1
|
Cordsmeier A, Herrmann A, Gege C, Kohlhof H, Korn K, Ensser A. Molecular analysis of the 2022 mpox outbreak and antiviral activity of dihydroorotate dehydrogenase inhibitors against orthopoxviruses. Antiviral Res 2025; 233:106043. [PMID: 39608644 DOI: 10.1016/j.antiviral.2024.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Monkeypox virus (MPXV) has caused a large pandemic outbreak in 2022 with more than 90.000 confirmed cases and 181 deaths. Notably, signs of microevolution and host adaption have been observed. Here, we demonstrate that viral genomes from Franconia, Bavaria acquired different mutations. Three isolates obtained from diagnostic samples, submitted from suspected Mpox cases, show differences in their replication capacities. One MPXV isolate which shows the fastest replication kinetics and higher viral loads, possesses a unique non-synonymous mutation (D616L) in the A11L protein (gene OPG136), which encodes for a protein that is part of a major viral core structure. In regard to pandemic preparedness and future outbreaks, we analyzed the antiviral activity of dihydroorotate dehydrogenase (DHODH) inhibitors, and show that they are active against MPXV, vaccinia virus (VACV), and cowpox virus (CPXV) and therefore likely against orthopoxviruses in general. In agreement with that, we also demonstrated that chemical optimization leads to compounds with EC50 values in the sub-nanomolar range, associated with low cytotoxicity, which forms a good basis for future drug development from this chemical series.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | - Christian Gege
- Immunic AG, Lochhamer Schlag 21, 82166 Gräfelfing, Germany
| | - Hella Kohlhof
- Immunic AG, Lochhamer Schlag 21, 82166 Gräfelfing, Germany
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
2
|
Duan H, Shi Q, Yue X, Zhang Z, Liu L, Wang Y, Cao Y, Ou Z, Liang L, Hu J, Shi H. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs: A WEB prediction approach. PLoS One 2024; 19:e0303501. [PMID: 39642129 PMCID: PMC11623562 DOI: 10.1371/journal.pone.0303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
A new round of monkeypox virus has emerged in the United Kingdom since July 2022 and rapidly swept the world. Currently, despite numerous research groups are studying this virus and seeking effective treatments, the information on the open reading frame, inhibitors, and potential targets of monkeypox has not been updated in time, and the comprehension of monkeypox target ligand interactions remains a key challenge. Here, we first summarized and improved the open reading frame information of monkeypox, constructed the monkeypox inhibitor library and potential targets library by database research as well as literature search, combined with advanced protein modeling technologies (Sequence-based and AI algorithms-based homology modeling). In addition, we build monkeypox virus Docking Server, a web server to predict the binding mode between targets and substrate. The open reading frame information, monkeypox inhibitor library, and monkeypox potential targets library are used as the initial files for server docking, providing free interactive tools for predicting ligand interactions of monkeypox targets, potential drug screening, and potential targets search. In addition, the update of the three databases can also effectively promote the study of monkeypox drug inhibition mechanism and provide theoretical guidance for the development of drugs for monkeypox.
Collapse
Affiliation(s)
- Huaichuan Duan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yujie Cao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zuoxin Ou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
3
|
Das R, Bhattarai A, Karn R, Tamang B. Computational investigations of potential inhibitors of monkeypox virus envelope protein E8 through molecular docking and molecular dynamics simulations. Sci Rep 2024; 14:19585. [PMID: 39179615 PMCID: PMC11343748 DOI: 10.1038/s41598-024-70433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The World Health Organization (WHO) has declared the monkeypox outbreak a public health emergency, as there is no specific therapeutics for monkeypox virus (MPXV) disease. This study focused on docking various commercial drugs and plant-derived compounds against the E8 envelope protein crucial for MPXV attachment and pathogenesis. The target protein structure was modeled based on the vaccinia virus D8L protein. Notably, maraviroc and punicalagin emerged as potential ligands, with punicalagin exhibiting higher binding affinity (- 9.1 kcal/mol) than maraviroc (- 7.8 kcal/mol). Validation through 100 ns molecular dynamics (MD) simulations demonstrated increased stability of the E8-punicalagin complex, with lower RMSD, RMSF, and Rg compared to maraviroc. Enhanced hydrogen bonding, lower solvent accessibility, and compact motions also attributed to higher binding affinity and stability of the complex. MM-PBSA calculations revealed van der Waals, electrostatic, and non-polar solvation as principal stabilizing energies. The binding energy decomposition per residue favored stable interactions between punicalagin and the protein's active site residues (Arg20, Phe56, Glu228, Tyr232) compared to maraviroc. Overall study suggests that punicalagin can act as a potent inhibitor against MPXV. Further research and experimental investigations are warranted to validate its efficacy and safety.
Collapse
Affiliation(s)
- Rohit Das
- Department of Microbiology, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Anil Bhattarai
- Department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, 5th Mile, Tadong, Gangtok, Sikkim, 737102, India.
| | - Rohit Karn
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Buddhiman Tamang
- Department of Microbiology, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
4
|
Matía A, Lorenzo MM, Romero-Estremera YC, Sánchez-Puig JM, Zaballos A, Blasco R. Identification of β2 microglobulin, the product of B2M gene, as a Host Factor for Vaccinia Virus Infection by Genome-Wide CRISPR genetic screens. PLoS Pathog 2022; 18:e1010800. [PMID: 36574441 PMCID: PMC9829182 DOI: 10.1371/journal.ppat.1010800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/09/2023] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Genome-wide genetic screens are powerful tools to identify genes that act as host factors of viruses. We have applied this technique to analyze the infection of HeLa cells by Vaccinia virus, in an attempt to find genes necessary for infection. Infection of cell populations harboring single gene inactivations resulted in no surviving cells, suggesting that no single gene knock-out was able to provide complete resistance to Vaccinia virus and thus allow cells to survive infection. In the absence of an absolute infection blockage, we explored if some gene inactivations could provide partial protection leading to a reduced probability of infection. Multiple experiments using modified screening procedures involving replication restricted viruses led to the identification of multiple genes whose inactivation potentially increase resistance to infection and therefore cell survival. As expected, significant gene hits were related to proteins known to act in virus entry, such as ITGB1 and AXL as well as genes belonging to their downstream related pathways. Additionally, we consistently found β2-microglobulin, encoded by the B2M gene, among the screening top hits, a novel finding that was further explored. Inactivation of B2M resulted in 54% and 91% reduced VV infection efficiency in HeLa and HAP1 cell lines respectively. In the absence of B2M, while virus binding to the cells was unaffected, virus internalization and early gene expression were significantly diminished. These results point to β2-microglobulin as a relevant factor in the Vaccinia virus entry process.
