1
|
Ke PY, Yeh CT. Functional Role of Hepatitis C Virus NS5A in the Regulation of Autophagy. Pathogens 2024; 13:980. [PMID: 39599533 PMCID: PMC11597459 DOI: 10.3390/pathogens13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Many types of RNA viruses, including the hepatitis C virus (HCV), activate autophagy in infected cells to promote viral growth and counteract the host defense response. Autophagy acts as a catabolic pathway in which unnecessary materials are removed via the lysosome, thus maintaining cellular homeostasis. The HCV non-structural 5A (NS5A) protein is a phosphoprotein required for viral RNA replication, virion assembly, and the determination of interferon (IFN) sensitivity. Recently, increasing evidence has shown that HCV NS5A can induce autophagy to promote mitochondrial turnover and the degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) and diacylglycerol acyltransferase 1 (DGAT1). In this review, we summarize recent progress in understanding the detailed mechanism by which HCV NS5A triggers autophagy, and outline the physiological significance of the balance between host-virus interactions.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| |
Collapse
|
2
|
Cousineau SE, Camargo C, Sagan SM. Poly(rC)-Binding Protein 2 Does Not Directly Participate in HCV Translation or Replication, but Rather Modulates Genome Packaging. Viruses 2024; 16:1220. [PMID: 39205194 PMCID: PMC11359930 DOI: 10.3390/v16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis C virus (HCV) co-opts many cellular factors-including proteins and microRNAs-to complete its life cycle. A cellular RNA-binding protein, poly(rC)-binding protein 2 (PCBP2), was previously shown to bind to the hepatitis C virus (HCV) genome; however, its precise role in the viral life cycle remained unclear. Herein, using the HCV cell culture (HCVcc) system and assays that isolate each step of the viral life cycle, we found that PCBP2 does not have a direct role in viral entry, translation, genome stability, or HCV RNA replication. Rather, our data suggest that PCBP2 depletion only impacts viral RNAs that can undergo genome packaging. Taken together, our data suggest that endogenous PCBP2 modulates the early steps of genome packaging, and therefore only has an indirect effect on viral translation and RNA replication, likely by increasing the translating/replicating pool of viral RNAs to the detriment of virion assembly.
Collapse
Affiliation(s)
- Sophie E. Cousineau
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carolina Camargo
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| | - Selena M. Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Microbiology & Immunology, University of British Columbia, 2350 Health Science Mall, Room 4.520, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Lee WP, Tsai KC, Liao SX, Huang YH, Hou MC, Lan KH. Ser38-His93-Asn91 triad confers resistance of JFH1 HCV NS5A-Y93H variant to NS5A inhibitors. FEBS J 2024; 291:1264-1274. [PMID: 38116713 DOI: 10.1111/febs.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
HCV NS5A is a dimeric phosphoprotein involved in HCV replication. NS5A inhibitors are among direct-acting antivirals (DAA) for HCV therapy. The Y93H mutant of NS5A is resistant to NS5A inhibitors, but the precise mechanism remains unclear. In this report, we proposed a Ser38-His93-Asn91 triad to dissect the mechanism. Using pymol 1.3 software, the homology structure of JFH1 NS5A was determined based on the dimer structure of genotype 1b extracted from the database Protein DataBank (www.ebi.ac.uk/pdbsum) with codes 1ZH1 and 3FQM/3FQQ. FLAG-NS5A-WT failed to form dimer in the absence of nonstructural proteins from subgenomic replicon (NS3-5A); however, FLAG-NS5A-Y93H was able to form dimer without the aid of NS3-5A. The Ser38-His93-Asn91 triad in the dimer of the Y93H variant predicts a structural crash of the cleft receiving the NS5A inhibitor daclatasvir. The dimerization assay revealed that the existence of JFH1-NS5A-1ZH1 and -3FQM homology dimers depended on each other for existence and that both NS5A-WT 1ZH1 and 3FQM dimers cooperated to facilitate RNA replication. However, NS5A-Y93H 1ZH1 alone could form dimer and conduct RNA replication in the absence of the 3FQM structure. In conclusion, this study provides novel insight into the functional significance of the Ser38-His93-Asn91 triad in resistance of the Y93H variant to NS5A inhibitors.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Shafat Z, Islam A, Parveen S. Amino acid pattern reveals multi-functionality of ORF3 protein from HEV. Bioinformation 2024; 20:121-135. [PMID: 38497081 PMCID: PMC10941781 DOI: 10.6026/973206300200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The smallest open reading frame (ORF) encoded protein ORF3 of hepatitis E virus (HEV), recently, has been demonstrated to perform multiple functions besides accessory roles. ORF3 could act as a target for vaccine against HEV infections. The IDR (intrinsically disordered region); IDP (ID protein)/IDPR (ID protein region), plays critical role in various regulatory functions of viruses. The dark proteome of HEV-ORF3 protein including its structure and function was systematically examined by computer predictors to explicate its role in viral pathogenesis and drug resistance beyond its functions as accessory viral protein. Amino acid distribution showed ORF3 enrichment with disorder-promoting residues (Ala, Pro, Ser, Gly) while deficiency in order-promoting residues (Asn, Ile, Phe, Tyr and Trp). Initial investigation revealed ORF3 as IDP (entirely disordered protein) or IDPR (proteins consisting of IDRs with structured globular domains). Structural examination revealed preponderance of disordered regions interpreting ORF3 as moderately/highly disordered protein. Further disorder predictors categorized ORF3 as highly disordered protein/IDP. Identified sites and associated-crucial molecular functions revealed ORF3 involvement in diverse biological processes, substantiating them as targets of regulation. As ORF3 functions are yet to completely explored, thus, data on its disorderness could help in elucidating its disorder related functions.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Chen S, Harris M. Mutational analysis reveals a novel role for hepatitis C virus NS5A domain I in cyclophilin-dependent genome replication. J Gen Virol 2023; 104:10.1099/jgv.0.001886. [PMID: 37672027 PMCID: PMC7615712 DOI: 10.1099/jgv.0.001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The hepatitis C virus (HCV) NS5A protein is comprised of three domains (D1-3). Previously, we observed that two alanine substitutions in D1 (V67A, P145A) abrogated replication of a genotype 2a isolate (JFH-1) sub-genomic replicon (SGR) in Huh7 cells, but this phenotype was partially restored in Huh7.5 cells. Here we demonstrate that five additional residues, surface-exposed and proximal to V67 or P145, exhibited the same phenotype. In contrast, the analogous mutants in a genotype 3a isolate (DBN3a) SGR exhibited different phenotypes in each cell line, consistent with fundamental differences in the functions of genotypes 2 and 3 NS5A. The difference between Huh7 and Huh7.5 cells was reminiscent of the observation that cyclophilin inhibitors are more potent against HCV replication in the former and suggested a role for D1 in cyclophilin dependence. Consistent with this, all JFH-1 and DBN3a mutants exhibited increased sensitivity to cyclosporin A treatment compared to wild-type. Silencing of cyclophilin A (CypA) in Huh7 cells inhibited replication of both JFH-1 and DBN3a. However, in Huh7.5 cells CypA silencing did not inhibit JFH-1 wild-type, but abrogated replication of all the JFH-1 mutants, and both DBN3a wild-type and all mutants. CypB silencing in Huh7 cells had no effect on DBN3a, but abrogated replication of JFH-1. CypB silencing in Huh7.5 cells had no effect on either SGR. Lastly, we confirmed that JFH-1 NS5A D1 interacted with CypA in vitro. These data demonstrate both a direct involvement of NS5A D1 in cyclophilin-dependent genome replication and functional differences between genotype 2 and 3 NS5A.
