1
|
Geng X, Zhu Y, Gao Y, Chong H, He Y. Development of lipopeptide-based HIV-1/2 fusion inhibitors targeting the gp41 pocket site with a new design strategy. Antiviral Res 2024; 232:106042. [PMID: 39586543 DOI: 10.1016/j.antiviral.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024]
Abstract
Emerging studies demonstrate that lipid conjugation is a vital strategy for designing peptide-based viral fusion inhibitors, and the so-called lipopeptides exhibit greatly improved antiviral activity. In the design of lipopeptides, a flexible linker between the peptide sequence and lipid molecule is generally required, mostly with a short polyethylene glycol or glycine-serine sequence. Very recently, we discovered that the helix-facilitating amino acid sequence "EAAAK" as a rigid linker is a more efficient method in the design of SARS-CoV-2 fusion inhibitory lipopeptides. In this study, we comprehensively characterized the functionalities of different linkers in HIV fusion inhibitors. A short-peptide inhibitor 2P23, which mainly targets the gp41 pocket site, was used as a design template, generating a group of cholesterol-modified lipopeptides. In the inhibition of HIV-1 infection, the lipopeptide inhibitors with a rigid linker were much superior than those with the flexible linkers, as indicated by LP-37 with the "EAAAK" linker and LP-39 with the repeated "EP" amino acid sequences. Both lipopeptides were very potent inhibitors of HIV-2 and simian immunodeficiency (SIV) either. Promisingly, LP-37 displayed high α-helicity, thermostability and binding ability to a target-mimic peptide, and it was metabolically stable when treated with temperature, proteolytic enzymes or human sera. Taken together, our studies have verified a universal strategy for designing viral fusion inhibitors and offered a novel HIV fusion inhibitor for drug development.
Collapse
Affiliation(s)
- Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yue Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, Miotto O, Öncel MM, Khan AM. DiMA: sequence diversity dynamics analyser for viruses. Brief Bioinform 2024; 26:bbae607. [PMID: 39592151 PMCID: PMC11596295 DOI: 10.1093/bib/bbae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
Collapse
Affiliation(s)
- Shan Tharanga
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Eyyüb Selim Ünlü
- Istanbul Faculty of Medicine, Istanbul University, Turgut Özal Millet St, Topkapi, Istanbul 34093, Türkiye
- Genome Surveillance Unit, Wellcome Sanger Institute, Mill Ln, Hinxton, Saffron Walden CB10 1SA, United Kingdom
| | - Yongli Hu
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Muhammad Farhan Sjaugi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Muhammet A Çelik
- Celik Sarayı, Yeni Elektrik Santral St. No:29/2, Meram, Konya 42090, Türkiye
| | - Hilal Hekimoğlu
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Olivo Miotto
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Muhammed Miran Öncel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Jelaiah Street, Duhail North, Doha, Qatar
| |
Collapse
|
3
|
Kalinichenko SV, Ramadan L, Kruglova NA, Balagurov KI, Lukashina MI, Mazurov DV, Shepelev MV. A New Chimeric Antibody against the HIV-1 Fusion Inhibitory Peptide MT-C34 with a High Affinity and Fc-Mediated Cellular Cytotoxicity. BIOLOGY 2024; 13:675. [PMID: 39336102 PMCID: PMC11428423 DOI: 10.3390/biology13090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
Peptides from heptad repeat (HR1 and HR2) regions of gp41 are effective inhibitors of HIV-1 entry that block the fusion of viral and cellular membranes, but the generation of antibodies highly specific for these peptides is challenging. We have previously described a mouse hybridoma that recognizes MT-C34-related peptides derived from HR2. It was used for the selection of HIV-1-resistant CD4 lymphocytes engineered to express the MT-C34 peptide via a CRISPR/Cas9-mediated knock-in into the CXCR4 locus. In this study, we cloned variable domains of this antibody and generated a recombinant chimeric antibody (chAb) by combining it with the constant regions of the humanized antibody Trastuzumab. The new chAb displayed a high specificity and two-fold higher level of affinity than the parental mouse monoclonal antibody. In addition, chAb mediated up to 27-43% of the antibody-dependent cellular cytotoxicity towards cells expressing MT-C34 on their surface. The anti-MT-C34 chAb can be easily generated using plasmids available for the research community and can serve as a valuable tool for the detection, purification, and even subsequent elimination of HIV-1-resistant CD4 cells or CAR cells engineered to fight HIV-1 infection.
Collapse
Affiliation(s)
- Svetlana V Kalinichenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lama Ramadan
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalia A Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Konstantin I Balagurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina I Lukashina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Dmitriy V Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail V Shepelev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Grunst MW, Qin Z, Dodero-Rojas E, Ding S, Prévost J, Chen Y, Hu Y, Pazgier M, Wu S, Xie X, Finzi A, Onuchic JN, Whitford PC, Mothes W, Li W. Structure and inhibition of SARS-CoV-2 spike refolding in membranes. Science 2024; 385:757-765. [PMID: 39146425 PMCID: PMC11449073 DOI: 10.1126/science.adn5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Yang D, Wang X, Yang X, Qi S, Zhao F, Guo D, Li C, Zhu Q, Xing X, Cao Y, Sun D. Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus. Virology 2024; 596:110113. [PMID: 38801794 DOI: 10.1016/j.virol.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly virulent enteropathogenic coronavirus, is a significant threat to the pig industry. High frequency mutations in the PEDV genome have limited the effectiveness of current vaccines in providing immune protection. Developing efficient vaccines that can quickly adapt to mutant strains is a challenging but crucial task. In this study, we chose the pivotal protein heptad repeat (HR) responsible for coronavirus entry into host cells, as the vaccine antigen. HR-Fer nanoparticles prepared using ferritin were evaluated them as PEDV vaccine candidates. Nanoparticle vaccines elicited stronger neutralizing antibody responses in mice compared to monomer vaccines. Additionally, HR protein delivered via nanoparticles increased antigen uptake by antigen-presenting cells in vitro by 2.75-fold. The collective results suggest that HR can be used as antigens for vaccines, and the HR vaccine based on ferritin nanoparticles significantly enhances immunogenicity.
Collapse
Affiliation(s)
- Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xinglin Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yang Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
6
|
Düzgüneş N, Tao Z, Zhang Y, Krajewski K. Peptides Derived from the SARS-CoV-2 S2-Protein Heptad-Repeat-2 Inhibit Pseudoviral Fusion at Micromolar Concentrations: The Role of Palmitic Acid Conjugation. Int J Mol Sci 2024; 25:6382. [PMID: 38928089 PMCID: PMC11203579 DOI: 10.3390/ijms25126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2 S-protein-mediated fusion is thought to involve the interaction of the membrane-distal or N-terminal heptad repeat (NHR) ("HR1") of the cleaved S2 segment of the protein and the membrane-proximal or C-terminal heptad repeat (CHR) ("HR2") regions of the protein. We examined the fusion inhibitory activity of a PEGylated HR2-derived peptide and its palmitoylated derivative using a pseudovirus infection assay. The latter peptide caused a 76% reduction in fusion activity at 10 µM. Our results suggest that small variations in peptide derivatization and differences in the membrane composition of pseudovirus preparations may affect the inhibitory potency of HR2-derived peptides. We suggest that future studies on the inhibition of infectivity of SARS-CoV-2 in both in vitro and in vivo systems consider the need for higher concentrations of peptide inhibitors.
Collapse
Affiliation(s)
- Nejat Düzgüneş
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA
| | - Zhihua Tao
- BPS Bioscience, 6405 Mira Mesa Blvd, Suite 100, San Diego, CA 92121, USA; (Z.T.); (Y.Z.)
| | - Yuxia Zhang
- BPS Bioscience, 6405 Mira Mesa Blvd, Suite 100, San Diego, CA 92121, USA; (Z.T.); (Y.Z.)