Collapse
Affiliation(s)
- Alejandro Matía
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Maria M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Yolimar C. Romero-Estremera
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología-ISCIII, Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Samoranos KT, Krisiewicz AL, Karpinecz BC, Glover PA, Gale TV, Chehadeh C, Ashshan S, Koya R, Chung EY, Lim HL. pH Sensitive Erythrocyte-Derived Membrane for Acute Systemic Retention and Increased Infectivity of Coated Oncolytic Vaccinia Virus. Pharmaceutics 2022; 14:pharmaceutics14091810. [PMID: 36145558 PMCID: PMC9504069 DOI: 10.3390/pharmaceutics14091810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Oncolytic viruses have emerged as a promising modality in cancer treatment given their high synergy with highly efficient immune checkpoint inhibitors. However, their potency is limited by their rapid in vivo clearance. To overcome this, we coated oncolytic vaccinia viruses (oVV) with erythrocyte-derived membranes (EDMs), hypothesizing that they would not only remain in systemic circulation for longer as erythrocytes would when administered intravenously, but also respond to environmental pH cues due to their membrane surface sialic acid residues. For this, we developed a model based on DLVO theory to show that the acidic moieties on the surface of EDM confers it the ability to respond to pH-based stimuli. We corroborate our modeling results through in vitro cell culture models and show that EDM-coated oVV infects cancer cells faster under acidic conditions akin to the tumor microenvironment. When EDM-coated oVVs were intravenously injected into wild-type mice, they exhibited prolonged circulation at higher concentrations when compared to the unprocessed oVV. Furthermore, when EDM-coated oVV was directly injected into xenografted tumors, we observed that they were suppressed earlier than the tumors that received regular oVV, suggesting that the EDM coating does not hinder oVV infectivity. Overall, we found that EDM was able to serve as a multi-functional encapsulant that allowed the payload to remain in circulation at higher concentrations when administered intravenously while simultaneously exhibiting pH-responsive properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard Koya
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Eddie Y. Chung
- Coastar Therapeutics Inc., San Diego, CA 92121, USA
- Correspondence: (E.Y.C.); (H.L.L.)
| | - Han L. Lim
- Coastar Therapeutics Inc., San Diego, CA 92121, USA
- Correspondence: (E.Y.C.); (H.L.L.)
| |
Collapse
|
6
|
Martin CK, Samolej J, Olson AT, Bertoli C, Wiebe MS, de Bruin RAM, Mercer J. Vaccinia Virus Arrests and Shifts the Cell Cycle. Viruses 2022; 14:431. [PMID: 35216024 PMCID: PMC8874441 DOI: 10.3390/v14020431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Modulation of the host cell cycle is a common strategy used by viruses to create a pro-replicative environment. To facilitate viral genome replication, vaccinia virus (VACV) has been reported to alter cell cycle regulation and trigger the host cell DNA damage response. However, the cellular factors and viral effectors that mediate these changes remain unknown. Here, we set out to investigate the effect of VACV infection on cell proliferation and host cell cycle progression. Using a subset of VACV mutants, we characterise the stage of infection required for inhibition of cell proliferation and define the viral effectors required to dysregulate the host cell cycle. Consistent with previous studies, we show that VACV inhibits and subsequently shifts the host cell cycle. We demonstrate that these two phenomena are independent of one another, with viral early genes being responsible for cell cycle inhibition, and post-replicative viral gene(s) responsible for the cell cycle shift. Extending previous findings, we show that the viral kinase F10 is required to activate the DNA damage checkpoint and that the viral B1 kinase and/or B12 pseudokinase mediate degradation of checkpoint effectors p53 and p21 during infection. We conclude that VACV modulates host cell proliferation and host cell cycle progression through temporal expression of multiple VACV effector proteins. (209/200.).
Collapse
Affiliation(s)
- Caroline K. Martin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (C.K.M.); (C.B.); (R.A.M.d.B.)
| | - Jerzy Samolej
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Annabel T. Olson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA;
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (C.K.M.); (C.B.); (R.A.M.d.B.)
| | - Matthew S. Wiebe
- School of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA;
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (C.K.M.); (C.B.); (R.A.M.d.B.)
| | - Jason Mercer
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
7
|
Engineered Promoter-Switched Viruses Reveal the Role of Poxvirus Maturation Protein A26 as a Negative Regulator of Viral Spread. J Virol 2021; 95:e0101221. [PMID: 34260287 PMCID: PMC8428399 DOI: 10.1128/jvi.01012-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus produces two types of virions known as single-membraned intracellular mature virus (MV) and double-membraned extracellular enveloped virus (EV). EV production peaks earlier when initial MVs are further wrapped and secreted to spread infection within the host. However, late during infection, MVs accumulate intracellularly and become important for host-to-host transmission. The process that regulates this switch remains elusive and is thought to be influenced by host factors. Here, we examined the hypothesis that EV and MV production are regulated by the virus through expression of F13 and the MV-specific protein A26. By switching the promoters and altering the expression kinetics of F13 and A26, we demonstrate that A26 expression downregulates EV production and plaque size, thus limiting viral spread. This process correlates with A26 association with the MV surface protein A27 and exclusion of F13, thus reducing EV titers. Thus, MV maturation is controlled by the abundance of the viral A26 protein, independently of other factors, and is rate limiting for EV production. The A26 gene is conserved within vertebrate poxviruses but is strikingly lost in poxviruses known to be transmitted exclusively by biting arthropods. A26-mediated virus maturation thus has the appearance to be an ancient evolutionary adaptation to enhance transmission of poxviruses that has subsequently been lost from vector-adapted species, for which it may serve as a genetic signature. The existence of virus-regulated mechanisms to produce virions adapted to fulfill different functions represents a novel level of complexity in mammalian viruses with major impacts on evolution, adaptation, and transmission. IMPORTANCE Chordopoxviruses are mammalian viruses that uniquely produce a first type of virion adapted to spread within the host and a second type that enhances transmission between hosts, which can take place by multiple ways, including direct contact, respiratory droplets, oral/fecal routes, or via vectors. Both virion types are important to balance intrahost dissemination and interhost transmission, so virus maturation pathways must be tightly controlled. Here, we provide evidence that the abundance and kinetics of expression of the viral protein A26 regulates this process by preventing formation of the first form and shifting maturation toward the second form. A26 is expressed late after the initial wave of progeny virions is produced, so sufficient viral dissemination is ensured, and A26 provides virions with enhanced environmental stability. Conservation of A26 in all vertebrate poxviruses, but not in those transmitted exclusively via biting arthropods, reveals the importance of A26-controlled virus maturation for transmission routes involving environmental exposure.
