1
|
Khamaikawin W, Saisawang C, Tassaneetrithep B, Bhukhai K, Phanthong P, Borwornpinyo S, Phuphuakrat A, Pasomsub E, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. CRISPR/Cas9 genome editing of CCR5 combined with C46 HIV-1 fusion inhibitor for cellular resistant to R5 and X4 tropic HIV-1. Sci Rep 2024; 14:10852. [PMID: 38741006 PMCID: PMC11091187 DOI: 10.1038/s41598-024-61626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.
Collapse
Affiliation(s)
- Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chonticha Saisawang
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sujittra Chaisavaneeyakorn
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Delviks-Frankenberry KA, Ojha CR, Hermann KJ, Hu WS, Torbett BE, Pathak VK. Potent dual block to HIV-1 infection using lentiviral vectors expressing fusion inhibitor peptide mC46- and Vif-resistant APOBEC3G. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:794-809. [PMID: 37662965 PMCID: PMC10470399 DOI: 10.1016/j.omtn.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Gene therapy strategies that effectively inhibit HIV-1 replication are needed to reduce the requirement for lifelong antiviral therapy and potentially achieve a functional cure. We previously designed self-activating lentiviral vectors that efficiently delivered and expressed a Vif-resistant mutant of APOBEC3G (A3G-D128K) to T cells, which potently inhibited HIV-1 replication and spread with no detectable virus. Here, we developed vectors that express A3G-D128K, membrane-associated fusion inhibitor peptide mC46, and O6-methylguanine-DNA-methyltransferase (MGMT) selectable marker for in vivo selection of transduced CD34+ hematopoietic stem and progenitor cells. MGMT-selected T cell lines MT4, CEM, and PM1 expressing A3G-D128K (with or without mC46) potently inhibited NL4-3 infection up to 45 days post infection with no detectable viral replication. Expression of mC46 was sufficient to block infection >80% in a single-cycle assay. Importantly, expression of mC46 provided a selective advantage to the A3G-D128K-modified T cells in the presence of replication competent virus. This combinational approach to first block HIV-1 entry with mC46, and then block any breakthrough infection with A3G-D128K, could provide an effective gene therapy treatment and a potential functional cure for HIV-1 infection.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chet R. Ojha
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kip J. Hermann
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce E. Torbett
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Volland A, Lohmüller M, Heilmann E, Kimpel J, Herzog S, von Laer D. Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog 2021; 17:e1009996. [PMID: 34648606 PMCID: PMC8547738 DOI: 10.1371/journal.ppat.1009996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/26/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Members of the Old World Arenaviruses primarily utilize α-dystroglycan (α-DAG1) as a cellular receptor for infection. Mutations within the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) reduce or abrogate the binding affinity to α-DAG1 and thus influence viral persistence, kinetics, and cell tropism. The observation that α-DAG1 deficient cells are still highly susceptible to low affinity variants, suggests the use of an alternative receptor(s). In this study, we used a genome-wide CRISPR Cas9 knockout screen in DAG1 deficient 293T cells to identify host factors involved in α-DAG1-independent LCMV infection. By challenging cells with vesicular stomatitis virus (VSV), pseudotyped with the GP of LCMV WE HPI (VSV-GP), we identified the heparan sulfate (HS) biosynthesis pathway as an important host factor for low affinity LCMV infection. These results were confirmed by a genetic approach targeting EXTL3, a key factor in the HS biosynthesis pathway, as well as by enzymatic and chemical methods. Interestingly, a single point mutation within GP1 (S153F or Y155H) of WE HPI is sufficient for the switch from DAG1 to HS binding. Furthermore, we established a simple and reliable virus-binding assay, using directly labelled VSV-GP by intramolecular fusion of VSV-P and mWasabi, demonstrating the importance of HS for virus attachment but not entry in Burkitt lymphoma cells after reconstitution of HS expression. Collectively, our study highlights the essential role of HS for low affinity LCMV infection in contrast to their high affinity counterparts. Residual LCMV infection in double knockouts indicate the use of (a) still unknown entry receptor(s).
