1
|
Zhang W, Li Q, Yi D, Zheng R, Liu G, Liu Q, Guo S, Zhao J, Wang J, Ma L, Ding J, Zhou R, Ren Y, Sun T, Zhang A, Li X, Zhang Y, Cen S. Novel virulence determinants in VP1 regulate the assembly of enterovirus-A71. J Virol 2024; 98:e0165524. [PMID: 39535185 DOI: 10.1128/jvi.01655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Enterovirus-A71 (EV-A71) is the second most common causative agent after coxsackievirus A16 of hand, foot, and mouth disease. The capsids of EV-A71 consist of 60 copies of each of the four viral structural proteins (VP1-VP4). VP1 is highly exposed and surface accessible, playing a central role in virus particle assembly, attachment, and entry. To gain insight into the role of highly conserved residues at positions 75, 78, and 88 in the capsid protein VP1 in these processes, an alanine-scanning analysis was performed using an infectious cDNA clone of EV-A71. Our study revealed that the substitutions of VP1-T75A, VP1-T78A, and VP1-G88A could affect the assembly of the virus capsid proteins, resulting in the production of abnormal virions with reduced infectivity. Specifically, the substitution of VP1-T75A affected the maturation cleavage of the VP0 precursor, leading to deficiencies in binding to receptor scavenger receptor class B2 (SCARB2), viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, a significant reduction in virion-associated genomic RNA was observed, suggesting that more noninfectious empty particles were produced during viral assembly. Interestingly, the VP1-T75A variant showed weak replication in cell cultures but demonstrated increased virulence in BALB/c neonatal mice, which might be due to the difference in viral receptors among mammalian species. Taken together, our data revealed the important role of the highly conserved residues T75, T78, and G88 in VP1 protein in the infectivity of EV-A71. Characterizing these novel determinants of EV-A71 virulence would contribute to rationally developing effective treatments and broadly protective vaccine candidates. IMPORTANCE EV-A71 causes hand, foot, and mouth disease in children. In this study, we discovered three highly conserved residues at positions 75, 78, and 88 of the capsid protein VP1 as the potential virulence determinants of EV-A71, which can influence viral replication by regulating the assembly of EV-A71. Mechanistic studies revealed that VP1-T75A could affect the maturation cleavage of the VP0 precursor, resulting in deficiencies in binding to the receptor SCARB2, viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, more noninfectious empty particles were produced during viral assembly. The discovery of these novel determinants of EV-A71 virulence will promote the study of the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Guihua Liu
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongcheng Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Zhang X, Yin Z, Zhang J, Guo H, Li J, Nie X, Wang S, Zhang L. Enterovirus 71 Activates Plasmacytoid Dendritic Cell-Dependent PSGL-1 Binding Independent of Productive Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1782-1790. [PMID: 38629901 PMCID: PMC11102030 DOI: 10.4049/jimmunol.2300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/20/2024] [Indexed: 05/20/2024]
Abstract
Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.
Collapse
Affiliation(s)
- Xuyuan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhao Yin
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Jialong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Nie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shouli Wang
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang M, He D, Liu Y, Gong Y, Dong W, Chen Y, Ma S. Complete genome analysis of echovirus 30 strains isolated from hand-foot-and-mouth disease in Yunnan province, China. Virol J 2023; 20:215. [PMID: 37730633 PMCID: PMC10510139 DOI: 10.1186/s12985-023-02179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Yue Gong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Wenxun Dong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China.
| |
Collapse
|
5
|
Duan F, Du Z, Wang Y, Luo L, Du L, Jiang H, Ma Y, Yang Y. The effects of SCARB2 and SELPLG gene polymorphisms on EV71 infection in hand, foot and mouth disease. BIOMOLECULES & BIOMEDICINE 2023; 23:815-824. [PMID: 37078358 PMCID: PMC10494856 DOI: 10.17305/bb.2023.8948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
The same viral infection in different hosts may result in varying levels of clinical symptoms, which is related to the genetic background of the host itself. A total of 406 common cases and 452 severe cases of enterovirus 71 (EV71) infection in Yunnan Province were selected as the research subjects, and SNaPshot technology was used to detect genetic polymorphisms for 25 Tag single-nucleotide polymorphisms (TagSNPs) in the selectin P ligand (SELPLG) and scavenger receptor class B member 2 (SCARB2) genes. Our results demonstrate that SCARB2 polymorphisms (rs74719289, rs3733255 and rs17001551) are related to the severity of EV71 infection (A vs G: OR 0.330; 95% CI 0.115 - 0.947; T vs C: OR 0.336; 95% CI 0.118 - 0.958; and A vs G: OR 0.378; 95% CI 0.145 - 0.984). The SELPLG polymorphisms were not significantly different between common cases and severe cases. Therefore, we conclude that the SCARB2 gene has a protective effect on the course of hand, foot and mouth disease caused by EV71 infection and that SCARB2 gene mutations can reduce the severity of the disease.