Collapse
Affiliation(s)
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Gidi Y, Robert A, Tordo A, Lovell TC, Ramos-Sanchez J, Sakaya A, Götte M, Cosa G. Binding and Sliding Dynamics of the Hepatitis C Virus Polymerase: Hunting the 3' Terminus. ACS Infect Dis 2023; 9:1488-1498. [PMID: 37436367 DOI: 10.1021/acsinfecdis.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Anaïs Robert
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alix Tordo
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
7
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Intrinsic disorder in the open reading frame 2 of hepatitis E virus: a protein with multiple functions beyond viral capsid. J Genet Eng Biotechnol 2023; 21:33. [PMID: 36929465 PMCID: PMC10018590 DOI: 10.1186/s43141-023-00477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the cause of a liver disease hepatitis E. The translation product of HEV ORF2 has recently been demonstrated as a protein involved in multiple functions besides performing its major role of a viral capsid. As intrinsically disordered regions (IDRs) are linked to various essential roles in the virus's life cycle, we analyzed the disorder pattern distribution of the retrieved ORF2 protein sequences by employing different online predictors. Our findings might provide some clues on the disorder-based functions of ORF2 protein that possibly help us in understanding its behavior other than as a HEV capsid protein. RESULTS The modeled three dimensional (3D) structures of ORF2 showed the predominance of random coils or unstructured regions in addition to major secondary structure components (alpha helix and beta strand). After initial scrutinization, the predictors VLXT and VSL2 predicted ORF2 as a highly disordered protein while the predictors VL3 and DISOPRED3 predicted ORF2 as a moderately disordered protein, thus categorizing HEV-ORF2 into IDP (intrinsically disordered protein) or IDPR (intrinsically disordered protein region) respectively. Thus, our initial predicted disorderness in ORF2 protein 3D structures was in excellent agreement with their predicted disorder distribution patterns (evaluated through different predictors). The abundance of MoRFs (disorder-based protein binding sites) in ORF2 was observed that signified their interaction with binding partners which might further assist in viral infection. As IDPs/IDPRs are targets of regulation, we carried out the phosphorylation analysis to reveal the presence of post-translationally modified sites. Prevalence of several disordered-based phosphorylation sites further signified the involvement of ORF2 in diverse and significant biological processes. Furthermore, ORF2 structure-associated functions revealed its involvement in several crucial functions and biological processes like binding and catalytic activities. CONCLUSIONS The results predicted ORF2 as a protein with multiple functions besides its role as a capsid protein. Moreover, the occurrence of IDPR/IDP in ORF2 protein suggests that its disordered region might serve as novel drug targets via functioning as potential interacting domains. Our data collectively might provide significant implication in HEV vaccine search as disorderness in viral proteins is related to mechanisms involved in immune evasion.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
8
|
Sagan SM, Weber SC. Let's phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci 2023; 48:229-243. [PMID: 36272892 DOI: 10.1016/j.tibs.2022.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Viruses compartmentalize their replication and assembly machinery to both evade detection and concentrate the viral proteins and nucleic acids necessary for genome replication and virion production. Accumulating evidence suggests that diverse RNA and DNA viruses form replication organelles and nucleocapsid assembly sites using phase separation. In general, the biogenesis of these compartments is regulated by two types of viral protein, collectively known as antiterminators and nucleocapsid proteins, respectively. Herein, we discuss how RNA viruses establish replication organelles and nucleocapsid assembly sites, and the evidence that these compartments form through phase separation. While this review focuses on RNA viruses, accumulating evidence suggests that all viruses rely on phase separation and form biomolecular condensates important for completing the infectious cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC, Canada; Department of Physics, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Chen S, Harris M. NS5A domain I antagonises PKR to facilitate the assembly of infectious hepatitis C virus particles. PLoS Pathog 2023; 19:e1010812. [PMID: 36795772 PMCID: PMC9977016 DOI: 10.1371/journal.ppat.1010812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Hepatitis C virus NS5A is a multifunctional phosphoprotein comprised of three domains (DI, DII and DIII). DI and DII have been shown to function in genome replication, whereas DIII has a role in virus assembly. We previously demonstrated that DI in genotype 2a (JFH1) also plays a role in virus assembly, exemplified by the P145A mutant which blocked infectious virus production. Here we extend this analysis to identify two other conserved and surface exposed residues proximal to P145 (C142 and E191) that exhibited no defect in genome replication but impaired virus production. Further analysis revealed changes in the abundance of dsRNA, the size and distribution of lipid droplets (LD) and the co-localisation between NS5A and LDs in cells infected with these mutants, compared to wildtype. In parallel, to investigate the mechanism(s) underpinning this role of DI, we assessed the involvement of the interferon-induced double-stranded RNA-dependent protein kinase (PKR). In PKR-silenced cells, C142A and E191A exhibited levels of infectious virus production, LD size and co-localisation between NS5A and LD that were indistinguishable from wildtype. Co-immunoprecipitation and in vitro pulldown experiments confirmed that wildtype NS5A domain I (but not C142A or E191A) interacted with PKR. We further showed that the assembly phenotype of C142A and E191A was restored by ablation of interferon regulatory factor-1 (IRF1), a downstream effector of PKR. These data suggest a novel interaction between NS5A DI and PKR that functions to evade an antiviral pathway that blocks virus assembly through IRF1.
Collapse
Affiliation(s)
- Shucheng Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
11
|
Shah R, Barclay ST, Peters ES, Fox R, Gunson R, Bradley-Stewart A, Shepherd SJ, MacLean A, Tong L, van Vliet VJE, Ngan Chiu Bong M, Filipe A, Thomson EC, Davis C. Characterisation of a Hepatitis C Virus Subtype 2a Cluster in Scottish PWID with a Suboptimal Response to Glecaprevir/Pibrentasvir Treatment. Viruses 2022; 14:v14081678. [PMID: 36016300 PMCID: PMC9416734 DOI: 10.3390/v14081678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Direct-acting antivirals (DAAs) have revolutionised the treatment of Hepatitis C virus (HCV), allowing the World Health Organisation (WHO) to set a target of eliminating HCV by 2030. In this study we aimed to investigate glecaprevir and pibrentasvir (GP) treatment outcomes in a cohort of patients with genotype 2a infection. METHODS Clinical data and plasma samples were collected in NHS Greater Glasgow & Clyde. Next generation whole genome sequencing and replicon assays were carried out at the MRC-University of Glasgow Centre for Virus Research. RESULTS 132 cases infected with genotype 2a HCV were identified. The SVR rate for this group was 91% (112/123) following treatment with GP. An NS5A polymorphism, L31M, was detected in all cases of g2a infection, and L31M+R353K in individuals that failed treatment. The results showed that R353K was present in 90% of individuals in the Glasgow genotype 2a phylogenetic cluster but in less than 5% of all HCV subtype 2a published sequences. In vitro efficacy of pibrentasvir against sub-genomic replicon constructs containing these mutations showed a 2-fold increase in IC50 compared to wildtype. CONCLUSION This study describes a cluster of HCV genotype 2a infection associated with a lower-than-expected SVR rate following GP treatment in association with the NS5A mutations L31M+R353K.
Collapse
Affiliation(s)
- Rajiv Shah
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
- Correspondence: (R.S.); (C.D.)
| | - Stephen T. Barclay
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Erica S. Peters
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Ray Fox
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Rory Gunson
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Amanda Bradley-Stewart
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Samantha J. Shepherd
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Alasdair MacLean
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Lily Tong
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
| | - Vera Jannie Elisabeth van Vliet
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
| | - Michael Ngan Chiu Bong
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
| | - Ana Filipe
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
| | - Emma C. Thomson
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
- NHS Greater Glasgow & Clyde, Departments of Hepatology and Virology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK; (S.T.B.); (E.S.P.); (R.F.); (A.B.-S.); (S.J.S.); (A.M.)
| | - Chris Davis
- Thomson Group, College of Medical, Veterinary & Life Sciences, MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; (R.G.); (L.T.); (V.J.E.v.V.); (M.N.C.B.); (A.F.); (E.C.T.)
