1
|
Mansfield KL, Schilling M, Sanders C, Holding M, Johnson N. Arthropod-Borne Viruses of Human and Animal Importance: Overwintering in Temperate Regions of Europe during an Era of Climate Change. Microorganisms 2024; 12:1307. [PMID: 39065076 PMCID: PMC11278640 DOI: 10.3390/microorganisms12071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
The past three decades have seen an increasing number of emerging arthropod-borne viruses in temperate regions This process is ongoing, driven by human activities such as inter-continental travel, combined with the parallel emergence of invasive arthropods and an underlying change in climate that can increase the risk of virus transmission and persistence. In addition, natural events such as bird migration can introduce viruses to new regions. Despite the apparent regularity of virus emergence, arthropod-borne viruses circulating in temperate regions face the challenge of the late autumn and winter months where the arthropod vector is inactive. Viruses therefore need mechanisms to overwinter or they will fail to establish in temperate zones. Prolonged survival of arthropod-borne viruses within the environment, outside of both vertebrate host and arthropod vector, is not thought to occur and therefore is unlikely to contribute to overwintering in temperate zones. One potential mechanism is continued infection of a vertebrate host. However, infection is generally acute, with the host either dying or producing an effective immune response that rapidly clears the virus. There are few exceptions to this, although prolonged infection associated with orbiviruses such as bluetongue virus occurs in certain mammals, and viraemic vertebrate hosts therefore can, in certain circumstances, provide a route for long-term viral persistence in the absence of active vectors. Alternatively, a virus can persist in the arthropod vector as a mechanism for overwintering. However, this is entirely dependent on the ecology of the vector itself and can be influenced by changes in the climate during the winter months. This review considers the mechanisms for virus overwintering in several key arthropod vectors in temperate areas. We also consider how this will be influenced in a warming climate.
Collapse
Affiliation(s)
- Karen L. Mansfield
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | - Mirjam Schilling
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
| | | | - Maya Holding
- Virology and Pathogenesis Group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK;
| | - Nicholas Johnson
- Vector Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK; (K.L.M.); (M.S.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
2
|
Graff SL, Eibner GJ, Ochieng JR, Jones TC, Nsubuga AM, Lutwama JJ, Rwego IB, Junglen S. Detection of two alphaviruses: Middelburg virus and Sindbis virus from enzootic amplification cycles in southwestern Uganda. Front Microbiol 2024; 15:1394661. [PMID: 38863760 PMCID: PMC11165182 DOI: 10.3389/fmicb.2024.1394661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Our knowledge of alphavirus genetic diversity is mainly based on viruses isolated from anthropophilic mosquito species, humans, and livestock during outbreaks. Studies on alphaviruses from sylvatic amplification cycles in sub-Saharan Africa have been conducted less often than from epizootic environments. To gain insight into alphavirus diversity in enzootic transmission cycles, we collected over 23,000 mosquitoes in lowland rainforest and savannah gallery forest in southwestern Uganda and tested them for alphavirus infections. We detected Sindbis virus (SINV) in a Culex Culex sp. mosquito and Middelburg virus (MIDV) in Eretmapodites intermedius and Mansonia africana. MIDV is a mosquito-borne alphavirus that causes febrile illness in sheep, goats, and horses and was previously not known to occur in Uganda. SINV, also a mosquito-borne alphavirus, causes mild infections in humans. Full genomes of SINV and MIDV were sequenced, showing a nucleotide identity of 99% to related strains. Both isolates replicated to high titres in a wide variety of vertebrate cells. Our data suggest endemic circulation of SINV and MIDV in Uganda.
Collapse
Affiliation(s)
- Selina Laura Graff
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Georg Joachim Eibner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - James Robert Ochieng
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Terry C. Jones
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Mutebi Nsubuga
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | | | - Innocent Bidason Rwego
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda
| | - Sandra Junglen
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Hernandez-Colina A, Seechurn N, Costa T, Lopez J, Baylis M, Hesson JC. Surveillance of Culex spp. vectors and zoonotic arboviruses at a zoo in the United Kingdom. Heliyon 2024; 10:e26477. [PMID: 38404807 PMCID: PMC10884501 DOI: 10.1016/j.heliyon.2024.e26477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
The emergence of several zoonotic mosquito-borne pathogens in Europe, including West Nile virus, Sindbis virus and Usutu virus, has emphasised the importance of consistent surveillance. Considerable fieldwork effort is usually needed to detect low-prevalence pathogens in mosquitoes and screening vertebrate hosts and reservoirs is rarely done simultaneously with mosquito sampling. Zoological gardens offer an opportunity for the surveillance of pathogens, mosquitoes, hosts, and reservoirs concurrently; thus, the aim of this study was undertaking integrated surveillance for mosquito-borne pathogens of wild birds and mosquitoes in Chester Zoo (Cheshire) in the United Kingdom. Mosquitoes were collected in September 2020 and tested for zoonotic bird-hosted arboviruses (i.e., West Nile virus, Usutu virus and Sindbis virus) using RT-qPCRs. Of the 3316 mosquitoes trapped, 98% were identified as Culex spp. The average minimum prevalence of the viruses found in the literature was used to calculate the sample size needed for detecting these viruses with 99% confidence. The testing of 2878 Culex females found no evidence of presence of the three viruses. Significant differences were found in mosquito abundance per sampling site and collection date; furthermore, important sources of immature and resting mosquitoes were found near aviaries. Eighteen wild birds belonging to 11 species were found dead in the zoo from May to December 2020 and were RT-qPCR tested for West Nile virus and Usutu virus; all samples resulted negative for viral infection. It is unlikely that these viruses were present in the zoo during the sampling period; however, since they circulate in Europe and Usutu virus has been isolated in the United Kingdom and may overwinter here, continued monitoring of mosquitoes and wild birds is recommended as virus introduction and dissemination are possible. This study highlights the importance of regular and integrated arboviral surveillance of zoonotic pathogens in zoos providing baseline information to that end.