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, 3057 Genetic Medicine, CB# 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA;
| |
Collapse
|
7
|
Tai LT, Yeh CY, Chang YJ, Liu JF, Hsu KC, Cheng JC, Lu CH. Discovery of Novel Spike Inhibitors against SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:6105. [PMID: 38892294 PMCID: PMC11172837 DOI: 10.3390/ijms25116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current coronavirus disease pandemic. With the rapid evolution of variant strains, finding effective spike protein inhibitors is a logical and critical priority. Angiotensin-converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS-CoV-2 viral entry, and thus related therapeutic approaches associated with the spike protein-ACE2 interaction show a high degree of feasibility for inhibiting viral infection. Our computer-aided drug design (CADD) method meticulously analyzed more than 260,000 compound records from the United States National Cancer Institute (NCI) database, to identify potential spike inhibitors. The spike protein receptor-binding domain (RBD) was chosen as the target protein for our virtual screening process. In cell-based validation, SARS-CoV-2 pseudovirus carrying a reporter gene was utilized to screen for effective compounds. Ultimately, compounds C2, C8, and C10 demonstrated significant antiviral activity against SARS-CoV-2, with estimated EC50 values of 8.8 μM, 6.7 μM, and 7.6 μM, respectively. Using the above compounds as templates, ten derivatives were generated and robust bioassay results revealed that C8.2 (EC50 = 5.9 μM) exhibited the strongest antiviral efficacy. Compounds C8.2 also displayed inhibitory activity against the Omicron variant, with an EC50 of 9.3 μM. Thus, the CADD method successfully discovered lead compounds binding to the spike protein RBD that are capable of inhibiting viral infection.
Collapse
Affiliation(s)
- Li-Te Tai
- Industrial Development Graduate Program of College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Cheng-Yun Yeh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110301, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404333, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| |
Collapse
|
8
|
Han T, Song L, Niu X, Qiu M, Wang Y, Wang J, Sun X, Ma J, Hu S, Feng Z. Synergistic peptide combinations designed to suppress SARS-CoV-2. Heliyon 2024; 10:e30489. [PMID: 38726116 PMCID: PMC11079089 DOI: 10.1016/j.heliyon.2024.e30489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
The SARS-CoV-2, responsible for the COVID-19 pandemic, poses a significant threat to global healthcare. Peptide and peptide-based inhibitors, known for their safety, efficacy, and selectivity, have recently emerged as promising candidates for treating late-developing viral infections. In this study, three peptides were selected to target different stages of viral invasion, specifically ACE2 and S protein binding, as well as membrane fusion. The objective was to assess their ability to impede the entry of the SARS-CoV-2 Spike pseudotyped virus. Our findings revealed that a combination of these three peptides demonstrated enhanced antiviral effects. This outcome substantiates the feasibility of developing effective peptide combinations to combat diseases related to SARS-CoV-2. Moreover, the three-peptide combinations, designed to target multiple aspects of SARS-CoV-2 viral entry, exhibited heightened viral inhibition and broad-spectrum antiviral properties.
Collapse
Affiliation(s)
- Tao Han
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Linhong Song
- Department of Pediatric Cardiac Surgery, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Xinxin Niu
- Department of Organ Transplantation, the Third Medical Center of Chinese PLA General Hospital, China
| | - Meng Qiu
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Yi Wang
- Institute of Pediatrics, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Xiuyan Sun
- Department of Obstetrics and Gynecology, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Jiali Ma
- Department of Clinical Laboratory, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Siqi Hu
- Institute of Pediatrics, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Zhichun Feng
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| |
Collapse
|
9
|
Trischitta P, Tamburello MP, Venuti A, Pennisi R. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review. Int J Mol Sci 2024; 25:5188. [PMID: 38791226 PMCID: PMC11121416 DOI: 10.3390/ijms25105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Collapse
Affiliation(s)
- Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| |
Collapse
|
10
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
11
|
de Abreu AP, Carvalho FC, Mariano D, Bastos LL, Silva JRP, de Oliveira LM, de Melo-Minardi RC, Sabino ADP. An Approach for Engineering Peptides for Competitive Inhibition of the SARS-COV-2 Spike Protein. Molecules 2024; 29:1577. [PMID: 38611856 PMCID: PMC11013848 DOI: 10.3390/molecules29071577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
SARS-CoV-2 is the virus responsible for a respiratory disease called COVID-19 that devastated global public health. Since 2020, there has been an intense effort by the scientific community to develop safe and effective prophylactic and therapeutic agents against this disease. In this context, peptides have emerged as an alternative for inhibiting the causative agent. However, designing peptides that bind efficiently is still an open challenge. Here, we show an algorithm for peptide engineering. Our strategy consists of starting with a peptide whose structure is similar to the interaction region of the human ACE2 protein with the SPIKE protein, which is important for SARS-COV-2 infection. Our methodology is based on a genetic algorithm performing systematic steps of random mutation, protein-peptide docking (using the PyRosetta library) and selecting the best-optimized peptides based on the contacts made at the peptide-protein interface. We performed three case studies to evaluate the tool parameters and compared our results with proposals presented in the literature. Additionally, we performed molecular dynamics (MD) simulations (three systems, 200 ns each) to probe whether our suggested peptides could interact with the spike protein. Our results suggest that our methodology could be a good strategy for designing peptides.
Collapse
Affiliation(s)
- Ana Paula de Abreu
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Frederico Chaves Carvalho
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Diego Mariano
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Luana Luiza Bastos
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Juliana Rodrigues Pereira Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Leandro Morais de Oliveira
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Raquel C. de Melo-Minardi
- Laboratory of Bioinformatics and Systems, Department of Computer Science, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.P.d.A.); (F.C.C.); (L.L.B.); (L.M.d.O.)
| | - Adriano de Paula Sabino
- Laboratory of Clinical and Experimental Hematology, Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
12
|
Polo-Megías D, Cano-Muñoz M, Berruezo AG, Laumond G, Moog C, Conejero-Lara F. Investigating vulnerability of the conserved SARS-CoV-2 spike's heptad repeat 2 as target for fusion inhibitors using chimeric miniproteins. Int J Biol Macromol 2024; 262:130132. [PMID: 38354919 DOI: 10.1016/j.ijbiomac.2024.130132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Inhibition of SARS-CoV-2 membrane fusion is a highly desired target to combat COVID-19. The interaction between the spike's heptad repeat (HR) regions 1 (HR1) and 2 (HR2) is a crucial step during the fusion process and these highly conserved HR regions constitute attractive targets for fusion inhibitors. However, the relative importance of each subregion of the long HR1-HR2 interface for viral inhibition remains unclear. Here, we designed, produced, and characterized a series of chimeric miniproteins that mimic two different half subdomains of HR1. The proteins were designed as single polypeptide chains that spontaneously fold into antiparallel trimeric helical bundles aimed at structurally imitate the molecular surface of each HR1 half subregion. All the miniproteins folded stably as helical structures and could bind complementary HR2 peptides with moderate affinity. However, only the miniproteins mimicking the N-terminal HR1 half subdomain, but not those imitating C-terminal one, could inhibit cell infection by SARS-COV-2 real viruses in cell cultures. Most interestingly, the inhibitory activity of the miniproteins correlated with their structural stability, but not with their relative binding affinity for HR2 peptides. These results are highly relevant for designing more focused and active fusion inhibitors targeting the highly conserved HR2 region of the Spike.