Collapse
Affiliation(s)
- Fengyuan Duan
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
- Kunming Kingmed Institute for Clinical Laboratory Co., Ltd., Kunming, China
| | - Zengqing Du
- Infectious Disease Department, Kunming Children’s Hospital, Kunming, China
| | - Yang Wang
- Clinical Laboratory, Yan’an Hospital of Kunming City, Kunming, China
| | - Lan Luo
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Lijiang Du
- Infectious Disease Department, Kunming Children’s Hospital, Kunming, China
| | - Hong Jiang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Yantuanjin Ma
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| | - Yuling Yang
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Weng KF, Tee HK, Tseligka ED, Cagno V, Mathez G, Rosset S, Nagamine CM, Sarnow P, Kirkegaard K, Tapparel C. Variant enterovirus A71 found in immune-suppressed patient binds to heparan sulfate and exhibits neurotropism in B-cell-depleted mice. Cell Rep 2023; 42:112389. [PMID: 37058406 PMCID: PMC10590055 DOI: 10.1016/j.celrep.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease outbreaks with neurological complications and deaths. We previously isolated an EV-A71 variant in the stool, cerebrospinal fluid, and blood of an immunocompromised patient who had a leucine-to-arginine substitution on the VP1 capsid protein, resulting in increased heparin sulfate binding. We show here that this mutation increases the virus's pathogenicity in orally infected mice with depleted B cells, which mimics the patient's immune status, and increases susceptibility to neutralizing antibodies. However, a double mutant with even greater heparin sulfate affinity is not pathogenic, suggesting that increased heparin sulfate affinity may trap virions in peripheral tissues and reduce neurovirulence. This research sheds light on the increased pathogenicity of variant with heparin sulfate (HS)-binding ability in individuals with decreased B cell immunity.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Stéphane Rosset
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
7
|
Zhu W, Li J, Wu Z, Li H, Zhang Z, Zhu X, Sun M, Dong S. Dual blockages of a broad and potent neutralizing IgM antibody targeting GH loop of EV-As. Immunology 2023. [PMID: 36726218 DOI: 10.1111/imm.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1. The 20-IgM blocks the interaction between the EV-As and its receptors, scavenger receptor class B, member 2 (SCARB2) and Kringle-containing transmembrane protein 1(KREMEN1) of the host cell. The 20-IgM also neutralizes the EV-As at the post-attachment stages, including postattachment neutralization, uncoating and RNA release inhibition after internalization. Mechanistically, the dual blockage effect of 20-IgM is dependent on both a conserved site targeting and high affinity binding. Meanwhile, 20-IgM provides cross-antiviral efficacy in EV-As orally infected neonatal ICR mice. Collectively, 20-IgM and its property exhibit excellent antiviral activity with a dual-blockage inhibitory effect at both the pre- and post-attachment stages. The finding enhances our understanding of IgM-mediated immunity and highlights the potential of IgM subtype antibodies against enterovirus infections.
Collapse
Affiliation(s)
- Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhixiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
8
|
Aknouch I, García-Rodríguez I, Giugliano FP, Calitz C, Koen G, van Eijk H, Johannessson N, Rebers S, Brouwer L, Muncan V, Stittelaar KJ, Pajkrt D, Wolthers KC, Sridhar A. Amino acid variation at VP1-145 of enterovirus A71 determines the viral infectivity and receptor usage in a primary human intestinal model. Front Microbiol 2023; 14:1045587. [PMID: 37138595 PMCID: PMC10149690 DOI: 10.3389/fmicb.2023.1045587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.
Collapse
Affiliation(s)
- Ikrame Aknouch
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Viroclinics Xplore, Schaijk, Netherlands
- *Correspondence: Ikrame Aknouch,
| | - Inés García-Rodríguez
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Paola Giugliano
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Carlemi Calitz
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Johannessson
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sjoerd Rebers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lieke Brouwer
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Koert J. Stittelaar
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University, Wageningen, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Adithya Sridhar,
| |
Collapse
|
9
|
Xing J, Wang K, Wang G, Li N, Zhang Y. Recent advances in enterovirus A71 pathogenesis: a focus on fatal human enterovirus A71 infection. Arch Virol 2022; 167:2483-2501. [PMID: 36171507 DOI: 10.1007/s00705-022-05606-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the major pathogens responsible for hand, foot, and mouth disease (HFMD). Many HFMD outbreaks have been reported throughout the world in the past decades. Compared with other viruses, EV-A71 infection is more frequently associated with severe neurological complications and even death in children. EV-A71 can also infect adults and cause severe complications and death, although such cases are very uncommon. Although fatal cases of EV-A71 infection have been reported, the underlying mechanisms of EV-A71 infection, especially the mode of viral spread into the central nervous system (CNS) and mechanisms of pulmonary edema, which is considered to be the direct cause of death, have not yet been fully clarified, and more studies are needed. Here, we first summarize the pathological findings in various systems of patients with fatal EV-A71 infections, focussing in detail on gross changes, histopathological examination, tissue distribution of viral antigens and nucleic acids, systemic inflammatory cell infiltration, and tissue distribution of viral receptors and their co-localization with viral antigens. We then present our conclusions about viral dissemination, neuropathogenesis, and the mechanism of pulmonary edema in EV-A71 infection, based on pathological findings.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Ke Wang
- The Affiliated Hospital of Medical School, Ningbo University, No. 247 Renmin Road, Jiangbei District, Ningbo, 315020, Zhejiang Province, P. R. China
| | - Geng Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Na Li
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Yanru Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China.