Collapse
Affiliation(s)
- Arturo Hernandez-Colina
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
- Department of Medical Biochemistry and Microbiology/Zoonosis Science Centre, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Nicola Seechurn
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Taiana Costa
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- The Veterinary Pathology Group, Horner Court, 637 Gloucester Road, Horfield, Bristol, BS7 0BJ, UK
| | - Javier Lopez
- North of England Zoological Society (Chester Zoo), Caughall Road, Chester, CH2 1LH, UK
| | - Matthew Baylis
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK
| | - Jenny C. Hesson
- Department of Medical Biochemistry and Microbiology/Zoonosis Science Centre, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
4
|
Michie A, Ernst T, Pyke AT, Nicholson J, Mackenzie JS, Smith DW, Imrie A. Genomic Analysis of Sindbis Virus Reveals Uncharacterized Diversity within the Australasian Region, and Support for Revised SINV Taxonomy. Viruses 2023; 16:7. [PMID: 38275942 PMCID: PMC10820390 DOI: 10.3390/v16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.
Collapse
Affiliation(s)
- Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Alyssa T. Pyke
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, Coopers Plains, QLD 4108, Australia;
| | - Jay Nicholson
- Environmental Health Directorate, Department of Health, Perth, WA 6000, Australia;
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia; (J.S.M.); (D.W.S.)
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia; (J.S.M.); (D.W.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| |
Collapse
|
5
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
6
|
Wilkman L, Ahlm C, Evander M, Lwande OW. Mosquito-borne viruses causing human disease in Fennoscandia—Past, current, and future perspectives. Front Med (Lausanne) 2023; 10:1152070. [PMID: 37051217 PMCID: PMC10083265 DOI: 10.3389/fmed.2023.1152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
Five different mosquito-borne viruses (moboviruses) significant to human disease are known to be endemic to Fennoscandia (Sindbis virus, Inkoo virus, Tahyna virus, Chatanga virus, and Batai virus). However, the incidence of mosquito-borne virus infections in Fennoscandia is unknown, largely due to underdiagnosing and lack of surveillance efforts. The Fennoscandian moboviruses are difficult to prevent due to their method of transmission, and often difficult to diagnose due to a lack of clear case definition criteria. Thus, many cases are likely to be mis-diagnosed, or even not diagnosed at all. Significant long-term effects, often in the form of malaise, rashes, and arthralgia have been found for some of these infections. Research into mobovirus disease is ongoing, though mainly focused on a few pathogens, with many others neglected. With moboviruses found as far north as the 69th parallel, studying mosquito-borne disease occurring in the tropics is only a small part of the whole picture. This review is written with the objective of summarizing current medically relevant knowledge of moboviruses occurring in Fennoscandia, while highlighting what is yet unknown and possibly overlooked.
Collapse
Affiliation(s)
- Lukas Wilkman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
| | - Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå, Västerbotten, Sweden
- *Correspondence: Olivia Wesula Lwande,
| |
Collapse
|
7
|
M’ghirbi Y, Mousson L, Moutailler S, Lecollinet S, Amaral R, Beck C, Aounallah H, Amara M, Chabchoub A, Rhim A, Failloux AB, Bouattour A. West Nile, Sindbis and Usutu Viruses: Evidence of Circulation in Mosquitoes and Horses in Tunisia. Pathogens 2023; 12:pathogens12030360. [PMID: 36986282 PMCID: PMC10056592 DOI: 10.3390/pathogens12030360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mosquito-borne diseases have a significant impact on humans and animals and this impact is exacerbated by environmental changes. However, in Tunisia, surveillance of the West Nile virus (WNV) is based solely on the surveillance of human neuroinvasive infections and no study has reported mosquito-borne viruses (MBVs), nor has there been any thorough serological investigation of anti-MBV antibodies in horses. This study therefore sought to investigate the presence of MBVs in Tunisia. Among tested mosquito pools, infections by WNV, Usutu virus (USUV), and Sindbis virus (SINV) were identified in Cx. perexiguus. The serosurvey showed that 146 of 369 surveyed horses were positive for flavivirus antibodies using the cELISA test. The microsphere immunoassay (MIA) showed that 74 of 104 flavivirus cELISA-positive horses were positive for WNV, 8 were positive for USUV, 7 were positive for undetermined flaviviruses, and 2 were positive for tick-borne encephalitis virus (TBEV). Virus neutralization tests and MIA results correlated well. This study is the first to report the detection of WNV, USUV and SINV in Cx. perexiguus in Tunisia. Besides, it has shown that there is a significant circulation of WNV and USUV among horses, which is likely to cause future sporadic outbreaks. An integrated arbovirus surveillance system that includes entomological surveillance as an early alert system is of major epidemiological importance.