Collapse
Affiliation(s)
- André Volland
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (AV); (DVL)
| | - Michael Lohmüller
- Division of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail: (AV); (DVL)
| |
Collapse
|
4
|
Khalid K, Padda J, Wijeratne Fernando R, Mehta KA, Almanie AH, Al Hennawi H, Padda S, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in HIV Infection. Cureus 2021; 13:e17507. [PMID: 34595076 PMCID: PMC8468364 DOI: 10.7759/cureus.17507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is a major global public health issue. Despite this, the only treatment available in mainstay is antiretroviral therapy. This treatment is not curative, it needs to be used lifelong, and there are many issues with compliance and side effects. In recent years, stem cell therapy has shown promising results in HIV management, and it can have a major impact on the future of HIV treatment and prevention. The idea behind anti-HIV hematopoietic stem/progenitor cell (HSPC)-directed gene therapy is to genetically engineer patient-derived (autologous) HSPC to acquire an inherent resistance to HIV infection. Multiple stem-cell-based gene therapy strategies have been suggested that may infer HIV resistance including anti-HIV gene reagents and gene combinatorial strategies giving rise to anti-HIV gene-modified HSPCs. Such stem cells can hamper HIV progression in the body by interrupting key stages of HIV proliferation: viral entry, viral integration, HIV gene expression, etc.Hematopoietic stem cells (HSCs) may also protect leukocytes from being infected. Additionally, genetically engineered HSCs have the ability to continuously produce protected immune cells by prolonged self-renewal that can attack the HIV virus. Therefore, a successful treatment strategy has the potential to control the infection at a steady state and eradicate HIV from patients. This will allow for a potential future benefit with stem cell therapy in HIV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, AdventHealth & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
5
|
Sornsuwan K, Thongkhum W, Pamonsupornwichit T, Carraway TS, Soponpong S, Sakkhachornphop S, Tayapiwatana C, Yasamut U. Performance of Affinity-Improved DARPin Targeting HIV Capsid Domain in Interference of Viral Progeny Production. Biomolecules 2021; 11:biom11101437. [PMID: 34680070 PMCID: PMC8533564 DOI: 10.3390/biom11101437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Previously, a designed ankyrin repeat protein, AnkGAG1D4, was generated for intracellular targeting of the HIV-1 capsid domain. The efficiency was satisfactory in interfering with the HIV assembly process. Consequently, improved AnkGAG1D4 binding affinity was introduced by substituting tyrosine (Y) for serine (S) at position 45. However, the intracellular anti-HIV-1 activity of AnkGAG1D4-S45Y has not yet been validated. In this study, the performance of AnkGAG1D4 and AnkGAG1D4-S45Y in inhibiting wild-type HIV-1 and HIV-1 maturation inhibitor-resistant replication in SupT1 cells was evaluated. HIV-1 p24 and viral load assays were used to verify the biological activity of AnkGAG1D4 and AnkGAG1D4-S45Y as assembly inhibitors. In addition, retardation of syncytium formation in infected SupT1 cells was observed. Of note, the defense mechanism of both ankyrins did not induce the mutation of target amino acids in the capsid domain. The present data show that the potency of AnkGAG1D4-S45Y was superior to AnkGAG1D4 in interrupting either HIV-1 wild-type or the HIV maturation inhibitor-resistant strain.
Collapse
Affiliation(s)
- Kanokporn Sornsuwan
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weeraya Thongkhum
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanathat Pamonsupornwichit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawan Samleerat Carraway
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suthinee Soponpong
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Identification of an Antiretroviral Small Molecule That Appears To Be a Host-Targeting Inhibitor of HIV-1 Assembly. J Virol 2021; 95:JVI.00883-20. [PMID: 33148797 PMCID: PMC7925099 DOI: 10.1128/jvi.00883-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
Given the projected increase in multidrug-resistant HIV-1, there is an urgent need for development of antiretrovirals that act on virus life cycle stages not targeted by drugs currently in use. Host-targeting compounds are of particular interest because they can offer a high barrier to resistance. Here, we report identification of two related small molecules that inhibit HIV-1 late events, a part of the HIV-1 life cycle for which potent and specific inhibitors are lacking. This chemotype was discovered using cell-free protein synthesis and assembly systems that recapitulate intracellular host-catalyzed viral capsid assembly pathways. These compounds inhibit replication of HIV-1 in human T cell lines and peripheral blood mononuclear cells, and are effective against a primary isolate. They reduce virus production, likely by inhibiting a posttranslational step in HIV-1 Gag assembly. Notably, the compound colocalizes with HIV-1 Gag in situ; however, unexpectedly, selection experiments failed to identify compound-specific resistance mutations in gag or pol, even though known resistance mutations developed upon parallel nelfinavir selection. Thus, we hypothesized that instead of binding to Gag directly, these compounds localize to assembly intermediates, the intracellular multiprotein complexes containing Gag and host factors that form during immature HIV-1 capsid assembly. Indeed, imaging of infected cells shows compound colocalized with two host enzymes found in assembly intermediates, ABCE1 and DDX6, but not two host proteins found in other complexes. While the exact target and mechanism of action of this chemotype remain to be determined, our findings suggest that these compounds represent first-in-class, host-targeting inhibitors of intracellular events in HIV-1 assembly.IMPORTANCE The success of antiretroviral treatment for HIV-1 is at risk of being undermined by the growing problem of drug resistance. Thus, there is a need to identify antiretrovirals that act on viral life cycle stages not targeted by drugs in use, such as the events of HIV-1 Gag assembly. To address this gap, we developed a compound screen that recapitulates the intracellular events of HIV-1 assembly, including virus-host interactions that promote assembly. This effort led to the identification of a new chemotype that inhibits HIV-1 replication at nanomolar concentrations, likely by acting on assembly. This compound colocalized with Gag and two host enzymes that facilitate capsid assembly. However, resistance selection did not result in compound-specific mutations in gag, suggesting that the chemotype does not directly target Gag. We hypothesize that this chemotype represents a first-in-class inhibitor of virus production that acts by targeting a virus-host complex important for HIV-1 Gag assembly.
