1
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
3
|
Khandia R, Garg R, Pandey MK, Khan AA, Dhanda SK, Malik A, Gurjar P. Determination of codon pattern and evolutionary forces acting on genes linked to inflammatory bowel disease. Int J Biol Macromol 2024; 278:134480. [PMID: 39116987 DOI: 10.1016/j.ijbiomac.2024.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract. The present study attempted to understand the codon usage preferences in genes associated with IBD progression. Compositional analysis, codon usage bias (CUB), Relative synonymous codon usage (RSCU), RNA structure, and expression analysis were performed to obtain a comprehensive picture of codon usage in IBD genes. Compositional analysis of 62 IBD-associated genes revealed that G and T are the most and least abundant nucleotides, respectively. ApG, CpA, and TpG dinucleotides were overrepresented or randomly used, while ApC, CpG, GpT, and TpA dinucleotides were either underrepresented or randomly used in genes related to IBD. The codons influencing the codon usage the most in IBD genes were CGC and AGG. A comparison of codon usage between IBD, and pancreatitis (non-IBD inflammatory disease) indicated that only codon CTG codon usage was significantly different between IBD and pancreatitis. At the same time, there were codons ATA, ACA, CGT, CAA, GTA, CCT, ATT, GCT, CGG, TTG, and CAG for whom codon usage was significantly different for IBD and housekeeping gene sets. The results suggest similar codon usage in at least two inflammatory disorders, IBD and pancreatitis. The analysis helps understand the codon biology, factors affecting gene expression of IBD-associated genes, and the evolution of these genes. The study helps reveal the molecular patterns associated with IBD.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, MP, India.
| | - Rajkumar Garg
- Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal 462020, MP, India.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
4
|
Maung Maung Khin ST, Sheikhi MJ, Takemae H, Mizutani T, Furuya T. First report of fesavirus 4 detection from cats in Japan. J Vet Med Sci 2024; 86:986-991. [PMID: 39069477 PMCID: PMC11422691 DOI: 10.1292/jvms.24-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Fesaviruses, picorna-like RNA viruses, were discovered in 2014 in feces from cats in an animal shelter in the United States but have not since been reported elsewhere. In this study, we collected cat fecal samples from 20 adult cats from an animal shelter in Tokyo, Japan, and examined them for viral pathogens. Next generation sequencing (NGS) was performed to detect both RNA and DNA virus sequences. Sequences of a total of 7 RNA viruses including some common feline pathogenic viruses were detected across 8 samples, while no DNA virus sequences were identified in any sample. Of the RNA virus sequences detected in the samples, two sequences, 4,746 and 4,439 bp, demonstrated 90.3% and 85.0% similarity, respectively, to the fesavirus 4 sequence in the database. To confirm the NGS results, quantitative RT-PCR (qRT-PCR) assays were developed using specific primers and probes designed based on the contig sequences. Based on the qRT-PCR assays, we detected relatively high copy-numbers of fesavirus 4 RNA in the two fecal samples from which the fesavirus 4 sequences were originally obtained, and low copy numbers in other samples. These results demonstrate the presence of fesavirus 4 in cats in Japan for the first time.
Collapse
Affiliation(s)
- Shwe Thiri Maung Maung Khin
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mohammad Jafar Sheikhi
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Mizutani
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tetsuya Furuya
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
5
|
Carrascosa-Sàez M, Buigues J, Viñals A, Andreu-Moreno I, Martínez-Recio R, Soriano-Tordera C, Monrós JS, Cuevas JM, Sanjuán R. Genetic diversity and cross-species transmissibility of bat-associated picornaviruses from Spain. Virol J 2024; 21:193. [PMID: 39175061 PMCID: PMC11342490 DOI: 10.1186/s12985-024-02456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Emerging zoonotic diseases arise from cross-species transmission events between wild or domesticated animals and humans, with bats being one of the major reservoirs of zoonotic viruses. Viral metagenomics has led to the discovery of many viruses, but efforts have mainly been focused on some areas of the world and on certain viral families. METHODS We set out to describe full-length genomes of new picorna-like viruses by collecting feces from hundreds of bats captured in different regions of Spain. Viral sequences were obtained by high-throughput Illumina sequencing and analyzed phylogenetically to classify them in the context of known viruses. Linear discriminant analysis (LDA) was performed to infer likely hosts based on genome composition. RESULTS We found five complete or nearly complete genomes belonging to the family Picornaviridae, including a new species of the subfamily Ensavirinae. LDA suggested that these were true vertebrate viruses, rather than viruses from the bat diet. Some of these viruses were related to picornaviruses previously found in other bat species from distant geographical regions. We also found a calhevirus genome that most likely belongs to a proposed new family within the order Picornavirales, and for which genome composition analysis suggested a plant host. CONCLUSIONS Our findings describe new picorna-like viral species and variants circulating in the Iberian Peninsula, illustrate the wide geographical distribution and interspecies transmissibility of picornaviruses, and suggest new hosts for calheviruses.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Clàudia Soriano-Tordera
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain
| | - Juan S Monrós
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València - CSIC, València, Spain.
- Department of Genetics, Universitat de València, València, Spain.
| |
Collapse
|
6
|
Le Lay C, Hamm JN, Williams TJ, Shi M, Cavicchioli R, Holmes EC. Viral community composition of hypersaline lakes. Virus Evol 2023; 9:vead057. [PMID: 37692898 PMCID: PMC10492444 DOI: 10.1093/ve/vead057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Despite their widespread distribution and remarkable antiquity no RNA viruses definitively associated with the domain Archaea have been identified. In contrast, 17 families of DNA viruses are known to infect archaea. In an attempt to uncover more of the elusive archaeal virosphere, we investigated the metatranscriptomes of hypersaline lakes that are a rich source of archaea. We sequenced RNA extracted from water filter samples of Lake Tyrrell (Victoria, Australia) and cultures seeded from four lakes in Antarctica. To identify highly divergent viruses in these data, we employed a variety of search tools, including Hidden Markov models (HMMs) and position-specific scoring matrices (PSSMs). From this, we identified 12 highly divergent, RNA virus-like candidate sequences from the virus phyla Artverviricota, Duplornaviricota, Kitrinoviricota, Negarnaviricota, and Pisuviricota, including those with similarity to the RNA-dependent RNA polymerase (RdRp). An additional analysis with an artificial intelligence (AI)-based approach that utilises both sequence and structural information identified seven putative and highly divergent RdRp sequences of uncertain phylogenetic position. A sequence matching the Pisuviricota from Deep Lake in Antarctica had the strongest RNA virus signal. Analyses of the dinucleotide representation of the virus-like candidates in comparison to that of potential host species were in some cases compatible with an association to archaeal or bacterial hosts. Notably, however, the use of archaeal CRISPR spacers as a BLAST database failed to detect any RNA viruses. We also described DNA viruses from the families Pleolipoviridae, Sphaerolipoviridae, Halspiviridae, and the class Caudoviricetes. Although we were unable to provide definitive evidence the existence of an RNA virus of archaea in these hypersaline lakes, this study lays the foundations for further investigations of highly divergent RNA viruses in natural environments.
Collapse
Affiliation(s)
- Callum Le Lay
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg NL-1790 AB, The Netherlands
| |
Collapse
|
7
|
Orf GS, Olivo A, Harris B, Weiss SL, Achari A, Yu G, Federman S, Mbanya D, James L, Mampunza S, Chiu CY, Rodgers MA, Cloherty GA, Berg MG. Metagenomic Detection of Divergent Insect- and Bat-Associated Viruses in Plasma from Two African Individuals Enrolled in Blood-Borne Surveillance. Viruses 2023; 15:v15041022. [PMID: 37113001 PMCID: PMC10145552 DOI: 10.3390/v15041022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.