Collapse
Affiliation(s)
- Youmna M’ghirbi
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: or
| | - Laurence Mousson
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94704 Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Rayane Amaral
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Hajer Aounallah
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Meriem Amara
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
| | - Adel Rhim
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Ali Bouattour
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
8
|
Jansen S, Heitmann A, Uusitalo R, Korhonen EM, Lühken R, Kliemke K, Lange U, Helms M, Kirjalainen L, Nykänen R, Gregow H, Pirinen P, Rossini G, Vapalahti O, Schmidt-Chanasit J, Huhtamo E. Vector Competence of Northern European Culex pipiens Biotype pipiens and Culex torrentium to West Nile Virus and Sindbis Virus. Viruses 2023; 15:v15030592. [PMID: 36992301 PMCID: PMC10056470 DOI: 10.3390/v15030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00100 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Lauri Kirjalainen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Roope Nykänen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Hilppa Gregow
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Pentti Pirinen
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Giada Rossini
- Unit of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, Helsinki University Hospital (HUSLAB), 00290 Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Correspondence:
| |
Collapse
|
9
|
Terradas G, Novelo M, Metz H, Brustolin M, Rasgon JL. Anopheles albimanus is a Potential Alphavirus Vector in the Americas. Am J Trop Med Hyg 2023; 108:412-423. [PMID: 36535260 PMCID: PMC9896319 DOI: 10.4269/ajtmh.22-0417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its ecological flexibility and geographical co-occurrence with human pathogens, little is known about the ability of Anopheles albimanus to transmit arboviruses. To address this gap, we challenged An. albimanus females with four alphaviruses and one flavivirus and monitored the progression of infections. We found this species is an efficient vector of the alphaviruses Mayaro virus, O'nyong-nyong virus, and Sindbis virus, although the latter two do not currently exist in its habitat range. An. albimanus was able to become infected with Chikungunya virus, but virus dissemination was rare (indicating the presence of a midgut escape barrier), and no mosquito transmitted. Mayaro virus rapidly established disseminated infections in An. albimanus females and was detected in the saliva of a substantial proportion of infected mosquitoes. Consistent with previous work in other anophelines, we find that An. albimanus is refractory to infection with flaviviruses, a phenotype that did not depend on midgut-specific barriers. Our work demonstrates that An. albimanus may be a vector of neglected emerging human pathogens and adds to recent evidence that anophelines are competent vectors for diverse arboviruses.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Hillery Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
10
|
Guarido MM, Fourie I, Meno K, Mendes A, Riddin MA, MacIntyre C, Manyana S, Johnson T, Schrama M, Gorsich EE, Brooke BD, Almeida APG, Venter M. Alphaviruses Detected in Mosquitoes in the North-Eastern Regions of South Africa, 2014 to 2018. Viruses 2023; 15:414. [PMID: 36851627 PMCID: PMC9965626 DOI: 10.3390/v15020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The prevalence and distribution of African alphaviruses such as chikungunya have increased in recent years. Therefore, a better understanding of the local distribution of alphaviruses in vectors across the African continent is important. Here, entomological surveillance was performed from 2014 to 2018 at selected sites in north-eastern parts of South Africa where alphaviruses have been identified during outbreaks in humans and animals in the past. Mosquitoes were collected using a net, CDC-light, and BG-traps. An alphavirus genus-specific nested RT-PCR was used for screening, and positive pools were confirmed by sequencing and phylogenetic analysis. We collected 64,603 mosquitoes from 11 genera, of which 39,035 females were tested. Overall, 1462 mosquito pools were tested, of which 21 were positive for alphaviruses. Sindbis (61.9%, N = 13) and Middelburg (28.6%, N = 6) viruses were the most prevalent. Ndumu virus was detected in two pools (9.5%, N = 2). No chikungunya positive pools were identified. Arboviral activity was concentrated in peri-urban, rural, and conservation areas. A range of Culicidae species, including Culex univittatus, Cx. pipiens s.l., Aedes durbanensis, and the Ae. dentatus group, were identified as potential vectors. These findings confirm the active circulation and distribution of alphaviruses in regions where human or animal infections were identified in South Africa.
Collapse
Affiliation(s)
- Milehna M. Guarido
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0031, South Africa
| | - Isabel Fourie
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
| | - Kgothatso Meno
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
| | - Adriano Mendes
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
| | - Megan A. Riddin
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
- UP Institute for Sustainable Malaria Control (UP ISMC), Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Caitlin MacIntyre
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
| | - Sontaga Manyana
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
- National Health Laboratory Service, Department of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Todd Johnson
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
- Department of Biological Sciences, Copperbelt University, Kitwe 21692, Zambia
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| | - Erin E. Gorsich
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK
| | - Basil D. Brooke
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases/NHLS, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Antonio Paulo G. Almeida
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
- Institute of Hygiene and Tropical Medicine (IHMTNOVA), Medical Parasitology Unit/GHTM, NOVA University of Lisbon, 1349-008 Lisbon, Portugal
| | - Marietjie Venter
- Zoonotic Arbo- and Respiratory Virus Program, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria 0031, South Africa
| |
Collapse
|
11
|
Vector Competence of Mosquitoes from Germany for Sindbis Virus. Viruses 2022; 14:v14122644. [PMID: 36560650 PMCID: PMC9785343 DOI: 10.3390/v14122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.
Collapse
|
12
|
Dobbs JE, Tritsch SR, Encinales L, Cadena A, Suchowiecki K, Simon G, Mores C, Insignares S, Orozco VPV, Ospino M, Echavez LA, Gomez CAH, Crespo YG, Amdur R, Jimenez ADC, Hernandez CAP, Zapata JCM, Hernandez AS, Silvera PB, Rosales W, Mendoza E, Osorio-Llanes E, Castellar J, Jimenez D, Cooper DM, Firestein GS, Martins K, Chang AY. Regulatory T-cells and GARP expression are decreased in exercise-associated chikungunya viral arthritis flares. Front Immunol 2022; 13:1007106. [PMID: 36275717 PMCID: PMC9585177 DOI: 10.3389/fimmu.2022.1007106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Chikungunya virus (CHIKV) causes persistent arthritis, and our prior study showed that approximately one third of CHIKV arthritis patients had exacerbated arthritis associated with exercise. The underlying mechanism of exercise-associated chikungunya arthritis flare (EACAF) is unknown, and this analysis aimed to examine the regulatory T-cell immune response related to CHIKV arthritis flares. Methods In our study, 124 Colombian patients with a history of CHIKV infection four years prior were enrolled and 113 cases with serologically confirmed CHIKV IgG were used in this analysis. Patient information was gathered via questionnaires, and blood samples were taken to identify total live peripheral blood mononuclear cells, CD4+ cells, T regulatory cells, and their immune markers. We compared outcomes in CHIKV patients with (n = 38) vs. without (n = 75) EACAF using t-tests to assess means and the Fisher’s exact test, chi-squared to evaluate categorical variables, and Kruskal-Wallis tests in the setting of skewed distributions (SAS 9.3). Results 33.6% of CHIKV cases reported worsening arthritis with exercise. EACAF patients reported higher global assessments of arthritis disease ranging from 0-100 (71.2 ± 19.7 vs. 59.9 ± 28.0, p=0.03). EACAF patients had lower ratios of T regulatory (Treg)/CD4+ T-cells (1.95 ± 0.73 vs. 2.4 ± 1.29, p = 0.04) and lower percentage of GARP (glycoprotein-A repetitions predominant) expression per Treg (0.13 ± 0.0.33 vs. 0.16 ± 0.24 p= 0.020). Conclusion These findings suggest relative decreases in GARP expression may indicate a decreased level of immune suppression. Treg populations in patients with CHIKV arthritis may contribute to arthritis flares during exercise, though current research is conflicting.
