulation of important physiological processes and linked to major human diseases. This chapter provides an overview of the mechanisms of arenavirus GPC processing by SKI-1/S1P including recent findings. We will highlight to what extent the molecular mechanisms of SKI-1/S1P cleavage of viral GPC differ from processing of SKI-1/S1P’s cellular substrates and discuss the implications for virus-host interaction and coevolution. Moreover, we will show how the use of the viral GPC as a “molecular probe” uncovered novel and unusual aspects of SKI-1/S1P biosynthesis and maturation. The crucial role of SKI-1/S1P in arenavirus infection and other major human diseases combined with its nature as an enzyme makes SKI-1/S1P further an attractive target for therapeutic intervention. In the last part, we will therefore cover past and present efforts to identify specific SKI-1/S1P inhibitors.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
27
|
Epistastic Interactions within the Junín Virus Envelope Glycoprotein Complex Provide an Evolutionary Barrier to Reversion in the Live-Attenuated Candid#1 Vaccine. J Virol 2017; 92:JVI.01682-17. [PMID: 29070682 DOI: 10.1128/jvi.01682-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023] Open
Abstract
The Candid#1 strain of Junín virus was developed using a conventional attenuation strategy of serial passage in nonhost animals and cultured cells. The live-attenuated Candid#1 vaccine is used in Argentina to protect at-risk individuals against Argentine hemorrhagic fever, but it has not been licensed in the United States. Recent studies have revealed that Candid#1 attenuation is entirely dependent on a phenylalanine-to-isoleucine substitution at position 427 in the fusion subunit (GP2) of the viral envelope glycoprotein complex (GPC), thereby raising concerns regarding the potential for reversion to virulence. In this study, we report the identification and characterization of an intragenic epistatic interaction between the attenuating F427I mutation in GP2 and a lysine-to-serine mutation at position 33 in the stable signal peptide (SSP) subunit of GPC, and we demonstrate the utility of this interaction in creating an evolutionary barrier against reversion to the pathogenic genotype. In the presence of the wild-type F427 residue, the K33S mutation abrogates the ability of ectopically expressed GPC to mediate membrane fusion at endosomal pH. This defect is rescued by the attenuating F427I mutation. We show that the recombinant Candid#1 (rCan) virus bearing K33S GPC is viable and retains its attenuated genotype under cell culture conditions that readily select for reversion in the parental rCan virus. If back-mutation to F427 offers an accessible pathway to increase fitness in rCan, reversion in K33S-GPC rCan is likely to be lethal. The epistatic interaction between K33S and F427I thus may minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine.IMPORTANCE The live-attenuated Candid#1 vaccine strain of Junín virus is used to protect against Argentine hemorrhagic fever. Recent findings that a single missense mutation in the viral envelope glycoprotein complex (GPC) is responsible for attenuation raise the prospect of facile reversion to pathogenicity. Here, we characterize a genetic interaction between GPC subunits that evolutionarily forces retention of the attenuating mutation. By incorporating this secondary mutation into Candid#1 GPC, we hope to minimize the likelihood of reversion and enhance safety in a second-generation Candid#1 vaccine. A similar approach may guide the design of live-attenuated vaccines against Lassa and other arenaviral hemorrhagic fevers.
Collapse
|