- Correspondence: (R.S.); (C.D.)
| |
Collapse
|
12
|
Isken O, Walther T, Wong-Dilworth L, Rehders D, Redecke L, Tautz N. Identification of NS2 determinants stimulating intrinsic HCV NS2 protease activity. PLoS Pathog 2022; 18:e1010644. [PMID: 35727826 PMCID: PMC9249167 DOI: 10.1371/journal.ppat.1010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Thomas Walther
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Luis Wong-Dilworth
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Dirk Rehders
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Hamburg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
13
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Role of "dual-personality" fragments in HEV adaptation-analysis of Y-domain region. J Genet Eng Biotechnol 2021; 19:154. [PMID: 34637041 PMCID: PMC8511232 DOI: 10.1186/s43141-021-00238-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatitis E is a liver disease caused by the pathogen hepatitis E virus (HEV). The largest polyprotein open reading frame 1 (ORF1) contains a nonstructural Y-domain region (YDR) whose activity in HEV adaptation remains uncharted. The specific role of disordered regions in several nonstructural proteins has been demonstrated to participate in the multiplication and multiple regulatory functions of the viruses. Thus, intrinsic disorder of YDR including its structural and functional annotation was comprehensively studied by exploiting computational methodologies to delineate its role in viral adaptation. RESULTS Based on our findings, it was evident that YDR contains significantly higher levels of ordered regions with less prevalence of disordered residues. Sequence-based analysis of YDR revealed it as a "dual personality" (DP) protein due to the presence of both structured and unstructured (intrinsically disordered) regions. The evolution of YDR was shaped by pressures that lead towards predominance of both disordered and regularly folded amino acids (Ala, Arg, Gly, Ile, Leu, Phe, Pro, Ser, Tyr, Val). Additionally, the predominance of characteristic DP residues (Thr, Arg, Gly, and Pro) further showed the order as well as disorder characteristic possessed by YDR. The intrinsic disorder propensity analysis of YDR revealed it as a moderately disordered protein. All the YDR sequences consisted of molecular recognition features (MoRFs), i.e., intrinsic disorder-based protein-protein interaction (PPI) sites, in addition to several nucleotide-binding sites. Thus, the presence of molecular recognition (PPI, RNA binding, and DNA binding) signifies the YDR's interaction with specific partners, host membranes leading to further viral infection. The presence of various disordered-based phosphorylation sites further signifies the role of YDR in various biological processes. Furthermore, functional annotation of YDR revealed it as a multifunctional-associated protein, due to its susceptibility in binding to a wide range of ligands and involvement in various catalytic activities. CONCLUSIONS As DP are targets for regulation, thus, YDR contributes to cellular signaling processes through PPIs. As YDR is incompletely understood, therefore, our data on disorder-based function could help in better understanding its associated functions. Collectively, our novel data from this comprehensive investigation is the first attempt to delineate YDR role in the regulation and pathogenesis of HEV.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
14
|
Grunkemeyer TJ, Ghosh S, Patel AM, Sajja K, Windak J, Basrur V, Kim Y, Nesvizhskii AI, Kennedy RT, Marsh ENG. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J Biol Chem 2021; 297:100824. [PMID: 34029588 PMCID: PMC8254119 DOI: 10.1016/j.jbc.2021.100824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane-associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin's antiviral effects against enveloped viruses.
Collapse
Affiliation(s)
| | - Soumi Ghosh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayesha M Patel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - James Windak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemisrty, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
15
|
Bobardt M, Ramirez CM, Baum MM, Ure D, Foster R, Gallay PA. The combination of the NS5A and cyclophilin inhibitors results in an additive anti-HCV inhibition in humanized mice without development of resistance. PLoS One 2021; 16:e0251934. [PMID: 34014993 PMCID: PMC8136729 DOI: 10.1371/journal.pone.0251934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
We and others previously reported that the direct-acting agents (DAA) NS5A inhibitors (NS5Ai) and the host-targeting agents cyclophilin inhibitors (CypIs) inhibit HCV replication in vitro. In this study, we investigated whether the combination of NS5Ai and CypI offers a potent anti-HCV effect in vivo. A single administration of NS5Ai or CypI alone to HCV-infected humanized-mice inhibits HCV replication. The combination of NS5Ai with CypI suppresses HCV (GT1a, GT2a, GT3a and GT4a) replication in an additive manner. NS5Ai/CypI combinations provide a statistically more profound anti-HCV inhibition for GT2a and GT3a than GT1a and GT4a, leading to a fastest and deepest inhibition of GT2a and GT3a replications. Combining CypI with NS5Ai prevents the viral rebound normally observed in mice treated with NS5Ai alone. Results were confirmed in mice implanted with human hepatocytes from different donors. Therefore, the combination of NS5Ai with CypI may serve as a regimen for the treatment of HCV patients with specific genotypes and disorder conditions, which diminish sustain viral response levels to DAA, such as GT3a infection, cirrhosis, and DAA resistance associated with the selection of resistance-associated substitutions present at baseline or are acquired during treatment.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina M. Ramirez
- Los Angeles (UCLA) Fielding School of Public Health, University of California, Center for Health Sciences, Los Angeles, CA, United States of America
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States of America
| | - Daren Ure
- Hepion Pharmaceuticals, Edison, New Jersey
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Alkhatib M, Di Maio VC, De Murtas V, Polilli E, Milana M, Teti E, Fiorentino G, Calvaruso V, Barbaliscia S, Bertoli A, Scutari R, Carioti L, Cento V, Santoro MM, Orro A, Maida I, Lenci I, Sarmati L, Craxì A, Pasquazzi C, Parruti G, Babudieri S, Milanesi L, Andreoni M, Angelico M, Perno CF, Ceccherini-Silberstein F, Svicher V, Salpini R. Genetic Determinants in a Critical Domain of NS5A Correlate with Hepatocellular Carcinoma in Cirrhotic Patients Infected with HCV Genotype 1b. Viruses 2021; 13:v13050743. [PMID: 33922732 PMCID: PMC8146897 DOI: 10.3390/v13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain-1 interacts with cellular proteins inducing pro-oncogenic pathways. Thus, we explore genetic variations in NS5A domain-1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype-1b infected DAA-naïve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of ≥1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC-group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell-cycle regulation (p53, p85-PIK3, and β-catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV-mediated oncogenesis. The role of these NS5A domain-1 mutations in triggering pro-oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation.
Collapse
Affiliation(s)
- Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina De Murtas
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ennio Polilli
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Martina Milana
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Elisabetta Teti
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Gianluca Fiorentino
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Vincenza Calvaruso
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Silvia Barbaliscia
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Alessandro Orro
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Ivana Maida
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Ilaria Lenci
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Loredana Sarmati
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Antonio Craxì
- Gastroenterology, “P. Giaccone” University Hospital, 90127 Palermo, Italy; (V.C.); (A.C.)
| | - Caterina Pasquazzi
- Infectious Diseases Unit, Sant’Andrea Hospital—“Sapienza” University, 00189 Rome, Italy; (G.F.); (C.P.)
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, 65124 Pescara, Italy; (E.P.); (G.P.)
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy; (V.D.M.); (I.M.); (S.B.)
| | - Luciano Milanesi
- ITB-CNR, Institute of Biomedical Technologies, National Research Council of Italy, 20090 Milan, Italy; (A.O.); (L.M.)
| | - Massimo Andreoni
- Infectious Diseases Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (E.T.); (L.S.); (M.A.)
| | - Mario Angelico
- Hepatology Unit, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (I.L.); (M.A.)
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesu’, Pediatric Hospital, 60165 Rome, Italy;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
- Correspondence: ; Tel.: +39-06-72596564
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; mohammad-- (M.A.); (V.C.D.M.); (S.B.); (A.B.); (R.S.); (L.C.); (M.M.S.); (F.C.-S.); (R.S.)
| | | |
Collapse
|
17
|
Tarannum H, Chauhan B, Samadder A, Roy H, Nandi S. To Explore the Potential Targets and Current Structure-based Design Strategies Utilizing Co-crystallized Ligand to Combat HCV. Curr Drug Targets 2021; 22:590-604. [PMID: 32720601 DOI: 10.2174/1389450121999200727215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis C Virus (HCV) belongs to the Hepacivirus family. HCV has been designated as a very dreadful virus as it can attack the liver, causing inflammation and even may lead to cancer in chronic conditions. It was estimated that 71 million people around the world have chronic HCV infection. World Health Organization (WHO) reported that about 399000 people died because of chronic cirrhosis and liver cancer globally. In spite of the abundance of availability of drugs for the treatment of HCV, however, the issue of drug resistance surpasses all the possibilities of therapeutic management of HCV. Therefore, to address this issue of 'drug-resistance', various HCV targets were explored to quest the evaluation of the mechanism of the disease progression. METHODS An attempt has been made in the present study to explore the various targets of HCV involved in the mechanism(s) of the disease initiation and progression and to focus on the mode of binding of ligands, which are co-crystallized at the active cavity of different HCV targets. CONCLUSION The present study could predict some crucial features of these ligands, which possibly interacted with various amino acid residues responsible for their biological activity and molecular signaling pathway(s). Such binding mode may be considered as a template for the high throughput screening and designing of active congeneric ligands to combat HCV.