Collapse
Affiliation(s)
- Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto G Berruezo
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France; Vaccine Research Institute (VRI), F-94000 Créteil, France
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
13
|
Kim JW, Lee JH, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Shin HG, Yang HR, Lee HE, Song JY, Lee S. Empowering SARS-CoV-2 variant neutralization with a bifunctional antibody engineered with tandem heptad repeat 2 peptides. J Med Virol 2024; 96:e29506. [PMID: 38445718 DOI: 10.1002/jmv.29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
With the global pandemic and the continuous mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the need for effective and broadly neutralizing treatments has become increasingly urgent. This study introduces a novel strategy that targets two aspects simultaneously, using bifunctional antibodies to inhibit both the attachment of SARS-CoV-2 to host cell membranes and viral fusion. We developed pioneering IgG4-(HR2)4 bifunctional antibodies by creating immunoglobulin G4-based and phage display-derived human monoclonal antibodies (mAbs) that specifically bind to the SARS-CoV-2 receptor-binding domain, engineered with four heptad repeat 2 (HR2) peptides. Our in vitro experiments demonstrate the superior neutralization efficacy of these engineered antibodies against various SARS-CoV-2 variants, ranging from original SARS-CoV-2 strain to the recently emerged Omicron variants, as well as SARS-CoV, outperforming the parental mAb. Notably, intravenous monotherapy with the bifunctional antibody neutralizes a SARS-CoV-2 variant in a murine model without causing significant toxicity. In summary, this study unveils the significant potential of HR2 peptide-driven bifunctional antibodies as a potent and versatile strategy for mitigating SARS-CoV-2 infections. This approach offers a promising avenue for rapid development and management in the face of the continuously evolving SARS-CoV-2 variants, holding substantial promise for pandemic control.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Jin Young Song
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Bi W, Tang K, Chen G, Xie Y, Polizzi NF, DeGrado WF, Yuan S, Dang B. An enhanced broad-spectrum peptide inhibits Omicron variants in vivo. Cell Rep Med 2024; 5:101418. [PMID: 38340726 PMCID: PMC10897629 DOI: 10.1016/j.xcrm.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC50 values ranging from 0.16 to 5.53 nM. A1L35HR2m-Chol also potently inhibits spike-protein-mediated cell-cell fusion and the replication of authentic Omicron BA.2.12.1, BA.5, and EG.5.1. Importantly, A1L35HR2m-Chol distributed widely in respiratory tract tissue and had a long half-life (>10 h) in vivo. Intranasal administration of A1L35HR2m-Chol to K18-hACE2 transgenic mice potently inhibited Omicron BA.5 and EG.5.1 infection both prophylactically and therapeutically.
Collapse
Affiliation(s)
- Wenwen Bi
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Frontier Biotechnology Laboratory, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China.
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guilin Chen
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yubin Xie
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nicholas F Polizzi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Bobo Dang
- Research Center for Industries of the Future and Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China.
| |
Collapse
|
16
|
Suzuki S, Kuroda M, Aoki K, Kawaji K, Hiramatsu Y, Sasano M, Nishiyama A, Murayama K, Kodama EN, Oishi S, Hayashi H. Helix-based screening with structure prediction using artificial intelligence has potential for the rapid development of peptide inhibitors targeting class I viral fusion. RSC Chem Biol 2024; 5:131-140. [PMID: 38333196 PMCID: PMC10849125 DOI: 10.1039/d3cb00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/04/2023] [Indexed: 02/10/2024] Open
Abstract
The rapid development of drugs against emerging and re-emerging viruses is required to prevent future pandemics. However, inhibitors usually take a long time to optimize. Here, to improve the optimization step, we used two heptad repeats (HR) in the spike protein (S protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a model and established a screening system for peptide-based inhibitors containing an α-helix region (SPICA). SPICA can be used to identify critical amino acid regions and evaluate the inhibitory effects of peptides as decoys. We further employed an artificial intelligence structure-prediction system (AlphaFold2) for the rapid analysis of structure-activity relationships. Here, we identified that critical amino acid regions, DVDLGD (amino acids 1163-1168 in the S protein), IQKEIDRLNE (1179-1188), and NLNESLIDL (1192-1200), played a pivotal role in SARS-CoV-2 fusion. Peptides containing these critical amino acid regions efficiently blocked viral replication. We also demonstrated that AlphaFold2 could successfully predict structures similar to the reported crystal and cryo-electron microscopy structures of the post-fusion form of the SARS-CoV-2 S protein. Notably, the predicted structures of the HR1 region and the peptide-based fusion inhibitors corresponded well with the antiviral effects of each fusion inhibitor. Thus, the combination of SPICA and AlphaFold2 is a powerful tool to design viral fusion inhibitors using only the amino-acid sequence of the fusion protein.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mio Kuroda
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Keisuke Aoki
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Yoshiki Hiramatsu
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Eiichi N Kodama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Department of Infectious Disease, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Shinya Oishi
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
17
|
Dong M, Galvan Achi JM, Du R, Rong L, Cui Q. Development of SARS-CoV-2 entry antivirals. CELL INSIGHT 2024; 3:100144. [PMID: 38323318 PMCID: PMC10844678 DOI: 10.1016/j.cellin.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 02/08/2024]
Abstract
The global outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatened human health and public safety. The development of anti-SARS-CoV-2 therapies have been essential to curb the spread of SARS-CoV-2. Particularly, antivirals targeting viral entry have become an attractive target for the development of anti-SARS-CoV-2 therapies. In this review, we elucidate the mechanism of SARS-CoV-2 viral entry and summarize the development of antiviral inhibitors targeting viral entry. Moreover, we speculate upon future directions toward more potent inhibitors of SARS-CoV-2 entry. This study is expected to provide novel insights for the efficient discovery of promising candidate drugs against the entry of SARS-CoV-2, and contribute to the development of broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Jazmin M. Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| |
Collapse
|
18
|
Kim JY, Kim TY, Son SR, Kim SY, Kwon J, Kwon HC, Lee CJ, Jang DS. Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2. PLANTS (BASEL, SWITZERLAND) 2024; 13:303. [PMID: 38276760 PMCID: PMC10819127 DOI: 10.3390/plants13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Triterpenoidal saponins have been reported to be able to restrain SARS-CoV-2 infection. To isolate antiviral compounds against SARS-CoV-2 from the leaves of Aster koraiensis, we conducted multiple steps of column chromatography. We isolated six triperpenoidal saponins from A. koraiensis leaves, including three unreported saponins. Their chemical structures were determined using HR-MS and NMR data analyses. Subsequently, we tested the isolates to assess their ability to impede the entry of the SARS-CoV-2 pseudovirus (pSARS-CoV-2) into ACE2+ H1299 cells and found that five of the six isolates displayed antiviral activity with an IC50 value below 10 μM. Notably, one unreported saponin, astersaponin J (1), blocks pSARS-CoV-2 in ACE2+ and ACE2/TMPRSS2+ cells with similar IC50 values (2.92 and 2.96 μM, respectively), without any significant toxic effect. Furthermore, our cell-to-cell fusion and SARS-CoV-2 Spike-ACE2 binding assays revealed that astersaponin J inhibits membrane fusion, thereby blocking both entry pathways of SARS-CoV-2 while leaving the interaction between the SARS-CoV-2 Spike and ACE2 unaffected. Overall, this study expands the list of antiviral saponins by introducing previously undescribed triterpenoidal saponins isolated from the leaves of A. koraiensis, thereby corroborating the potency of triterpenoid saponins in impeding SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| | - Suyeon Yellena Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (H.C.K.)
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (H.C.K.)
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| |
Collapse
|
19
|
Bird GH, Patten JJ, Zavadoski W, Barucci N, Godes M, Moyer BM, Owen CD, DaSilva-Jardine P, Neuberg DS, Bowen RA, Davey RA, Walensky LD. A stapled lipopeptide platform for preventing and treating highly pathogenic viruses of pandemic potential. Nat Commun 2024; 15:274. [PMID: 38177138 PMCID: PMC10766962 DOI: 10.1038/s41467-023-44361-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
The continued emergence of highly pathogenic viruses, which either thwart immune- and small molecule-based therapies or lack interventions entirely, mandates alternative approaches, particularly for prompt and facile pre- and post-exposure prophylaxis. Many highly pathogenic viruses, including coronaviruses, employ the six-helix bundle heptad repeat membrane fusion mechanism to achieve infection. Although heptad-repeat-2 decoys can inhibit viral entry by blocking six-helix bundle assembly, the biophysical and pharmacologic liabilities of peptides have hindered their clinical development. Here, we develop a chemically stapled lipopeptide inhibitor of SARS-CoV-2 as proof-of-concept for the platform. We show that our lead compound blocks infection by a spectrum of SARS-CoV-2 variants, exhibits mucosal persistence upon nasal administration, demonstrates enhanced stability compared to prior analogs, and mitigates infection in hamsters. We further demonstrate that our stapled lipopeptide platform yields nanomolar inhibitors of respiratory syncytial, Ebola, and Nipah viruses by targeting heptad-repeat-1 domains, which exhibit strikingly low mutation rates, enabling on-demand therapeutic intervention to combat viral outbreaks.