Collapse
Affiliation(s)
- John E. Dobbs
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: John E. Dobbs,
| | - Sarah R. Tritsch
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | - Karol Suchowiecki
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Gary Simon
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Christopher Mores
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Richard Amdur
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | | | | | | | | | | | - Evelyn Mendoza
- Allied Research Society, Barranquilla, Colombia
- Universidad Libre, Barranquilla, Colombia
| | | | | | - Dennys Jimenez
- University of Texas Health Science Center San Antonio, TX, United States
| | - Dan M. Cooper
- University of California Irvine, Irvine, CA, United States
| | | | - Karen Martins
- Biomedical Advanced Research and Development Authority, Bethesda, MD, United States
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Dahl E, Öborn L, Sjöberg V, Lundkvist Å, Hesson JC. Vertical Transmission of Sindbis Virus in Culex Mosquitoes. Viruses 2022; 14:v14091915. [PMID: 36146722 PMCID: PMC9504956 DOI: 10.3390/v14091915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Vertical transmission (VT) is a phenomenon of vector-borne diseases where a pathogen is transferred from an infected arthropod mother to her offspring. For mosquito-borne flavi- and alphaviruses, VT is commonly viewed as rare; however, both field and experimental studies report on vertical transmission efficiency to a notably varying degree. It is likely that this reflects the different experimental methods used to test vertical transmission efficiency as well as differences between virus–vector combinations. There are very few investigations of the VT of an alphavirus in a Culex vector. Sindbis virus (SINV) is an arthritogenic alphavirus that utilizes Culex species as main vectors both in the summer transmission season and for its persistence over the winter period in northern latitudes. In this study, we investigated the vertical transmission of the SINV in Culex vectors, both in the field and in experimental settings. The detection of SINV RNA in field-collected egg rafts and emerging adults shows that vertical transmission takes place in the field. Experimentally infected females gave rise to adult offspring containing SINV RNA at emergence; however, three to four weeks after emergence none of the offspring contained SINV RNA. This study shows that vertical transmission may be connected to SINV’s ability to persist throughout northern winters and also highlights many aspects of viral replication that need further study.
Collapse
|
14
|
Usage of FTA® Classic Cards for Safe Storage, Shipment, and Detection of Arboviruses. Microorganisms 2022; 10:microorganisms10071445. [PMID: 35889164 PMCID: PMC9324231 DOI: 10.3390/microorganisms10071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Infections caused by arthropod-borne RNA viruses are overrepresented among emerging infectious diseases. Effective methods for collecting, storing, and transporting clinical or biological specimens are needed worldwide for disease surveillance. However, many tropical regions where these diseases are endemic lack analytical facilities and possibility of continuous cold chains, which presents challenges from both a biosafety and material preservation perspective. Whatman® FTA® Classic Cards may serve as an effective and safe option for transporting hazardous samples at room temperature, particularly for RNA viruses classified as biosafety level (BSL) 2 and 3 pathogens, from sampling sites to laboratories. In this study, we investigated the biosafety and perseverance of representative alpha- and flaviviruses stored on FTA® cards. To evaluate the virus inactivation capacity of FTA® cards, we used Sindbis virus (SINV), chikungunya virus (CHIKV), and Japanese encephalitis virus (JEV). We inoculated susceptible cells with dilution series of eluates from viral samples stored on the FTA® cards and observed for cytopathic effect to evaluate the ability of the cards to inactivate viruses. All tested viruses were inactivated after storage on FTA® cards. In addition, we quantified viral RNA of JEV, SINV, and tick-borne encephalitis virus (TBEV) stored on FTA® cards at 4 °C, 25 °C, and 37 °C for 30 days using two reverse transcriptase quantitative PCR assays. Viral RNA of SINV stored on FTA® cards was not reduced at either 4 °C or 25 °C over a 30-day period, but degraded rapidly at 37 °C. For JEV and TBEV, degradation was observed at all temperatures, with the most rapid degradation occurring at 37 °C. Therefore, the use of FTA® cards provides a safe and effective workflow for the collection, storage, and analysis of BSL 2- and 3-virus RNA samples, but there is a risk of false negative results if the cards are stored at higher temperatures for long periods of time. Conscious usage of the cards can be useful in disease surveillance and research, especially in tropical areas where transportation and cold chains are problematic.
Collapse
|
15
|
Masika MM, Korhonen EM, Smura T, Uusitalo R, Ogola J, Mwaengo D, Jääskeläinen AJ, Alburkat H, Gwon YD, Evander M, Anzala O, Vapalahti O, Huhtamo E. Serological Evidence of Exposure to Onyong-Nyong and Chikungunya Viruses in Febrile Patients of Rural Taita-Taveta County and Urban Kibera Informal Settlement in Nairobi, Kenya. Viruses 2022; 14:v14061286. [PMID: 35746757 PMCID: PMC9230508 DOI: 10.3390/v14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Several alphaviruses, such as chikungunya (CHIKV) and Onyong-nyong (ONNV), are endemic in Kenya and often cause outbreaks in different parts of the country. We assessed the seroprevalence of alphaviruses in patients with acute febrile illness in two geographically distant areas in Kenya with no previous record of alphavirus outbreaks. Blood samples were collected from febrile patients in health facilities located in the rural Taita-Taveta County in 2016 and urban Kibera informal settlement in Nairobi in 2017 and tested for CHIKV IgG and IgM antibodies using an in-house immunofluorescence assay (IFA) and a commercial ELISA test, respectively. A subset of CHIKV IgG or IgM antibody-positive samples were further analyzed using plaque reduction neutralization tests (PRNT) for CHIKV, ONNV, and Sindbis virus. Out of 537 patients, 4 (0.7%) and 28 (5.2%) had alphavirus IgM and IgG antibodies, respectively, confirmed on PRNT. We show evidence of previous and current exposure to alphaviruses based on serological testing in areas with no recorded history of outbreaks.