Collapse
|
7
|
Riepler L, Rössler A, Falch A, Volland A, Borena W, von Laer D, Kimpel J. Comparison of Four SARS-CoV-2 Neutralization Assays. Vaccines (Basel) 2020; 9:13. [PMID: 33379160 PMCID: PMC7824240 DOI: 10.3390/vaccines9010013] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/05/2023] Open
Abstract
Neutralizing antibodies are a major correlate of protection for many viruses including the novel coronavirus SARS-CoV-2. Thus, vaccine candidates should potently induce neutralizing antibodies to render effective protection from infection. A variety of in vitro assays for the detection of SARS-CoV-2 neutralizing antibodies has been described. However, validation of the different assays against each other is important to allow comparison of different studies. Here, we compared four different SARS-CoV-2 neutralization assays using the same set of patient samples. Two assays used replication competent SARS-CoV-2, a focus forming assay and a TCID50-based assay, while the other two assays used replication defective lentiviral or vesicular stomatitis virus (VSV)-based particles pseudotyped with SARS-CoV-2 spike. All assays were robust and produced highly reproducible neutralization titers. Titers of neutralizing antibodies correlated well between the different assays and with the titers of SARS-CoV-2 S-protein binding antibodies detected in an ELISA. Our study showed that commonly used SARS-CoV-2 neutralization assays are robust and that results obtained with different assays are comparable.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.R.); (A.R.); (A.F.); (A.V.); (W.B.); (D.v.L.)
| |
Collapse
|
8
|
Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 2020; 9:cells9040873. [PMID: 32260097 PMCID: PMC7226757 DOI: 10.3390/cells9040873] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) redirected T cells are efficacious in the treatment of leukemia/lymphoma, however, showed less capacities in eliminating solid tumors which is thought to be partly due to the lack of cytokine support in the tumor lesion. In order to deliver supportive cytokines, we took advantage of the inherent ability of mesenchymal stem cells (MSCs) to actively migrate to tumor sites and engineered MSCs to release both IL7 and IL12 to promote homeostatic expansion and Th1 polarization. There is a mutual interaction between engineered MSCs and CAR T cells; in presence of CAR T cell released IFN-γ and TNF-α, chronic inflammatory Th2 MSCs shifted towards a Th17/Th1 pattern with IL2 and IL15 release that mutually activated CAR T cells with extended persistence, amplification, killing and protection from activation induced cell death. MSCs releasing IL7 and IL12 were superior over non-modified MSCs in supporting the CAR T cell response and improved the anti-tumor attack in a transplant tumor model. Data demonstrate the first use of genetically modified MSCs as vehicles to deliver immuno-modulatory proteins to the tumor tissue in order to improve the efficacy of CAR T cells in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Andreas A. Hombach
- Center for Molecular Medicine Cologne, Tumor Genetics, University of Cologne, and Department I Internal Medicine, University Hospital Cologne, D-50931 Cologne, Germany;
| | - Ulf Geumann
- Apceth Biopharma GmbH, D-81377 Munich, Germany; (U.G.); (F.G.H.)
| | | | - Felix G. Hermann
- Apceth Biopharma GmbH, D-81377 Munich, Germany; (U.G.); (F.G.H.)
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, Tumor Genetics, University of Cologne, and Department I Internal Medicine, University Hospital Cologne, D-50931 Cologne, Germany;
- Department for Genetic Immunotherapy, Regensburg Center for Interventional Immunology, and University Hospital Regensburg, D-93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-381-11; Fax: +49-941-944-381-13
| |
Collapse
|
9
|
Mohme M, Maire CL, Geumann U, Schliffke S, Dührsen L, Fita K, Akyüz N, Binder M, Westphal M, Guenther C, Lamszus K, Hermann FG, Schmidt NO. Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma. Clin Cancer Res 2020; 26:2626-2639. [PMID: 31988196 DOI: 10.1158/1078-0432.ccr-19-0803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) show an inherent brain tumor tropism that can be exploited for targeted delivery of therapeutic genes to invasive glioma. We assessed whether a motile MSC-based local immunomodulation is able to overcome the immunosuppressive glioblastoma microenvironment and to induce an antitumor immune response. EXPERIMENTAL DESIGN We genetically modified MSCs to coexpress high levels of IL12 and IL7 (MSCIL7/12, Apceth-301). Therapeutic efficacy was assessed in two immunocompetent orthotopic C57BL/6 glioma models using GL261 and CT2A. Immunomodulatory effects were assessed by multicolor flow cytometry to profile immune activation and exhaustion of tumor-infiltrating immune cells. Diversity of the tumor-specific immune response as analyzed using T-cell receptor sequencing. RESULTS Intratumoral administration of MSCIL7/12 induced significant tumor growth inhibition and remission of established intracranial tumors, as demonstrated by MR imaging. Notably, up to 50% of treated mice survived long-term. Rechallenging of survivors confirmed long-lasting tumor immunity. Local treatment with MSCIL7/12 was well tolerated and led to a significant inversion of the CD4+/CD8+ T-cell ratio with an intricate, predominantly CD8+ effector T-cell-mediated antitumor response. T-cell receptor sequencing demonstrated an increased diversity of TILs in MSCIL7/12-treated mice, indicating a broader tumor-specific immune response with subsequent oligoclonal specification during generation of long-term immunity. CONCLUSIONS Local MSC-based immunomodulation is able to efficiently alter the immunosuppressive microenvironment in glioblastoma. The long-lasting therapeutic effects warrant a rapid clinical translation of this concept and have led to planning of a phase I/II study of apceth-301 in recurrent glioblastoma.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Simon Schliffke
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Krystian Fita
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nuray Akyüz