Collapse
Affiliation(s)
- Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - J J Patten
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | | | | | - Marina Godes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin M Moyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Callum D Owen
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | | | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, USA
| | - Loren D Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
20
|
Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Clinical development of antivirals against SARS-CoV-2 and its variants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100208. [PMID: 38149085 PMCID: PMC10750039 DOI: 10.1016/j.crmicr.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The unceasing global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls for the development of novel therapeutics. Although many newly developed antivirals and repurposed antivirals have been applied to the treatment of coronavirus disease 2019 (COVID-19), antivirals showing satisfactory clinical efficacy are few in number. In addition, the loss of sensitivity to variants of concern (VOCs) and lack of oral bioavailability have also limited the clinical application of some antivirals. These facts remind us to develop more potent and broad-spectrum antivirals with better pharmacokinetic/pharmacodynamic properties to fight against infections from SARS-CoV-2, its variants, and other human coronaviruses (HCoVs). In this review, we summarize the latest advancements in the clinical development of antivirals against infections by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jie Zhou
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
21
|
de Oliveira DF. In silico identification of five binding sites on the SARS-CoV-2 spike protein and selection of seven ligands for such sites. J Biomol Struct Dyn 2023; 42:13697-13715. [PMID: 37921757 DOI: 10.1080/07391102.2023.2278077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
To contribute to the development of products capable of complexing with the SARS-CoV-2 spike protein, and thus preventing the virus from entering the host cell, this work aimed at discovering binding sites in the whole protein structure, as well as selecting substances capable of binding efficiently to such sites. Initially, the three-dimensional structure of the protein, with all receptor binding domains in the closed state, underwent blind docking with 38 substances potentially capable of binding to this protein according to the literature. This allowed the identification of five binding sites. Then, those substances with more affinities for these sites underwent pharmacophoric search in the ZINC15 database. The 14,329 substances selected from ZINC15 were subjected to docking to the five selected sites of the spike protein. The ligands with more affinities for the protein sites, as well as the selected sites themselves, were used in the de novo design of new ligands that were also docked to the binding sites of the protein. The best ligands, regardless of their origins, were used to form complexes with the spike protein, which were subsequently used in molecular dynamics simulations and calculations of ligands affinities to the protein through the molecular mechanics/Poisson-Boltzmann surface area method (MMPBSA). Seven substances with good affinities to the spike protein (-12.9 to -20.6 kcal/mol), satisfactory druggability (Bioavailability score: 0.17 to 0.55), and low acute toxicity to mice (LD50: 751 to 1421 mg/kg) were selected as potentially useful for the future development of new products to manage COVID-19 infections.Communicated by Ramaswamy H. Sarma.
Collapse
|
22
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
23
|
Boshah H, Samkari F, Valle-Pérez AU, Alsawaf SM, Aldoukhi AH, Bilalis P, Alshehri SA, Susapto HH, Hauser CAE. Evaluation of Potential Peptide-Based Inhibitors against SARS-CoV-2 and Variants of Concern. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3892370. [PMID: 37869628 PMCID: PMC10589072 DOI: 10.1155/2023/3892370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has greatly affected all aspect of life. Although several vaccines and pharmaceuticals have been developed against SARS-CoV-2, the emergence of mutated variants has raised several concerns. The angiotensin-converting enzyme (ACE2) receptor cell entry mechanism of this virus has not changed despite the vast mutation in emerging variants. Inhibiting the spike protein by which the virus identifies the host ACE2 receptor is a promising therapeutic countermeasure to keep pace with rapidly emerging variants. Here, we synthesized two ACE2-derived peptides, P1 and P25, to target and potentially inhibit SARS-CoV-2 cell entry. These peptides were evaluated in vitro using pseudoviruses that contained the SARS-CoV-2 original spike protein, the Delta-mutated spike protein, or the Omicron spike protein. An in silico investigation was also done for these peptides to evaluate the interaction of the synthesized peptides and the SARS-CoV-2 variants. The P25 peptide showed a promising inhibition potency against the tested pseudoviruses and an even higher inhibition against the Omicron variant. The IC50 of the Omicron variant was 60.8 μM, while the IC50s of the SARS-CoV-2 original strain and the Delta variant were 455.2 μM and 546.4 μM, respectively. The in silico experiments also showed that the amino acid composition design and structure of P25 boosted the interaction with the spike protein. These findings suggest that ACE2-derived peptides, such as P25, have the potential to inhibit SARS-CoV-2 cell entry in vitro. However, further in vivo studies are needed to confirm their therapeutic efficacy against emerging variants.
Collapse
Affiliation(s)
- Hattan Boshah
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Sarah M. Alsawaf
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ali H. Aldoukhi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Salwa A. Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hepi H. Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
24
|
Wu L, Zheng A, Tang Y, Chai Y, Chen J, Cheng L, Hu Y, Qu J, Lei W, Liu WJ, Wu G, Zeng S, Yang H, Wang Q, Gao GF. A pan-coronavirus peptide inhibitor prevents SARS-CoV-2 infection in mice by intranasal delivery. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2201-2213. [PMID: 37574525 DOI: 10.1007/s11427-023-2410-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Coronaviruses (CoVs) have brought serious threats to humans, particularly severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which continually evolves into multiple variants. These variants, especially Omicron, reportedly escape therapeutic antibodies and vaccines, indicating an urgent need for new antivirals with pan-SARS-CoV-2 inhibitory activity. We previously reported that a peptide fusion inhibitor, P3, targeting heptad repeated-1 (HR1) of SARS-CoV-2 spike (S) protein, could inhibit viral infections. Here, we further designed multiple derivatives of the P3 based on structural analysis and found that one derivative, the P315V3, showed the most efficient antiviral activity against SARS-CoV-2 variants and several other sarbecoviruses, as well as other human-CoVs (HCoVs). P315V3 also exhibited effective prophylactic efficacy against the SARS-CoV-2 Delta and Omicron variants in mice via intranasal administration. These results suggest that P315V3, which is in Phase II clinical trial, is promising for further development as a nasal pan-SARS-CoV-2 or pan-CoVs inhibitor to prevent or treat CoV diseases.
Collapse
Affiliation(s)
- Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangming Tang
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiantao Chen
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yu Hu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Qu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - William Jun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shaogui Zeng
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Hang Yang
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, 430299, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| |
Collapse
|
25
|
Thakkar R, Agarwal DK, Ranaweera CB, Ishiguro S, Conda-Sheridan M, Gaudreault NN, Richt JA, Tamura M, Comer J. De novo design of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain. RSC Med Chem 2023; 14:1722-1733. [PMID: 37731704 PMCID: PMC10507807 DOI: 10.1039/d3md00222e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 09/22/2023] Open
Abstract
Although effective vaccines have been developed against SARS-CoV-2, many regions in the world still have low rates of vaccination and new variants with mutations in the viral spike protein have reduced the effectiveness of most available vaccines and treatments. There is an urgent need for a drug to cure this disease and prevent infection. The SARS-CoV-2 virus enters the host cell through protein-protein interaction between the virus's spike protein and the host's angiotensin converting enzyme (ACE2). Using protein design software and molecular dynamics simulations, we have designed a 17-residue peptide (pep39), that binds to the spike protein receptor-binding domain (RBD) and blocks interaction of spike protein with ACE2. We have confirmed the binding activity of the designed peptide for the original spike protein and the delta variant spike protein using micro-cantilever and bio-layer interferometry (BLI) based methods. We also confirmed that pep39 strongly inhibits SARS-CoV-2 virus replication in Vero E6 cells. Taken together these data suggest that a newly designed spike protein RBD blocking peptide pep39 has a potential as a SARS-CoV-2 virus inhibitor.