Collapse
Affiliation(s)
- Gregory S Orf
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Ana Olivo
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Barbara Harris
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Sonja L Weiss
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Asmeeta Achari
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Guixia Yu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Scot Federman
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O. Box 1364, Cameroon
| | - Linda James
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Samuel Mampunza
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Charles Y Chiu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Mary A Rodgers
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Gavin A Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Michael G Berg
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| |
Collapse
|
8
|
Hill SC, François S, Thézé J, Smith AL, Simmonds P, Perrins CM, van der Hoek L, Pybus OG. Impact of host age on viral and bacterial communities in a waterbird population. THE ISME JOURNAL 2023; 17:215-226. [PMID: 36319706 PMCID: PMC9860062 DOI: 10.1038/s41396-022-01334-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Wildlife harbour pathogens that can harm human or livestock health and are the source of most emerging infectious diseases. It is rarely considered how changes in wildlife population age-structures or how age-stratified behaviours might alter the level of pathogen detection within a species, or risk of spillover to other species. Micro-organisms that occur in healthy animals can be an important model for understanding and predicting the dynamics of pathogens of greater health concern, which are hard to study in wild populations due to their relative rarity. We therefore used a metagenomic approach to jointly characterise viral and prokaryotic carriage in faeces collected from a healthy wild bird population (Cygnus olor; mute swan) that has been subject to long-term study. Using 223 samples from known individuals allowed us to compare differences in prokaryotic and eukaryotic viral carriage between adults and juveniles at an unprecedented level of detail. We discovered and characterised 77 novel virus species, of which 21% belong putatively to bird-infecting families, and described the core prokaryotic microbiome of C. olor. Whilst no difference in microbiota diversity was observed between juveniles and adult individuals, 50% (4/8) of bird-infecting virus families (picornaviruses, astroviruses, adenoviruses and bornaviruses) and 3.4% (9/267) of prokaryotic families (including Helicobacteraceae, Spirochaetaceae and Flavobacteriaceae families) were differentially abundant and/or prevalent between juveniles and adults. This indicates that perturbations that affect population age-structures of wildlife could alter circulation dynamics and spillover risk of microbes, potentially including pathogens.
Collapse
Affiliation(s)
- Sarah C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Sarah François
- Department of Biology, University of Oxford, Oxford, UK.
| | - Julien Thézé
- Department of Biology, University of Oxford, Oxford, UK
- UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Adrian L Smith
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, UK
| | | | - Lia van der Hoek
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver G Pybus
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
10
|
Carlson CJ, Farrell MJ, Grange Z, Han BA, Mollentze N, Phelan AL, Rasmussen AL, Albery GF, Bett B, Brett-Major DM, Cohen LE, Dallas T, Eskew EA, Fagre AC, Forbes KM, Gibb R, Halabi S, Hammer CC, Katz R, Kindrachuk J, Muylaert RL, Nutter FB, Ogola J, Olival KJ, Rourke M, Ryan SJ, Ross N, Seifert SN, Sironen T, Standley CJ, Taylor K, Venter M, Webala PW. The future of zoonotic risk prediction. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200358. [PMID: 34538140 PMCID: PMC8450624 DOI: 10.1098/rstb.2020.0358] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Maxwell J. Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe Grange
- Public Health Scotland, Glasgow G2 6QE, UK
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Nardus Mollentze
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Angela L. Rasmussen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Gregory F. Albery
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Evan A. Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna C. Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rory Gibb
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sam Halabi
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Charlotte C. Hammer
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
| | - Rebecca Katz
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | | | | | - Michelle Rourke
- Law Futures Centre, Griffith Law School, Griffith University, Nathan, Queensland 4111, Australia
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Noam Ross
- EcoHealth Alliance, New York, NY 10018, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire J. Standley
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Kishana Taylor
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marietjie Venter
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| |
Collapse
|
11
|
Mock F, Viehweger A, Barth E, Marz M. VIDHOP, viral host prediction with deep learning. Bioinformatics 2021; 37:318-325. [PMID: 32777818 PMCID: PMC7454304 DOI: 10.1093/bioinformatics/btaa705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Motivation Zoonosis, the natural transmission of infections from animals to humans, is a far-reaching global problem. The recent outbreaks of Zikavirus, Ebolavirus, and Coronavirus are examples of viral zoonosis, which occur more frequently due to globalization. In case of a virus outbreak, it is helpful to know which host organism was the original carrier of the virus to prevent further spreading of viral infection. Recent approaches aim to predict a viral host based on the viral genome, often in combination with the potential host genome and arbitrarily selected features. These methods are limited in the number of different hosts they can predict or the accuracy of the prediction. Results Here, we present a fast and accurate deep learning approach for viral host prediction, which is based on the viral genome sequence only. We tested our deep neural network (DNN) on three different virus species (influenza A virus, rabies lyssavirus, rotavirus A). We achieved for each virus species an AUC between 0.93 and 0.98, allowing highly accurate predictions while using only fractions (100-400 bp) of the viral genome sequences. We show that deep neural networks are suitable to predict the host of a virus, even with a limited amount of sequences and highly unbalanced available data. The trained DNNs are the core of our virus-host prediction tool VIDHOP (VIrus Deep learning HOst Prediction). VIDHOP also allows the user to train and use models for other viruses. Availability VIDHOP is freely available under https://github.com/flomock/vidhop Supplementary information Available at DOI 10.17605/OSF.IO/UXT7
Collapse
Affiliation(s)
- Florian Mock
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Jena 07743, Germany
| | - Adrian Viehweger
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Jena 07743, Germany
| | - Emanuel Barth
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Manja Marz
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Jena 07743, Germany.,RNA Bioinformatics/High Throughput Analysis, Leibnitz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena 07743, Germany.,RNA Bioinformatics/High Throughput Analysis, German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany.,RNA Bioinformatics/High Throughput Analysis, European Virus Bioinformatics Center (EVBC), Jena 07743, Germany
| |
Collapse
|
12
|
Xavier CAD, Allen ML, Whitfield AE. Ever-increasing viral diversity associated with the red imported fire ant Solenopsis invicta (Formicidae: Hymenoptera). Virol J 2021; 18:5. [PMID: 33407622 PMCID: PMC7788728 DOI: 10.1186/s12985-020-01469-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
Background Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas. Methods Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank’s Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed. Results We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta. Conclusions The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.
Collapse
Affiliation(s)
- César Augusto Diniz Xavier
- Department of Entomology and Plant Pathology, North Carolina State University, 840 Main Campus Drive, Raleigh, NC, 27606, USA
| | - Margaret Louise Allen
- U. S. Department of Agriculture, Agricultural Research Service, Biological Control of Pests Research Unit, 59 Lee Road, Stoneville, MS, 38776, USA.
| | - Anna Elizabeth Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, 840 Main Campus Drive, Raleigh, NC, 27606, USA.
| |
Collapse
|
13
|
Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales. Viruses 2020; 12:v12090950. [PMID: 32867192 PMCID: PMC7552035 DOI: 10.3390/v12090950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 01/02/2023] Open
Abstract
In a systematic field survey for plant-infecting viruses, leaf tissues were collected from trees showing virus-like symptoms in Brazil. After viral enrichment, total RNA was extracted and sequenced using the MiSeq platform (Illumina). Two nearly full-length picorna-like genomes of 9534 and 8158 nucleotides were found associated with Hovenia dulcis (Rhamnaceae family). Based upon their genomic information, specific primers were synthetized and used in RT-PCR assays to identify plants hosting the viral sequences. The larger contig was tentatively named as Hovenia dulcis-associated virus 1 (HDaV1), and it exhibited low nucleotide and amino acid identities with Picornavirales species. The smaller contig was related to insect-associated members of the Dicistroviridae family but exhibited a distinct genome organization with three non-overlapping open reading frames (ORFs), and it was tentatively named as Hovenia dulcis-associated virus 2 (HDaV2). Phylogenetic analysis using the amino acid sequence of RNA-dependent RNA polymerase (RdRp) revealed that HDaV1 and HDaV2 clustered in distinct groups, and both viruses were tentatively assigned as new members of the order Picornavirales. HDaV2 was assigned as a novel species in the Dicistroviridae family. The 5′ ends of both viruses are incomplete. In addition, a nucleotide composition analysis (NCA) revealed that HDaV1 and HDaV2 have similarities with invertebrate-infecting viruses, suggesting that the primary host(s) of these novel virus species remains to be discovered.