Collapse
|
8
|
Inactivation of Genes by Frameshift Mutations Provides Rapid Adaptation of an Attenuated Vaccinia Virus. J Virol 2020; 94:JVI.01053-20. [PMID: 32669330 DOI: 10.1128/jvi.01053-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios.IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.
Collapse
|
9
|
Mutations Near the N Terminus of Vaccinia Virus G9 Protein Overcome Restrictions on Cell Entry and Syncytium Formation Imposed by the A56/K2 Fusion Regulatory Complex. J Virol 2020; 94:JVI.00077-20. [PMID: 32132239 DOI: 10.1128/jvi.00077-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
The entry/fusion complex (EFC) consists of 11 conserved proteins embedded in the membrane envelope of mature poxvirus particles. Poxviruses also encode proteins that localize in cell membranes and negatively regulate superinfection and syncytium formation. The vaccinia virus (VACV) A56/K2 fusion regulatory complex associates with the G9/A16 EFC subcomplex, but functional support for the importance of this interaction was lacking. Here, we describe serially passaging VACV in nonpermissive cells expressing A56/K2 as an unbiased approach to isolate and analyze escape mutants. Viruses forming large plaques in A56/K2 cells increased in successive rounds of infection, indicating the occurrence and enrichment of adaptive mutations. Sequencing of genomes of passaged and cloned viruses revealed mutations near the N terminus of the G9 open reading frame but none in A16 or other genes. The most frequent mutation was His to Tyr at amino acid 44; additional escape mutants had a His-to-Arg mutation at amino acid 44 or a duplication of amino acids 26 to 39. An adaptive Tyr-to-Cys substitution at amino acid 42 was discovered using error-prone PCR to generate additional mutations. Myristoylation of G9 was unaffected by the near-N-terminal mutations. The roles of the G9 mutations in enhancing plaque size were validated by homologous recombination. The mutants exhibited enhanced entry and spread in A56/K2 cells and induced syncytia at neutral pH in HeLa cells despite the expression of A56/K2. The data suggest that the mutations perturb the interaction of G9 with A56/K2, although some association was still detected in detergent-treated infected cell lysates.IMPORTANCE The entry of enveloped viruses is achieved by the fusion of viral and cellular membranes, a critical step in infection that determines host range and provides targets for vaccines and therapeutics. Poxviruses encode an exceptionally large number of proteins comprising the entry/fusion complex (EFC), which enables infection of diverse cells. Vaccinia virus (VACV), the prototype member of the poxvirus family, also encodes the fusion regulatory proteins A56 and K2, which are displayed on the plasma membrane and may be beneficial by preventing reinfection and cell-cell fusion. Previous studies showed that A56/K2 interacts with the G9/A16 EFC subcomplex in detergent-treated cell extracts. Functional evidence for the importance of this interaction was obtained by serially passaging wild-type VACV in cells that are nonpermissive because of A56/K2 expression. VACV mutants with amino acid substitutions or duplications near the N terminus of G9 were enriched because of their ability to overcome the block to entry imposed by A56/K2.
Collapse
|
10
|
Experimental Evolution To Isolate Vaccinia Virus Adaptive G9 Mutants That Overcome Membrane Fusion Inhibition via the Vaccinia Virus A56/K2 Protein Complex. J Virol 2020; 94:JVI.00093-20. [PMID: 32132237 DOI: 10.1128/jvi.00093-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 11/20/2022] Open
Abstract
For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the ΔA56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter's G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.
Collapse
|
11
|
What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J Virol 2020; 94:JVI.01625-19. [PMID: 31645446 DOI: 10.1128/jvi.01625-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Collapse
|
12
|
Luteijn RD, van Diemen F, Blomen VA, Boer IGJ, Manikam Sadasivam S, van Kuppevelt TH, Drexler I, Brummelkamp TR, Lebbink RJ, Wiertz EJ. A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection. J Virol 2019; 93:e02160-18. [PMID: 30996093 PMCID: PMC6580964 DOI: 10.1128/jvi.02160-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.
Collapse
Affiliation(s)
- Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ferdy van Diemen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ingrid G J Boer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingo Drexler
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Chang HW, Yang CH, Luo YC, Su BG, Cheng HY, Tung SY, Carillo KJD, Liao YT, Tzou DLM, Wang HC, Chang W. Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS Pathog 2019; 15:e1007826. [PMID: 31220181 PMCID: PMC6605681 DOI: 10.1371/journal.ppat.1007826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/02/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Vaccinia mature virus requires A26 envelope protein to mediate acid-dependent endocytosis into HeLa cells in which we hypothesized that A26 protein functions as an acid-sensitive membrane fusion suppressor. Here, we provide evidence showing that N-terminal domain (aa1-75) of A26 protein is an acid-sensitive region that regulates membrane fusion. Crystal structure of A26 protein revealed that His48 and His53 are in close contact with Lys47, Arg57, His314 and Arg312, suggesting that at low pH these His-cation pairs could initiate conformational changes through protonation of His48 and His53 and subsequent electrostatic repulsion. All the A26 mutant mature viruses that interrupted His-cation pair interactions of His48 and His 53 indeed have lost virion infectivity. Isolation of revertant viruses revealed that second site mutations caused frame shifts and premature termination of A26 protein such that reverent viruses regained cell entry through plasma membrane fusion. Together, we conclude that viral A26 protein functions as an acid-sensitive fusion suppressor during vaccinia mature virus endocytosis. Vaccinia virus is a complex large DNA virus with a large number of viral membrane proteins to facilitate cell entry. Although it is well established that vaccinia mature virus uses endocytosis to enter cells, it remains unclear how it triggers membrane fusion in the acidic environment of endosomes. Recently, we hypothesized that A26 protein in vaccinia mature virus functions as an acid-sensitive membrane fusion suppressor, which suggests a novel viral regulation not present in other enveloped viruses. We postulated that conformational changes of A26 protein at low pH result in de-repression of viral fusion complex activity to trigger viral and endosomal membrane fusion. Here, we provide structural, biochemical and biological evidence demonstrating that vaccinia A26 protein does indeed function as an acid-sensitive fusion suppressor protein to regulate vaccinia mature virus membrane fusion during endocytosis. Our data reveal an important and unique “checkpoint” for vaccinia mature virus endocytosis that has not been described for other viruses. Furthermore, by isolating adaptive vaccinia mutants that escaped endocytic blockage, we discovered that mutations within the A26L gene serve as an effective strategy for switching the viral infection route from endocytosis to plasma membrane fusion, expanding viral host range.