Collapse
Affiliation(s)
- Ravindra Thakkar
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| | - Dilip K Agarwal
- Department of Material Science and Engineering and NUANCE Center, Northwestern University Evanston Illinois USA
| | - Chathuranga B Ranaweera
- Department of Medical Laboratory Sciences, General Sir John Kotelawala Defense University Colombo Sri Lanka
| | - Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha Nebraska USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine & Pathobiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine Manhattan Kansas USA
| |
Collapse
|
26
|
von Beck T, Navarrete K, Arce NA, Gao M, Dale GA, Davis-Gardner ME, Floyd K, Mena Hernandez L, Mullick N, Vanderheiden A, Skountzou I, Kuchipudi SV, Saravanan R, Li R, Skolnick J, Suthar MS, Jacob J. A wild boar cathelicidin peptide derivative inhibits severe acute respiratory syndrome coronavirus-2 and its drifted variants. Sci Rep 2023; 13:14650. [PMID: 37670110 PMCID: PMC10480232 DOI: 10.1038/s41598-023-41850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a clear threat to humanity. It has infected over 200 million and killed 4 million people worldwide, and infections continue with no end in sight. To control the pandemic, multiple effective vaccines have been developed, and global vaccinations are in progress. However, the virus continues to mutate. Even when full vaccine coverage is achieved, vaccine-resistant mutants will likely emerge, thus requiring new annual vaccines against drifted variants analogous to influenza. A complimentary solution to this problem could be developing antiviral drugs that inhibit SARS CoV-2 and its drifted variants. Host defense peptides represent a potential source for such an antiviral as they possess broad antimicrobial activity and significant diversity across species. We screened the cathelicidin family of peptides from 16 different species for antiviral activity and identified a wild boar peptide derivative that inhibits SARS CoV-2. This peptide, which we named Yongshi and means warrior in Mandarin, acts as a viral entry inhibitor. Following the binding of SARS-CoV-2 to its receptor, the spike protein is cleaved, and heptad repeats 1 and 2 multimerize to form the fusion complex that enables the virion to enter the cell. A deep learning-based protein sequence comparison algorithm and molecular modeling suggest that Yongshi acts as a mimetic to the heptad repeats of the virus, thereby disrupting the fusion process. Experimental data confirm the binding of Yongshi to the heptad repeat 1 with a fourfold higher affinity than heptad repeat 2 of SARS-CoV-2. Yongshi also binds to the heptad repeat 1 of SARS-CoV-1 and MERS-CoV. Interestingly, it inhibits all drifted variants of SARS CoV-2 that we tested, including the alpha, beta, gamma, delta, kappa and omicron variants.
Collapse
Affiliation(s)
- Troy von Beck
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Karla Navarrete
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nicholas A Arce
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Gordon A Dale
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Meredith E Davis-Gardner
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Katharine Floyd
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Luis Mena Hernandez
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nikita Mullick
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Abigail Vanderheiden
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Ioanna Skountzou
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rathi Saravanan
- Centre of Regulatory Excellence (CoRE), Duke-NUS Medical School, Level 6, 8 College Road, Singapore, 169857, Singapore
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
27
|
Stincarelli MA, Quagliata M, Di Santo A, Pacini L, Fernandez FR, Arvia R, Rinaldi S, Papini AM, Rovero P, Giannecchini S. SARS-CoV-2 inhibitory activity of a short peptide derived from internal fusion peptide of S2 subunit of spike glycoprotein. Virus Res 2023; 334:199170. [PMID: 37422270 PMCID: PMC10384657 DOI: 10.1016/j.virusres.2023.199170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Feliciana Real Fernandez
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Silvia Rinaldi
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy.
| |
Collapse
|
28
|
Llewellyn GN, Chen HY, Rogers GL, Huang X, Sell PJ, Henley JE, Cannon PM. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides. J Virol 2023; 97:e0068423. [PMID: 37555663 PMCID: PMC10506483 DOI: 10.1128/jvi.00684-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated in vitro, and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.
Collapse
Affiliation(s)
- George N. Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Philip J. Sell
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jill E. Henley
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
29
|
Jin H, Cheng L, Gong Y, Zhu Y, Chong H, Zhang Z, He Y. Design of a bifunctional pan-sarbecovirus entry inhibitor targeting the cell receptor and viral fusion protein. J Virol 2023; 97:e0019223. [PMID: 37578234 PMCID: PMC10506475 DOI: 10.1128/jvi.00192-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/02/2023] [Indexed: 08/15/2023] Open
Abstract
Development of highly effective antivirals that are robust to viral evolution is a practical strategy for combating the continuously evolved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inspired by viral multistep entry process, we here focus on developing a bispecific SARS-CoV-2 entry inhibitor, which acts on the cell receptor angiotensin converting enzyme 2 (ACE2) and viral S2 fusion protein. First, we identified a panel of diverse spike (S) receptor-binding domains (RBDs) and found that the RBD derived from Guangdong pangolin coronavirus (PCoV-GD) possessed the most potent antiviral potency. Next, we created a bispecific inhibitor termed RBD-IPB01 by genetically linking a peptide fusion inhibitor IPB01 to the C-terminal of PCoV-GD RBD, which exhibited greatly increased antiviral potency via cell membrane ACE2 anchoring. Promisingly, RBD-IPB01 had a uniformly bifunctional inhibition on divergent pseudo- and authentic SARS-CoV-2 variants, including multiple Omicron subvariants. RBD-IPB01 also showed consistently cross-inhibition of other sarbecoviruses, including SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus (PCoV-GX). RBD-IPB01 displayed low cytotoxicity, high trypsin resistance, and favorable metabolic stability. Combined, our studies have provided a tantalizing insight into the design of broad-spectrum and potent antiviral agent. IMPORTANCE Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution and spillover potential of a wide variety of sarbecovirus lineages indicate the importance of developing highly effective antivirals with broad capability. By directing host angiotensin converting enzyme 2 receptor and viral S2 fusion protein, we have created a dual-targeted virus entry inhibitor with high antiviral potency and breadth. The inhibitor receptor-binding domain (RBD)-IPB01 with the Guangdong pangolin coronavirus (PCoV-GD) spike RBD and a fusion inhibitor IPB01 displays bifunctional cross-inhibitions on pseudo- and authentic SARS-CoV-2 variants including Omicron, as well as on the sarbecoviruses SARS-CoV, PCoV-GD, and Guangxi pangolin coronavirus. RBD-IPB01 also efficiently inhibits diverse SARS-CoV-2 infection of human Calu-3 cells and blocks viral S-mediated cell-cell fusion with a dual function. Thus, the creation of such a bifunctional inhibitor with pan-sarbecovirus neutralizing capability has not only provided a potential weapon to combat future SARS-CoV-2 variants or yet-to-emerge zoonotic sarbecovirus, but also verified a viable strategy for the designing of antivirals against infection of other enveloped viruses.
Collapse
Affiliation(s)
- Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Cheng
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yani Gong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Liang T, Xiao S, Wu Z, Lv X, Liu S, Hu M, Li G, Li P, Ma X. Phenothiazines Inhibit SARS-CoV-2 Entry through Targeting Spike Protein. Viruses 2023; 15:1666. [PMID: 37632009 PMCID: PMC10458444 DOI: 10.3390/v15081666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several US FDA-approved drugs and identified phenothiazine derivatives with the ability to potently inhibit the infection of pseudotyped SARS-CoV-2 and distinct variants of concern (VOCs), including B.1.617.2 (Delta) and currently circulating Omicron sublineages XBB and BQ.1.1, as well as pseudotyped SARS-CoV and MERS-CoV. Mechanistic studies suggested that phenothiazines predominantly inhibited SARS-CoV-2 pseudovirus (PsV) infection at the early stage and potentially bound to the spike (S) protein of SARS-CoV-2, which may prevent the proteolytic cleavage of the S protein, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that phenothiazines can serve as a potential broad-spectrum therapeutic drug for the treatment of SARS-CoV-2 infection as well as the infection of future emerging human coronaviruses (HCoVs).