| |
Collapse
|
10
|
Hu L, Zhou L, Wang P, Maimaiti H, Lu Y. Molecular characteristics of a coxsackievirus A12 strain in Zhejiang of China, 2019. Virol J 2022; 19:160. [PMID: 36224635 PMCID: PMC9555000 DOI: 10.1186/s12985-022-01892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus A (EV-A), such as enterovirus A71 (EV-A71), generally causes hand, foot, and mouth disease (HFMD). However, limited studies focused on uncommon enterovirus serotypes such as coxsackievirus A12 (CV-A12). This study aimed to provide evidence to determine the molecular characteristics of a CV-A12 strain isolated in Zhejiang province, China. Methods In routine surveillance of HFMD, we identified a child case with CV-A12 infection in 2019 in Zhejiang province, China. Enterovirus was examined by using real-time reverse transcription-PCR (qRT-PCR). A partial VP1 sequence was amplified to determine the serotype, and then a full-length CV-A12 genome was sequenced. Nucleotide and amino acid similarity was calculated with those CV-A12 strains available in GenBank. Recombination was detected using RDP 4 and SimPlot. Furthermore, phylogenetic analysis was conducted by using BEAST 1.10, and protein modeling was performed with I-TASSER webserver. Results A full-length CV-A12 genome PJ201984 was isolated in a Chinese child with HFMD. The similarities with complete coding sequences of the CV-A12 strains in GenBank ranged between 79.3–100% (nucleotide) and 94.4–100% (amino acid), whereas it was 88.7–100.0% (nucleotide) and 97.2–100% (amino acid) when excluding the CV-A12 prototype strain Texas-12. In PJ201984, amino acid variations were more divergent in P2 and P3 regions than those in P1; the majority of those variations in VP1 (13/15) and VP4 (7/8) were similar to those documented in recently isolated CV-A12 strains in China. Furthermore, recombination was identified in P2 region, which involved a CV-A5 strain collected in China. Phylogenetic analysis revealed that PJ201984 clustered together with multiple CV-A12 strains isolated in China and the Netherlands during 2013–2018, as compared to another cluster consisting of CV-A12 strains in China and France during 2009–2015. Additionally, protein models of VP1 and VP4 in PJ201984 were well predicted to be similar to VP1 protein of EV-A71 and VP4 protein of coxsackievirus A21, respectively. Conclusions The full-length CV-A12 genome was characterized to have common recombination in P2 region and be phylogenetically related to those CV-A12 strains isolated in recent years, suggesting a continual spread in China. It warrants strengthening the routine surveillance for uncommon enterovirus serotypes, particularly on possible recombination and variation. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01892-1.
Collapse
Affiliation(s)
- Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Pingping Wang
- Pujiang Center for Disease Control and Prevention, Jinhua, 321000, Zhejiang, China
| | - Hairenguli Maimaiti
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Fosun Tower, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y, Chen M. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. J Virol 2022; 96:e0204221. [PMID: 35420441 PMCID: PMC9093107 DOI: 10.1128/jvi.02042-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
As an important neurotropic enterovirus, enterovirus 71 (EV71) is occasionally associated with severe neurological diseases and high mortality rates in infants and young children. Understanding the interaction between host factors and EV71 will play a vital role in developing antivirals and optimizing vaccines. Here, we performed a genome-wide CRISPR-Cas9 knockout screen and revealed that scavenger receptor class B member 2 (SCARB2), solute carrier family 35 member B2 (SLC35B2), and beta-1,3-glucuronyltransferase 3 (B3GAT3) are essential in facilitating EV71 replication. Subsequently, the exploration of molecular mechanisms suggested that the knockout of SLC35B2 or B3GAT3, not SCARB2, led to a remarkable decrease in the binding of EV71 to cells and internalization into cells. Furthermore, we found that the infection efficiency for EV71 was positively correlated with the level of host cell sulfation, not simply with the amount of heparan sulfate, suggesting that an unidentified sulfated protein(s) must contribute to EV71 infection. In support of this idea, we screened possible sulfated proteins among the proteinous receptors for EV71 and confirmed that SCARB2 could uniquely interact with both tyrosyl protein sulfotransferases in humans. We then performed mass spectrometric analysis of SCARB2, identifying five sites with tyrosine sulfation. The function verification test indicated that there were more than five tyrosine-sulfated sites on SCARB2. Finally, we constructed a model for EV71 entry in which both heparan sulfate and SCARB2 are regulated by SLC35B2 and act cooperatively to support viral binding, internalization, and uncoating. Taken together, this is the first time that we performed the pooled CRISPR-Cas9 genetic screening to investigate the interplay of host cells and EV71. Furthermore, we found that a novel host factor, SLC35B2, played a dual role in regulating the overall sulfation comprising heparan sulfate sulfation and protein tyrosine sulfation, which are critical for EV71 entry. IMPORTANCE As the most important nonpolio neurotropic enterovirus lacking specific treatments, EV71 can transmit to the central nervous system, leading to severe and fatal neurological complications in infants and young children. The identification of new factors that facilitate or inhibit EV71 replication is crucial to uncover the mechanisms of viral infection and pathogenesis. To date, only a few host factors involved in EV71 infection have been characterized. Herein, we conducted a genome-wide