Collapse
Affiliation(s)
- Hung-Wei Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Han Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Luo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Bo-Gang Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Yin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kathleen Joyce D. Carillo
- Sustainable Chemical Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Ting Liao
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Der-Lii M. Tzou
- Sustainable Chemical Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taiwan
- * E-mail: (HCW); (WC)
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (HCW); (WC)
| |
Collapse
|
14
|
Mirzakhanyan Y, Gershon P. The Vaccinia virion: Filling the gap between atomic and ultrastructure. PLoS Pathog 2019; 15:e1007508. [PMID: 30615658 PMCID: PMC6336343 DOI: 10.1371/journal.ppat.1007508] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/17/2019] [Accepted: 12/06/2018] [Indexed: 01/19/2023] Open
Abstract
We have investigated the molecular-level structure of the Vaccinia virion in situ by protein-protein chemical crosslinking, identifying 4609 unique-mass crosslink ions at an effective FDR of 0.33%, covering 2534 unique pairs of crosslinked protein positions, 625 of which were inter-protein. The data were statistically non-random and rational in the context of known structures, and showed biological rationality. Crosslink density strongly tracked the individual proteolytic maturation products of p4a and p4b, the two major virion structural proteins, and supported the prediction of transmembrane domains within membrane proteins. A clear sub-network of four virion structural proteins provided structural insights into the virion core wall, and proteins VP8 and A12 formed a strongly-detected crosslinked pair with an apparent structural role. A strongly-detected sub-network of membrane proteins A17, H3, A27 and A26 represented an apparent interface of the early-forming virion envelope with structures added later during virion morphogenesis. Protein H3 seemed to be the central hub not only for this sub-network but also for an 'attachment protein' sub-network comprising membrane proteins H3, ATI, CAHH(D8), A26, A27 and G9. Crosslinking data lent support to a number of known interactions and interactions within known complexes. Evidence is provided for the membrane targeting of genome telomeres. In covering several orders of magnitude in protein abundance, this study may have come close to the bottom of the protein-protein crosslinkome of an intact organism, namely a complex animal virus.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| | - Paul Gershon
- Department of Molecular Biology & Biochemistry, UC-Irvine, Irvine, California, United States of America
| |
Collapse
|
15
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
16
|
Combined Proteomics/Genomics Approach Reveals Proteomic Changes of Mature Virions as a Novel Poxvirus Adaptation Mechanism. Viruses 2017; 9:v9110337. [PMID: 29125539 PMCID: PMC5707544 DOI: 10.3390/v9110337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
DNA viruses, like poxviruses, possess a highly stable genome, suggesting that adaptation of virus particles to specific cell types is not restricted to genomic changes. Cowpox viruses are zoonotic poxviruses with an extraordinarily broad host range, demonstrating their adaptive potential in vivo. To elucidate adaptation mechanisms of poxviruses, we isolated cowpox virus particles from a rat and passaged them five times in a human and a rat cell line. Subsequently, we analyzed the proteome and genome of the non-passaged virions and each passage. While the overall viral genome sequence was stable during passaging, proteomics revealed multiple changes in the virion composition. Interestingly, an increased viral fitness in human cells was observed in the presence of increased immunomodulatory protein amounts. As the only minor variant with increasing frequency during passaging was located in a viral RNA polymerase subunit and, moreover, most minor variants were found in transcription-associated genes, protein amounts were presumably regulated at transcription level. This study is the first comparative proteome analysis of virus particles before and after cell culture propagation, revealing proteomic changes as a novel poxvirus adaptation mechanism.
Collapse
|
17
|
Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. J Virol 2017; 91:JVI.00767-17. [PMID: 28659486 DOI: 10.1128/jvi.00767-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
The Western Reserve (WR) strain of mature vaccinia virus contains an A26 envelope protein that mediates virus binding to cell surface laminin and subsequent endocytic entry into HeLa cells. Removal of the A26 protein from the WR strain mature virus generates a mutant, WRΔA26, that enters HeLa cells through plasma membrane fusion. Here, we infected murine bone marrow-derived macrophages (BMDM) with wild-type strain WR and the WRΔA26 mutant and analyzed viral gene expression and cellular innate immune signaling. In contrast to previous studies, in which both HeLa cells infected with WR and HeLa cells infected with WRΔA26 expressed abundant viral late proteins, we found that WR expressed much less viral late protein than WRΔA26 in BMDM. Microarray analysis of the cellular transcripts in BMDM induced by virus infection revealed that WR preferentially activated type 1 interferon receptor (IFNAR)-dependent signaling but WRΔA26 did not. We consistently detected a higher level of soluble beta interferon secretion and phosphorylation of the STAT1 protein in BMDM infected with WR than in BMDM infected with WRΔA26. When IFNAR-knockout BMDM were infected with WR, late viral protein expression increased, confirming that IFNAR-dependent signaling was differentially induced by WR and, in turn, restricted viral late gene expression. Finally, wild-type C57BL/6 mice were more susceptible to mortality from WRΔA26 infection than to that from WR infection, whereas IFNAR-knockout mice were equally susceptible to WR and WRΔA26 infection, demonstrating that the ability of WRΔA26 to evade IFNAR signaling has an important influence on viral pathogenesis in vivoIMPORTANCE The vaccinia virus A26 protein was previously shown to mediate virus attachment and to regulate viral endocytosis. Here, we show that infection with strain WR induces a robust innate immune response that activates type 1 interferon receptor (IFNAR)-dependent cellular genes in BMDM, whereas infection with the WRΔA26 mutant does not. We further demonstrated that the differential activation of IFNAR-dependent cellular signaling between WR and WRΔA26 not only is important for differential host restriction in BMDM but also is important for viral virulence in vivo Our study reveals a new property of WRΔA26, which is in regulating host antiviral innate immunity in vitro and in vivo.