Collapse
Affiliation(s)
- Moses Muia Masika
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
- Correspondence: ; Tel.: +254-721770306
| | - Essi M. Korhonen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Joseph Ogola
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Dufton Mwaengo
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Anne J. Jääskeläinen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Hussein Alburkat
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Meno K, Yah C, Mendes A, Venter M. Incidence of Sindbis Virus in Hospitalized Patients With Acute Fevers of Unknown Cause in South Africa, 2019-2020. Front Microbiol 2022; 12:798810. [PMID: 35197942 PMCID: PMC8860305 DOI: 10.3389/fmicb.2021.798810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sindbis virus (SINV) is a mosquito-borne alphavirus that is widely distributed worldwide. Little is known about the febrile and neurological disease burden due to SINV in South Africa. PATIENTS AND METHODS Clinical samples of patients with acute febrile disease of unknown cause (AFDUC) were collected through the African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents at three sentinel hospital surveillance sites in South Africa. In total, 639 patients were screened using a PCR-based macroarray that can simultaneously detect nucleic acids of 30 pathogens, including SINV, from January 2019 to December 2020. Serum samples were randomly selected from the arbovirus season (January-June) and also screened with a commercial indirect immunofluorescence assay for anti-SINV IgM. In addition, 31 paired cerebrospinal fluid (CSF) specimens from the same patients were screened for IgM. Micro-neutralization assays were performed on all IgM-positive samples. RESULTS None of the specimens tested positive for SINV by molecular screening; however, 38/197 (19.0%) samples were positive for SINV-specific IgM. A total of 25/38 (65.8%) IgM-positive samples tested positive for SINV-neutralizing antibodies, giving an overall incidence of 12.7%. Furthermore, 2/31 (6.5%) CSF specimens tested positive for IgM but were negative for neutralizing antibodies. There was a higher incidence of SINV-positive cases in Mpumalanga (26.0%) than Gauteng province (15.0%). The most significant months for IgM-positive cases were April 2019 (OR = 2.9, p < 0.05), and May 2020 (OR = 7.7, p < 0.05). CONCLUSION SINV or a closely related virus contributed to 12.7% of AFDUC cases in hospitalized patients during the late summer and autumn months in South Africa and was significantly associated with arthralgia, meningitis, and headaches.
Collapse
Affiliation(s)
| | | | | | - Marietjie Venter
- Zoonotic Arbo and Respiratory Virus Program, Department of Medical Virology, Centre for Viral Zoonoses, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J. Polyphenols and their potential role to fight viral diseases: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149719. [PMID: 34438146 PMCID: PMC8373592 DOI: 10.1016/j.scitotenv.2021.149719] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
Fruits, vegetables, spices, and herbs are a potential source of phenolic acids and polyphenols. These compounds are known as natural by-products or secondary metabolites of plants, which are present in the daily diet and provide important benefits to the human body such as antioxidant, anti-inflammatory, anticancer, anti-allergic, antihypertensive and antiviral properties, among others. Plentiful evidence has been provided on the great potential of polyphenols against different viruses that cause widespread health problems. As a result, this review focuses on the potential antiviral properties of some polyphenols and their action mechanism against various types of viruses such as coronaviruses, influenza, herpes simplex, dengue fever, and rotavirus, among others. Also, it is important to highlight the relationship between antiviral and antioxidant activities that can contribute to the protection of cells and tissues of the human body. The wide variety of action mechanisms of antiviral agents, such as polyphenols, against viral infections could be applied as a treatment or prevention strategy; but at the same time, antiviral polyphenols could be used to produce natural antiviral drugs. A recent example of an antiviral polyphenol application deals with the use of hesperidin extracted from Citrus sinensis. The action mechanism of hesperidin relies on its binding to the key entry or spike protein of SARS-CoV-2. Finally, the extraction, purification and recovery of polyphenols with potential antiviral activity, which are essential for virus replication and infection without side-effects, have been critically reviewed.
Collapse
Affiliation(s)
- María Fernanda Montenegro-Landívar
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Paulina Tapia-Quirós
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Chemical Engineering Department, School of Industrial Engineering-CINTECX, University of Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETAQUA, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Shi N, Zhu X, Qiu X, Cao X, Jiang Z, Lu H, Jin N. Origin, genetic diversity, adaptive evolution and transmission dynamics of Getah virus. Transbound Emerg Dis 2021; 69:e1037-e1050. [PMID: 34812572 DOI: 10.1111/tbed.14395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
As a member of the Alphavirus, Getah virus (GETV) was becoming more serious and posing a serious threat to animal safety and public health. However, the circulation, distribution and evolution of GETV is not well understood. Hence, we integrated a variety of bioinformatic methodologies, from genomic alterations to systematic analysis, phylogeography, selection, adaptive analysis, prediction of protein modification, structural biology and molecular dynamics simulations to understand the characteristics of GETV. The results of phylogeography and molecular evolution show that due to the lack of vaccine, GETV is rapidly expanding its host range and geographical distribution at a high evolutionary rate. We also predicted the important modification sites, and identified the adaptive and active selection sites. Finally, the analysis of spatial structure and function showed that six adaptive sites may be related to the structural stability, receptor binding ability, immunogenicity and immune evasion of the virus, respectively. The data from this study have important implications for the understanding of ongoing GETV outbreaks worldwide and will guide future efforts to develop effective preventive and control measures against GETV. In particular, biosafety measures should be strengthened immediately to prevent GETV from becoming a pandemic, especially in China, South Korea and Japan.
Collapse
Affiliation(s)
- Ning Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xiangyu Zhu
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xiangshu Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xinyu Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Zhenyan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huijun Lu
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| |
Collapse
|
19
|
Chiuya T, Masiga DK, Falzon LC, Bastos ADS, Fèvre EM, Villinger J. A survey of mosquito-borne and insect-specific viruses in hospitals and livestock markets in western Kenya. PLoS One 2021; 16:e0252369. [PMID: 34048473 PMCID: PMC8162702 DOI: 10.1371/journal.pone.0252369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/15/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti and Culex pipiens complex mosquitoes are prolific vectors of arboviruses that are a global threat to human and animal health. Increased globalization and ease of travel have facilitated the worldwide dissemination of these mosquitoes and the viruses they transmit. To assess disease risk, we determined the frequency of arboviruses in western Kenyan counties bordering an area of high arboviral activity. In addition to pathogenic viruses, insect-specific flaviviruses (ISFs), some of which are thought to impair the transmission of specific pathogenic arboviruses, were also evaluated. We trapped mosquitoes in the short and long rainy seasons in 2018 and 2019 at livestock markets and hospitals. Mosquitoes were screened for dengue, chikungunya and other human pathogenic arboviruses, ISFs, and their blood-meal sources as determined by high-resolution melting analysis of (RT-)PCR products. Of 6,848 mosquitoes collected, 89% were trapped during the long rainy season, with A. aegypti (59%) and Cx. pipiens sensu lato (40%) being the most abundant. Most blood-fed mosquitoes were Cx. pipiens s.l. with blood-meals from humans, chicken, and sparrow (Passer sp.). We did not detect dengue or chikungunya viruses. However, one Culex poicilipes female was positive for Sindbis virus, 30 pools of Ae. aegypti had cell fusing agent virus (CFAV; infection rate (IR) = 1.27%, 95% CI = 0.87%-1.78%); 11 pools of Ae. aegypti had Aedes flavivirus (AeFV; IR = 0.43%, 95% CI = 0.23%-0.74%); and seven pools of Cx. pipiens s.l. (IR = 0.23%, 95% CI = 0.1%-0.45%) and one pool of Culex annulioris had Culex flavivirus. Sindbis virus, which causes febrile illness in humans, can complicate the diagnosis and prognosis of patients with fever. The presence of Sindbis virus in a single mosquito from a population of mosquitoes with ISFs calls for further investigation into the role ISFs may play in blocking transmission of other arboviruses in this region.