CRISPR-Cas9 functional knockout (GeCKO) screen for the first time to study EV71 in HeLa cells. The screening results are presented as a ranked list of candidates, including 518 hits in the positive selection that facilitate EV71 replication and 1,044 hits in the negative selection that may be essential for cell growth and survival or for suppressing EV71 infection. We subsequently concentrated on the top three hits in the positive selection: SCARB2, SLC35B2, and B3GAT3. The knockout of any of these three genes confers strong resistance against EV71 infection. We confirmed that EV71 infection is codependent on two receptors, heparan sulfate and SCARB2. We also identified a host entry factor, SLC35B2, indirectly facilitating EV71 infection through regulation of the host cell sulfation, and determined a novel posttranslational modification, protein tyrosine sulfation existing in SCARB2. This study revealed that EV71 infectivity exhibits a significant positive correlation with the level of cellular sulfation regulated by SLC35B2. Due to the sulfation pathway being required for many distinct viruses, including but not limited to EV71 and respiratory syncytial virus (RSV), which were tested in this study, SLC35B2 represents a target of broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guodong Xu
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Bing Yuan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Tamura K, Kohnoe M, Takashino A, Kobayashi K, Koike S, Karwal L, Fukuda S, Vang F, Das SC, Dean HJ. TAK − 021, an inactivated Enterovirus 71 vaccine candidate, provides cross-protection against heterologous sub-genogroups in human scavenger receptor B2 transgenic mice. Vaccine 2022; 40:3330-3337. [DOI: 10.1016/j.vaccine.2022.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
13
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
14
|
Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proc Natl Acad Sci U S A 2022; 119:2118590119. [PMID: 35046043 PMCID: PMC8794823 DOI: 10.1073/pnas.2118590119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.
Collapse
|
15
|
Chen J, Jing H, Martin-Nalda A, Bastard P, Rivière JG, Liu Z, Colobran R, Lee D, Tung W, Manry J, Hasek M, Boucherit S, Lorenzo L, Rozenberg F, Aubart M, Abel L, Su HC, Soler Palacin P, Casanova JL, Zhang SY. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J Exp Med 2021; 218:212742. [PMID: 34726731 PMCID: PMC8570298 DOI: 10.1084/jem.20211349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-β in the patients’ fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.
Collapse
Affiliation(s)
- Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Infectious Diseases, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Immunology Division, Genetics Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Wesley Tung
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Neurology Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Pere Soler Palacin
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
16
|
Virulence of Enterovirus A71 Fluctuates Depending on the Phylogenetic Clade Formed in the Epidemic Year and Epidemic Region. J Virol 2021; 95:e0151521. [PMID: 34523967 DOI: 10.1128/jvi.01515-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although epidemics of hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) have occurred worldwide, the Asia-Pacific region has seen large sporadic outbreaks with many severe neurological cases. This suggests that the virulence of the circulating viruses fluctuates in each epidemic and that HFMD outbreaks with many severe cases occur when highly virulent viruses are circulating predominantly, which has not been experimentally verified. Here, we analyzed 32 clinically isolated strains obtained in Japan from 2002 to 2013, along with 27 Vietnamese strains obtained from 2015 to 2016 that we characterized previously using human SCARB2 transgenic mice. Phylogenetic analysis of the P1 region classified them into five clades belonging to subgenogroup B5 (B5-I to B5-V) and five clades belonging to subgenogroup C4 (C4-I to C4-V) according to the epidemic year and region. Interestingly, clades B5-I and B5-II were very virulent, while clades B5-III, B5-IV, and B5-V were less virulent. Clades C4-II, C4-III, C4-IV, and C4-V were virulent, while clade C4-I was not. The result experimentally showed for the first time that several clades with different virulence levels emerged one after another. The experimental virulence evaluation of circulating viruses using SCARB2 transgenic mice is helpful to assess potential risks of circulating viruses. These results also suggest that a minor nucleotide or amino acid substitution in the EV-A71 genome during circulation causes fluctuations in virulence. The data presented here may increase our understanding of the dynamics of viral virulence during epidemics. IMPORTANCE Outbreaks of hand, foot, and mouth disease (HFMD) with severe enterovirus A71 (EV-A71) cases have occurred repeatedly, mainly in Asia. In severe cases, central nervous system complications can lead to death, making it an infectious disease of importance to public health. An unanswered question about this disease is why outbreaks of HFMD with many severe cases sometimes occur. Here, we collected EV-A71 strains that were prevalent in Japan and Vietnam over the past 20 years and evaluated their virulence in a mouse model of EV-A71 infection. This method clearly revealed that viruses belonging to different clades have different virulence, indicating that the method is powerful to assess the potential risks of the circulating viruses. The results also suggested that factors in the virus genome cause an outbreak with many severe cases and that further studies facilitate the prediction of large epidemics of EV-A71 in the future.