Collapse
|
18
|
Silvin A, Yu CI, Lahaye X, Imperatore F, Brault JB, Cardinaud S, Becker C, Kwan WH, Conrad C, Maurin M, Goudot C, Marques-Ladeira S, Wang Y, Pascual V, Anguiano E, Albrecht RA, Iannacone M, García-Sastre A, Goud B, Dalod M, Moris A, Merad M, Palucka AK, Manel N. Constitutive resistance to viral infection in human CD141 + dendritic cells. Sci Immunol 2017; 2:2/13/eaai8071. [PMID: 28783704 DOI: 10.1126/sciimmunol.aai8071] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/09/2017] [Accepted: 05/17/2017] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are critical for the launching of protective T cell immunity in response to viral infection. Viruses can directly infect DCs, thereby compromising their viability and suppressing their ability to activate immune responses. How DC function is maintained in light of this paradox is not understood. By analyzing the susceptibility of primary human DC subsets to viral infections, we report that CD141+ DCs have an innate resistance to infection by a broad range of enveloped viruses, including HIV and influenza virus. In contrast, CD1c+ DCs are susceptible to infection, which enables viral antigen production but impairs their immune functions and survival. The ability of CD141+ DCs to resist infection is conferred by RAB15, a vesicle-trafficking protein constitutively expressed in this DC subset. We show that CD141+ DCs rely on viral antigens produced in bystander cells to launch cross-presentation-driven T cell responses. By dissociating viral infection from antigen presentation, this mechanism protects the functional capacity of DCs to launch adaptive immunity against viral infection.
Collapse
Affiliation(s)
- Aymeric Silvin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Chun I Yu
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesco Imperatore
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, UM2, INSERM U1104, CNRS UMR7280, France
| | - Jean-Baptiste Brault
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Sylvain Cardinaud
- Centre d'Immunologie et des Maladies Infectieuses-Paris, Pierre and Marie Curie University UMRS C7, INSERM U1135, CNRS ERL 8255, Paris, France.,INSERM U955, IMRB Equipe-16, Vaccine Research Institute (VRI), F-94010, Creteil, France
| | - Christian Becker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine; and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Wing-Hong Kwan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mathieu Maurin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Christel Goudot
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Santy Marques-Ladeira
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Yuanyuan Wang
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | | | | | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, UM2, INSERM U1104, CNRS UMR7280, France
| | - Arnaud Moris
- Centre d'Immunologie et des Maladies Infectieuses-Paris, Pierre and Marie Curie University UMRS C7, INSERM U1135, CNRS ERL 8255, Paris, France
| | - Miriam Merad
- Precision Immunology Institute, Human Immune Monitoring Center, Tisch Cancer institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - A Karolina Palucka
- Baylor Institute for Immunology Research, Dallas, TX 75204, USA. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
19
|
Williams KJN, Eaton HE, Jones L, Rengan S, Burshtyn DN. Vaccinia virus Western Reserve induces rapid surface expression of a host molecule detected by the antibody 4C7 that is distinct from CLEC2D. Microbiol Immunol 2016; 60:754-769. [PMID: 27862195 DOI: 10.1111/1348-0421.12451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 11/27/2022]
Abstract
In this study, the effect of active infection with vaccinia virus Western Reserve (VACV WR) on expression of C-type lectin domain family 2 (CLEC2D), a ligand of the human NK cell inhibitory receptor NKR-P1, was examined. As predicted, VACV infection led to a loss of CLEC2D mRNA in 221 cells, a B cell lymphoma line. Surprisingly, VACV infection of 221 cells caused a dramatic increase in cell surface staining for one CLEC2D-specific antibody, 4C7. There were no changes in other antibodies specific for CLEC2D and no indication that NK cells with NKR-P1A were inhibited, suggesting 4C7 detects a non-CLEC2D molecule following infection. The rapid increase in 4C7 signal requires virus attachment and is disrupted by UV treatment, but does not depend on new transcription or translation of either cellular or viral proteins. 4C7 does react with intracellular compartments, suggesting the molecule that is detected at the surface following infection is derived from an intracellular store. The phenomenon extends beyond lymphoid cells: it was observed in the non-human primate cell line Cos-7, but not with myxoma, a poxvirus distinct from VACV. To our knowledge, this is the first report of VACV or any poxvirus leading to rapid externalization of a host molecule. Among the VACV strains tested, the phenomenon was restricted to VACV WR and IHD-W, suggesting it has a virulence-, as opposed to a replication-related, function.
Collapse
Affiliation(s)
- Kinola J N Williams
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heather E Eaton
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Lena Jones
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Supraja Rengan
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Deborah N Burshtyn
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
20
|
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60:89-96. [PMID: 27423915 DOI: 10.1016/j.semcdb.2016.07.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022]
Abstract
Poxviruses comprise a large family of enveloped DNA viruses that infect vertebrates and invertebrates. Poxviruses, unlike most DNA viruses, replicate in the cytoplasm and encode enzymes and other proteins that enable entry, gene expression, genome replication, virion assembly and resistance to host defenses. Entry of vaccinia virus, the prototype member of the family, can occur at the plasma membrane or following endocytosis. Whereas many viruses encode one or two proteins for attachment and membrane fusion, vaccinia virus encodes four proteins for attachment and eleven more for membrane fusion and core entry. The entry-fusion proteins are conserved in all poxviruses and form a complex, known as the Entry Fusion Complex (EFC), which is embedded in the membrane of the mature virion. An additional membrane that encloses the mature virion and is discarded prior to entry is present on an extracellular form of the virus. The EFC is held together by multiple interactions that depend on nine of the eleven proteins. The entry process can be divided into attachment, hemifusion and core entry. All eleven EFC proteins are required for core entry and at least eight for hemifusion. To mediate fusion the virus particle is activated by low pH, which removes one or more fusion repressors that interact with EFC components. Additional EFC-interacting fusion repressors insert into cell membranes and prevent secondary infection. The absence of detailed structural information, except for two attachment proteins and one EFC protein, is delaying efforts to determine the fusion mechanism.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Bidgood SR, Mercer J. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses 2015; 7:4800-25. [PMID: 26308043 PMCID: PMC4576205 DOI: 10.3390/v7082844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs.
Collapse
Affiliation(s)
- Susanna R Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22. J Virol 2015; 89:8365-82. [PMID: 26041286 DOI: 10.1128/jvi.00209-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/26/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex executes endosomal membrane fission and cargo sorting to the Rab11-positive and Rab22-positive recycling pathway, resulting in membrane fusion and virus core uncoating in the cytoplasm.