Collapse
|
14
|
Young F, Rogers S, Robertson DL. Predicting host taxonomic information from viral genomes: A comparison of feature representations. PLoS Comput Biol 2020; 16:e1007894. [PMID: 32453718 PMCID: PMC7307784 DOI: 10.1371/journal.pcbi.1007894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/22/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in metagenomics has led to an exponential growth in virus discovery. However, the majority of these new virus sequences have no assigned host. Current machine learning approaches to predicting virus host interactions have a tendency to focus on nucleotide features, ignoring other representations of genomic information. Here we investigate the predictive potential of features generated from four different ‘levels’ of viral genome representation: nucleotide, amino acid, amino acid properties and protein domains. This more fully exploits the biological information present in the virus genomes. Over a hundred and eighty binary datasets for infecting versus non-infecting viruses at all taxonomic ranks of both eukaryote and prokaryote hosts were compiled. The viral genomes were converted into the four different levels of genome representation and twenty feature sets were generated by extracting k-mer compositions and predicted protein domains. We trained and tested Support Vector Machine, SVM, classifiers to compare the predictive capacity of each of these feature sets for each dataset. Our results show that all levels of genome representation are consistently predictive of host taxonomy and that prediction k-mer composition improves with increasing k-mer length for all k-mer based features. Using a phylogenetically aware holdout method, we demonstrate that the predictive feature sets contain signals reflecting both the evolutionary relationship between the viruses infecting related hosts, and host-mimicry. Our results demonstrate that incorporating a range of complementary features, generated purely from virus genome sequences, leads to improved accuracy for a range of virus host prediction tasks enabling computational assignment of host taxonomic information. Elucidating the host of a newly identified virus species is an important challenge, with applications from knowing the source species of a newly emerged pathogen to understanding the bacteriophage-host relationships within the microbiome of any of earth’s ecosystems. Current high throughput methods used to identify viruses within biological or environmental samples have resulted in an unprecedented increase in virus discovery. However, for the majority of these virus genomes the host species/taxonomic classification remains unknown. To address this gap in our knowledge there is a need for fast, accurate computational methods for the assignment of putative host taxonomic information. Machine learning is an ideal approach but to maximise predictive accuracy the viral genomes need to be represented in a format (sets of features) that makes the discriminative information available to the machine learning algorithm. Here, we compare different types of features derived from the same viral genomes for their ability to predict host information. Our results demonstrate that all these feature sets are predictive of host taxonomy and when combined have the potential to improve accuracy over the use of individual feature sets across many virus host prediction applications.
Collapse
Affiliation(s)
- Francesca Young
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre For Virus Research, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Dinan AM, Lukhovitskaya NI, Olendraite I, Firth AE. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol 2020; 6:veaa007. [PMID: 32064120 PMCID: PMC7010960 DOI: 10.1093/ve/veaa007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand. However, we previously identified a surprisingly long (∼1,000-codon) open reading frame (ORF) on the negative strand of some members of the family Narnaviridae which, together with RNA bacteriophages of the family Leviviridae, form a sister group to all other positive-sense RNA viruses. Here, we completed the genomes of three mosquito-associated narnaviruses, all of which have the long reverse-frame ORF. We systematically identified narnaviral sequences in public data sets from a wide range of sources, including arthropod, fungal, and plant transcriptomic data sets. Long reverse-frame ORFs are widespread in one clade of narnaviruses, where they frequently occupy >95 per cent of the genome. The reverse-frame ORFs correspond to a specific avoidance of CUA, UUA, and UCA codons (i.e. stop codon reverse complements) in the forward-frame RNA-dependent RNA polymerase ORF. However, absence of these codons cannot be explained by other factors such as inability to decode these codons or GC3 bias. Together with other analyses, we provide the strongest evidence yet of coding capacity on the negative strand of a positive-sense RNA virus. As these ORFs comprise some of the longest known overlapping genes, their study may be of broad relevance to understanding overlapping gene evolution and de novo origin of genes.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nina I Lukhovitskaya
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ingrida Olendraite
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
16
|
Obbard DJ, Shi M, Roberts KE, Longdon B, Dennis AB. A new lineage of segmented RNA viruses infecting animals. Virus Evol 2020; 6:vez061. [PMID: 31976084 PMCID: PMC6966834 DOI: 10.1093/ve/vez061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Metagenomic sequencing has revolutionised our knowledge of virus diversity, with new virus sequences being reported faster than ever before. However, virus discovery from metagenomic sequencing usually depends on detectable homology: without a sufficiently close relative, so-called 'dark' virus sequences remain unrecognisable. An alternative approach is to use virus-identification methods that do not depend on detecting homology, such as virus recognition by host antiviral immunity. For example, virus-derived small RNAs have previously been used to propose 'dark' virus sequences associated with the Drosophilidae (Diptera). Here, we combine published Drosophila data with a comprehensive search of transcriptomic sequences and selected meta-transcriptomic datasets to identify a completely new lineage of segmented positive-sense single-stranded RNA viruses that we provisionally refer to as the Quenyaviruses. Each of the five segments contains a single open reading frame, with most encoding proteins showing no detectable similarity to characterised viruses, and one sharing a small number of residues with the RNA-dependent RNA polymerases of single- and double-stranded RNA viruses. Using these sequences, we identify close relatives in approximately 20 arthropods, including insects, crustaceans, spiders, and a myriapod. Using a more conserved sequence from the putative polymerase, we further identify relatives in meta-transcriptomic datasets from gut, gill, and lung tissues of vertebrates, reflecting infections of vertebrates or of their associated parasites. Our data illustrate the utility of small RNAs to detect viruses with limited sequence conservation, and provide robust evidence for a new deeply divergent and phylogenetically distinct RNA virus lineage.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Mang Shi
- Charles Perkins Center, The University of Sydney, NSW 2006, Australia
| | - Katherine E Roberts
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Ben Longdon
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Alice B Dennis
- Department of Evolutionary Biology & Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Ismail SNFB, Baharum SN, Fazry S, Low CF. Comparative genome analysis reveals a distinct influence of nucleotide composition on virus-host species-specific interaction of prawn-infecting nodavirus. JOURNAL OF FISH DISEASES 2019; 42:1761-1772. [PMID: 31637743 DOI: 10.1111/jfd.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
Collapse
Affiliation(s)
| | | | - Shazrul Fazry
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Bangi, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
18
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
19
|
Vlok M, Gibbs AJ, Suttle CA. Metagenomes of a Freshwater Charavirus from British Columbia Provide a Window into Ancient Lineages of Viruses. Viruses 2019; 11:v11030299. [PMID: 30934644 PMCID: PMC6466400 DOI: 10.3390/v11030299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Charophyte algae, not chlorophyte algae, are the ancestors of ‘higher plants’; hence, viruses infecting charophytes may be related to those that first infected higher plants. Streamwaters from British Columbia, Canada, yielded single-stranded RNA metagenomes of Charavirus canadensis (CV-Can), that are similar in genomic architecture, length (9593 nt), nucleotide identity (63.4%), and encoded amino-acid sequence identity (53.0%) to those of Charavirus australis (CV-Aus). The sequences of their RNA-dependent RNA-polymerases (RdRp) resemble those found in benyviruses, their helicases those of hepaciviruses and hepegiviruses, and their coat-proteins (CP) those of tobamoviruses; all from the alphavirus/flavivirus branch of the ‘global RNA virome’. The 5’-terminus of the CV-Can genome, but not that of CV-Aus, is complete and encodes a methyltransferase domain. Comparisons of CP sequences suggests that Canadian and Australian charaviruses diverged 29–46 million years ago (mya); whereas, the CPs of charaviruses and tobamoviruses last shared a common ancestor 212 mya, and the RdRps of charaviruses and benyviruses 396 mya. CV-Can is sporadically abundant in low-nutrient freshwater rivers in British Columbia, where Chara braunii, a close relative of C. australis, occurs, and which may be its natural host. Charaviruses, like their hosts, are ancient and widely distributed, and thus provide a window to the viromes of early eukaryotes and, even, Archaea.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
| | - Adrian J Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia.