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J Virol 2019; 93:JVI.01177-19. [PMID: 31462566 DOI: 10.1128/jvi.01177-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Emerging studies demonstrate that the antiviral activity of viral fusion inhibitor peptides can be dramatically improved when being chemically or genetically anchored to the cell membrane, where viral entry occurs. We previously reported that the short-peptide fusion inhibitor 2P23 and its lipid derivative possess highly potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). To develop a sterilizing or functional-cure strategy, here we genetically linked 2P23 and two control peptides (HIV-1 fusion inhibitor C34 and hepatitis B virus [HBV] entry inhibitor 4B10) with a glycosylphosphatidylinositol (GPI) attachment signal. As expected, GPI-anchored inhibitors were efficiently expressed on the plasma membrane of transduced TZM-bl cells and primarily directed to the lipid raft site without interfering with the expression of CD4, CCR5, and CXCR4. GPI-anchored 2P23 (GPI-2P23) completely protected TZM-bl cells from infections of divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide (T20)-resistant mutants. GPI-2P23 also rendered the cells resistant to viral envelope-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission. Moreover, GPI-2P23-modified human CD4+ T cells (CEMss-CCR5) fully blocked both R5- and X4-tropic HIV-1 isolates and displayed a robust survival advantage over unmodified cells during HIV-1 infection. In contrast, it was found that GPI-anchored C34 was much less effective in inhibiting HIV-2, SIV, and T20-resistant HIV-1 mutants. Therefore, our studies have demonstrated that genetically anchoring a short-peptide fusion inhibitor to the target cell membrane is a viable strategy for gene therapy of both HIV-1 and HIV-2 infections.IMPORTANCE Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-cure or functional-cure strategies. Here, we report that genetically anchoring the short-peptide fusion inhibitor 2P23 to the cell membrane can fully prevent infections from divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide-resistant mutants. Membrane-bound 2P23 also effectively blocks HIV-1 Env-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission, renders CD4+ T cells nonpermissive to infection, and confers a robust survival advantage over unmodified cells. Thus, our studies verify a powerful strategy to generate resistant cells for gene therapy of both the HIV-1 and HIV-2 infections.
Collapse
|
11
|
Pipperger L, Koske I, Wild N, Müllauer B, Krenn D, Stoiber H, Wollmann G, Kimpel J, von Laer D, Bánki Z. Xenoantigen-Dependent Complement-Mediated Neutralization of Lymphocytic Choriomeningitis Virus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus in Human Serum. J Virol 2019; 93:e00567-19. [PMID: 31243134 PMCID: PMC6714799 DOI: 10.1128/jvi.00567-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Neutralization by antibodies and complement limits the effective dose and thus the therapeutic efficacy of oncolytic viruses after systemic application. We and others previously showed that pseudotyping of oncolytic rhabdoviruses such as maraba virus and vesicular stomatitis virus (VSV) with the lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) results in only a weak induction of neutralizing antibodies. Moreover, LCMV-GP-pseudotyped VSV (VSV-GP) was significantly more stable in normal human serum (NHS) than VSV. Here, we demonstrate that depending on the cell line used for virus production, VSV-GP showed different complement sensitivities in nonimmune NHS. The NHS-mediated titer reduction of VSV-GP was dependent on activation of the classical complement pathway, mainly by natural IgM antibodies against xenoantigens such as galactose-α-(1,3)-galactose (α-Gal) or N-glycolylneuraminic acid (Neu5Gc) expressed on nonhuman production cell lines. VSV-GP produced on human cell lines was stable in NHS. However, VSV-GP generated in transduced human cells expressing α-Gal became sensitive to NHS. Furthermore, GP-specific antibodies induced complement-mediated neutralization of VSV-GP independently of the producer cell line, suggesting that complement regulatory proteins potentially acquired by the virus during the budding process are not sufficient to rescue the virus from antibody-dependent complement-mediated lysis. Thus, our study points to the importance of a careful selection of cell lines for viral vector production for clinical use.IMPORTANCE Systemic application aims to deliver oncolytic viruses to tumors as well as to metastatic lesions. However, we found that xenoantigens incorporated onto the viral surface from nonhuman production cell lines are recognized by natural antibodies in human serum and that the virus is thereby inactivated by complement lysis. Hence, to maximize the effective dose, careful selection of cell lines for virus production is crucial.
Collapse
Affiliation(s)
- Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Wild
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Krenn
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Geiger S, Ozay EI, Geumann U, Hereth MK, Magnusson T, Shanthalingam S, Hirsch D, Kälin S, Günther C, Osborne BA, Tew GN, Hermann FG, Minter LM. Alpha-1 Antitrypsin-Expressing Mesenchymal Stromal Cells Confer a Long-Term Survival Benefit in a Mouse Model of Lethal GvHD. Mol Ther 2019; 27:1436-1451. [PMID: 31138510 DOI: 10.1016/j.ymthe.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/29/2022] Open
Abstract
Acute graft-versus-host disease is a frequent complication associated with allogeneic hematopoietic stem cell transplantation. Patients that become refractory to initial steroid treatment have a poor prognosis. apceth-201 consists of human allogeneic mesenchymal stromal cells, engineered by lentiviral transduction to express the protease inhibitor alpha-1 antitrypsin, to augment the anti-inflammatory potential of the mesenchymal stromal cells. We show that apceth-201 mesenchymal stromal cells efficiently suppress T cell proliferation and polarize macrophages to an anti-inflammatory M2 type, in vitro. To assess the in vivo efficacy of apceth-201, it was tested in two different mouse models of acute graft-versus-host disease. Control animals in a humanized model succumbed quickly to disease, whereas median survival was doubled in apceth-201-treated animals. The product was also tested in a graft-versus-host disease model system that closely mimics haploidentical hematopoietic stem cell transplantation, an approach that is now being evaluated for use in the clinic. Control animals succumbed quickly to disease, whereas treatment with apceth-201 resulted in long-term survival of 57% of the animals. Within 25 days after the second injection, clinical scores returned to baseline in responding animals, indicating complete resolution of graft-versus-host disease. These promising data have led to planning of a phase I study using apceth-201.