Collapse
|
23
|
Huang T, Tulman ER, Diel DG, Khatiwada S, Sims W, Edwards JF, Wen X, Kutish GF, Rock DL, Delhon G. Coinfection with multiple strains of bovine papular stomatitis virus. Arch Virol 2015; 160:1527-32. [PMID: 25804193 DOI: 10.1007/s00705-015-2394-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Bovine papular stomatitis virus (BPSV) infects cattle and, occupationally, humans. Prevalent subclinical infections, frequent reinfections, and virus persistence in healthy animals compound a poorly understood, but likely complex, scenario of BPSV perpetuation and transmission in nature. Here, we report the isolation of multiple BPSV strains coinfecting a single animal. Whole-genome analysis of isolated BPSV strains revealed genomic variability likely affecting virus virulence and infectivity. Further, incongruent phylogenetic relationships between viruses suggested genomic recombination. These results have significant implications for parapoxvirus infection biology and virus evolution in nature.
Collapse
Affiliation(s)
- Tao Huang
- Laboratory of Animal Infectious Disease and Microarray/Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Animal Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmidt FI, Kuhn P, Robinson T, Mercer J, Dittrich PS. Single-virus fusion experiments reveal proton influx into vaccinia virions and hemifusion lag times. Biophys J 2014; 105:420-31. [PMID: 23870263 DOI: 10.1016/j.bpj.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements.
Collapse
Affiliation(s)
- Florian I Schmidt
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Kastenmayer RJ, Maruri-Avidal L, Americo JL, Earl PL, Weisberg AS, Moss B. Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution. Virology 2014; 452-453:59-66. [PMID: 24606683 PMCID: PMC3962674 DOI: 10.1016/j.virol.2013.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/04/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
Some orthopoxviruses including cowpox virus embed virus particles in dense bodies, comprised of the A-type inclusion (ATI) protein, which may provide long-term environmental protection. This strategy could be beneficial if the host population is sparse or spread is inefficient or indirect. However, the formation of ATI may be neutral or disadvantageous for orthopoxviruses that rely on direct respiratory spread. Disrupted ATI open reading frames in orthopoxviruses such as variola virus, the agent of smallpox, and monkeypox virus suggests that loss of this feature provided positive selection. To test this hypothesis, we constructed cowpox virus mutants with deletion of the ATI gene or another gene required for embedding virions. The ATI deletion mutant caused greater weight loss and higher replication in the respiratory tract than control viruses, supporting our hypothesis. Deletion of the gene for embedding virions had a lesser effect, possibly due to known additional functions of the encoded protein.
Collapse
Affiliation(s)
- Robin J Kastenmayer
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Liliana Maruri-Avidal
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Andrea S Weisberg
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
26
|
Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SSF, Chen W, Chang W, Tzou DLM. Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. J Biol Chem 2014; 289:6639-6655. [PMID: 24451374 DOI: 10.1074/jbc.m114.547372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The vaccinia viral protein A27 in mature viruses specifically interacts with heparan sulfate for cell surface attachment. In addition, A27 associates with the viral membrane protein A17 to anchor to the viral membrane; however, the specific interaction between A27 and A17 remains largely unclear. To uncover the active binding sites and the underlying binding mechanism, we expressed and purified the N-terminal (18-50 residues) and C-terminal (162-203 residues) fragments of A17, which are denoted A17-N and A17-C. Through surface plasmon resonance, the binding affinity of A27/A17-N (KA = 3.40 × 10(8) m(-1)) was determined to be approximately 3 orders of magnitude stronger than that of A27/A17-C (KA = 3.40 × 10(5) m(-1)), indicating that A27 prefers to interact with A17-N rather than A17-C. Despite the disordered nature of A17-N, the A27-A17 interaction is mediated by a specific and cooperative binding mechanism that includes two active binding sites, namely (32)SFMPK(36) (denoted as F1 binding) and (20)LDKDLFTEEQ(29) (F2). Further analysis showed that F1 has stronger binding affinity and is more resistant to acidic conditions than is F2. Furthermore, A27 mutant proteins that retained partial activity to interact with the F1 and F2 sites of the A17 protein were packaged into mature virus particles at a reduced level, demonstrating that the F1/F2 interaction plays a critical role in vivo. Using these results in combination with site-directed mutagenesis data, we established a computer model to explain the specific A27-A17 binding mechanism.
Collapse
Affiliation(s)
- Da-Rong Wang
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Jye-Chian Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Chien-Hsuan Wong
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Guo-Chian Li
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Su-Ching Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529
| | - Wenlung Chen
- Department of Applied Chemistry, National Chia-Yi University, Chia-Yi, 60004, Taiwan, Republic of China
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529
| | - Der-Lii M Tzou
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529.
| |
Collapse
|
27
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is a pivotal intracellular mediator of signaling pathways downstream of TNFR1 and -2 with known pro- and antiviral effects. We investigated its role in the replication of the prototype poxvirus vaccinia virus (VACV). Loss of TRAF2 expression, either through small interfering RNA treatment of HeLa cells or through genetic knockout in murine embryonic fibroblasts (MEFs), led to significant reductions in VACV growth following low-multiplicity infection. In single-cycle infections, there was delayed production of both early and late VACV proteins as well as accelerated virus-induced alterations to cell morphology, indicating that TRAF2 influences early stages of virus replication. Consistent with an early role, uncoating assays showed normal virus attachment but delayed virus entry in the absence of TRAF2. Although alterations to c-Jun N-terminal kinase (JNK) signaling were apparent in VACV-infected TRAF2−/− MEFs, treatment of wild-type cells with a JNK inhibitor did not affect virus entry. Instead, treatment with an inhibitor of endosomal acidification greatly reduced virus entry into TRAF2−/− MEFs, suggesting that VACV is reliant on the endosomal route of entry in the absence of TRAF2. Thus, TRAF2 is a proviral factor for VACV that plays a role in promoting efficient viral entry, most likely via the plasma membrane. IMPORTANCE Tumor necrosis factor receptor-associated factors (TRAFs) are key facilitators of intracellular signaling with roles in innate and adaptive immunity and stress responses. We have discovered that TRAF2 is a proviral factor in vaccinia virus replication in both HeLa cells and mouse embryonic fibroblasts and that its influence is exercised through promotion of efficient virus entry.
Collapse
|
28
|
Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 2013; 9:e1003563. [PMID: 23990784 PMCID: PMC3749956 DOI: 10.1371/journal.ppat.1003563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 07/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21-84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus infection.