Collapse
Affiliation(s)
- Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- * E-mail: , (TC); (JV)
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Laura C. Falzon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- * E-mail: , (TC); (JV)
| |
Collapse
|
20
|
Suchowiecki K, Reid SP, Simon GL, Firestein GS, Chang A. Persistent Joint Pain Following Arthropod Virus Infections. Curr Rheumatol Rep 2021; 23:26. [PMID: 33847834 PMCID: PMC8042844 DOI: 10.1007/s11926-021-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection. RECENT FINDINGS The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis. Alphaviruses, including Chikungunya, O'nyong'nyong, Sindbis, Barmah Forest, Ross River, and Mayaro viruses, are associated with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid during chronic chikungunya infection indicates that immunomodulators may be given safely. The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along and evidence-based treatment could significantly improve morbidity and long-term disability.
Collapse
Affiliation(s)
- Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Gary L. Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - Gary S. Firestein
- UC San Diego Health Sciences, 9500 Gilman Drive #0602, La Jolla, CA 92093 USA
| | - Aileen Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| |
Collapse
|
21
|
Abstract
Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Angela C O'Donnell
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, TX 78712, USA
| |
Collapse
|
22
|
Björnström A, Blomström AL, Singh MC, Hesson JC. Sindbis virus neutralising antibodies detected in Swedish horses. One Health 2021; 12:100242. [PMID: 33851003 PMCID: PMC8039815 DOI: 10.1016/j.onehlt.2021.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
A number of viruses transmitted by mosquitoes are well known to cause disease in both humans and horses, ranging from mild fevers to mortal neurological disease. A recently discovered connection between the alphavirus Sindbis virus (SINV) and neurological disease in horses in South Africa initiated this serological study in northern Europe, where the same genotype of SINV (SINV-I) is also highly endemic. We tested 171 serum samples, originally obtained from horses for other reasons from April to October 2019, for presence of SINV neutralising antibodies using a plaque reduction neutralisation test (PRNT). The serum from six horses reduced the plaque count more than 80%, and two out of these reduced the plaque count more than 90%. These horses were sampled in six different regions of Sweden, and included individuals sampled from April to August. This study shows that horses in Sweden have become infected with SINV and developed neutralising antibodies. Potential connections between infection and development of disease are important questions for future studies. SINV is a arbovirus that has been associated with disease in horses in South Africa. SINV is common in Sweden but any connection to equine infection is unknown. In this study, neutralising antibodies against SINV were detected in Swedish horses. This is the first study to indicate SINV infection in European horses. The clinical impact of SINV on horses will be an important focus for future studies.
Collapse
Affiliation(s)
- Agnes Björnström
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden
| | - Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden
| | - Manish Chandra Singh
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Sweden
| | - Jenny C Hesson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Sweden
| |
Collapse
|
23
|
First Record of Mosquito-Borne Kyzylagach Virus in Central Europe. Viruses 2020; 12:v12121445. [PMID: 33339099 PMCID: PMC7765487 DOI: 10.3390/v12121445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
RNA of Kyzylagach virus (KYZV), a Sindbis-like mosquito-borne alphavirus from Western equine encephalitis virus complex, was detected in four pools (out of 221 pools examined), encompassing 10,784 female Culex modestus mosquitoes collected at a fishpond in south Moravia, Czech Republic, with a minimum infection rate of 0.04%. This alphavirus was never detected in Central Europe before.
Collapse
|
24
|
Bergman A, Dahl E, Lundkvist Å, Hesson JC. Sindbis Virus Infection in Non-Blood-Fed Hibernating Culex pipiens Mosquitoes in Sweden. Viruses 2020; 12:v12121441. [PMID: 33327649 PMCID: PMC7765111 DOI: 10.3390/v12121441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
A crucial, but unresolved question concerning mosquito-borne virus transmission is how these viruses can remain endemic in regions where the transmission is halted for long periods of time, due to mosquito inactivity in, e.g., winter. In northern Europe, Sindbis virus (SINV) (genus alphavirus, Togaviridae) is transmitted among birds by Culex mosquitoes during the summer, with occasional symptomatic infections occurring in humans. In winter 2018–19, we sampled hibernating Culex spp females in a SINV endemic region in Sweden and assessed them individually for SINV infection status, blood-feeding status, and species. The results showed that 35 out of the 767 collected mosquitoes were infected by SINV, i.e., an infection rate of 4.6%. The vast majority of the collected mosquitoes had not previously blood-fed (98.4%) and were of the species Cx. pipiens (99.5%). This is the first study of SINV overwintering, and it concludes that SINV can be commonly found in the hibernating Cx. pipiens population in an endemic region in Sweden, and that these mosquitoes become infected through other means besides blood-feeding. Further studies on mosquito ecology and viral interactions are needed to elucidate the mechanisms of the persistence of these viruses over winter.