Collapse
Affiliation(s)
- Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Xi Lv
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Guojie Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Gao J, Cao C, Shi M, Hong S, Guo S, Li J, Liang T, Song P, Xu R, Li N. Kaempferol inhibits SARS-CoV-2 invasion by impairing heptad repeats-mediated viral fusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154942. [PMID: 37421767 PMCID: PMC10289257 DOI: 10.1016/j.phymed.2023.154942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND The continuous evolution of SARS-CoV-2 has underscored the development of broad-spectrum prophylaxis. Antivirals targeting the membrane fusion process represent promising paradigms. Kaempferol (Kae), an ubiquitous plant flavonol, has been shown efficacy against various enveloped viruses. However, its potential in anti-SARS-CoV-2 invasion remains obscure. PURPOSE To evaluate capabilities and mechanisms of Kae in preventing SARS-CoV-2 invasion. METHODS To avoid interference of viral replication, virus-like particles (VLPs) constructed with luciferase reporter were applied. To investigate the antiviral potency of Kae, human induced pluripotent stem cells (hiPSC)-derived alveolar epithelial cells type II (AECII) and human ACE2 (hACE2) transgenic mice were utilized as in vitro and in vivo models, respectively. Using dual split protein (DSP) assays, inhibitory activities of Kae in viral fusion were determined in Alpha, Delta and Omicron variants of SARS-CoV-2, as well as in SARS-CoV and MERS-CoV. To further reveal molecular determinants of Kae in restricting viral fusion, synthetic peptides corresponding to the conserved heptad repeat (HR) 1 and 2, involved in viral fusion, and the mutant form of HR2 were explored by circular dichroism and native polyacrylamide gel electrophoresis. RESULTS Kae inhibited SARS-CoV-2 invasion both in vitro and in vivo, which was mainly attributed to its suppressive effects on viral fusion, but not endocytosis, two pathways that mediate viral invasion. In accordance with the proposed model of anti-fusion prophylaxis, Kae functioned as a pan-inhibitor of viral fusion, including three emerged highly pathogenic coronaviruses, and the currently circulating Omicron BQ.1.1 and XBB.1 variants of SARS-CoV-2. Consistent with the typical target of viral fusion inhibitors, Kae interacted with HR regions of SARS-CoV-2 S2 subunits. Distinct from previous inhibitory fusion peptides which prevent the formation of six-helix bundle (6-HB) by competitively interacting with HRs, Kae deformed HR1 and directly reacted with lysine residues within HR2 region, the latter of which was considered critical for the preservation of stabilized S2 during SARS-CoV-2 invasion. CONCLUSIONS Kae prevents SARS-CoV-2 infection by blocking membrane fusion and possesses a broad-spectrum anti-fusion ability. These findings provide valuable insights into potential benefits of Kae-containing botanical products as a complementary prophylaxis, especially during the waves of breakthrough infections and re-infections.
Collapse
Affiliation(s)
- Junwei Gao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Can Cao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingfei Shi
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shihao Hong
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tengxiao Liang
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China..
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China..
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China..
| |
Collapse
|
32
|
Lu Y, Shen F, He W, Li A, Li M, Feng X, Zheng Y, Pang W. HR121 targeting HR2 domain in S2 subunit of spike protein can serve as a broad-spectrum SARS-CoV-2 inhibitor via intranasal administration. Acta Pharm Sin B 2023:S2211-3835(23)00192-2. [PMID: 37360013 PMCID: PMC10219671 DOI: 10.1016/j.apsb.2023.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
The continuously emerging SARS-CoV-2 variants pose a great challenge to the efficacy of current drugs, this necessitates the development of broad-spectrum antiviral drugs. In the previous study, we designed a recombinant protein, heptad repeat (HR) 121, as a variant-proof vaccine. Here, we found it can act as a fusion inhibitor and demonstrated broadly neutralizing activities against SARS-CoV-2 and its main variants. Structure analysis suggested that HR121 targets the HR2 domain in SARS-CoV-2 spike (S) 2 subunit to block virus-cell fusion. Functional experiments demonstrated that HR121 can bind HR2 at serological-pH and endosomal-pH, highlighting its inhibition capacity when SARS-CoV-2 enters via either cellular membrane fusion or endosomal route. Importantly, HR121 can effectively inhibit SARS-CoV-2 and Omicron variant pseudoviruses entering the cells, as well as block authentic SARS-CoV-2 and Omicron BA.2 replications in human pulmonary alveolar epithelial cells. After intranasal administration to Syrian golden hamsters, it can protect hamsters from SARS-CoV-2 and Omicron BA.2 infection. Together, our results suggest that HR121 is a potent drug candidate with broadly neutralizing activities against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Li
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Xiaoli Feng
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Xue S, Xu W, Wang L, Wang X, Duan Q, Calcul L, Wang S, Liu W, Sun X, Lu L, Jiang S, Cai J. An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronavirus Fusion Inhibitor with Strong Blood-Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability. ACS CENTRAL SCIENCE 2023; 9:1046-1058. [PMID: 37252367 PMCID: PMC10184535 DOI: 10.1021/acscentsci.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 05/31/2023]
Abstract
Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes. The leads also displayed broad-spectrum inhibitory activity against a panel of other human CoVs and showed strong potency in vitro and in vivo. Meanwhile, they also demonstrated complete resistance to proteolytic enzymes or human sera and exhibited extremely long half-life in vivo and highly promising oral bioavailability, delineating their potential as pan-CoV fusion inhibitors with the potential to combat SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Songyi Xue
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xinling Wang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Qianyu Duan
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Laurent Calcul
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Shaohui Wang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Wenqi Liu
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xingmin Sun
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
| | - Lu Lu
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of
Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic
Microbes and Infection, Shanghai Institute of Infectious Disease and
Biosecurity, Fudan University, Shanghai 200433, China
| | - Jianfeng Cai
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
34
|
Wang C, Ye X, Ding C, Zhou M, Li W, Wang Y, You Q, Zong S, Peng Q, Duanmu D, Chen H, Sun B, Qiao J. Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5535-5546. [PMID: 36996017 PMCID: PMC10069644 DOI: 10.1021/acs.jafc.2c07811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/12/2023]
Abstract
Cell entry of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) depends on specific host cell proteases, which are the key targets for preventing and treating viral infections. Herein, we describe miyabenol C and trans-ε-viniferin, two resveratrol oligomers that specifically inhibit SARS-CoV-2 entry by targeting host protease cathepsin L. Several cell-based assays were used to demonstrate the effect of resveratrol oligomers, and their target was identified via screening of antiviral targets. Molecular docking analysis suggested that the oligomers could occupy the active cavity of cathepsin L. The surface plasmon resonance assay showed that the equilibrium dissociation constant (KD) values of miyabenol C-cathepsin L and trans-ε-viniferin-cathepsin L were 5.54 and 8.54 μM, respectively, indicating their excellent binding ability for cathepsin L. Our study demonstrated the potential application of resveratrol oligomers as lead compounds in controlling SARS-CoV-2 infection by targeting cathepsin L.