Collapse
|
29
|
Schmidt F, Bleck C, Reh L, Novy K, Wollscheid B, Helenius A, Stahlberg H, Mercer J. Vaccinia Virus Entry Is Followed by Core Activation and Proteasome-Mediated Release of the Immunomodulatory Effector VH1 from Lateral Bodies. Cell Rep 2013; 4:464-76. [DOI: 10.1016/j.celrep.2013.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022] Open
|
30
|
Satheshkumar PS, Chavre J, Moss B. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain. Virology 2013; 444:148-57. [PMID: 23816434 DOI: 10.1016/j.virol.2013.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/01/2013] [Accepted: 06/05/2013] [Indexed: 12/01/2022]
Abstract
The vaccinia virus O3 protein, a component of the entry-fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry-fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry-fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry.
Collapse
Affiliation(s)
- P S Satheshkumar
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, MSC 3210, Bethesda, MD 20892-3210, USA
| | | | | |
Collapse
|
31
|
Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host Microbe 2013; 12:86-96. [PMID: 22817990 DOI: 10.1016/j.chom.2012.05.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 12/22/2022]
Abstract
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.
Collapse
|
32
|
Bengali Z, Satheshkumar PS, Moss B. Orthopoxvirus species and strain differences in cell entry. Virology 2012; 433:506-12. [PMID: 22999097 PMCID: PMC3470877 DOI: 10.1016/j.virol.2012.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022]
Abstract
Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 "fusion-suppressor" proteins, impact entry properties.
Collapse
Affiliation(s)
- Zain Bengali
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA
| | | | | |
Collapse
|
33
|
Vázquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martín-Acebes MA. Acid-dependent viral entry. Virus Res 2012; 167:125-37. [PMID: 22683298 DOI: 10.1016/j.virusres.2012.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022]
Abstract
Virus infection of host cells requires that entry into the cell results in efficient genome release leading to translation and replication. These initial steps revolving around the entry and genomic release processes are crucial for viral progeny generation. Despite the variety of receptors used by viruses to initiate entry, evidence from both enveloped and non-enveloped viral infections is highlighting the important role played by intracellular acidic compartments in the entry of many viruses. These compartments provide connecting nodes within the endocytic network, presenting multiple viral internalization pathways. Endosomal compartments employing an internal acidic pH can trigger molecular mechanisms leading to disassembly of viral particles, thus providing appropriate genome delivery. Accordingly, viruses have evolved to select optimal intracellular conditions for promoting efficient genome release, leading to propagation of the infectious agent. This review will address the implications of cellular compartment involvement in virus infectious processes, and the roles played by the viruses' own machinery, including pH sensing mechanisms and the methodologies applied for studying acid-dependent viral entry into host cells.
Collapse
Affiliation(s)
- Angela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Poxvirus cell entry: how many proteins does it take? Viruses 2012; 4:688-707. [PMID: 22754644 PMCID: PMC3386626 DOI: 10.3390/v4050688] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
For many viruses, one or two proteins enable cell binding, membrane fusion and entry. The large number of proteins employed by poxviruses is unprecedented and may be related to their ability to infect a wide range of cells. There are two main infectious forms of vaccinia virus, the prototype poxvirus: the mature virion (MV), which has a single membrane, and the extracellular enveloped virion (EV), which has an additional outer membrane that is disrupted prior to fusion. Four viral proteins associated with the MV membrane facilitate attachment by binding to glycosaminoglycans or laminin on the cell surface, whereas EV attachment proteins have not yet been identified. Entry can occur at the plasma membrane or in acidified endosomes following macropinocytosis and involves actin dynamics and cell signaling. Regardless of the pathway or whether the MV or EV mediates infection, fusion is dependent on 11 to 12 non-glycosylated, transmembrane proteins ranging in size from 4- to 43-kDa that are associated in a complex. These proteins are conserved in poxviruses making it likely that a common entry mechanism exists. Biochemical studies support a two-step process in which lipid mixing of viral and cellular membranes is followed by pore expansion and core penetration.
Collapse
|
35
|
Abstract
Vaccinia virus (VACV) produces large plaques consisting of a rapidly expanding ring of infected cells surrounding a lytic core, whereas myxoma virus (MYXV) produces small plaques that resemble a focus of transformed cells. This is odd, because bioinformatics suggests that MYXV carries homologs of nearly all of the genes regulating Orthopoxvirus attachment, entry, and exit. So why does MYXV produce foci? One notable difference is that MYXV-infected cells produce few of the actin microfilaments that promote VACV exit and spread. This suggested that although MYXV carries homologs of the required genes (A33R, A34R, A36R, and B5R), they are dysfunctional. To test this, we produced MYXV recombinants expressing these genes, but we could not enhance actin projectile formation even in cells expressing all four VACV proteins. Another notable difference between these viruses is that MYXV lacks a homolog of the F11L gene. F11 inhibits the RhoA-mDia signaling that maintains the integrity of the cortical actin layer. We constructed an MYXV strain encoding F11L and observed that, unlike wild-type MYXV, the recombinant virus disrupted actin stress fibers and produced plaques up to 4-fold larger than those of controls, and these plaques expanded ∼6-fold faster. These viruses also grew to higher titers in multistep growth conditions, produced higher levels of actin projectiles, and promoted infected cell movement, although neither process was to the extent of that observed in VACV-infected cells. Thus, one reason for why MYXV produces small plaques is that it cannot spread via actin filaments, although the reason for this deficiency remains obscure. A second reason is that leporipoxviruses lack vaccinia's capacity to disrupt cortical actin.
Collapse
|
36
|
Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 2012; 86:6677-87. [PMID: 22496232 DOI: 10.1128/jvi.06860-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.
Collapse
|
37
|
The myristate moiety and amino terminus of vaccinia virus l1 constitute a bipartite functional region needed for entry. J Virol 2012; 86:5437-51. [PMID: 22398293 DOI: 10.1128/jvi.06703-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368-382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions.