Collapse
Affiliation(s)
- Heena Tarannum
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Bhumika Chauhan
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
18
|
Riva L, Spriet C, Barois N, Popescu CI, Dubuisson J, Rouillé Y. Comparative Analysis of Hepatitis C Virus NS5A Dynamics and Localization in Assembly-Deficient Mutants. Pathogens 2021; 10:pathogens10020172. [PMID: 33557275 PMCID: PMC7919264 DOI: 10.3390/pathogens10020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is a tightly regulated process, during which structural and non-structural proteins cooperate. However, the interplay between HCV proteins during genomic RNA replication and progeny virion assembly is not completely understood. Here, we studied the dynamics and intracellular localization of non-structural 5A protein (NS5A), which is a protein involved both in genome replication and encapsidation. An NS5A-eGFP (enhanced green fluorescent protein) tagged version of the strain JFH-1-derived wild-type HCV was compared to the corresponding assembly-deficient viruses Δcore, NS5A basic cluster 352–533 mutant (BCM), and serine cluster 451 + 454 + 457 mutant (SC). These analyses highlighted an increase of NS5A motility when the viral protein core was lacking. Although to a lesser extent, NS5A motility was also increased in the BCM virus, which is characterized by a lack of interaction of NS5A with the viral RNA, impairing HCV genome encapsidation. This observation suggests that the more static NS5A population is mainly involved in viral assembly rather than in RNA replication. Finally, NS4B exhibited a reduced co-localization with NS5A and lipid droplets for both Δcore and SC mutants, which is characterized by the absence of interaction of NS5A with core. This observation strongly suggests that NS5A is involved in targeting NS4B to lipid droplets (LDs). In summary, this work contributes to a better understanding of the interplay between HCV proteins during the viral life cycle.
Collapse
Affiliation(s)
- Laura Riva
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Corentin Spriet
- University of Lille, CNRS, UMR 8576-UGSF-Department of Functional and Structural Glycobiology, 59000 Lille, France;
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Nicolas Barois
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, US 41-UMS 2014-PLBS, 59000 Lille, France
| | - Costin-Ioan Popescu
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania;
| | - Jean Dubuisson
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
| | - Yves Rouillé
- University of Lille, CNRS, Inserm, Institut Pasteur de Lille, CHU Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France; (L.R.); (N.B.); (J.D.)
- Correspondence:
| |
Collapse
|
19
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
20
|
Ghosh S, Patel AM, Grunkemeyer TJ, Dumbrepatil AB, Zegalia K, Kennedy RT, Marsh ENG. Interactions between Viperin, Vesicle-Associated Membrane Protein A, and Hepatitis C Virus Protein NS5A Modulate Viperin Activity and NS5A Degradation. Biochemistry 2020; 59:780-789. [PMID: 31977203 DOI: 10.1021/acs.biochem.9b01090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The radical SAM enzyme, viperin, exerts a wide range of antiviral effects through both the synthesis of the antiviral nucleotide 3'-deoxy-3',4'-didehydro-CTP (ddhCTP) and through its interactions with various cellular and viral proteins. Here we investigate the interaction of viperin with hepatitis C virus nonstructural protein 5A (NS5A) and the host sterol regulatory protein, vesicle-associated membrane protein A (VAP-33). NS5A and VAP-33 form part of the viral replication complex that is essential for replicating the RNA genome of the hepatitis C virus. Using transfected enzymes in HEK293T cells, we show that viperin binds independently to both NS5A and the C-terminal domain of VAP-33 (VAP-33C) and that this interaction is dependent on the proteins being colocalized to the ER membrane. Coexpression of VAP-33C and NS5A resulted in changes to the catalytic activity of viperin that depended upon viperin being colocalized to the ER membrane. The viperin-NS5A-VAP-33C complex exhibited the lowest specific activity, indicating that NS5A may inhibit viperin's ability to synthesize ddhCTP. Coexpression of viperin with NS5A was also found to significantly reduce cellular NS5A levels, most likely by increasing the rate of proteasomal degradation. An inactive mutant of viperin, unable to bind the iron-sulfur cluster, was similarly effective at reducing cellular NS5A levels.
Collapse
|
21
|
Sofia MJ. The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. ACTA ACUST UNITED AC 2019. [PMCID: PMC7122418 DOI: 10.1007/7355_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Dvory-Sobol H, Han B, Lu J, Yu M, Beran RK, Cheng G, Martin R, Svarovskaia E, Mo H. In vitro resistance profile of hepatitis C virus NS5A inhibitor velpatasvir in genotypes 1 to 6. J Viral Hepat 2019; 26:991-1001. [PMID: 31009123 DOI: 10.1111/jvh.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
Velpatasvir is a pan-genotypic hepatitis C virus (HCV) NS5A inhibitor, which is used with sofosbuvir for treatment of infection with HCV genotypes 1-6. In vitro resistance studies were performed to characterize NS5A changes that might confer reduced velpatasvir susceptibility in vivo. Resistance selection studies using HCV replicon cells for subtypes 1a, 1b, 2a, 2b, 3a, 4a, 5a and 6a identified NS5A resistance-associated substitutions (RASs) at nine positions, most often 28M/S/T, 31F/I/M/P/V and 93D/H/N/S. In subtype 1a, RASs were selected at positions 31 and/or 93, while in subtype 1b, replicons with two or more RASs at positions 31, 54 or 93 were selected. Y93H was selected in subtypes 1a, 1b, 2a, 3a and 4a. In subtype 5a or 6a, L31P or P32L/Q was selected, respectively. Velpatasvir susceptibility of 358 replicons from genotypes 1 to 6 containing one or more NS5A RASs was also evaluated. The majority (63%) of subtypes 1a and 1b single RAS-containing replicons retained susceptibility to velpatasvir (<2.5-fold change in EC50 ). High levels of resistance to velpatasvir were observed for six single mutants in subtype 1a, including M28G, A92K, Y93H/N/R/W and for one mutant, A92K, in subtype 1b. Most single mutants in subtypes 2a, 2b, 3a, 4a and 5a displayed low levels of reduced velpatasvir susceptibility. High-level resistance was observed for C92T and Y93H/N in subtype 2b, Y93H/S in 3a, and L31V and P32A/L/Q/R in 6a, and several double mutants in these subtypes. Overall, velpatasvir maintained activity against most common RASs that are known to confer resistance to first-generation NS5A inhibitors.
Collapse
Affiliation(s)
| | - Bin Han
- Gilead Sciences, Foster City, California
| | - Julia Lu
- Gilead Sciences, Foster City, California
| | - Mei Yu
- Gilead Sciences, Foster City, California
| | | | | | | | | | - Hongmei Mo
- Gilead Sciences, Foster City, California
| |
Collapse
|
23
|
Knodel MM, Targett-Adams P, Grillo A, Herrmann E, Wittum G. Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E513. [PMID: 30759770 PMCID: PMC6388173 DOI: 10.3390/ijerph16030513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) RNA replication cycle is a dynamic intracellular process occurring in three-dimensional space (3D), which is difficult both to capture experimentally and to visualize conceptually. HCV-generated replication factories are housed within virus-induced intracellular structures termed membranous webs (MW), which are derived from the Endoplasmatic Reticulum (ER). Recently, we published 3D spatiotemporal resolved diffusion⁻reaction models of the HCV RNA replication cycle by means of surface partial differential equation (sPDE) descriptions. We distinguished between the basic components of the HCV RNA replication cycle, namely HCV RNA, non-structural viral proteins (NSPs), and a host factor. In particular, we evaluated the sPDE models upon realistic reconstructed intracellular compartments (ER/MW). In this paper, we propose a significant extension of the model based upon two additional parameters: different aggregate states of HCV RNA and NSPs, and population dynamics inspired diffusion and reaction coefficients instead of multilinear ones. The combination of both aspects enables realistic modeling of viral replication at all scales. Specifically, we describe a replication complex state consisting of HCV RNA together with a defined amount of NSPs. As a result of the combination of spatial resolution and different aggregate states, the new model mimics a cis requirement for HCV RNA replication. We used heuristic parameters for our simulations, which were run only on a subsection of the ER. Nevertheless, this was sufficient to allow the fitting of core aspects of virus reproduction, at least qualitatively. Our findings should help stimulate new model approaches and experimental directions for virology.