| | - Curtis A Suttle
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada.
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
20
|
Gałan W, Bąk M, Jakubowska M. Host Taxon Predictor - A Tool for Predicting Taxon of the Host of a Newly Discovered Virus. Sci Rep 2019; 9:3436. [PMID: 30837511 PMCID: PMC6400966 DOI: 10.1038/s41598-019-39847-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/30/2019] [Indexed: 12/04/2022] Open
Abstract
Recent advances in metagenomics provided a valuable alternative to culture-based approaches for better sampling viral diversity. However, some of newly identified viruses lack sequence similarity to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host Taxon Predictor (HTP) software written in Python which is freely available at https://github.com/wojciech-galan/viruses_classifier. HTP’s performance was later demonstrated on a collection of newly identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible to further extend our method to go up the evolutionary tree and predict whether a virus can infect narrower taxa.
Collapse
Affiliation(s)
- Wojciech Gałan
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | - Maciej Bąk
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Jakubowska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
21
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Babayan SA, Orton RJ, Streicker DG. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 2018; 362:577-580. [PMID: 30385576 DOI: 10.1126/science.aap9072] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/21/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
Identifying the animal origins of RNA viruses requires years of field and laboratory studies that stall responses to emerging infectious diseases. Using large genomic and ecological datasets, we demonstrate that animal reservoirs and the existence and identity of arthropod vectors can be predicted directly from viral genome sequences via machine learning. We illustrate the ability of these models to predict the epidemiology of diverse viruses across most human-infective families of single-stranded RNA viruses, including 69 viruses with previously elusive or never-investigated reservoirs or vectors. Models such as these, which capitalize on the proliferation of low-cost genomic sequencing, can narrow the time lag between virus discovery and targeted research, surveillance, and management.
Collapse
Affiliation(s)
- Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.,The Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, Scotland, UK
| | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, UK. .,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| |
Collapse
|
23
|
Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E. Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 2018; 9:4270. [PMID: 30323210 PMCID: PMC6189175 DOI: 10.1038/s41467-018-06502-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The number of viruses circulating in small isolated human populations may be reduced by viral extinctions and rare introductions. Here we used viral metagenomics to characterize the eukaryotic virome in feces from healthy children from a large urban center and from three Amerindian villages with minimal outside contact. Numerous human enteric viruses, mainly from the Picornaviridae and Caliciviridae families, were sequenced from each of the sites. Multiple children from the same villages shed closely related viruses reflecting frequent transmission clusters. Feces of isolated villagers also contained multiple viral genomes of unknown cellular origin from the Picornavirales order and CRESS-DNA group and higher levels of nematode and protozoan DNA. Despite cultural and geographic isolation, the diversity of enteric human viruses was therefore not reduced in these Amazonian villages. Frequent viral introductions and/or increased susceptibility to enteric infections may account for the complex fecal virome of Amerindian children in isolated villages.
Collapse
Affiliation(s)
- Juliana D Siqueira
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, 20.231-050, Brazil
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, 08901-8554, USA
| | - Monica Contreras
- Center for Biophysics and Biochemistry, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Orlana Lander
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela
| | - Hortensia Caballero-Arias
- Department of Anthropology, Venezuelan Institute of Scientific Research (IVIC), Caracas, 01204, Venezuela
| | - Deng Xutao
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Oscar Noya-Alarcon
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, 1051, Venezuela.,Amazonic Center for Research and Control of Tropical Diseases (CAICET), Puerto Ayacucho, 7101, Venezuela
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, 94118, USA. .,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA.
| |
Collapse
|
24
|
Wen M, Ng JHJ, Zhu F, Chionh YT, Chia WN, Mendenhall IH, Lee BPYH, Irving AT, Wang LF. Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing. Gigascience 2018; 7:5104371. [PMID: 30247613 PMCID: PMC6177735 DOI: 10.1093/gigascience/giy116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022] Open
Abstract
Background In the past two decades, bats have emerged as an important model system to study host-pathogen interactions. More recently, it has been shown that bats may also serve as a new and excellent model to study aging, inflammation, and cancer, among other important biological processes. The cave nectar bat or lesser dawn bat (Eonycteris spelaea) is known to be a reservoir for several viruses and intracellular bacteria. It is widely distributed throughout the tropics and subtropics from India to Southeast Asia and pollinates several plant species, including the culturally and economically important durian in the region. Here, we report the whole-genome and transcriptome sequencing, followed by subsequent de novo assembly, of the E. spelaea genome solely using the Pacific Biosciences (PacBio) long-read sequencing platform. Findings The newly assembled E. spelaea genome is 1.97 Gb in length and consists of 4,470 sequences with a contig N50 of 8.0 Mb. Identified repeat elements covered 34.65% of the genome, and 20,640 unique protein-coding genes with 39,526 transcripts were annotated. Conclusions We demonstrated that the PacBio long-read sequencing platform alone is sufficient to generate a comprehensive de novo assembled genome and transcriptome of an important bat species. These results will provide useful insights and act as a resource to expand our understanding of bat evolution, ecology, physiology, immunology, viral infection, and transmission dynamics.
Collapse
Affiliation(s)
- Ming Wen
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Justin H J Ng
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yok Teng Chionh
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Benjamin PY-H Lee
- Conservation Division, National Parks Board, Singapore 259569, Singapore
| | - Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
25
|
Comparative studies of alignment, alignment-free and SVM based approaches for predicting the hosts of viruses based on viral sequences. Sci Rep 2018; 8:10032. [PMID: 29968780 PMCID: PMC6030160 DOI: 10.1038/s41598-018-28308-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/05/2022] Open
Abstract
Predicting the hosts of newly discovered viruses is important for pandemic surveillance of infectious diseases. We investigated the use of alignment-based and alignment-free methods and support vector machine using mononucleotide frequency and dinucleotide bias to predict the hosts of viruses, and applied these approaches to three datasets: rabies virus, coronavirus, and influenza A virus. For coronavirus, we used the spike gene sequences, while for rabies and influenza A viruses, we used the more conserved nucleoprotein gene sequences. We compared the three methods under different scenarios and showed that their performances are highly correlated with the variability of sequences and sample size. For conserved genes like the nucleoprotein gene, longer k-mers than mono- and dinucleotides are needed to better distinguish the sequences. We also showed that both alignment-based and alignment-free methods can accurately predict the hosts of viruses. When alignment is difficult to achieve or highly time-consuming, alignment-free methods can be a promising substitute to predict the hosts of new viruses.