Collapse
|
38
|
The lipid raft-associated protein CD98 is required for vaccinia virus endocytosis. J Virol 2012; 86:4868-82. [PMID: 22345471 DOI: 10.1128/jvi.06610-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature vaccinia virus (vaccinia MV) infects a broad range of animals in vivo and cell cultures in vitro; however, the cellular receptors that determine vaccinia MV tropism and entry pathways are poorly characterized. Here, we performed quantitative proteomic analyses of lipid raft-associated proteins upon vaccinia MV entry into HeLa cells. We found that a type II membrane glycoprotein, CD98, is enriched in lipid rafts upon vaccinia MV infection compared to mock-infected HeLa cells. The knockdown of CD98 expression in HeLa cells significantly reduced vaccinia MV entry. Furthermore, CD98 knockout (KO) mouse embryonic fibroblasts (MEFs) also exhibited reduced vaccinia MV infectivity without affecting MV attachment to cells, suggesting a role for CD98 in the postbinding step of virus entry. Further characterization with inhibitors and dominant negative proteins that block different endocytic pathways revealed that vaccinia MV entry into MEFs occurs through a clathrin-independent, caveolin-independent, dynamin-dependent, fluid-phase endocytic pathway, implying that CD98 plays a specific role in the vaccinia MV endocytic pathway. Infections of wild-type and CD98 KO MEF cells with different strains of vaccinia MV provided further evidence that CD98 plays a specific role in MV endocytosis but not in plasma membrane fusion. Finally, different CD98-C69 chimeric proteins were expressed in CD98 KO MEFs, but none were able to reconstitute MV infectivity, suggesting that the overall structure of the CD98 protein is required for vaccinia MV endocytosis.
Collapse
|
39
|
Schmidt FI, Bleck CKE, Mercer J. Poxvirus host cell entry. Curr Opin Virol 2012; 2:20-7. [DOI: 10.1016/j.coviro.2011.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/10/2011] [Indexed: 12/20/2022]
|
40
|
Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH. J Virol 2012; 86:3809-18. [PMID: 22278246 DOI: 10.1128/jvi.06081-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia mature virus enters cells through either endocytosis or plasma membrane fusion, depending on virus strain and cell type. Our previous results showed that vaccinia virus mature virions containing viral A26 protein enter HeLa cells preferentially through endocytosis, whereas mature virions lacking A26 protein enter through plasma membrane fusion, leading us to propose that A26 acts as an acid-sensitive fusion suppressor for mature virus (S. J. Chang, Y. X. Chang, R. Izmailyan R, Y. L. Tang, and W. Chang, J. Virol. 84:8422-8432, 2010). In the present study, we investigated the fusion suppression mechanism of A26 protein. We found that A26 protein was coimmunoprecipitated with multiple components of the viral entry-fusion complex (EFC) in infected HeLa cells. Transient expression of viral EFC components in HeLa cells revealed that vaccinia virus A26 protein interacted directly with A16 and G9 but not with G3, L5 and H2 proteins of the EFC components. Consistently, a glutathione S-transferase (GST)-A26 fusion protein, but not GST, pulled down A16 and G9 proteins individually in vitro. Together, our results supported the idea that A26 protein binds to A16 and G9 protein at neutral pH contributing to suppression of vaccinia virus-triggered membrane fusion from without. Since vaccinia virus extracellular envelope proteins A56/K2 were recently shown to bind to the A16/G9 subcomplex to suppress virus-induced fusion from within, our results also highlight an evolutionary convergence in which vaccinia viral fusion suppressor proteins regulate membrane fusion by targeting the A16 and G9 components of the viral EFC complex. Finally, we provide evidence that acid (pH 4.7) treatment induced A26 protein and A26-A27 protein complexes of 70 kDa and 90 kDa to dissociate from mature virions, suggesting that the structure of A26 protein is acid sensitive.
Collapse
|
41
|
Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J 2011; 30:3647-61. [PMID: 21792173 PMCID: PMC3181475 DOI: 10.1038/emboj.2011.245] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/29/2011] [Indexed: 11/12/2022] Open
Abstract
Double membrane-bound vaccinia extracellular virions actively promote their own macropinocytosis. This, followed by acid-induced rupture of the outer membrane in endocytic vesicles, exposes the inner membrane for fusion with the endocytic membrane and release into the cytosol. Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na+/H+ exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection.
Collapse
|
42
|
DeHaven BC, Gupta K, Isaacs SN. The vaccinia virus A56 protein: a multifunctional transmembrane glycoprotein that anchors two secreted viral proteins. J Gen Virol 2011; 92:1971-1980. [PMID: 21715594 DOI: 10.1099/vir.0.030460-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The vaccinia virus A56 protein was one of the earliest-described poxvirus proteins with an identifiable activity. While originally characterized as a haemagglutinin protein, A56 has other functions as well. The A56 protein is capable of binding two viral proteins, a serine protease inhibitor (K2) and the vaccinia virus complement control protein (VCP), and anchoring them to the surface of infected cells. This is important; while both proteins have biologically relevant functions at the cell surface, neither one can locate there on its own. The A56-K2 complex reduces the amount of virus superinfecting an infected cell and also prevents the formation of syncytia by infected cells; the A56-VCP complex can protect infected cells from complement attack. Deletion of the A56R gene results in varying effects on vaccinia virus virulence. In addition, since the gene encoding the A56 protein is non-essential, it can be used as an insertion point for foreign genes and has been deleted in some viruses that are in clinical development as oncolytic agents.
Collapse
Affiliation(s)
- Brian C DeHaven
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry & Biophysics and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stuart N Isaacs
- Infectious Diseases Section, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Capturing the natural diversity of the human antibody response against vaccinia virus. J Virol 2010; 85:1820-33. [PMID: 21147924 DOI: 10.1128/jvi.02127-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eradication of smallpox (variola) and the subsequent cessation of routine vaccination have left modern society vulnerable to bioterrorism employing this devastating contagious disease. The existing, licensed vaccines based on live vaccinia virus (VACV) are contraindicated for a substantial number of people, and prophylactic vaccination of large populations is not reasonable when there is little risk of exposure. Consequently, there is an emerging need to develop efficient and safe therapeutics to be used shortly before or after exposure, either alone or in combination with vaccination. We have characterized the human antibody response to smallpox vaccine (VACV Lister) in immunized volunteers and isolated a large number of VACV-specific antibodies that recognize a variety of different VACV antigens. Using this broad antibody panel, we have generated a fully human, recombinant analogue to plasma-derived vaccinia immunoglobulin (VIG), which mirrors the diversity and specificity of the human antibody immune response and offers the advantage of unlimited supply and reproducible specificity and activity. The recombinant VIG was found to display a high specific binding activity toward VACV antigens, potent in vitro VACV neutralizing activity, and a highly protective efficacy against VACV challenge in the mouse tail lesion model when given either prophylactically or therapeutically. Altogether, the results suggest that this compound has the potential to be used as an effective postexposure prophylaxis or treatment of disease caused by orthopoxviruses.
Collapse
|