Collapse
|
17
|
A Novel Attenuated Enterovirus A71 Mutant with VP1-V238A,K244R Exhibits Reduced Efficiency of Cell Entry/Exit and Augmented Binding Affinity to Sulfated Glycans. J Virol 2021; 95:e0105521. [PMID: 34468173 PMCID: PMC8549518 DOI: 10.1128/jvi.01055-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major etiological agents of hand, foot, and mouth disease (HFMD), and infection occasionally leads to fatal neurological complications in children. However, only inactivated whole-virus vaccines against EV-A71 are commercially available in Mainland China. Furthermore, the mechanisms underlying the infectivity and pathogenesis of EV-A71 remain to be better understood. By adaptation of an EV-A71 B5 strain in monkey Vero cells in the presence of brilliant black BN (E151), an anti-EV-A71 agent, a double mutant with VP1-V238A,K244R emerged whose infection was enhanced by E151. The growth of the reverse genetics (RG) mutant RG/B5-VP1-V238A,K244R (RG/B5-AR) was promoted by E151 in Vero cells but inhibited in other human and murine cells, while its parental wild type, RG/B5-wt, was strongly prevented by E151 from infection in all tested cells. In the absence of E151, RG/B5-AR exhibited defective cell entry/exit, resulting in reduced viral transmission and growth in vitro. It had augmented binding affinity to sulfated glycans, cells, and tissue/organs, which probably functioned as decoys to restrict viral dissemination and infection. RG/B5-AR was also attenuated, with a 355 times higher 50% lethal dose (LD50) and a shorter timing of virus clearance than those of RG/B5-wt in suckling AG129 mice. However, it remained highly immunogenic in adult AG129 mice and protected their suckling mice from lethal EV-A71 challenges through maternal neutralizing antibodies. Overall, discovery of the attenuated mutant RG/B5-AR contributes to better understanding of virulence determinants of EV-A71 and to further development of novel vaccines against EV-A71. IMPORTANCE Enterovirus A71 (EV-A71) is highly contagious in children and has been responsible for thousands of deaths in Asia-Pacific region since the 1990s. Unfortunately, the virulence determinants and pathogenesis of EV-A71 are not fully clear. We discovered that a novel EV-A71 mutant, VP1-V238A,K244R, showed growth attenuation with reduced efficiency of cell entry/exit. In the Vero cell line, which has been approved for manufacturing EV-A71 vaccines, the growth defects of the mutant were compensated by a food dye, brilliant black BN. The mutant also showed augmented binding affinity to sulfated glycans and other cellular components, which probably restricted viral infection and dissemination. Therefore, it was virulence attenuated in a mouse model but still retained its immunogenicity. Our findings suggest the mutant as a promising vaccine candidate against EV-A71 infection.
Collapse
|
18
|
Zhu W, Liu Z, Zheng X, Li J, Lu K, Jiang X, Zhang X, Ren F, Zhang X, Xu J, Wu Z, Sun M, Dong S. A broad and potent IgM antibody against tetra-EV-As induced by EVA71 and CVA16 co-immunization. Vaccine 2021; 39:6510-6519. [PMID: 34600750 DOI: 10.1016/j.vaccine.2021.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the potent and broad neutralizing monoclonal antibody (mAb) against enterovirus A (EV-A) in vitro and in vivo induced by enterovirus A71(EVA71) and coxsackievirus 16 (CVA16) co-immunization. METHODS The mAb was Generated by co-immunization with EVA71 and CVA16 through hybridomas technology. The characteristics and neutralizing ability of mAb were analysed in vitro and in mice. RESULTS We screened three mAb, the IgM antibody M20 and IgG antibody B1 and C31. All three antibodies showed cross-reactivity against tetra-EV-As. However, M20 showed potent and broad neutralizing ability against tetra-EV-As than B1 and C31. Meanwhile, M20 provided cross-antiviral efficacy in tetra-EV-As orally infected mice. Moreover, M20 binds to a conserved neutralizing epitope within the GH loop of tetra-EV-As VP1. CONCLUSIONS M20 and its property exhibited potent and broad antiviral activity against tetra-EV-As, and that is expected to be a potential preventive and therapeutic candidate against EV-As.
Collapse
Affiliation(s)
- Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhuohang Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Xuelin Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kongjie Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Xi Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Xuejian Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Fangfang Ren
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Xuemei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
19
|
Adaptation and Virulence of Enterovirus-A71. Viruses 2021; 13:v13081661. [PMID: 34452525 PMCID: PMC8402912 DOI: 10.3390/v13081661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Outbreaks of hand, foot, and mouth disease caused by enterovirus-A71 (EV-A71) can result in many deaths, due to central nervous system complications. Outbreaks with many fatalities have occurred sporadically in the Asia-Pacific region and have become a serious public health concern. It is hypothesized that virulent mutations in the EV-A71 genome cause these occasional outbreaks. Analysis of EV-A71 neurovirulence determinants is important, but there are no virulence determinants that are widely accepted among researchers. This is because most studies have been done in artificially infected mouse models and because EV-A71 mutates very quickly to adapt to the artificial host environment. Although EV-A71 uses multiple receptors for infection, it is clear that adaptation-related mutations alter the binding specificity of the receptors and allow the virus to adopt the best entry route for each environment. Such mutations have confused interpretations of virulence in animal models. This article will discuss how environment-adapted mutations in EV-A71 occur, how they affect virulence, and how such mutations can be avoided. We also discuss future perspectives for EV-A71 virulence research.