Collapse
Affiliation(s)
- Markus M Knodel
- Department of Mathematics, Chair of Applied Mathematics 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany.
| | | | - Alfio Grillo
- Dipartimento di Scienze Matematiche (DISMA) "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (TO), Italy.
| | - Eva Herrmann
- Department of Medicine, Institute for Biostatistics and Mathematic Modeling, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Gabriel Wittum
- Goethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, Germany.
- Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
24
|
Gao Y, Goonawardane N, Ward J, Tuplin A, Harris M. Multiple roles of the non-structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus genome replication and transcription. PLoS Pathog 2019; 15:e1007239. [PMID: 30668592 PMCID: PMC6358111 DOI: 10.1371/journal.ppat.1007239] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/01/2019] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging Alphavirus causing fever, joint pain, skin rash, arthralgia, and occasionally death. Antiviral therapies and/or effective vaccines are urgently required. CHIKV biology is poorly understood, in particular the functions of the non-structural protein 3 (nsP3). Here we present the results of a mutagenic analysis of the alphavirus unique domain (AUD) of nsP3. Informed by the structure of the Sindbis virus AUD and an alignment of amino acid sequences of multiple alphaviruses, a series of mutations in the AUD were generated in a CHIKV sub-genomic replicon. This analysis revealed an essential role for the AUD in CHIKV RNA replication, with mutants exhibiting species- and cell-type specific phenotypes. To test if the AUD played a role in other stages of the virus lifecycle, the mutants were analysed in the context of infectious CHIKV. This analysis indicated that the AUD was also required for virus assembly. In particular, one mutant (P247A/V248A) exhibited a dramatic reduction in production of infectious virus. This phenotype was shown to be due to a block in transcription of the subgenomic RNA leading to reduced synthesis of the structural proteins and a concomitant reduction in virus production. This phenotype could be further explained by both a reduction in the binding of the P247A/V248A mutant nsP3 to viral genomic RNA in vivo, and the reduced affinity of the mutant AUD for the subgenomic promoter RNA in vitro. We propose that the AUD is a pleiotropic protein domain, with multiple functions during CHIKV RNA synthesis.
Collapse
Affiliation(s)
- Yanni Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Joseph Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
25
|
Elgner F, Hildt E, Bender D. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Front Cell Dev Biol 2018; 6:166. [PMID: 30564577 PMCID: PMC6288913 DOI: 10.3389/fcell.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Although potent direct-acting antiviral drugs for the treatment of chronic hepatitis C virus (HCV) infection are licensed, there are more than 70 million individuals suffering from chronic HCV infection. In light of the limited access to these drugs, high costs, and a lot of undiagnosed cases, it is expected that the number of HCV cases will not decrease worldwide in the next years. Therefore, and due to the paradigmatic character of HCV for deciphering the crosstalk between viral pathogens and the host cell, characterization of HCV life cycle remains a challenge. HCV belongs to the family of Flaviviridae. As an enveloped virus HCV life cycle depends in many steps on intracellular trafficking. Rab GTPases, a large family of small GTPases, play a central role in intracellular trafficking processes controlling fusion, uncoating, vesicle budding, motility by recruiting specific effector proteins. This review describes the relevance of various Rab proteins for the different steps of the HCV life cycle.
Collapse
Affiliation(s)
- Fabian Elgner
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
26
|
Visualisation and analysis of hepatitis C virus non-structural proteins using super-resolution microscopy. Sci Rep 2018; 8:13604. [PMID: 30206266 PMCID: PMC6134135 DOI: 10.1038/s41598-018-31861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 08/29/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatitis C virus (HCV) RNA replication occurs in the cytosol of infected cells within a specialised membranous compartment. How the viral non-structural (NS) proteins are associated and organised within these structures remains poorly defined. We employed a super-resolution microscopy approach to visualise NS3 and NS5A in HCV infected cells. Using single molecule localisation microscopy, both NS proteins were resolved as clusters of localisations smaller than the diffraction-limited volume observed by wide-field. Analysis of the protein clusters identified a significant difference in size between the NS proteins. We also observed a reduction in NS5A cluster size following inhibition of RNA replication using daclatasvir, a phenotype which was maintained in the presence of the Y93H resistance associated substitution and not observed for NS3 clusters. These results provide insight into the NS protein organisation within hepatitis C virus RNA replication complexes and the mode of action of NS5A inhibitors.
Collapse
|
27
|
A role for domain I of the hepatitis C virus NS5A protein in virus assembly. PLoS Pathog 2018; 14:e1006834. [PMID: 29352312 PMCID: PMC5792032 DOI: 10.1371/journal.ppat.1006834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/31/2018] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
The NS5A protein of hepatitis C virus (HCV) plays roles in both virus genome replication and assembly. NS5A comprises three domains, of these domain I is believed to be involved exclusively in genome replication. In contrast, domains II and III are required for the production of infectious virus particles and are largely dispensable for genome replication. Domain I is highly conserved between HCV and related hepaciviruses, and is highly structured, exhibiting different dimeric conformations. To investigate the functions of domain I in more detail, we conducted a mutagenic study of 12 absolutely conserved and surface-exposed residues within the context of a JFH-1-derived sub-genomic replicon and infectious virus. Whilst most of these abrogated genome replication, three mutants (P35A, V67A and P145A) retained the ability to replicate but showed defects in virus assembly. P35A exhibited a modest reduction in infectivity, however V67A and P145A produced no infectious virus. Using a combination of density gradient fractionation, biochemical analysis and high resolution confocal microscopy we demonstrate that V67A and P145A disrupted the localisation of NS5A to lipid droplets. In addition, the localisation and size of lipid droplets in cells infected with these two mutants were perturbed compared to wildtype HCV. Biophysical analysis revealed that V67A and P145A abrogated the ability of purified domain I to dimerize and resulted in an increased affinity of binding to HCV 3’UTR RNA. Taken together, we propose that domain I of NS5A plays multiple roles in assembly, binding nascent genomic RNA and transporting it to lipid droplets where it is transferred to Core. Domain I also contributes to a change in lipid droplet morphology, increasing their size. This study reveals novel functions of NS5A domain I in assembly of infectious HCV and provides new perspectives on the virus lifecycle. Hepatitis C virus infects 170 million people worldwide, causing long term liver disease. Recently new therapies comprising direct-acting antivirals (DAAs), small molecule inhibitors of virus proteins, have revolutionised treatment for infected patients. Despite this, we have a limited understanding of how the virus replicates in infected liver cells. Here we identify a previously uncharacterised function of the NS5A protein–a target for one class of DAAs. NS5A is comprised of three domains–we show that the first of these (domain I) plays a role in the production of new, infectious virus particles. Previously it was thought that domain I was only involved in replicating the virus genome. Mutations in domain I perturb dimer formation, enhanced binding to the 3’ end of the virus RNA genome and prevented NS5A from interacting with lipid droplets, cellular lipid storage organelles that are required for assembly of new viruses. We propose that domain I of NS5A plays multiple roles in virus assembly. As domain I is the putative target for one class of DAAs, our observations may have implications for the as yet undefined mode of action of these compounds.