Collapse
Affiliation(s)
| | - Emrah I Ozay
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ulf Geumann
- apceth Biopharma GmbH, 81377 Munich, Germany
| | | | | | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | - Barbara A Osborne
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Lisa M Minter
- Program in Molecular & Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era. Viruses 2017; 9:v9100281. [PMID: 28961190 PMCID: PMC5691633 DOI: 10.3390/v9100281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a causative agent of acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR)-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.
Collapse
|
14
|
Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. J Virol 2017; 91:JVI.02219-16. [PMID: 28003492 DOI: 10.1128/jvi.02219-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023] Open
Abstract
Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis. In nature, HIV-1 Envs must balance the requirements to maintain the noncovalent association of gp120 with gp41 and to evade the host antibody response with the need to respond to CD4 binding. Here we show that the gp41 HR1 region contributes to gp120 association with the unliganded Env trimer. Changes in particular amino acid residues in the gp41 HR1 region decreased the efficiency with which Env moved from the unliganded state. Thus, these gp41 changes decreased the sensitivity of HIV-1 to cold inactivation and ligands that require Env conformational changes to bind efficiently. Conversely, these gp41 changes increased HIV-1 sensitivity to small-molecule entry inhibitors that block Env conformational changes induced by CD4. Changes in particular gp41 HR1 amino acid residues can apparently affect the relative stability of the unliganded state and CD4-induced conformations. Thus, the gp41 HR1 region contributes to the association with gp120 and regulates Env transitions from the unliganded state to downstream conformations.IMPORTANCE The development of an efficient vaccine able to prevent HIV infection is a worldwide priority. Knowledge of the envelope glycoprotein structure and the conformational changes that occur after receptor engagement will help researchers to develop an immunogen able to elicit antibodies that block HIV-1 transmission. Here we identify residues in the HIV-1 transmembrane envelope glycoprotein that stabilize the unliganded state by modulating the transitions from the unliganded state to the CD4-bound state.
Collapse
|
15
|
Dold C, Rodriguez Urbiola C, Wollmann G, Egerer L, Muik A, Bellmann L, Fiegl H, Marth C, Kimpel J, von Laer D. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16021. [PMID: 27738655 PMCID: PMC5040171 DOI: 10.1038/mto.2016.21] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
Abstract
Previously, we described an oncolytic vesicular stomatitis virus variant pseudotyped with the nonneurotropic glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, which was highly effective in glioblastoma. Here, we tested its potency for the treatment of ovarian cancer, a leading cause of death from gynecological malignancies. Effective oncolytic activity of VSV-GP could be demonstrated in ovarian cancer cell lines and xenografts in mice; however, remission was temporary in most mice. Analysis of the innate immune response revealed that ovarian cancer cell lines were able to respond to and produce type I interferon, inducing an antiviral state upon virus infection. This is in stark contrast to published data for other cancer cell lines, which were mostly found to be interferon incompetent. We showed that in vitro this antiviral state could be reverted by combining VSV-GP with the JAK1/2-inhibitor ruxolitinib. In addition, for the first time, we report the in vivo enhancement of oncolytic virus treatment by ruxolitinib, both in subcutaneous as well as in orthotopic xenograft mouse models, without causing significant additional toxicity. In conclusion, VSV-GP has the potential to be a potent and safe oncolytic virus to treat ovarian cancer, especially when combined with an inhibitor of the interferon response.
Collapse
Affiliation(s)
- Catherine Dold
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| | | | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| | - Lisa Egerer
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| | - Alexander Muik
- Applied Virology and Gene Therapy Unit , Frankfurt am Main, Germany
| | - Lydia Bellmann
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Gynecology and Obstetrics, Medical University of Innsbruck , Innsbruck, Austria
| | - Christian Marth
- Department of Gynecology and Obstetrics, Medical University of Innsbruck , Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
16
|
Pernet O, Yadav SS, An DS. Stem cell-based therapies for HIV/AIDS. Adv Drug Deliv Rev 2016; 103:187-201. [PMID: 27151309 PMCID: PMC4935568 DOI: 10.1016/j.addr.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022]
Abstract
One of the current focuses in HIV/AIDS research is to develop a novel therapeutic strategy that can provide a life-long remission of HIV/AIDS without daily drug treatment and, ultimately, a cure for HIV/AIDS. Hematopoietic stem cell-based anti-HIV gene therapy aims to reconstitute the patient immune system by transplantation of genetically engineered hematopoietic stem cells with anti-HIV genes. Hematopoietic stem cells can self-renew, proliferate and differentiate into mature immune cells. In theory, anti-HIV gene-modified hematopoietic stem cells can continuously provide HIV-resistant immune cells throughout the life of a patient. Therefore, hematopoietic stem cell-based anti-HIV gene therapy has a great potential to provide a life-long remission of HIV/AIDS by a single treatment. Here, we provide a comprehensive review of the recent progress of developing anti-HIV genes, genetic modification of hematopoietic stem progenitor cells, engraftment and reconstitution of anti-HIV gene-modified immune cells, HIV inhibition in in vitro and in vivo animal models, and in human clinical trials.