Collapse
|
20
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
21
|
Zhang J, Xu D, Liu H, Zhang M, Feng C, Cong S, Sun H, Yang Z, Ma S. Characterization of coxsackievirus A10 strains isolated from children with hand, foot, and mouth disease. J Med Virol 2021; 94:601-609. [PMID: 34387895 DOI: 10.1002/jmv.27268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious disease that threatens the health of children under 5 years of age. Coxsackievirus A10 (CV-A10) is one of the main pathogens of HFMD. Currently, preventive vaccines and specific therapeutic drugs are not available for CV-A10. In this study, a total of 327 stool specimens were collected from pediatric patients from 2009 to 2017 during HFMD surveillance, among which 14 CV-A10 strains could only be isolated from RD cells, but not from KMB17 and Vero cells. Through adaptive culture, two and 11 CV-A10 strains were recovered from Vero and KMB17 cell cultures, respectively. The growth of CV-A10 strains in Vero cells was better than that in KMB17 cells. The 14 CV-A10 strains belonged to the F genotype, and the nucleotides and amino acids of their complete genomes shared 92.6% - 96.3% and 98.4 - 98.9% identities, respectively. The different CV-A10 strains exhibited varying virulence in vivo, but had similar effects on tissue injury, with the hind limb muscles, kidneys, and lungs being severely affected. Additionally, the hind limb muscles had the highest viral loads. CV-A10 was found to exhibit strong tropism to muscle tissue. The results of this study are critical to developing vaccines against CV-A10 infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, 650118, PR China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| |
Collapse
|
22
|
Tang J, Zhang Z, Zhang Z, Huang H, Du T, Wang X, Yan L, Rao Q, Yang J, Wang M, Shen R, Sun Q, Jiang H. Two cases of hand, foot and mouth disease caused by enterovirus A71 after vaccination. Int J Infect Dis 2021; 108:190-197. [PMID: 33737136 DOI: 10.1016/j.ijid.2021.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EVA71) is one of the main pathogens causing hand, foot and mouth disease (HFMD). In China, the proportion of cases of HFMD caused by EVA71 is known to be significantly lower following EVA71 vaccination; however, infection with EVA71 can still occur after vaccination. METHODS The complete genomic sequences of EVA71-KM18A and KM18B (from two rare cases of EVA71 infection following vaccination) were obtained. Phylogenetic analysis, nucleotide mutation analysis, recombinant analysis and comparative analysis of amino acid mutations were performed. RESULTS Phylogenetic analysis determined that the EVA71 strains belonged to the C4a subgenotype. The KM18A and KM18B strains were highly similar to the vaccine strains. For the KM18B strain, there were some obvious homologous recombination signals in the 5'non-coding region, region 2A, region 2C and region 3D. Amino acid mutations were observed in the SP55 (position 729) and 71-6 (position 500) conformational neutralizing epitopes of the KM18A and KM18B strains. CONCLUSIONS These amino acid mutations may affect the SP55 and 71-6 conformational neutralizing epitopes and change their spatial conformation, thereby weakening vaccine effectiveness.
Collapse
Affiliation(s)
- Jiaolian Tang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Zhilei Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Zhen Zhang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China
| | - Hailing Huang
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Tingyi Du
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Lingmei Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Qin Rao
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Jinghui Yang
- Department of Paediatrics, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Meifeng Wang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China
| | - Ru Shen
- Department of Laboratory, The Kunming Children's Hospital, Kunming, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China; Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China.
| | - Hongchao Jiang
- Institute of Paediatrics, The Kunming Children's Hospital of Kunming Medical University, Kunming, PR China; Yunnan Key Laboratory of Children's Major Disease Research, Kunming, PR China.
| |
Collapse
|
23
|
Li ML, Shih SR, Tolbert BS, Brewer G. Enterovirus A71 Vaccines. Vaccines (Basel) 2021; 9:vaccines9030199. [PMID: 33673595 PMCID: PMC7997495 DOI: 10.3390/vaccines9030199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a major causative agent of hand, foot, and mouth disease (HFMD) and herpangina. Moreover, EV-A71 infection can lead to neurological complications and death. Vaccination is the most efficient way to control virus infection. There are currently three inactivated, whole EV-A71 vaccines licensed by the China NMPA (National Medical Products Administration). Several other types of vaccines, such as virus-like particles and recombinant VP1 (capsid protein), are also under development. In this review, we discuss recent advances in the development of EV-A71 vaccines.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
24
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
26
|
Chang CS, Liao CC, Liou AT, Chou YC, Yu YY, Lin CY, Lin JS, Suen CS, Hwang MJ, Shih C. Novel Naturally Occurring Mutations of Enterovirus 71 Associated With Disease Severity. Front Microbiol 2021; 11:610568. [PMID: 33519765 PMCID: PMC7838335 DOI: 10.3389/fmicb.2020.610568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Infection with the re-emerging enterovirus 71 (EV-A71) is associated with a wide range of disease severity, including herpangina, encephalitis, and cardiopulmonary failure. At present, there is no FDA-approved therapeutics for EV-A71. Early diagnosis for the high-risk children is the key to successful patient care. We examined viral genome sequences at the 5′ untranslated region (UTR) and the capsid protein VP1 from 36 mild and 27 severe cases. We identified five EV-A71 mutations associated with severe diseases, including (1) the 5′ UTR mutations C580U, A707G, C709U; (2) a VP1 alanine-to-threonine mutation at position 280 (280T), and (3) a VP1 glutamic acid-to-(non-glutamic acid) at position 145 [145(non-E)]. SCARB2 is a known entry receptor for EV-A71. Based on a recent cryoEM structure of the EV-A71-SCARB2 binding complex, VP1-280T is near the binding interface between the VP1-VP2 complex and its entry receptor SCARB2. A de novo created hydrogen bonding between the mutant VP1-280T and the VP2-139T, could help strengthen a web-like interaction structure of the VP1-VP2 complex. A stabilized loop turn of VP2, once in contact with SCARB2, can enhance interaction with the host SCARB2 receptor for viral entry. Our findings here could facilitate early detection of severe cases infected with EV-A71 in clinical medicine. In addition, it opens up the opportunity of functional studies via infectious cDNA cloning, site-directed mutagenesis, and animal models in the future.