Collapse
|
28
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
29
|
Glab-Ampai K, Chulanetra M, Malik AA, Juntadech T, Thanongsaksrikul J, Srimanote P, Thueng-In K, Sookrung N, Tongtawe P, Chaicumpa W. Human single chain-transbodies that bound to domain-I of non-structural protein 5A (NS5A) of hepatitis C virus. Sci Rep 2017; 7:15042. [PMID: 29118372 PMCID: PMC5678119 DOI: 10.1038/s41598-017-14886-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
A safe and broadly effective direct acting anti-hepatitis C virus (HCV) agent that can withstand the viral mutation is needed. In this study, human single chain antibody variable fragments (HuscFvs) to conserved non-structural protein-5A (NS5A) of HCV were produced by phage display technology. Recombinant NS5A was used as bait for fishing-out the protein bound-phages from the HuscFv-phage display library. NS5A-bound HuscFvs produced by five phage transfected-E. coli clones were linked molecularly to nonaarginine (R9) for making them cell penetrable (become transbodies). The human monoclonal transbodies inhibited HCV replication in the HCVcc infected human hepatic cells and also rescued the cellular antiviral immune response from the viral suppression. Computerized simulation verified by immunoassays indicated that the transbodies used several residues in their multiple complementarity determining regions (CDRs) to form contact interface with many residues of the NS5A domain-I which is important for HCV replication complex formation and RNA binding as well as for interacting with several host proteins for viral immune evasion and regulation of cellular physiology. The human monoclonal transbodies have high potential for testing further as a new ramification of direct acting anti-HCV agent, either alone or in combination with their cognates that target other HCV proteins.
Collapse
Affiliation(s)
- Kittirat Glab-Ampai
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanate Juntadech
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon-ratchaseema province, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand.
| |
Collapse
|
30
|
Bessa LM, Launay H, Dujardin M, Cantrelle FX, Lippens G, Landrieu I, Schneider R, Hanoulle X. NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J Biol Chem 2017; 292:18024-18043. [PMID: 28912275 DOI: 10.1074/jbc.m117.813766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Non-structural protein 5B (NS5B) is the RNA-dependent RNA polymerase that catalyzes replication of the hepatitis C virus (HCV) RNA genome and therefore is central for its life cycle. NS5B interacts with the intrinsically disordered domain 2 of NS5A (NS5A-D2), another essential multifunctional HCV protein that is required for RNA replication. As a result, these two proteins represent important targets for anti-HCV chemotherapies. Despite this importance and the existence of NS5B crystal structures, our understanding of the conformational and dynamic behavior of NS5B in solution and its relationship with NS5A-D2 remains incomplete. To address these points, we report the first detailed NMR spectroscopic study of HCV NS5B lacking its membrane anchor (NS5BΔ21). Analysis of constructs with selective isotope labeling of the δ1 methyl groups of isoleucine side chains demonstrates that, in solution, NS5BΔ21 is highly dynamic but predominantly adopts a closed conformation. The addition of NS5A-D2 leads to spectral changes indicative of binding to both allosteric thumb sites I and II of NS5BΔ21 and induces long-range perturbations that affect the RNA-binding properties of the polymerase. We compared these modifications with the short- and long-range effects triggered in NS5BΔ21 upon binding of filibuvir, an allosteric inhibitor. We demonstrate that filibuvir-bound NS5BΔ21 is strongly impaired in the binding of both NS5A-D2 and RNA. NS5A-D2 induces conformational and functional perturbations in NS5B similar to those triggered by filibuvir. Thus, our work highlights NS5A-D2 as an allosteric regulator of the HCV polymerase and provides new insight into the dynamics of NS5B in solution.
Collapse
Affiliation(s)
- Luiza M Bessa
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Hélène Launay
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Marie Dujardin
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - François-Xavier Cantrelle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Guy Lippens
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Isabelle Landrieu
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Robert Schneider
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Xavier Hanoulle
- From the University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| |
Collapse
|
31
|
Badillo A, Receveur-Brechot V, Sarrazin S, Cantrelle FX, Delolme F, Fogeron ML, Molle J, Montserret R, Bockmann A, Bartenschlager R, Lohmann V, Lippens G, Ricard-Blum S, Hanoulle X, Penin F. Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry 2017; 56:3029-3048. [PMID: 28535337 DOI: 10.1021/acs.biochem.7b00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in Escherichia coli. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein.
Collapse
Affiliation(s)
- Aurelie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | | | - Stéphane Sarrazin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - François-Xavier Cantrelle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Frédéric Delolme
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Anja Bockmann
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg , Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Guy Lippens
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Labex Ecofect, Université de Lyon, 69367 Lyon, France
| |
Collapse
|
32
|
Gitto S, Gamal N, Andreone P. NS5A inhibitors for the treatment of hepatitis C infection. J Viral Hepat 2017; 24:180-186. [PMID: 27925362 DOI: 10.1111/jvh.12657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Today, we are witnessing a new era for the treatment of hepatitis C with excellent rates of virologic response and very good safety profiles. Among the many classes of direct-acting antivirals, the inhibitors of nonstructural protein 5A are particularly interesting. NS5A is a phosphorylated protein with a relevant role in viral replication. HCV-NS5A inhibitors show high potency, very good safety profile and high barrier to resistance. The amazing in vitro effectiveness of this class is associated with great efficacy in clinical trials in combination protocols with antivirals of other classes, with sustained virological response (SVR) obtained in more than 90% of patients. Herein, we sought to review the current knowledge regarding the NS5A protease complex inhibitors with special emphasis on clinical efficacy and development of viral resistance.
Collapse
Affiliation(s)
- Stefano Gitto
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Nesrine Gamal
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Pietro Andreone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Boson B, Denolly S, Turlure F, Chamot C, Dreux M, Cosset FL. Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites. Gastroenterology 2017; 152:895-907.e14. [PMID: 27932311 DOI: 10.1053/j.gastro.2016.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Daclatasvir is a direct-acting antiviral agent and potent inhibitor of NS5A, which is involved in replication of the hepatitis C virus (HCV) genome, presumably via membranous web shaping, and assembly of new virions, likely via transfer of the HCV RNA genome to viral particle assembly sites. Daclatasvir inhibits the formation of new membranous web structures and, ultimately, of replication complex vesicles, but also inhibits an early assembly step. We investigated the relationship between daclatasvir-induced clustering of HCV proteins, intracellular localization of viral RNAs, and inhibition of viral particle assembly. METHODS Cell-culture-derived HCV particles were produced from Huh7.5 hepatocarcinoma cells in presence of daclatasvir for short time periods. Infectivity and production of physical particles were quantified and producer cells were subjected to subcellular fractionation. Intracellular colocalization between core, E2, NS5A, NS4B proteins, and viral RNAs was quantitatively analyzed by confocal microscopy and by structured illumination microscopy. RESULTS Short exposure of HCV-infected cells to daclatasvir reduced viral assembly and induced clustering of structural proteins with non-structural HCV proteins, including core, E2, NS4B, and NS5A. These clustered structures appeared to be inactive assembly platforms, likely owing to loss of functional connection with replication complexes. Daclatasvir greatly reduced delivery of viral genomes to these core clusters without altering HCV RNA colocalization with NS5A. In contrast, daclatasvir neither induced clustered structures nor inhibited HCV assembly in cells infected with a daclatasvir-resistant mutant (NS5A-Y93H), indicating that daclatasvir targets a mutual, specific function of NS5A inhibiting both processes. CONCLUSIONS In addition to inhibiting replication complex biogenesis, daclatasvir prevents viral assembly by blocking transfer of the viral genome to assembly sites. This leads to clustering of HCV proteins because viral particles and replication complex vesicles cannot form or egress. This dual mode of action of daclatasvir could explain its efficacy in blocking HCV replication in cultured cells and in treatment of patients with HCV infection.