Collapse
Affiliation(s)
- Chenghai Wang
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
- State Key Laboratory of Agricultural Microbiology,
Hubei Hongshan Laboratory, Huazhong Agricultural University,
Wuhan 430070, China
| | - Xiansheng Ye
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life
Sciences and Medicine, University of Science and Technology of China
(USTC), Hefei 230026, China
| | - Mengqi Zhou
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Yuansong Wang
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Shan Zong
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology,
Hubei Hongshan Laboratory, Huazhong Agricultural University,
Wuhan 430070, China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug
Target, School of Pharmaceutical Sciences, Xiamen University,
Xiamen 361005, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
- Hubei Key Laboratory of Wudang Local Chinese Medicine
Research, Hubei University of Medicine, Shiyan 442000,
China
| |
Collapse
|
35
|
Tsuji K, Baffour-Awuah Owusu K, Miura Y, Ishii T, Shinohara K, Kobayakawa T, Emi A, Nakano T, Suzuki Y, Tamamura H. Dimerized fusion inhibitor peptides targeting the HR1-HR2 interaction of SARS-CoV-2. RSC Adv 2023; 13:8779-8793. [PMID: 36950081 PMCID: PMC10026625 DOI: 10.1039/d2ra07356k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Membrane fusion is a critical and indispensable step in the replication cycles of viruses such as SARS-CoV-2 and human immunodeficiency virus type-1 (HIV-1). In this step, a trimer of the heptad repeat 1 (HR1) region interacts with the three HR2 regions and forms a 6-helix bundle (6-HB) structure to proceed with membrane fusion of the virus envelope and host cells. Recently, several researchers have developed potent peptidic SARS-CoV-2 fusion inhibitors based on the HR2 sequence and including some modifications. We have developed highly potent HIV-1 fusion inhibitors by dimerization of its HR2 peptides. Here, we report the development of dimerized HR2 peptides of SARS-CoV-2, which showed significantly higher antiviral activity than the corresponding monomers, suggesting that the dimerization strategy can facilitate the design of potent inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kofi Baffour-Awuah Owusu
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| |
Collapse
|
36
|
Zhu Y, Li M, Liu N, Wu T, Han X, Zhao G, He Y. Development of highly effective LCB1-based lipopeptides targeting the spike receptor-binding motif of SARS-CoV-2. Antiviral Res 2023; 211:105541. [PMID: 36682464 PMCID: PMC9851916 DOI: 10.1016/j.antiviral.2023.105541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
LCB1 is a computationally designed 56-mer miniprotein targeting the spike (S) receptor-binding motif of SARS-CoV- 2 with high potent activity (Science, 2020; Cell host microbe, 2021); however, recent studies have demonstrated that emerging SARS-CoV-2 variants are highly resistant to LCB1's inhibition. In this study, we first identified a truncated peptide termed LCB1v8, which maintained the high antiviral potency. Then, a group of lipopeptides were generated by modifying LCB1v8 with diverse lipids, and of two lipopeptides, the C-terminally stearicacid-conjugtaed LCB1v17 and cholesterol-conjugated LCB1v18, were highly effective in inhibiting both S protein-pseudovirus and authentic SARS-CoV-2 infections. We further showed that LCB1-based inhibitors had similar α-helicity and thermostability in structure and bound to the target-mimic RBD protein with high affinity, and the lipopeptides exhibited greatly enhanced binding with the viral and cellular membranes, improved inhibitory activities against emerging SARS-CoV-2 variants. Moreover, LCB1v18 was validated with high preventive and therapeutic efficacies in K18-hACE2 transgenic mice against lethal SARS-CoV-2 challenge. In conclusion, our studies have provided important information for understanding the structure and activity relationship (SAR) of LCB1 inhibitor and would guide the future development of novel antivirals.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
37
|
Hu Y, Zhu Y, Yu Y, Liu N, Ju X, Ding Q, He Y. Design and characterization of novel SARS-CoV-2 fusion inhibitors with N-terminally extended HR2 peptides. Antiviral Res 2023; 212:105571. [PMID: 36868315 PMCID: PMC9977133 DOI: 10.1016/j.antiviral.2023.105571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Development of potent and broad-spectrum antivirals against SARS-CoV-2 remains one of top priorities, especially in the case of that current vaccines cannot effectively prevent viral transmission. We previously generated a group of fusion-inhibitory lipopeptides, with one formulation being evaluated under clinical trials. In this study, we dedicated to characterize the extended N-terminal motif (residues 1161-1168) of the so-called spike (S) heptad repeat 2 (HR2) region. Alanine scanning analysis of this motif verified its critical roles in S protein-mediated cell-cell fusion. Using a panel of HR2 peptides with the N-terminal extensions, we identified a peptide termed P40, which contained four extended N-terminal residues (VDLG) and exhibited improved binding and antiviral activities, whereas the peptides with further extensions had no such effects. Then, we developed a new lipopeptide P40-LP by modifying P40 with cholesterol, which exhibited dramatically increased activities in inhibiting SARS-CoV-2 variants including divergent Omicron sublineages. Moreover, P40-LP displayed a synergistic effect with IPB24 lipopeptide that was designed containing the C-terminally extended residues, and it could effectively inhibit other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Taken together, our results have provided valuable insights for understanding the structure-function relationship of SARS-CoV-2 fusion protein and offered novel antiviral strategies to fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
38
|
Sharfin Rahman M, De Alwis Watuthanthrige N, Chandrarathne BM, Page RC, Konkolewicz D. Polymer modification of SARS-CoV-2 spike protein impacts its ability to bind key receptor. Eur Polym J 2023; 184:111767. [PMID: 36531158 PMCID: PMC9749382 DOI: 10.1016/j.eurpolymj.2022.111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
The global spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has caused the loss of many human lives and severe economic losses. SARS-CoV-2 mediates its infection in humans via the spike glycoprotein. The receptor binding domain of the SARS-CoV-2 spike protein binds to its cognate receptor, angiotensin converting enzyme-2 (ACE2) to initiate viral entry. In this study, we examine how polymer modification of the spike protein receptor binding domain impacts binding to ACE2. The horseradish peroxidase conjugated receptor binding domain was modified with a range of polymers including hydrophilic N,N-dimethylacrylamide, hydrophobic N-isopropylacrylamide, cationic 3-(N,N-dimethylamino)propylacrylamide, and anionic 2-acrylamido-2-methylpropane sulfonic acid polymers. The effect of polymer chain length was observed using N,N-dimethylacrylamide polymers with degrees of polymerization of 5, 10 and 25. Polymer conjugation of the receptor binding domain significantly reduced the interaction with ACE2 protein, as determined by an enzyme-linked immunosorbent assay. Stability analysis showed that these conjugates remained highly stable even after seven days incubation at physiological temperature. Hence, this study provides a detailed view of the effect specific type of modification using a library of polymers with different functionalities in interrupting RBD-ACE2 interaction.
Collapse
Affiliation(s)
- Monica Sharfin Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | | | - Bhagya M Chandrarathne
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45011, USA
| |
Collapse
|
39
|
Xu Z, Wei D, Zeng Q, Zhang H, Sun Y, Demongeot J. More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction. Comput Biol Med 2023; 153:106510. [PMID: 36630829 PMCID: PMC9816089 DOI: 10.1016/j.compbiomed.2022.106510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2. We focus on the mutational effects on viral assembly capacity. A robust coarse-grained mathematical model is constructed to simulate the virus dynamics in the host body. Both virulence and transmissibility can be quantified in this model. A delicate equilibrium point that optimizes the transmissibility can be numerically obtained. Based on this model, the virulence of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibility. However, this trend is not continuous; its virulence will not disappear but remains at a relatively stable range. A virus assembly model which simulates the virus packing process is also proposed. It can be explained why a few mutations would lead to a significant divergence in clinical performance, both in the overall particle formation quantity and virulence. This research provides a novel mathematical attempt to elucidate the evolutionary driving force in RNA virus evolution.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Yinghui Sun
- Department of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France.
| |
Collapse
|
40
|
Tang M, Zhang X, Huang Y, Cheng W, Qu J, Gui S, Li L, Li S. Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Front Microbiol 2023; 13:1093646. [PMID: 36741878 PMCID: PMC9893414 DOI: 10.3389/fmicb.2022.1093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.
Collapse
Affiliation(s)
- Mingxing Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhong Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Shuiqing Gui, ✉
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China,Liang Li, ✉
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,Shuo Li, ✉
| |
Collapse
|
41
|
Abstract
The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19. IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.
Collapse
|
42
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
43
|
Pang W, Lu Y, Zhao YB, Shen F, Fan CF, Wang Q, He WQ, He XY, Li ZK, Chen TT, Yang CX, Li YZ, Xiao SX, Zhao ZJ, Huang XS, Luo RH, Yang LM, Zhang M, Dong XQ, Li MH, Feng XL, Zhou QC, Qu W, Jiang S, Ouyang S, Zheng YT. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 2022; 32:1068-1085. [PMID: 36357786 PMCID: PMC9648449 DOI: 10.1038/s41422-022-00746-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Yan-Bo Zhao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Fan Shen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Chang-Fa Fan
- grid.410749.f0000 0004 0577 6238Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Qian Wang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Qiang He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ze-Kai Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Tao-Tao Chen
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Cui-Xian Yang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - You-Zhi Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Si-Xuan Xiao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Zu-Jiang Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xu-Sheng Huang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Liu-Meng Yang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Mi Zhang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Xing-Qi Dong
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Ming-Hua Li
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Li Feng
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Qing-Cui Zhou
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wang Qu
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,University of the Chinese Academy of Sciences, Beijing, China. .,Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
44
|
Feng Y, Grotegut S, Jovanovic P, Gandin V, Olson SH, Murad R, Beall A, Colayco S, De-Jesus P, Chanda S, English BP, Singer RH, Jackson M, Topisirovic I, Ronai ZA. Inhibition of coronavirus HCoV-OC43 by targeting the eIF4F complex. Front Pharmacol 2022; 13:1029093. [PMID: 36532738 PMCID: PMC9751428 DOI: 10.3389/fphar.2022.1029093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.