Collapse
|
26
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
27
|
Abstract
Virus classification deals with conceptual species classes that have viruses as their members. A virus species cannot be described but can only be defined by listing certain species-defining properties of its member. However, it is not possible to define a virus species by using a single species-defining property. The new 2013 official definition of virus species is not appropriate because it applies equally to virus genera. A nucleotide motif is a chemical part of a viral genome and is not a species-defining property that could be used for establishing new virus species. A virus classification based solely on nucleotide sequences is a classification of viral genomes and not of viruses. The variable distribution of species-defining properties of a polythetic species class is not itself a single common property of all the members of the class, since this would lead to the paradox that every polythetic class is also a monothetic one.
Collapse
|
28
|
Oude Munnink BB, Phan MVT, Simmonds P, Koopmans MPG, Kellam P, van der Hoek L, Cotten M. Characterization of Posa and Posa-like virus genomes in fecal samples from humans, pigs, rats, and bats collected from a single location in Vietnam. Virus Evol 2017; 3:vex022. [PMID: 28948041 PMCID: PMC5597861 DOI: 10.1093/ve/vex022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus
(husavirus) are viruses in the order Picornavirales recently described in
porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs)
also includes fish stool-associated RNA virus (fisavirus) as well as members detected in
insects (Drosophila subobscura and Anopheles sinensis)
and parasites (Ascaris suum). As part of an agnostic deep sequencing
survey of animal and human viruses in Vietnam, we detected three husaviruses in human
fecal samples, two of which share 97–98% amino acid identity to Dutch husavirus strains
and one highly divergent husavirus with only 25% amino acid identity to known husaviruses.
In addition, the current study found forty-seven complete posavirus genomes from pigs, ten
novel rat stool-associated RNA virus genomes (tentatively named rasavirus), and sixteen
novel bat stool-associated RNA virus genomes (tentatively named basavirus). The five
expected Picornavirales protein domains (helicase, 3C-protease,
RNA-dependent RNA polymerase, and two Picornavirus capsid domain) were found to be encoded
by all PPLV genomes. In addition, a nucleotide composition analysis revealed that the
PPLVs shared compositional properties with arthropod viruses and predicted non-mammalian
hosts for all PPLV lineages. The study adds seventy-six genomes to the twenty-nine PPLV
genomes currently available and greatly extends our sequence knowledge of this group of
viruses within the Picornavirales order.
Collapse
Affiliation(s)
- Bas B Oude Munnink
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - My V T Phan
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Kellam
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthew Cotten
- Department of Virus Genomics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
29
|
de Miranda JR, Hedman H, Onorati P, Stephan J, Karlberg O, Bylund H, Terenius O. Characterization of a Novel RNA Virus Discovered in the Autumnal Moth Epirrita autumnata in Sweden. Viruses 2017. [PMCID: PMC5580471 DOI: 10.3390/v9080214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A novel, 10 kb RNA virus—tentatively named ‘Abisko virus’—was discovered in the transcriptome data of a diseased autumnal moth (Epirrita autumnata) larva, as part of a search for the possible causes of the cyclical nature and mortality associated with geometrid moth dynamics and outbreaks in northern Fennoscandia. Abisko virus has a genome organization similar to that of the insect-infecting negeviruses, but phylogenetic and compositional bias analyses also reveal strong affiliations with plant-infecting viruses, such that both the primary host origin and taxonomic identity of the virus remain in doubt. In an extensive set of larval, pupal, and adult autumnal moth and winter moth (Operophtera brumata) outbreak samples, the virus was only detected in a few adult E. autumnata moths as well as the single larval transcriptome. The Abisko virus is therefore unlikely to be a factor in the Fennoscandia geometrid population dynamics.
Collapse
Affiliation(s)
- Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
- Correspondence: ; Tel.: +46-18-67-2437
| | - Harald Hedman
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Jörg Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Olof Karlberg
- Department of Medical Sciences, Uppsala University, 751-85 Uppsala, Sweden;
| | - Helena Bylund
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden; (H.H.); (P.O.); (J.S.); (H.B.); (O.T.)
| |
Collapse
|
30
|
Goldberg TL, Bennett AJ, Kityo R, Kuhn JH, Chapman CA. Kanyawara Virus: A Novel Rhabdovirus Infecting Newly Discovered Nycteribiid Bat Flies Infesting Previously Unknown Pteropodid Bats in Uganda. Sci Rep 2017; 7:5287. [PMID: 28706276 PMCID: PMC5509700 DOI: 10.1038/s41598-017-05236-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
Bats are natural reservoir hosts of highly virulent pathogens such as Marburg virus, Nipah virus, and SARS coronavirus. However, little is known about the role of bat ectoparasites in transmitting and maintaining such viruses. The intricate relationship between bats and their ectoparasites suggests that ectoparasites might serve as viral vectors, but evidence to date is scant. Bat flies, in particular, are highly specialized obligate hematophagous ectoparasites that incidentally bite humans. Using next-generation sequencing, we discovered a novel ledantevirus (mononegaviral family Rhabdoviridae, genus Ledantevirus) in nycteribiid bat flies infesting pteropodid bats in western Uganda. Mitochondrial DNA analyses revealed that both the bat flies and their bat hosts belong to putative new species. The coding-complete genome of the new virus, named Kanyawara virus (KYAV), is only distantly related to that of its closest known relative, Mount Elgon bat virus, and was found at high titers in bat flies but not in blood or on mucosal surfaces of host bats. Viral genome analysis indicates unusually low CpG dinucleotide depletion in KYAV compared to other ledanteviruses and rhabdovirus groups, with KYAV displaying values similar to rhabdoviruses of arthropods. Our findings highlight the possibility of a yet-to-be-discovered diversity of potentially pathogenic viruses in bat ectoparasites.
Collapse
Affiliation(s)
- Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
- Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
- Department of Zoology, Makerere University, Kampala, Uganda.
| | - Andrew J Bennett
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Robert Kityo
- Department of Zoology, Makerere University, Kampala, Uganda
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, 21702, USA
| | - Colin A Chapman
- Department of Zoology, Makerere University, Kampala, Uganda
- Department of Anthropology and School of Environment, McGill University, Montreal, Quebec, H3A 2T7, Canada
| |
Collapse
|
31
|
A New Clade of Insect-Specific Flaviviruses from Australian Anopheles Mosquitoes Displays Species-Specific Host Restriction. mSphere 2017; 2:mSphere00262-17. [PMID: 28713857 PMCID: PMC5506557 DOI: 10.1128/msphere.00262-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/03/2022] Open
Abstract
Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens. Flaviviruses are arthropod-borne viruses found worldwide and are responsible for significant human and veterinary diseases, including dengue, Zika, and West Nile fever. Some flaviviruses are insect specific and replicate only in mosquitoes. We report a genetically divergent group of insect-specific flaviviruses from Anopheles mosquitoes that do not replicate in arthropod cell lines or heterologous Anopheles species, exhibiting unprecedented specialization for their host species. Determination of the complete sequences of the RNA genomes of three of these viruses, Karumba virus (KRBV), Haslams Creek virus, and Mac Peak virus (McPV), that are found in high prevalence in some Anopheles mosquito populations and detection of virus-specific proteins, replicative double-stranded RNA, and small interfering RNA responses in the host mosquito species provided strong evidence of a functional replicating virus in the mosquito midgut. Analysis of nucleotide composition in the KRBV and McPV sequences also revealed a pattern consistent with the virus evolving to replicate only in insects. These findings represent a significant advance in our knowledge of mosquito-borne flavivirus ecology, host restriction, and evolution. IMPORTANCE Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens.