Collapse
Affiliation(s)
- Olivier Pernet
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Swati Seth Yadav
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | - Dong Sung An
- School of Nursing, University of California Los Angeles, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; UCLA AIDS Institute, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; Hematology-Oncology, The Department of Medicine, David Geffen School of Medicine at UCLA, 188 BSRB, 615 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Garg H, Lee RT, Maurer-Stroh S, Joshi A. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc. Virology 2016; 493:86-99. [DOI: 10.1016/j.virol.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
|
18
|
Nalla AK, Trobridge GD. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines 2016; 4:E8. [PMID: 28536375 PMCID: PMC5344253 DOI: 10.3390/biomedicines4020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.
Collapse
Affiliation(s)
- Arun K Nalla
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
| | - Grant D Trobridge
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
19
|
Jung U, Urak K, Veillette M, Nepveu-Traversy MÉ, Pham QT, Hamel S, Rossi JJ, Berthoux L. Preclinical Assessment of Mutant Human TRIM5α as an Anti-HIV-1 Transgene. Hum Gene Ther 2015; 26:664-79. [PMID: 26076730 DOI: 10.1089/hum.2015.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear. TRIM5α is an interferon-stimulated restriction factor that can intercept incoming retroviruses within one hour of cytosolic entry and potently inhibit the infectivity of restriction-sensitive viruses. The human TRIM5α (TRIM5αhu) generally does not efficiently target HIV-1, but point mutations in its capsid-binding domain can confer anti-HIV-1 activity. Although the mechanisms by which TRIM5αhu mutants inhibit HIV-1 are relatively well understood, their characterization as potential transgenes for gene therapy is lacking. Additionally, previous reports of general immune activation by overexpression of TRIM5α have hindered its broad adoption as a potential transgene. Here we demonstrate the ability of the R332G-R335G TRIM5αhu mutant to efficiently restrict highly divergent HIV-1 strains, including Group O, as well as clinical isolates bearing cytotoxic T lymphocyte escape mutations. R332G-R335G TRIM5αhu efficiently protected human lymphocytes against HIV-1 infection, even when expressed at relatively low levels following lentiviral transduction. Most importantly, under these conditions Rhesus macaque TRIM5α (TRIM5αRh) and TRIM5αhu (wild-type or mutated) had no major effects on the NF-κB pathway. Transgenic TRIM5α did not modulate the kinetics of IκBα, JunB, and TNFAIP3 expression following TNF-α treatment. Finally, we show that human lymphocytes expressing R332G-R335G TRIM5αhu have clear survival advantages over unmodified parental cells in the presence of pathogenic, replication-competent HIV-1. These results support the relevance of R332G-R335G and other mutants of TRIM5αhu as candidate effectors for HIV-1 gene therapy.
Collapse
Affiliation(s)
- Ulrike Jung
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Kevin Urak
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California
| | - Maxime Veillette
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | | | - Quang Toan Pham
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - Sophie Hamel
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| | - John J Rossi
- 1 Division of Molecular & Cell Biology, Beckman Research Institute of the City of Hope , Duarte, California.,3 Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California
| | - Lionel Berthoux
- 2 Laboratory of Retrovirology, Department of Medical Biology, Université du Québec, Trois-Rivières, Canada
| |
Collapse
|
20
|
Weisshaar M, Cox R, Plemper RK. Blocking Respiratory Syncytial Virus Entry: A Story with Twists. DNA Cell Biol 2015; 34:505-10. [PMID: 25961744 PMCID: PMC4523043 DOI: 10.1089/dna.2015.2896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for majority of infant hospitalizations due to viral infections. Despite its clinical importance, no vaccine against RSV or effective antiviral therapy is available. Several structural classes of small-molecule RSV entry inhibitor have been described and one compound has advanced to clinical testing. Mutations in either one of two resistance hot spots in the F protein mediate unusual pan-resistance to all of these inhibitor classes. Based on the biochemical characterization of resistant viruses and structural insight into the RSV F trimer, we propose a kinetic escape model as the origin of pan-resistance. Since a resistant RSV remained pathogenic in the mouse model, pan-resistance mutations could emerge rapidly in circulating RSV strains. We evaluate clinical implications and discuss consequences for the design of future RSV drug discovery campaigns.
Collapse
Affiliation(s)
- Marco Weisshaar
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Robert Cox
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| |
Collapse
|
21
|
Engineering T Cells to Functionally Cure HIV-1 Infection. Mol Ther 2015; 23:1149-1159. [PMID: 25896251 DOI: 10.1038/mt.2015.70] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.
Collapse
|
22
|
Egerer L, Kiem HP, von Laer D. C peptides as entry inhibitors for gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:191-209. [PMID: 25757622 DOI: 10.1007/978-1-4939-2432-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides derived from the C-terminal heptad repeat 2 region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very potent HIV-1 fusion inhibitors. Antiviral genes encoding either membrane-anchored (ma) or secreted (iSAVE) C peptides have been engineered and allow direct in vivo production of the therapeutic peptides by genetically modified host cells. Membrane-anchored C peptides expressed in the HIV-1 target cells by T-cell or hematopoietic stem cell gene therapy efficiently prevent virus entry into the modified cells. Such gene-protection confers a selective survival advantage and allows accumulation of the genetically modified cells. Membrane-anchored C peptides have been successfully tested in a nonhuman primate model of AIDS and were found to be safe in a phase I clinical trial in AIDS patients transplanted with autologous gene-modified T-cells. Secreted C peptides have the crucial advantage of not only protecting genetically modified cells from HIV-1 infection, but also neighboring cells, thus suppressing virus replication even if only a small fraction of cells is genetically modified. Accordingly, various cell types can be considered as potential in vivo producer cells for iSAVE-based gene therapeutics, which could even be modified by direct in vivo gene delivery in future. In conclusion, C peptide gene therapeutics may provide a strong benefit to AIDS patients and could present an effective alternative to current antiretroviral drug regimens.