Collapse
Affiliation(s)
- Bertrand Boson
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Solène Denolly
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Turlure
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Christophe Chamot
- Plateau Technique Imagerie/Microcopie, Lyon Bio Image, SFR-BioSciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL, France
| | - Marlène Dreux
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France.
| |
Collapse
|
34
|
Ganesan A, Barakat K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov 2017; 12:407-425. [PMID: 28164720 DOI: 10.1080/17460441.2017.1291628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a global health problem that causes several chronic life-threatening liver diseases. The numbers of people affected by HCV are rising annually. Since 2011, the FDA has approved several anti-HCV drugs; while many other promising HCV drugs are currently in late clinical trials. Areas covered: This review discusses the applications of different computational approaches in HCV drug design. Expert opinion: Molecular docking and virtual screening approaches have emerged as a low-cost tool to screen large databases and identify potential small-molecule hits against HCV targets. Ligand-based approaches are useful for filtering-out compounds with rich physicochemical properties to inhibit HCV targets. Molecular dynamics (MD) remains a useful tool in optimizing the ligand-protein complexes and understand the ligand binding modes and drug resistance mechanisms in HCV. Despite their varied roles, the application of in-silico approaches in HCV drug design is still in its infancy. A more mature application should aim at modelling the whole HCV replicon in its active form and help to identify new effective druggable sites within the replicon system. With more technological advancements, the roles of computer-aided methods are only going to increase several folds in the development of next-generation HCV drugs.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| | - Khaled Barakat
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| |
Collapse
|
35
|
Ngure M, Issur M, Shkriabai N, Liu HW, Cosa G, Kvaratskhelia M, Götte M. Interactions of the Disordered Domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA Show Extensive Overlap. ACS Infect Dis 2016; 2:839-851. [PMID: 27676132 DOI: 10.1021/acsinfecdis.6b00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Domain II of the nonstructural protein 5 (NS5A) of the hepatitis C virus (HCV) is involved in intermolecular interactions with the viral RNA genome, the RNA-dependent RNA polymerase NS5B, and the host factor cyclophilin A (CypA). However, domain II of NS5A (NS5ADII) is largely disordered, which makes it difficult to characterize the protein-protein or protein-nucleic acid interfaces. Here we utilized a mass spectrometry-based protein footprinting approach in attempts to characterize regions forming contacts between NS5ADII and its binding partners. In particular, we compared surface topologies of lysine and arginine residues in the context of free and bound NS5ADII. These experiments have led to the identification of an RNA binding motif (305RSRKFPR311) in an arginine-rich region of NS5ADII. Furthermore, we show that K308 is indispensable for both RNA and NS5B binding, whereas W316, further downstream, is essential for protein-protein interactions with CypA and NS5B. Most importantly, NS5ADII binding to NS5B involves a region associated with RNA binding within NS5B. This interaction down-regulated RNA synthesis by NS5B, suggesting that NS5ADII modulates the activity of NS5B and potentially regulates HCV replication.
Collapse
Affiliation(s)
- Marianne Ngure
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hsiao-Wei Liu
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Gonzalo Cosa
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthias Götte
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
36
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
37
|
HCV RNA traffic and association with NS5A in living cells. Virology 2016; 493:60-74. [PMID: 26999027 DOI: 10.1016/j.virol.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 01/05/2023]
Abstract
The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3'-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA. Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly.
Collapse
|
38
|
Stewart H, Bingham R, White SJ, Dykeman EC, Zothner C, Tuplin AK, Stockley PG, Twarock R, Harris M. Identification of novel RNA secondary structures within the hepatitis C virus genome reveals a cooperative involvement in genome packaging. Sci Rep 2016; 6:22952. [PMID: 26972799 PMCID: PMC4789732 DOI: 10.1038/srep22952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
The specific packaging of the hepatitis C virus (HCV) genome is hypothesised to be driven by Core-RNA interactions. To identify the regions of the viral genome involved in this process, we used SELEX (systematic evolution of ligands by exponential enrichment) to identify RNA aptamers which bind specifically to Core in vitro. Comparison of these aptamers to multiple HCV genomes revealed the presence of a conserved terminal loop motif within short RNA stem-loop structures. We postulated that interactions of these motifs, as well as sub-motifs which were present in HCV genomes at statistically significant levels, with the Core protein may drive virion assembly. We mutated 8 of these predicted motifs within the HCV infectious molecular clone JFH-1, thereby producing a range of mutant viruses predicted to possess altered RNA secondary structures. RNA replication and viral titre were unaltered in viruses possessing only one mutated structure. However, infectivity titres were decreased in viruses possessing a higher number of mutated regions. This work thus identified multiple novel RNA motifs which appear to contribute to genome packaging. We suggest that these structures act as cooperative packaging signals to drive specific RNA encapsidation during HCV assembly.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Blotting, Western
- Cell Line, Tumor
- Gene Expression Regulation, Viral
- Genome, Viral/genetics
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Humans
- Mutation
- Nucleic Acid Conformation
- Nucleotide Motifs/genetics
- Protein Binding
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- SELEX Aptamer Technique
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Assembly/genetics
Collapse
Affiliation(s)
- H. Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R.J. Bingham
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - S. J. White
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - E. C. Dykeman
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - C. Zothner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A. K. Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - P. G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R. Twarock
- York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, YO10 5DD, United Kingdom
| | - M. Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
39
|
Zayas M, Long G, Madan V, Bartenschlager R. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A. PLoS Pathog 2016; 12:e1005376. [PMID: 26727512 PMCID: PMC4699712 DOI: 10.1371/journal.ppat.1005376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. Hepatitis C virus (HCV) nonstructural protein (NS)5A is an enigmatic RNA-binding protein that appears to regulate the different steps from RNA replication to the assembly of infectious virus particles by yet unknown mechanisms. Assembly requires delivery of the viral RNA genome from the replication machinery to the capsid protein to ensure genome packaging into nucleocapsids that acquire a membranous envelope by budding into the lumen of the endoplasmic reticulum. In this study, we provide genetic and biochemical evidence that the viral nonstructural protein (NS)5A contains two regulatory determinants in its domain (D)III that orchestrate virus assembly at two closely linked steps: (i) recruitment of replication complexes to core protein requiring a serine cluster in the C-terminal region of DIII and (ii) RNA genome delivery to core protein requiring a basic cluster in the N-terminal region of DIII. This RNA transfer most likely triggers encapsidation, which is tightly coupled to particle envelopment. These results provide a striking example for a multi-purpose viral protein exerting several distinct functions in the viral replication cycle, thus reflecting genetic economy.
Collapse
Affiliation(s)
- Margarita Zayas
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (MZ); (RB)
| | - Gang Long
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Vanesa Madan
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (MZ); (RB)
| |
Collapse
|
40
|
Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication. J Virol 2015; 90:2868-83. [PMID: 26719260 PMCID: PMC4810661 DOI: 10.1128/jvi.01931-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional organization of viral proteins within this structure. We have complemented protein-encoded defects in HCV by constructing subgenomic HCV transcripts capable of simultaneously expressing both a mutated and functional polyprotein precursor needed for RNA genome replication (intragenomic replicons). Our results reveal that HCV relies on two interdependent sets of protein complexes to support viral replication. They also show that the intragenomic replicon offers a unique way to study replication complex assembly, as it enables improved composite polyprotein complex formation compared to traditional trans-complementation systems. Finally, the differential behavior of distinct NS3 helicase knockout mutations hints that certain conformations of this enzyme might be particularly deleterious for replication.
Collapse
|
41
|
Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J Hepatol 2015; 63:829-37. [PMID: 25908268 DOI: 10.1016/j.jhep.2015.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein playing a crucial role in diverse steps of the viral replication cycle and perturbing multiple host cell pathways. We showed previously that removal of a region in domain 2 (D2) of NS5A (mutant NS5A(D2Δ)) is dispensable for viral replication in hepatoma cell lines. By using a mouse model and immune-competent cell systems, we studied the role of D2 in controlling the innate immune response. METHODS In vivo replication competence of NS5A(D2Δ) was studied in transgenic mice with human liver xenografts. Results were validated using primary human hepatocytes (PHHs) and mechanistic analyses were conducted in engineered Huh7 hepatoma cells with reconstituted innate signaling pathways. RESULTS Although the deletion in NS5A removed most of the interferon (IFN) sensitivity determining-region, mutant NS5A(D2Δ) was as sensitive as the wild type to IFN-α and IFN-λ in vitro, but severely attenuated in vivo. This attenuation could be recapitulated in PHHs and was linked to higher activation of the IFN response, concomitant with reduced viral replication and virus production. Importantly, immune-reconstituted Huh7-derived cell lines revealed a sequential activation of the IFN-response via RIG-I (retinoic acid-inducible gene I) and MDA5 (Myeloma differentiation associated factor 5), respectively, that was significantly higher in the case of the mutant lacking most of NS5A D2. CONCLUSIONS Our study reveals an important role of NS5A D2 for suppression of the IFN response that is activated by HCV via RIG-I and MDA5 in a sequential manner.