Collapse
|
25
|
Korhonen EM, Suvanto MT, Uusitalo R, Faolotto G, Smura T, Sane J, Vapalahti O, Huhtamo E. Sindbis Virus Strains of Divergent Origin Isolated from Humans and Mosquitoes During a Recent Outbreak in Finland. Vector Borne Zoonotic Dis 2020; 20:843-849. [PMID: 32898458 PMCID: PMC7699012 DOI: 10.1089/vbz.2019.2562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sindbis virus (SINV) is a mosquito-borne avian hosted virus that is widely distributed in Europe, Africa, Asia, and Oceania. Disease in humans is documented mainly from Northern Europe and South Africa and associated with genotype I. In 2018 under extremely warm climatic conditions, a small outbreak of 71 diagnosed SINV infections was recorded in Finland. We screened 52 mosquito pools (570 mosquitoes) and 223 human sera for SINV with real-time RT-PCR and the positive samples with virus isolation. One SINV strain was isolated from a pool (n = 13) of genus Ochlerotatus mosquitoes and three strains from patient serum samples. Complete genome analysis suggested all the isolates to be divergent from one another and related to previous Finnish, Swedish, and German strains. The study provides evidence of SINV strain transfer within Europe across regions with different epidemiological characteristics. Whether these are influenced by different mosquito genera involved in the transmission remains to be studied.
Collapse
Affiliation(s)
- Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Maija T. Suvanto
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Giulia Faolotto
- Laboratory of Molecular Virology, University Hospital Maggiore Della Carita Novara, Piemonte, Novara, Italy
| | - Teemu Smura
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Sane
- Department of Health Security, Infectious Disease Control and Vaccinations Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
27
|
Michie A, Ernst T, Chua ILJ, Lindsay MDA, Neville PJ, Nicholson J, Jardine A, Mackenzie JS, Smith DW, Imrie A. Phylogenetic and Timescale Analysis of Barmah Forest Virus as Inferred from Genome Sequence Analysis. Viruses 2020; 12:E732. [PMID: 32640629 PMCID: PMC7412159 DOI: 10.3390/v12070732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other major Australian alphavirus. Currently, just four BFV whole-genome sequences are available with no genome-scale phylogeny in existence to robustly characterise genetic diversity. Thirty novel genome sequences were derived for this study, for a final 34-taxon dataset sampled over a 44 year period. Three distinct BFV genotypes were characterised (G1-3) that have circulated in Australia and Papua New Guinea (PNG). Evidence of spatio-temporal co-circulation of G2 and G3 within regions of Australia was noted, including in the South West region of Western Australia (WA) during the first reported disease outbreaks in the state's history. Compared with RRV, the BFV population appeared more stable with less frequent emergence of novel lineages. Preliminary in vitro assessment of RRV and BFV replication kinetics found that RRV replicates at a significantly faster rate and to a higher, more persistent titre compared with BFV, perhaps indicating mosquitoes may be infectious with RRV for longer than with BFV. This investigation resolved a greater diversity of BFV, and a greater understanding of the evolutionary dynamics and history was attained.
Collapse
Affiliation(s)
- Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - I-Ly Joanna Chua
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
| | - Michael D. A. Lindsay
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Peter J. Neville
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Jay Nicholson
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - Andrew Jardine
- Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (M.D.A.L.); (P.J.N.); (J.N.); (A.J.)
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
- Faculty of Health Sciences, Curtin University, Bentley WA 6102, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4067, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Perth, WA 6000, Australia; (I-L.J.C.); (J.S.M.); (D.W.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| |
Collapse
|
28
|
Gallagher MD, Karlsen M, Petterson E, Haugland Ø, Matejusova I, Macqueen DJ. Genome Sequencing of SAV3 Reveals Repeated Seeding Events of Viral Strains in Norwegian Aquaculture. Front Microbiol 2020; 11:740. [PMID: 32390982 PMCID: PMC7193772 DOI: 10.3389/fmicb.2020.00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six subtypes, with Norway having ongoing epidemics of SAV subtypes 2 and 3. These two viral subtypes are present in largely distinct geographic regions of Norway, with SAV2 present in Trondelag, SAV3 in Rogaland, Sogn og Fjordane, and Hordaland, and Møre og Romsdal having outbreaks of both subtypes. To determine likely transmission routes of Norwegian SAV an established Nanopore amplicon sequencing approach was used in the current study. After confirming the accuracy of this approach for distinguishing subtype level co-infections of SAV2 and SAV3, a hypothetical possibility in regions of neighboring epidemics, twenty-four SAV3 genomes were sequenced to characterize the current genetic diversity of SAV3 in Norwegian aquaculture. Sequencing was performed on naturally infected heart tissues originating from a range of geographic locations sampled between 2016 and 2019. Phylogenetic analyses revealed that the currently active SAV3 strains sampled comprise several distinct lineages sharing an ancestor that existed ∼15 years ago (95% HPD, 12.51-17.7 years) and likely in Hordaland. At least five of these lineages have not shared a common ancestor for 7.85 years (95% HPD, 5.39-10.96 years) or more. Furthermore, the ancestor of the strains that were sampled outside of Hordaland (Sogn of Fjordane and Rogaland) existed less than 8 years ago, indicating a lack of long-term viral reservoirs in these counties. This evident lack of geographically distinct subclades is compatible with a source-sink transmission dynamic explaining the long-term movements of SAV around Norway. Such anthropogenic transport of the virus indicates that at least for sink counties, biosecurity strategies might be effective in mitigating the ongoing SAV epidemic. Finally, genomic analyses of SAV sequences were performed, offering novel insights into the prevalence of SAV genomes containing defective deletions. Overall, this study improves our understanding of the recent transmission dynamics and biology of the SAV epidemic affecting Norwegian aquaculture.