Collapse
Affiliation(s)
- Lisa Egerer
- Division of Virology, Department of Hygiene, Microbiology and Social Medicine, Medical University of Innsbruck, Peter Mayr-Str. 4b, Innsbruck, 6020, Austria,
| | | | | |
Collapse
|
23
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
24
|
De Feo CJ, Wang W, Hsieh ML, Zhuang M, Vassell R, Weiss CD. Resistance to N-peptide fusion inhibitors correlates with thermodynamic stability of the gp41 six-helix bundle but not HIV entry kinetics. Retrovirology 2014; 11:86. [PMID: 25274545 PMCID: PMC4190581 DOI: 10.1186/s12977-014-0086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.
Collapse
Affiliation(s)
- Christopher J De Feo
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Meng-Lun Hsieh
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Michigan State University, Department of Biochemistry and Molecular Biology, Lansing, MI, 48824, USA.
| | - Min Zhuang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Russell Vassell
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
25
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Volk A, Hartmann S, Muik A, Geiss Y, Königs C, Dietrich U, von Laer D, Kimpel J. Comparison of three humanized mouse models for adoptive T cell transfer. J Gene Med 2013; 14:540-8. [PMID: 22847974 DOI: 10.1002/jgm.2652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Humanized mouse models for adoptive T cell transfer are important for preclinical efficacy and toxicity studies. However, common xenograft models using immunodeficient mice have so far failed to efficiently support the homing of human T cells to secondary lymphoid tissues. METHODS We established a new mouse model for the adoptive transfer of genetically-modified (gm) T cells using conditioned BALB/c mice. Conditioning involved cyclophosphamide injections, lethal irradiation and radioprotection with bone marrow from immunodeficient mice. We compared repopulation kinetics and the quality of grafts in these modified Trimera (mT3) mice with immunodeficient BALB/c Rag2(-/-) interleukin (IL)2 receptor gamma (rg) knockout (DKO) and NOD/LtSz-scid IL2rg(-/-) (NSG) recipient mouse strains. RESULTS DKO mice showed only marginal engraftment until onset of graft-versus-host disease, whereas mT3 and NSG were repopulated with comparable kinetics. However, T cell repertoire and human cytokine profiles suggest a xenoreactivity-driven gm T cell expansion in mT3 mice, whereas NSG mice were characterized by an initial homeostatic proliferation. Morphological analysis revealed high levels of human gm T cell infiltration in the spleen and liver of all three mouse strains. However, mT3 mice provided the strongest homing of human gm T cells to mucosal sites. Additionally, mT3 mice were the only model with macroscopically visible superficial inguinal lymph nodes. These lymph nodes strongly supported the homing of gm T cells. CONCLUSIONS In the present study, we give proof-of-concept that wild-type mice can accept gm T cell grafts while providing secondary lymphoid structures. Despite limitations, mT3 mice are a valid alternative for applications that specifically rely on improved secondary lymphoid structures.
Collapse
Affiliation(s)
- Andreas Volk
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother 2012; 57:679-88. [PMID: 23147734 DOI: 10.1128/aac.01152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat 2 (HR2) region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very efficient HIV-1 fusion inhibitors. We previously developed innovative gene therapeutic approaches aiming at the direct in vivo production of C peptides from genetically modified host cells and found that T cells expressing membrane-anchored or secreted C peptides are protected from HIV-1 infection. However, an unwanted immune response against such antiviral peptides may significantly impair clinical efficacy and pose safety risks to patients. To overcome this problem, we engineered a novel C peptide, V2o, with greatly reduced immunogenicity and excellent antiviral activity. V2o is based on the chimeric C peptide C46-EHO, which is derived from the HR2 regions of HIV-2(EHO) and HIV-1(HxB2) and has broad anti-HIV and anti-simian immunodeficiency virus activity. Antibody and major histocompatibility complex class I epitopes within the C46-EHO peptide sequence were identified by in silico and in vitro analyses. Using rational design, we removed these epitopes by amino acid substitutions and thus minimized antigenicity and immunogenicity considerably. At the same time, the antiviral activity of the deimmunized peptide V2o was preserved or even enhanced compared to that of the parental C46-EHO peptide. Thus, V2o is an ideal candidate, especially for those novel therapeutic approaches for HIV infection that involve direct in vivo production of antiviral C peptides.
Collapse
|
28
|
Burnett JC, Zaia JA, Rossi JJ. Creating genetic resistance to HIV. Curr Opin Immunol 2012; 24:625-32. [PMID: 22985479 PMCID: PMC3478429 DOI: 10.1016/j.coi.2012.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
Abstract
HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies.