Collapse
|
42
|
Arginine 112 is involved in HCV translation modulation by NS5A domain I. Biochem Biophys Res Commun 2015; 465:95-100. [DOI: 10.1016/j.bbrc.2015.07.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
43
|
Hoffman B, Shi Q, Liu Q. K312 and E446 are involved in HCV RNA translation modulation by NS5A domains II and III. Virus Res 2015; 208:207-14. [PMID: 26183879 DOI: 10.1016/j.virusres.2015.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
HCV NS5A plays a critical role in the HCV life cycle. We previously demonstrated that NS5A down-regulates viral translation through a mechanism requiring the polyU/UC region of the viral 3'UTR and that each of the three domains is capable of carrying out this function individually. In this study, we mapped the regions and amino acid residues within domains II and III involved in the modulation of viral translation. Using a series of deletion and amino acid substitution mutants, we found that K312 and E446 play important roles in the modulation of viral translation by NS5A domains II and III, respectively. In the context of full-length NS5A, mutations of K312 and E446 alone or in combination again abrogate translation down-regulation. In a transient replication assay using HCV subgenomic replicons, the K312A mutation alone does not affect HCV replication throughout a 96-h time course. While the E446A mutation can increase HCV replication at early time points (4-24 h), the K312A and E446A double mutation can enhance viral replication at 24-96 h, suggesting both residues are involved. Our results shed more light on the functions of NS5A.
Collapse
Affiliation(s)
- Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qing Shi
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
44
|
Novel benzidine and diaminofluorene prolinamide derivatives as potent hepatitis C virus NS5A inhibitors. Eur J Med Chem 2015; 101:163-78. [PMID: 26134551 DOI: 10.1016/j.ejmech.2015.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
Our study describes the discovery of a series of highly potent hepatitis C virus (HCV) NS5A inhibitors based on symmetrical prolinamide derivatives of benzidine and diaminofluorene. Through modification of benzidine, l-proline, and diaminofluorene derivatives, we developed novel inhibitor structures, which allowed us to establish a library of potent HCV NS5A inhibitors. After optimizing the benzidine prolinamide backbone, we identified inhibitors embedding meta-substituted benzidine core structures that exhibited the most potent anti-HCV activities. Furthermore, through a battery of studies including hERG ligand binding assay, CYP450 binding assay, rat plasma stability test, human liver microsomal stability test, and pharmacokinetic studies, the identified compounds 24, 26, 27, 42, and 43 are found to be nontoxic, and are expected to be effective therapeutic anti-HCV agents.
Collapse
|
45
|
Igloi Z, Kazlauskas A, Saksela K, Macdonald A, Mankouri J, Harris M. Hepatitis C virus NS5A protein blocks epidermal growth factor receptor degradation via a proline motif- dependent interaction. J Gen Virol 2015; 96:2133-2144. [PMID: 25872741 PMCID: PMC4681064 DOI: 10.1099/vir.0.000145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains to regulate cellular signalling and trafficking pathways. We have shown previously that NS5A impaired epidermal growth factor (EGF) receptor (EGFR) endocytosis, thereby inhibiting EGF-stimulated EGFR degradation by a mechanism that remained unclear. As EGFR has been implicated in HCV cell entry and trafficking of the receptor involves several SH3-domain containing proteins, we investigated in more detail the mechanisms by which NS5A perturbs EGFR trafficking. We demonstrated that the P2 motif was required for the NS5A-mediated disruption to EGFR trafficking. We further demonstrated that the P2 motif was required for an interaction between NS5A and CMS, a homologue of CIN85 that has previously been implicated in EGFR endocytosis. We provided evidence that CMS was involved in the NS5A-mediated perturbation of EGFR trafficking. We also showed that NS5A effected a loss of EGFR ubiquitination in a P2-motif-dependent fashion. These data provide clues to the mechanism by which NS5A regulates the trafficking of a key cellular receptor and demonstrate for the first time the ability of NS5A to regulate host cell ubiquitination pathways.
Collapse
Affiliation(s)
- Zsofia Igloi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Arunas Kazlauskas
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
46
|
Hoffman B, Li Z, Liu Q. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR. J Gen Virol 2015; 96:2114-2121. [PMID: 25862017 DOI: 10.1099/vir.0.000141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.
Collapse
Affiliation(s)
- Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zhubing Li
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
47
|
Kwon HJ, Xing W, Chan K, Niedziela-Majka A, Brendza KM, Kirschberg T, Kato D, Link JO, Cheng G, Liu X, Sakowicz R. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent. PLoS One 2015; 10:e0122844. [PMID: 25856426 PMCID: PMC4391872 DOI: 10.1371/journal.pone.0122844] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Ledipasvir, a direct acting antiviral agent (DAA) targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H) that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.
Collapse
Affiliation(s)
- Hyock Joo Kwon
- Gilead Sciences, Inc., Foster City, California, United States of America
- * E-mail:
| | - Weimei Xing
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Katie Chan
- Gilead Sciences, Inc., Foster City, California, United States of America
| | | | | | | | - Darryl Kato
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - John O. Link
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Guofeng Cheng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Xiaohong Liu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Roman Sakowicz
- Gilead Sciences, Inc., Foster City, California, United States of America
| |
Collapse
|
48
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
49
|
Cyclophilin and NS5A inhibitors, but not other anti-hepatitis C virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories. Antimicrob Agents Chemother 2015; 59:2496-507. [PMID: 25666154 DOI: 10.1128/aac.04958-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022] Open
Abstract
Although the mechanisms of action (MoA) of nonstructural protein 3 inhibitors (NS3i) and NS5B inhibitors (NS5Bi) are well understood, the MoA of cyclophilin inhibitors (CypI) and NS5A inhibitors (NS5Ai) are not fully defined. In this study, we examined whether CypI and NS5Ai interfere with hepatitis C virus (HCV) RNA synthesis of replication complexes (RCs) or with an earlier step of HCV RNA replication, the creation of double-membrane vesicles (DMVs) essential for HCV RNA replication. In contrast to NS5Bi, both CypI and NS5Ai do not block HCV RNA synthesis by way of RCs, suggesting that they exert their antiviral activity prior to the establishment of enzymatically active RCs. We found that viral replication is not a precondition for DMV formation, since the NS3-NS5B polyprotein or NS5A suffices to create DMVs. Importantly, only CypI and NS5Ai, but not NS5Bi, mir-122, or phosphatidylinositol-4 kinase IIIα (PI4KIIIα) inhibitors, prevent NS3-NS5B-mediated DMV formation. NS3-NS5B was unable to create DMVs in cyclophilin A (CypA) knockdown (KD) cells. We also found that the isomerase activity of CypA is absolutely required for DMV formation. This not only suggests that NS5A and CypA act in concert to build membranous viral factories but that CypI and NS5Ai mediate their early anti-HCV effects by preventing the formation of organelles, where HCV replication is normally initiated. This is the first investigation to examine the effect of a large panel of anti-HCV agents on DMV formation, and the results reveal that CypI and NS5Ai act at the same membranous web biogenesis step of HCV RNA replication, thus indicating a new therapeutic target of chronic hepatitis C.
Collapse
|
50
|
Ross-Thriepland D, Harris M. Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol 2014; 96:727-738. [PMID: 25481754 DOI: 10.1099/jgv.0.000009] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since one of us co-authored a review on NS5A a decade ago, the hepatitis C virus (HCV) field has changed dramatically, primarily due to the advent of the JFH-1 cell culture infectious clone, which allowed the study of all aspects of the virus life cycle from entry to exit. This review will describe advances in our understanding of NS5A biology over the past decade, highlighting how the JFH-1 system has allowed us to determine that NS5A is essential not only in genome replication but also in the assembly of infectious virions. We shall review the recent structural insights - NS5A is predicted to comprise three domains; X-ray crystallography has revealed the structure of domain I but there is a lack of detailed structural information about the other two domains, which are predicted to be largely unstructured. Recent insights into the phosphorylation of NS5A will be discussed, and we shall highlight a few pertinent examples from the ever-expanding list of NS5A-binding partners identified over the past decade. Lastly, we shall review the literature showing that NS5A is a potential target for a new class of highly potent small molecules that function to inhibit virus replication. These direct-acting antivirals (DAAs) are now either licensed, or in the late stages of approval for clinical use both in the USA and in the UK/Europe. In combination with other DAAs targeting the viral protease (NS3) and polymerase (NS5B), they are revolutionizing treatment for HCV infection.
Collapse
Affiliation(s)
- Douglas Ross-Thriepland
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|