Collapse
Affiliation(s)
- Chih-Shin Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - An-Ting Liou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chun Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Yen Yu
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Yung Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Jen-Shiou Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Meng T, Wong SM, Chua KB. Sulfonated azo dyes enhance the genome release of enterovirus A71 VP1-98K variants by preventing the virions from being trapped by sulfated glycosaminoglycans at acidic pH. Virology 2021; 555:19-34. [PMID: 33422703 DOI: 10.1016/j.virol.2020.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Enterovirus A71 (EV-A71) is a causative agent of hand, foot and mouth disease and occasionally causes death in children. Its infectivity and pathogenesis, however, remain to be better understood. Three sulfonated azo dyes, including acid red 88 (Ar88), were identified to enhance the infectivity of EV-A71, especially isolates with VP1-98K, 145E (-KE), by mainly promoting viral genome release in vitro. Enzymatic removal of sulfated glycosaminoglycans (GAGs) or knockout of xylosyltransferase II (XT2) responsible for biosynthesis of sulfated GAGs weakened the Ar88 enhanced EV-A71 infection. Ar88 is proposed to prevent the -KE variants from being trapped by sulfated GAGs at acidic pH and to facilitate the viral interaction with uncoating factors for genome release in endosomes. The results suggest dual roles of sulfated GAGs as attachment factors and as decoys during host interaction of EV-A71 and caution that these artificial dyes in our environment can enhance viral infection.
Collapse
Affiliation(s)
- Tao Meng
- Temasek Life Sciences Laboratory Limited, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Temasek Life Sciences Laboratory Limited, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Republic of Singapore; NUS Suzhou Research Institute, Suzhou, People's Republic of China.
| | - Kaw-Bing Chua
- Temasek Life Sciences Laboratory Limited, Republic of Singapore.
| |
Collapse
|
28
|
A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses 2020; 12:v12080883. [PMID: 32823486 PMCID: PMC7472116 DOI: 10.3390/v12080883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of human hand, foot, and mouth disease (hHFMD) and has evolved to use various cellular receptors for infection. However, the relationship between receptor preference and EV71 virulence has not been fully revealed. By using reverse genetics, we identified that a single E98K mutation in VP1 is responsible for rapid viral replication in vitro. The E98K mutation enhanced binding of EV71-GZCII to cells in a heparan sulfate (HS)-dependent manner, and it attenuated the virulence of EV71-GZCII in BALB/c mice, indicating that the HS-binding property is negatively associated with viral virulence. HS is widely expressed in vascular endothelial cells in different mouse tissues, and weak colocalization of HS with scavenger receptor B2 (SCARB2) was detected. The cGZCII-98K virus bound more efficiently to mouse tissue homogenates, and the cGZCII-98K virus titers in mouse tissues and blood were much lower than the cGZCII virus titers. Together, these findings suggest that the enhanced adsorption of the cGZCII-98K virus, which likely occurs through HS, is unable to support the efficient replication of EV71 in vivo. Our study confirmed the role of HS-binding sites in EV71 infection and highlighted the importance of the HS receptor in EV71 pathogenesis.
Collapse
|
29
|
Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog 2020; 16:e1008428. [PMID: 32187235 PMCID: PMC7105141 DOI: 10.1371/journal.ppat.1008428] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/30/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease (HFMD). However, this infection is sometimes associated with severe neurological complications. Identification of neurovirulence determinants is important to understand the pathogenesis of EV71. One of the problems in evaluating EV71 virulence is that its genome sequence changes rapidly during replication in cultured cells. The factors that induce rapid mutations in the EV71 genome in cultured cells are unclear. Here, we illustrate the population dynamics during adaptation to RD-A cells using EV71 strains isolated from HFMD patients. We identified a reproducible amino acid substitution from glutamic acid (E) to glycine (G) or glutamine (Q) in residue 145 of the VP1 protein (VP1-145) after adaptation to RD-A cells, which was associated with attenuation in human scavenger receptor B2 transgenic (hSCARB2 tg) mice. Because previous reports demonstrated that VP1-145G and Q mutants efficiently infect cultured cells by binding to heparan sulfate (HS), we hypothesized that HS expressed on the cell surface is a major factor for this selection. Supporting this hypothesis, selection of the VP1-145 mutant was prevented by depletion of HS and overexpression of hSCARB2 in RD-A cells. In addition, this mutation promotes the acquisition of secondary amino acid substitutions at various positions of the EV71 capsid to increase its fitness in cultured cells. These results indicate that attachment receptors, especially HS, are important factors for selection of VP1-145 mutants and subsequent capsid mutations. Moreover, we offer an efficient method for isolation and propagation of EV71 virulent strains with minimal selection pressure for attenuation. Viruses must overcome various setbacks in a variety of tissues and cells during transmission from the initial replication site to the final target site. To achieve this, RNA viruses employ a strategy to adapt to different environments by creating a diverse viral population using low-fidelity RNA-dependent RNA polymerases. On the other hand, when the viruses are propagated in clonal cell cultures, in vitro adaptation occurs. The viruses may acquire new properties or lose some properties they had in vivo. In vitro adaptation is often associated with attenuation. Therefore, the selection pressures imposed on viruses replicating in vitro and in vivo are quite different. It is unclear how this environmental difference affects viral populations. Clinical isolates of EV71 replicate in cultured cells poorly. However, after a few passages, the viruses adapt to this condition and replicate efficiently. In this study, we demonstrate that attachment receptor usage is a major selection pressure for in vitro adaptation of EV71 by analyzing the population dynamics of cell culture-adapted viruses. This mechanism appears to be a major mode of attenuation.