Collapse
Affiliation(s)
- Yongmei Feng
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Predrag Jovanovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Rabi Murad
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Anne Beall
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sharon Colayco
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Paul De-Jesus
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sumit Chanda
- Immunology and Infectious Disease Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Brian P. English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Robert H. Singer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Michael Jackson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ze’ev A. Ronai
- Cancer Center at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
45
|
Jana ID, Bhattacharya P, Mayilsamy K, Banerjee S, Bhattacharje G, Das S, Aditya S, Ghosh A, McGill AR, Srikrishnan S, Das AK, Basak A, Mohapatra SS, Chandran B, Bhimsaria D, Mohapatra S, Roy A, Mondal A. Targeting an evolutionarily conserved "E-L-L" motif in spike protein to identify a small molecule fusion inhibitor against SARS-CoV-2. PNAS NEXUS 2022; 1:pgac198. [PMID: 36712339 PMCID: PMC9802491 DOI: 10.1093/pnasnexus/pgac198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "Ex3Lx6L" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this "E-L-L" motif and impedes the formation of 6-HB, thus effectively inhibiting SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy in blocking S protein-mediated viral entry, mutations within the "E-L-L" motif rendered the protein completely resistant to the drug, establishing its specificity toward this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective toward all major variants of concerns of SARS-CoV-2, including Beta, Kappa, Delta, and Omicron. Together, we show that this conserved essential "E-L-L" motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Indrani Das Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Saptarshi Banerjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Seemanti Aditya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anandita Ghosh
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Andrew R McGill
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Syamanthak Srikrishnan
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- Division of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shyam S Mohapatra
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Bala Chandran
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Devesh Bhimsaria
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
46
|
Zhu Y, Hu Y, Liu N, Chong H, He Y. Potent inhibition of diverse Omicron sublineages by SARS-CoV-2 fusion-inhibitory lipopeptides. Antiviral Res 2022; 208:105445. [PMID: 36265805 PMCID: PMC9574594 DOI: 10.1016/j.antiviral.2022.105445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The emergence and rapid spreading of SARS-CoV-2 variants of concern (VOCs) have posed a great challenge to the efficacy of vaccines and therapeutic antibodies, calling for antivirals that can overcome viral evasion. We recently reported that SARS-CoV-2 fusion-inhibitory lipopeptides, IPB02V3 and IPB24, possessed the potent activities against divergent VOCs, including Alpha, Beta, Gamma, Delta, and the initial Omicron strain (B.1.1.529); however, multiple Omicron sublineages have emerged and BA.4/5 is now becoming predominant globally. In this study, we focused on characterizing the functionality of the spike (S) proteins derived from Omicron sublineages and their susceptibility to the inhibition of IPB02V3 and IPB24. We first found that the S proteins of BA.2, BA.2.12.1, BA.3, and BA.4/5 exhibited significantly increased cell fusion capacities compared to BA.1, whereas the pseudoviruses of BA.2.12.1, BA.3, and BA.4/5 had significantly increased infectivity relative to BA.1 or BA.2. Next, we verified that IPB02V3 and IPB24 also maintained their very high potent activities in inhibiting diverse Omicron sublineages, even with enhanced potencies relative to the inhibition on ancestral virus. Moreover, we demonstrated that evolved Omicron mutations in the inhibitor-binding heptad repeat 1 (HR1) site could impair the S protein-driven cell fusogenicity and infectivity, but none of single or combined mutations affected the antiviral activity of IPB02V3 and IPB24. Therefore, we believe that viral fusion inhibitors possess high potential to be developed as effective drugs for fighting SARS-CoV-2 variants including diverse Omicron sublineages.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yue Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
47
|
Wu T, Zhu Y, Liu N, Hu Y, Chong H, He Y. Resistance profile and mechanism of severe acute respiratory syndrome coronavirus-2 variants to LCB1 inhibitor targeting the spike receptor-binding motif. Front Microbiol 2022; 13:1022006. [PMID: 36304946 PMCID: PMC9593036 DOI: 10.3389/fmicb.2022.1022006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
LCB1 is a 56-mer miniprotein computationally designed to target the spike (S) receptor-binding motif of SARS-CoV-2 with potent in vitro and in vivo inhibitory activities (Cao et al., 2020; Case et al., 2021). However, the rapid emergence and epidemic of viral variants have greatly impacted the effectiveness of S protein-targeting vaccines and antivirals. In this study, we chemically synthesized a peptide-based LCB1 inhibitor and characterized the resistance profile and underlying mechanism of SARS-CoV-2 variants. Among five variants of concern (VOCs), we found that pseudoviruses of Beta, Gamma, and Omicron were highly resistant to the LCB1 inhibition, whereas the pseudoviruses of Alpha and Delta as well as the variant of interest (VOI) Lambda only caused mild resistance. By generating a group of mutant viruses carrying single or combination mutations, we verified that K417N and N501Y substitutions in RBD critically determined the high resistance phenotype of VOCs. Furthermore, a large panel of 85 pseudoviruses with naturally occurring RBD point-mutations were generated and applied to LCB1, which identified that E406Q, K417N, and L455F conferred high-levels of resistance, when Y505W caused a ∼6-fold resistance fold-change. We also showed that the resistance mutations could greatly weaken the binding affinity of LCB1 to RBD and thus attenuated its blocking capacity on the interaction between RBD and the cell receptor ACE2. In conclusion, our data have provided crucial information for understanding the mechanism of SARS-CoV-2 resistance to LCB1 and will guide the design strategy of novel LCB1-based antivirals against divergent VOCs and evolutionary mutants.
Collapse
|
48
|
Ghaemi A, Roshani Asl P, Zargaran H, Ahmadi D, Hashimi AA, Abdolalipour E, Bathaeian S, Miri SM. Recombinant COVID-19 vaccine based on recombinant RBD/Nucleoprotein and saponin adjuvant induces long-lasting neutralizing antibodies and cellular immunity. Front Immunol 2022; 13:974364. [PMID: 36159845 PMCID: PMC9494508 DOI: 10.3389/fimmu.2022.974364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 has caused a global pandemic, infecting millions of people. An effective preventive vaccine against this virus is urgently needed. Here, we designed and developed a novel formulated recombinant receptor-binding domain (RBD) nucleocapsid (N) recombinant vaccine candidates. The RBD and N were separately expressed in E. coli and purified using column chromatography. The female Balb/c mice were immunized subcutaneously with the combination of purified RBD and N alone or formulated with saponin adjuvant in a two-week interval in three doses. Neutralization antibody (Nabs) titers against the SARS-CoV-2 were detected by a Surrogate Virus Neutralization (sVNT) Test. Also, total IgG and IgG1, and IgG2a isotypes and the balance of cytokines in the spleen (IFN-γ, Granzyme B, IL-4, and IL-12) were measured by ELISA. The percentages of CD4+ and CD8+ T cells were quantified by flow cytometry. The lymphoproliferative activity of restimulated spleen cells was also determined. The findings showed that the combination of RBD and N proteins formulated with saponin significantly promoted specific total IgG and neutralization antibodies, elicited robust specific lymphoproliferative and T cell response responses. Moreover, marked increase in CD4+ and CD8+ T cells were observed in the adjuvanted RBD and N vaccine group compared with other groups. The results suggest that the formulations are able to elicit a specific long-lasting mixed Th1/Th2 balanced immune response. Our data indicate the significance of the saponin-adjuvanted RBD/N vaccine in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective long-lasting and strong vaccine.
Collapse
Affiliation(s)
- Amir Ghaemi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Roshani Asl
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Delaram Ahmadi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Sahar Bathaeian
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
49
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
50
|
Gentile D, Coco A, Patamia V, Zagni C, Floresta G, Rescifina A. Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. Int J Mol Sci 2022; 23:10067. [PMID: 36077465 PMCID: PMC9456533 DOI: 10.3390/ijms231710067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|