Collapse
|
32
|
Krishnamurthy SR, Wang D. Origins and challenges of viral dark matter. Virus Res 2017; 239:136-142. [DOI: 10.1016/j.virusres.2017.02.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
|
33
|
Abstract
Most viruses in the genus Flavivirus are horizontally transmitted between hematophagous arthropods and vertebrate hosts, but some are maintained in arthropod- or vertebrate-restricted transmission cycles. Flaviviruses maintained by vertebrate-only transmission are commonly referred to as no known vector (NKV) flaviviruses. Fourteen species and two subtypes of NKV flaviviruses are recognized by the International Committee on Taxonomy of Viruses (ICTV), and Tamana bat virus potentially belongs to this group. NKV flaviviruses have been isolated in nature almost exclusively from bats and rodents; exceptions are the two isolates of Dakar bat virus recovered from febrile humans and the recent isolations of Sokoluk virus from field-collected ticks, which raises questions as to whether it should remain classified as an NKV flavivirus. There is evidence to suggest that two other NKV flaviviruses, Entebbe bat virus and Yokose virus, may also infect arthropods in nature. The best characterized bat- and rodent-associated NKV flaviviruses are Rio Bravo and Modoc viruses, respectively, but both have received limited research attention compared to many of their arthropod-infecting counterparts. Herein, we provide a comprehensive review of NKV flaviviruses, placing a particular emphasis on their classification, host range, geographic distribution, replication kinetics, pathogenesis, transmissibility and molecular biology.
Collapse
|
34
|
Kemenesi G, Kurucz K, Zana B, Tu VT, Görföl T, Estók P, Földes F, Sztancsik K, Urbán P, Fehér E, Jakab F. Highly divergent cyclo-like virus in a great roundleaf bat (Hipposideros armiger) in Vietnam. Arch Virol 2017; 162:2403-2407. [PMID: 28447216 DOI: 10.1007/s00705-017-3377-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 11/27/2022]
Abstract
Members of the viral family Circoviridae are increasingly recognized worldwide. Bats seem to be natural reservoirs or dietary-related dispensers of these viruses. Here, we report a distantly related member of the genus Cyclovirus detected in the faeces of a great roundleaf bat (Hipposideros armiger). Interestingly, the novel virus lacks a Circoviridae-specific stem-loop structure, although a Geminiviridae-like nonamer sequence was detected in the large intergenic region. Based on these differences and its phylogenetic position, we propose that our new virus represents a distant and highly divergent member of the genus Cyclovirus. However it is lacking several characteristics of members of the genus, which raises a challenge in its taxonomic classification.
Collapse
Affiliation(s)
- Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Kornélia Kurucz
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary
| | - Brigitta Zana
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Péter Estók
- Department of Zoology, Eszterházy Károly University, Eger, Hungary
| | - Fanni Földes
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Katalin Sztancsik
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- Microbial Biotechnology Research Group, Szentágothai Reasearch Centre, University of Pécs, Pécs, Hungary.,Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság út 20, 7624, Pécs, Hungary. .,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
35
|
Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species. J Virol 2017; 91:JVI.02381-16. [PMID: 28148785 DOI: 10.1128/jvi.02381-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone.IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome.
Collapse
|
36
|
Yinda CK, Zell R, Deboutte W, Zeller M, Conceição-Neto N, Heylen E, Maes P, Knowles NJ, Ghogomu SM, Van Ranst M, Matthijnssens J. Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics 2017; 18:249. [PMID: 28335731 PMCID: PMC5364608 DOI: 10.1186/s12864-017-3632-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The order Picornavirales represents a diverse group of positive-stranded RNA viruses with small non-enveloped icosahedral virions. Recently, bats have been identified as an important reservoir of several highly pathogenic human viruses. Since many members of the Picornaviridae family cause a wide range of diseases in humans and animals, this study aimed to characterize members of the order Picornavirales in fruit bat populations located in the Southwest region of Cameroon. These bat populations are frequently in close contact with humans due to hunting, selling and eating practices, which provides ample opportunity for interspecies transmissions. RESULTS Fecal samples from 87 fruit bats (Eidolon helvum and Epomophorus gambianus), were combined into 25 pools and analyzed using viral metagenomics. In total, Picornavirales reads were found in 19 pools, and (near) complete genomes of 11 picorna-like viruses were obtained from 7 of these pools. The picorna-like viruses possessed varied genomic organizations (monocistronic or dicistronic), and arrangements of gene cassettes. Some of the viruses belonged to established families, including the Picornaviridae, whereas others clustered distantly from known viruses and most likely represent novel genera and families. Phylogenetic and nucleotide composition analyses suggested that mammals were the likely host species of bat sapelovirus, bat kunsagivirus and bat crohivirus, whereas the remaining viruses (named bat iflavirus, bat posalivirus, bat fisalivirus, bat cripavirus, bat felisavirus, bat dicibavirus and bat badiciviruses 1 and 2) were most likely diet-derived. CONCLUSION The existence of a vast genetic variability of picorna-like viruses in fruit bats may increase the probability of spillover infections to humans especially when humans and bats have direct contact as the case in this study site. However, further screening for these viruses in humans will fully indicate their zoonotic potential.
Collapse
Affiliation(s)
- Claude Kwe Yinda
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ward Deboutte
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nádia Conceição-Neto
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elisabeth Heylen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Nick J. Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF UK
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Biotechnology Unit, Molecular and cell biology laboratory, University of Buea, Buea, Cameroon
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Abstract
The number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV.
Collapse
|
38
|
Charles J, Firth AE, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI, Blitvich BJ, Briese T. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 2016; 97:977-987. [PMID: 26868915 DOI: 10.1099/jgv.0.000424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.
Collapse
Affiliation(s)
- Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria A Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julian E Garcia-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jose A Farfan-Ale
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Tang Q, Song Y, Shi M, Cheng Y, Zhang W, Xia XQ. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition. Sci Rep 2015; 5:17155. [PMID: 26607834 PMCID: PMC4660426 DOI: 10.1038/srep17155] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Many coronaviruses are capable of interspecies transmission. Some of them have caused
worldwide panic as emerging human pathogens in recent years, e.g., severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome
coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to
infer the potential hosts of coronaviruses using a dual-model approach based on
nineteen parameters computed from spike genes of coronaviruses. Both the support
vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model
achieved high accuracies in leave-one-out cross-validation of training data
consisting of 730 representative coronaviruses (99.86% and 98.08% respectively).
Predictions on 47 additional coronaviruses precisely conformed to conclusions or
speculations by other researchers. Our approach is implemented as a web server that
can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts.
Collapse
Affiliation(s)
- Qin Tang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Song
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mijuan Shi
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingyin Cheng
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanting Zhang
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- Center for Molecular and Cellular Biology of Aquatic Organisms, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
40
|
Smits SL, Bodewes R, Ruiz-González A, Baumgärtner W, Koopmans MP, Osterhaus ADME, Schürch AC. Recovering full-length viral genomes from metagenomes. Front Microbiol 2015; 6:1069. [PMID: 26483782 PMCID: PMC4589665 DOI: 10.3389/fmicb.2015.01069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Infectious disease metagenomics is driven by the question: “what is causing the disease?” in contrast to classical metagenome studies which are guided by “what is out there?” In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral genome from a metagenomic sample. However, retrieval of a full-length genome of a divergent virus is technically challenging and can be time-consuming and costly. Here we discuss different assembly and fragment linkage strategies such as iterative assembly, motif searches, k-mer frequency profiling, coverage profile binning, and other strategies used to recover genomes of potential viral pathogens in a timely and cost-effective manner.