Collapse
Affiliation(s)
- Michael D. Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Iveta Matejusova
- Marine Laboratory, Marine Scotland Science, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Musa AA, Muturi MW, Musyoki AM, Ouso DO, Oundo JW, Makhulu EE, Wambua L, Villinger J, Jeneby MM. Arboviruses and Blood Meal Sources in Zoophilic Mosquitoes at Human-Wildlife Interfaces in Kenya. Vector Borne Zoonotic Dis 2020; 20:444-453. [PMID: 32155389 DOI: 10.1089/vbz.2019.2563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Zoophilic mosquitoes play an important role in the transmission of arboviruses of medical importance at human-wildlife interfaces, yet arbovirus surveillance efforts have been focused mostly on anthropophilic mosquitoes. Understanding the diversity of zoophilic mosquitoes and their associated feeding patterns and arboviruses can inform better vector control strategies. Materials and Methods: We morphologically identified mosquitoes collected from two game reserves in Kenya, the Maasai Mara National Reserve (MMNR) and locations near the Shimba Hills National Reserve (SHNR). Representative mosquitoes were also identified by cytochrome c oxidase subunit 1 (COI) barcode sequencing. In addition, we identified the vertebrate hosts of mosquito blood meals from the contents of each mosquito's abdomen by high-resolution melting (HRM) analysis and sequencing of COI, 16S ribosomal RNA, and cytochrome b gene PCR products. Similarly, mosquito arbovirus infections were identified by HRM analysis and sequencing of Alphavirus- and Flavivirus-specific RT-PCR products. Results: Of 2858 mosquitoes collected, 51 were engorged with blood meals from seven different vertebrate hosts, including humans, birds, domestic, and peridomestic animals and wildlife. Culex was the most abundant mosquito genus, with Culex pipiens being the most abundant species in both study regions. Among MMNR samples, we detected dengue serotype-2 virus (DENV-2) for the first time in Aedes tarsalis and Aedes tricholabis, as well as Sindbis virus in male Cx. pipiens. We also detected DENV-2 in Aedes aegypti sampled from locations near the SHNR. Human and diverse wildlife blood meals were identified, including bushbuck blood in the dengue-infected Ae. tarsalis and both human and hippopotamus blood in a single Eretmapodites chrysogaster mosquito. Conclusions: Our findings highlight the potential risk of sylvatic dengue and Sindbis transmission to humans by zoophilic mosquitoes at human-wildlife interfaces in Africa. Of specific importance, we provide evidence of sylvatic DENV-2 in Ae. tarsalis and Ae. tricholabis, representing potential new dengue vectors.
Collapse
Affiliation(s)
- Ali A Musa
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Margaret W Muturi
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Abednego M Musyoki
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Daniel O Ouso
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Joseph W Oundo
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Edward E Makhulu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Lillian Wambua
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Maamun M Jeneby
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
30
|
Genome-Scale Phylogeny and Evolutionary Analysis of Ross River Virus Reveals Periodic Sweeps of Lineage Dominance in Western Australia, 1977-2014. J Virol 2020; 94:JVI.01234-19. [PMID: 31666378 PMCID: PMC6955267 DOI: 10.1128/jvi.01234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) causes the most common mosquito-borne infection in Australia and causes a significant burden of suffering to infected individuals as well as being a large burden to the Australian economy. The genetic diversity of RRV and its evolutionary history have so far only been studied using partial E2 gene analysis with a limited number of isolates. Robust whole-genome analysis has not yet been conducted. This study generated 94 novel near-whole-genome sequences to investigate the evolutionary history of RRV to better understand its genetic diversity through comprehensive whole-genome phylogeny. A better understanding of RRV genetic diversity will enable better diagnostics, surveillance, and potential future vaccine design. Ross River virus (RRV), an alphavirus of the Togaviridae family, is the most medically significant mosquito-borne virus of Australia. Past RRV phylogenetic and evolutionary analyses have been based on partial genome analyses only. Three geographically distinct RRV lineages, the Eastern, the Western, and the supposedly extinct North-Eastern lineage, were classified previously. We sought to expand on past phylogenies through robust genome-scale phylogeny to better understand RRV genetic diversity and evolutionary dynamics. We analyzed 106 RRV complete coding sequences, which included 13 genomes available on NCBI and 94 novel sequences derived for this study, sampled throughout Western Australia (1977–2014) and during the substantial Pacific Islands RRV epidemic (1979–1980). Our final data set comprised isolates sampled over 59 years (1959–2018) from a range of locations. Four distinct genotypes were defined, with the newly described genotype 4 (G4) found to be the contemporary lineage circulating in Western Australia. The prior geographical classification of RRV lineages was not supported by our findings, with evidence of geographical and temporal cocirculation of distinct genetic groups. Bayesian Markov chain Monte Carlo (MCMC) analysis revealed that RRV lineages diverged from a common ancestor approximately 94 years ago, with distinct lineages emerging roughly every 10 years over the past 50 years in periodic bursts of genetic diversity. Our study has enabled a more robust analysis of RRV evolutionary history and resolved greater genetic diversity that had been previously defined by partial E2 gene analysis. IMPORTANCE Ross River virus (RRV) causes the most common mosquito-borne infection in Australia and causes a significant burden of suffering to infected individuals as well as being a large burden to the Australian economy. The genetic diversity of RRV and its evolutionary history have so far only been studied using partial E2 gene analysis with a limited number of isolates. Robust whole-genome analysis has not yet been conducted. This study generated 94 novel near-whole-genome sequences to investigate the evolutionary history of RRV to better understand its genetic diversity through comprehensive whole-genome phylogeny. A better understanding of RRV genetic diversity will enable better diagnostics, surveillance, and potential future vaccine design.
Collapse
|
31
|
Meta-Transcriptomic Comparison of the RNA Viromes of the Mosquito Vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses 2019; 11:v11111033. [PMID: 31698792 PMCID: PMC6893722 DOI: 10.3390/v11111033] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Mosquitoes harbor an extensive diversity of ‘insect-specific’ RNA viruses in addition to those important to human and animal health. However, because most studies of the mosquito virome have been conducted at lower latitudes, little is known about the diversity and evolutionary history of RNA viruses sampled from mosquitoes in northerly regions. Here, we compared the RNA virome of two common northern mosquito species, Culex pipiens and Culex torrentium, collected in south-central Sweden. Following bulk RNA-sequencing (meta-transcriptomics) of 12 libraries, comprising 120 specimens of Cx. pipiens and 150 specimens of Cx. torrentium, we identified 40 viruses (representing 14 virus families) of which 28 were novel based on phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) protein. Hence, we documented similar levels of virome diversity as in mosquitoes sampled from the more biodiverse lower latitudes. Many viruses were also related to those sampled on other continents, indicative of a widespread global movement and/or long host–virus co-evolution. Although the two mosquito species investigated have overlapping geographical distributions and share many viruses, several viruses were only found at a specific location at this scale of sampling, such that local habitat and geography may play an important role in shaping viral diversity in Culex mosquitoes.
Collapse
|
32
|
Margos G, Fingerle V, Reynolds S. Borrelia bavariensis: Vector Switch, Niche Invasion, and Geographical Spread of a Tick-Borne Bacterial Parasite. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|