Collapse
Affiliation(s)
- John C. Burnett
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John A. Zaia
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - John J. Rossi
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
29
|
Is there a future for antiviral fusion inhibitors? Curr Opin Virol 2012; 2:50-9. [DOI: 10.1016/j.coviro.2012.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
30
|
Egerer L, Volk A, Kahle J, Kimpel J, Brauer F, Hermann FG, von Laer D. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther 2011; 19:1236-44. [PMID: 21364540 DOI: 10.1038/mt.2011.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene therapeutic strategies for human immunodeficiency virus type 1 (HIV-1) infection could potentially overcome the limitations of standard antiretroviral drug therapy (ART). However, in none of the clinical gene therapy trials published to date, therapeutic levels of genetic protection have been achieved in the target cell population for HIV-1. To improve systemic antiviral efficacy, C peptides, which are efficient inhibitors of HIV-1 entry, were engineered for high-level secretion by genetically modified cells. The size restrictions for efficient peptide export through the secretory pathway were overcome by expressing the C peptides as concatemers, which were processed into monomers by furin protease cleavage. These secreted antiviral entry inhibitory (SAVE) peptides mediated a substantial protective bystander effect on neighboring nonmodified cells, thus suppressing virus replication even if only a small fraction of cells was genetically modified. Accordingly, these SAVE peptides may provide a strong benefit to AIDS patients in future, and, if applied by direct in vivo gene delivery, could present an effective alternative to antiretroviral drug regimen.
Collapse
Affiliation(s)
- Lisa Egerer
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hertje M, Zhou M, Dietrich U. Inhibition of HIV-1 Entry: Multiple Keys to Close the Door. ChemMedChem 2010; 5:1825-35. [DOI: 10.1002/cmdc.201000292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Computational models of HIV-1 resistance to gene therapy elucidate therapy design principles. PLoS Comput Biol 2010; 6. [PMID: 20711350 PMCID: PMC2920833 DOI: 10.1371/journal.pcbi.1000883] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/13/2010] [Indexed: 12/27/2022] Open
Abstract
Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents. A primary obstacle to the success of any anti-HIV treatment is HIV's ability to rapidly resist it by generating new viral strains whose vulnerability to the treatment is reduced. Gene therapies represent a novel class of treatments for HIV infection that may supplement or replace present therapies, as they alleviate some of their major shortcomings. The design of gene therapeutic agents that effectively reduce viral resistance can be aided by a quantitative elucidation of the processes by which resistance is acquired following therapy initiation. We developed a computational model that describes a patient's response to therapy and used it to quantify the influence of therapy parameters and strategies on the development of viral resistance. We find that gene therapy induces different clinical conditions and a much slower viral response than present therapies. These dictate different design principles such as a greater significance to the virus' competence in the absence of therapy. We also show that one can effectively delay emergence of resistance by delivering distinct therapeutic genes into separate cell populations. Our results highlight the differences between traditional and gene therapies and provide a basic understanding of how key controllable parameters and strategies affect resistance development.
Collapse
|
33
|
ADS-J1 inhibits HIV-1 entry by interacting with gp120 and does not block fusion-active gp41 core formation. Antimicrob Agents Chemother 2010; 54:4487-92. [PMID: 20643898 DOI: 10.1128/aac.00359-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We had shown that virus resistance to ADS-J1 was associated with amino acid changes in the envelope glycoprotein, mostly located in the gp120 coding region. Time-of-addition and endocytic virus transfer assays clearly demonstrated that ADS-J1 behaved as a gp120 inhibitor. ADS-J1-resistant virus was cross-resistant to the polyanion dextran sulfate, and recombination of gp120 recovered only the ADS-J1-resistant phenotype. In summary, ADS-J1 blocks an early step of virus entry that appears to be driven by gp120 alone.
Collapse
|
34
|
Izumi K, Nakamura S, Nakano H, Shimura K, Sakagami Y, Oishi S, Uchiyama S, Ohkubo T, Kobayashi Y, Fujii N, Matsuoka M, Kodama EN. Characterization of HIV-1 resistance to a fusion inhibitor, N36, derived from the gp41 amino-terminal heptad repeat. Antiviral Res 2010; 87:179-86. [PMID: 20438763 DOI: 10.1016/j.antiviral.2010.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/15/2022]
Abstract
A transmembrane glycoprotein of HIV-1, gp41, plays a central role in membrane fusion of HIV-1 and host cells. Peptides derived from the amino- and carboxyl-terminal heptad repeat (N-HR and C-HR, respectively) of gp41 inhibit this fusion. The mechanism of resistance to enfuvirtide, a C-HR-derived peptide, is well defined; however the mechanism of resistance to N-HR-derived peptides remains unclear. We characterized an HIV-1 isolate resistant to the N-HR-derived peptide, N36. This HIV-1 acquired a total of four amino acid substitutions, D36G, N126K and E137Q in gp41, and P183Q in gp120. Among these substitutions, N126K and/or E137Q conferred resistance to not only N36, but also C34, which is the corresponding C-HR-derived peptide fusion inhibitor. We performed crystallographic and biochemical analysis of the 6-helix bundle formed by synthetic gp41-derived peptides containing the N126K/E137Q substitutions. The structure of the 6-helix bundle with N126K/E137Q was identical to that in wild-type HIV-1 except for the presence of a new hydrogen bond. Denaturing experiments revealed that the stability of the 6-helix bundle of N126K/E137Q is greater than in the wild-type. These results suggest that the stabilizing effect of N126K/E137Q provides resistance to N36 and C34.
Collapse
Affiliation(s)
- Kazuki Izumi
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding. PLoS Pathog 2009; 5:e1000674. [PMID: 19956769 PMCID: PMC2776349 DOI: 10.1371/journal.ppat.1000674] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 10/30/2009] [Indexed: 12/12/2022] Open
Abstract
Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states.
Collapse
|