Collapse
Affiliation(s)
- Saskia L Smits
- Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands
| | - Aritz Ruiz-González
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU) Vitoria-Gasteiz, Spain ; Systematics, Biogeography and Population Dynamics Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU) Vitoria-Gasteiz, Spain ; Conservation Genetics Laboratory, National Institute for Environmental Protection and Research Bologna, Italy
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Marion P Koopmans
- Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands ; Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment Bilthoven, Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands ; Center for Infection Medicine and Zoonoses Research Hannover, Germany
| | - Anita C Schürch
- Department of Viroscience, Erasmus Medical Center Rotterdam, Netherlands
| |
Collapse
|
41
|
López-Bueno A, Rastrojo A, Peiró R, Arenas M, Alcamí A. Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol Ecol 2015. [DOI: 10.1111/mec.13321] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A. López-Bueno
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - A. Rastrojo
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - R. Peiró
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - M. Arenas
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - A. Alcamí
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
42
|
Genome analysis of a novel, highly divergent picornavirus from common kestrel (Falco tinnunculus): the first non-enteroviral picornavirus with type-I-like IRES. INFECTION GENETICS AND EVOLUTION 2015; 32:425-31. [PMID: 25864424 DOI: 10.1016/j.meegid.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/23/2022]
Abstract
Although the number of identified avian-borne picornaviruses (family Picornaviridae) is continuously increasing there remains several species-rich avian host groups, such as the order Falconiformes (with 290 bird species) from which picornaviruses have not been identified. This study reports the first complete genome of a novel, highly divergent picornavirus, named as Falcovirus A1 (KP230449), from the carnivorous bird, the common kestrel (Falco tinnunculus, order Falconiformes). Falcovirus A1 has the longest 3D(RdRp) genome region and distant phylogenetic relationship to the Hepatitis A virus 1 (Hepatovirus) and Avian encephalomyelitis virus 1 (Tremovirus). It has a type-I (enterovirus-like) IRES in the 5'UTR - identified for the first time among avian-borne picornaviruses suggesting that type-I IRES is not restricted only to enteroviruses and providing further evidence of mosaicism of this region among different picornavirus genera.
Collapse
|
43
|
Scheel TKH, Simmonds P, Kapoor A. Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 2015; 115:83-93. [PMID: 25545071 PMCID: PMC5081135 DOI: 10.1016/j.antiviral.2014.12.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
Abstract
Recent advances in sequencing technologies have greatly enhanced our abilities to identify novel microbial sequences. Thus, our understanding of the global virome and the virome of specific host species in particular is rapidly expanding. Identification of animal viruses is important for understanding animal disease, the origin and evolution of human viruses, as well as zoonotic reservoirs for emerging infections. Although the human hepacivirus, hepatitis C virus (HCV), was identified 25years ago, its origin has remained elusive. In 2011, the first HCV homolog was reported in dogs but subsequent studies showed the virus to be widely distributed in horses. This indicated a wider hepacivirus host range and paved the way for identification of rodent, bat and non-human primate hepaciviruses. The equine non-primate hepacivirus (NPHV) remains the closest relative of HCV and is so far the best characterized. Identification and characterization of novel hepaciviruses may in addition lead to development of tractable animal models to study HCV persistence, immune responses and pathogenesis. This could be particular important, given the current shortage of immunocompetent models for robust HCV infection. Much remains to be learned on the novel hepaciviruses, including their association with disease, and thereby how relevant they will become as HCV model systems and for studies of animal disease. This review discusses how virome analysis led to identification of novel hepaci- and pegiviruses, their genetic relationship and characterization and the potential use of animal hepaciviruses as models to study hepaciviral infection, immunity and pathogenesis. This article forms part of a symposium in Antiviral Research on "Hepatitis C: Next steps toward global eradication."
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Disease and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amit Kapoor
- Center for Infection and Immunity, Columbia University, New York, NY, United States.
| |
Collapse
|
44
|
Sasaki M, Orba Y, Ueno K, Ishii A, Moonga L, Hang'ombe BM, Mweene AS, Ito K, Sawa H. Metagenomic analysis of the shrew enteric virome reveals novel viruses related to human stool-associated viruses. J Gen Virol 2014; 96:440-452. [PMID: 25381053 DOI: 10.1099/vir.0.071209-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shrews are small insectivorous mammals that are distributed worldwide. Similar to rodents, shrews live on the ground and are commonly found near human residences. In this study, we investigated the enteric virome of wild shrews in the genus Crocidura using a sequence-independent viral metagenomics approach. A large portion of the shrew enteric virome was composed of insect viruses, whilst novel viruses including cyclovirus, picornavirus and picorna-like virus were also identified. Several cycloviruses, including variants of human cycloviruses detected in cerebrospinal fluid and stools, were detected in wild shrews at a high prevalence rate. The identified picornavirus was distantly related to human parechovirus, inferring the presence of a new genus in this family. The identified picorna-like viruses were characterized as different species of calhevirus 1, which was discovered previously in human stools. Complete or nearly complete genome sequences of these novel viruses were determined in this study and then were subjected to further genetic characterization. Our study provides an initial view of the diversity and distinctiveness of the shrew enteric virome and highlights unique novel viruses related to human stool-associated viruses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Keisuke Ueno
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Ladslav Moonga
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary and Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
45
|
Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. mBio 2014; 5:e01933-14. [PMID: 25316698 PMCID: PMC4205793 DOI: 10.1128/mbio.01933-14] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. The observation that most emerging infectious diseases of humans originate in animal reservoirs has led to wide-scale microbial surveillance and discovery programs in wildlife, particularly in the developing world. Strikingly, less attention has been focused on commensal animals like rats, despite their abundance in urban centers and close proximity to human populations. To begin to explore the zoonotic disease risk posed by urban rat populations, we trapped and surveyed Norway rats collected in New York City over a 1-year period. This analysis revealed a striking diversity of known pathogens and novel viruses in our study population, including multiple agents associated with acute gastroenteritis or febrile illnesses in people. Our findings indicate that urban rats are reservoirs for a vast diversity of microbes that may affect human health and indicate a need for increased surveillance and awareness of the disease risks associated with urban rodent infestation.
Collapse
|
46
|
Shaukat S, Angez M, Alam MM, Jebbink MF, Deijs M, Canuti M, Sharif S, de Vries M, Khurshid A, Mahmood T, van der Hoek L, Zaidi SSZ. Identification and characterization of unrecognized viruses in stool samples of non-polio acute flaccid paralysis children by simplified VIDISCA. Virol J 2014; 11:146. [PMID: 25112200 PMCID: PMC4254409 DOI: 10.1186/1743-422x-11-146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/30/2014] [Indexed: 12/22/2022] Open
Abstract
Background The use of sequence independent methods combined with next generation sequencing for identification purposes in clinical samples appears promising and exciting results have been achieved to understand unexplained infections. One sequence independent method, Virus Discovery based on cDNA Amplified Fragment Length Polymorphism (VIDISCA) is capable of identifying viruses that would have remained unidentified in standard diagnostics or cell cultures. Methods VIDISCA is normally combined with next generation sequencing, however, we set up a simplified VIDISCA which can be used in case next generation sequencing is not possible. Stool samples of 10 patients with unexplained acute flaccid paralysis showing cytopathic effect in rhabdomyosarcoma cells and/or mouse cells were used to test the efficiency of this method. To further characterize the viruses, VIDISCA-positive samples were amplified and sequenced with gene specific primers. Results Simplified VIDISCA detected seven viruses (70%) and the proportion of eukaryotic viral sequences from each sample ranged from 8.3 to 45.8%. Human enterovirus EV-B97, EV-B100, echovirus-9 and echovirus-21, human parechovirus type-3, human astrovirus probably a type-3/5 recombinant, and tetnovirus-1 were identified. Phylogenetic analysis based on the VP1 region demonstrated that the human enteroviruses are more divergent isolates circulating in the community. Conclusion Our data support that a simplified VIDISCA protocol can efficiently identify unrecognized viruses grown in cell culture with low cost, limited time without need of advanced technical expertise. Also complex data interpretation is avoided thus the method can be used as a powerful diagnostic tool in limited resources. Redesigning the routine diagnostics might lead to additional detection of previously undiagnosed viruses in clinical samples of patients. Electronic supplementary material The online version of this article (doi:10.1186/1743-422X-11-146) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
47
|
Zhang W, Li L, Deng X, Kapusinszky B, Pesavento PA, Delwart E. Faecal virome of cats in an animal shelter. J Gen Virol 2014; 95:2553-2564. [PMID: 25078300 DOI: 10.1099/vir.0.069674-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We describe the metagenomics-derived feline enteric virome in the faeces of 25 cats from a single shelter in California. More than 90 % of the recognizable viral reads were related to mammalian viruses and the rest to bacterial viruses. Eight viral families were detected: Astroviridae, Coronaviridae, Parvoviridae, Circoviridae, Herpesviridae, Anelloviridae, Caliciviridae and Picobirnaviridae. Six previously known viruses were also identified: feline coronavirus type 1, felid herpes 1, feline calicivirus, feline norovirus, feline panleukopenia virus and picobirnavirus. Novel species of astroviruses and bocaviruses, and the first genome of a cyclovirus in a feline were characterized. The RNA-dependent RNA polymerase region from four highly divergent partial viral genomes in the order Picornavirales were sequenced. The detection of such a diverse collection of viruses shed within a single shelter suggested that such animals experience robust viral exposures. This study increases our understanding of the viral diversity in cats, facilitating future evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Linlin Li
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Xutao Deng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Beatrix Kapusinszky
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| |
Collapse
|
48
|
Lange J, Groth M, Fichtner D, Granzow H, Keller B, Walther M, Platzer M, Sauerbrei A, Zell R. Virus isolate from carp: genetic characterization reveals a novel picornavirus with two aphthovirus 2A-like sequences. J Gen Virol 2014; 95:80-90. [PMID: 24337965 DOI: 10.1099/vir.0.058172-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Picornaviruses have been isolated from a variety of hosts, mainly mammals and birds. Here, we describe the sequence analysis of carp picornavirus 1 (CPV-1) F37/06 that was isolated from an organ pool (heart, brain, liver) of a common carp (Cyprinus carpio). This carp perished after an accidental discharge of liquid manure into a fish pond and presented without obvious clinical symptoms. Experimental intraperitoneal infection of young carp with CPV-1 revealed no clinical signs, but the virus was re-isolated from various organs. Sequence analysis of almost the complete genome (7632 nt excluding the poly-A tract) revealed a novel picornavirus clade. In phylogenetic trees, the polymerase sequence clusters with parechoviruses, duck hepatitis A virus, eel picornavirus and aquamavirus A. The ORF includes 6807 nt and encodes a polyprotein of 2269 amino acids. CPV-1 has a genome layout like that of picornaviruses except for the presence of two aphthovirus 2A-like NPGP sequence motifs: VPg+5'UTR[1AB-1C-1D-2A1(npgp)/2A2(npgp)-2B-2C(ATPase)/3A-3B(VPg)-3C(pro)-3D(pol)]3'UTR-poly-A. 2A1(npgp) and 2A2(npgp) are separated by 133 amino acids. The proteins 2A2(npgp), 2B, 3A and 3B(VPg) have no significant similarity to the corresponding proteins of other picornaviruses. Amino acid identities of the orthologous proteins P1, 2C, 3C(pro) and 3D(pol) range from 16.4 to 40.8 % in the eel picornavirus/CPV-1 comparison. 3D(pol) shows the closest similarity to eel picornavirus, with an amino acid identity of 40.8 %, followed by human parechovirus (36.5 %), duck hepatitis A virus (32.7 %) and swine pasivirus (29.3 %). Both the unique genome organization and low sequence similarity support the assignment of CPV-1 to a novel picornavirus species within a novel genus.
Collapse
Affiliation(s)
- Jeannette Lange
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Hans Knoell Str. 2, 07745 Jena, Germany
| | - Marco Groth
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Dieter Fichtner
- Institute of Infectiology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectiology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Barbara Keller
- Lower Saxony State Office for Consumer Protection and Food Safety, Eintrachtweg 17, 30173 Hannover, Germany
| | - Mario Walther
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University Jena, 07740 Jena, Germany
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Hans Knoell Str. 2, 07745 Jena, Germany
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Hans Knoell Str. 2, 07745 Jena, Germany
| |
Collapse
|
49
|
Boros Á, Kiss T, Kiss O, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Genetic characterization of a novel picornavirus distantly related to the marine mammal-infecting aquamaviruses in a long-distance migrant bird species, European roller (Coracias garrulus). J Gen Virol 2013; 94:2029-2035. [PMID: 23804566 DOI: 10.1099/vir.0.054676-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite the continuously growing number of known avian picornaviruses (family Picornaviridae), knowledge of their genetic diversity in wild birds, especially in long-distance migrant species is very limited. In this study, we report the presence of a novel picornavirus identified from one of 18 analysed faecal samples of an Afro-Palearctic migrant bird, the European roller (Coracias garrulus L., 1758), which is distantly related to the marine-mammal-infecting seal aquamavirus A1 (genus Aquamavirus). The phylogenetic analyses and the low sequence identity (P1 26.3 %, P2 25.8 % and P3 28.4 %) suggest that this picornavirus could be the founding member of a novel picornavirus genus that we have provisionally named 'Kunsagivirus', with 'Greplavirus A' (strain roller/SZAL6-KuV/2011/HUN, GenBank accession no. KC935379) as the candidate type species.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Tamás Kiss
- Hungarian Ornithological and Nature Conservation Society, Budapest, Hungary
| | - Orsolya Kiss
- Ecology Department, Szeged University, Közép fasor 52, Szeged, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
50
|
Abstract
Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity, and pathogenesis. To address this challenge, we searched for homologous viruses in small mammals, including wild rodents. Here we report the discovery of several new hepaciviruses (HCV-like viruses) and pegiviruses (GB virus-like viruses) that infect wild rodents. Complete genome sequences were acquired for a rodent hepacivirus (RHV) found in Peromyscus maniculatus and a rodent pegivirus (RPgV) found in Neotoma albigula. Unique genomic features and phylogenetic analyses confirmed that these RHV and RPgV variants represent several novel virus species in the Hepacivirus and Pegivirus genera within the family Flaviviridae. The genetic diversity of the rodent hepaciviruses exceeded that observed for hepaciviruses infecting either humans or non-primates, leading to new insights into the origin, evolution, and host range of hepaciviruses. The presence of genes, encoded proteins, and translation elements homologous to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses.
Collapse
|