Collapse
|
30
|
TREM-1 activation is a potential key regulator in driving severe pathogenesis of enterovirus A71 infection. Sci Rep 2020; 10:3810. [PMID: 32123257 PMCID: PMC7052206 DOI: 10.1038/s41598-020-60761-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022] Open
Abstract
Hand, foot and mouth disease (HFMD), caused by enterovirus A71 (EV-A71), presents mild to severe disease, and sometimes fatal neurological and respiratory manifestations. However, reasons for the severe pathogenesis remain undefined. To investigate this, infection and viral kinetics of EV-A71 isolates from clinical disease (mild, moderate and severe) from Sarawak, Malaysia, were characterised in human rhabdomyosarcoma (RD), neuroblastoma (SH-SY5Y) and peripheral blood mononuclear cells (PBMCs). High resolution transcriptomics was used to decipher EV-A71-host interactions in PBMCs. Ingenuity analyses revealed similar pathways triggered by all EV-A71 isolates, although the extent of activation varied. Importantly, several pathways were found to be specific to the severe isolate, including triggering receptor expressed on myeloid cells 1 (TREM-1) signalling. Depletion of TREM-1 in EV-A71-infected PBMCs with peptide LP17 resulted in decreased levels of pro-inflammatory genes for the moderate and severe isolates. Mechanistically, this is the first report describing the transcriptome profiles during EV-A71 infections in primary human cells, and the potential involvement of TREM-1 in the severe disease pathogenesis, thus providing new insights for future treatment targets.
Collapse
|
31
|
Imura A, Sudaka Y, Takashino A, Tamura K, Kobayashi K, Nagata N, Nishimura H, Mizuta K, Koike S. Development of an Enterovirus 71 Vaccine Efficacy Test Using Human Scavenger Receptor B2 Transgenic Mice. J Virol 2020; 94:e01921-19. [PMID: 31896594 PMCID: PMC7158731 DOI: 10.1128/jvi.01921-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand-foot-mouth disease, and it sometimes causes severe neurological disease. Development of effective vaccines and animal models to evaluate vaccine candidates are needed. However, the animal models currently used for vaccine efficacy testing, monkeys and neonatal mice, have economic, ethical, and practical drawbacks. In addition, EV71 strains prepared for lethal challenge often develop decreased virulence during propagation in cell culture. To overcome these problems, we used a mouse model expressing human scavenger receptor B2 (hSCARB2) that showed lifelong susceptibility to EV71. We selected virulent EV71 strains belonging to the subgenogroups B4, B5, C1, C2, and C4 and propagated them using a culture method for EV71 without an apparent reduction in virulence. Here, we describe a novel EV71 vaccine efficacy test based on these hSCARB2 transgenic (Tg) mice and these virulent viruses. Adult Tg mice were immunized subcutaneously with formalin-inactivated EV71. The vaccine elicited sufficient levels of neutralizing antibodies in the immunized mice. The mice were subjected to lethal challenge with virulent viruses via intravenous injection. Survival, clinical signs, and body weight changes were observed for 2 weeks. Most immunized mice survived without clinical signs or histopathological lesions. The viral replication in immunized mice was much lower than that in nonimmunized mice. Mice immunized with the EV71 vaccine were only partially protected against lethal challenge with coxsackievirus A16. These results indicate that this new model is useful for in vivo EV71 vaccine efficacy testing.IMPORTANCE The development of new vaccines for EV71 relies on the availability of small animal models suitable for in vivo efficacy testing. Monkeys and neonatal mice have been used, but the use of these animals has several drawbacks, including high costs, limited susceptibility, and poor experimental reproducibility. In addition, the related ethical issues are considerable. The new efficacy test based on hSCARB2 Tg mice and virulent EV71 strains propagated in genetically modified cell lines presented here can overcome these disadvantages and is expected to accelerate the development of new EV71 vaccines.
Collapse
MESH Headings
- Animals
- Cell Line
- Disease Models, Animal
- Drug Evaluation
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mice
- Mice, Transgenic
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/pharmacology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Ayumi Imura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yui Sudaka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayako Takashino
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kanami Tamura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
32
|
Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. Enterovirus and Encephalitis. Front Microbiol 2020; 11:261. [PMID: 32153545 PMCID: PMC7044131 DOI: 10.3389/fmicb.2020.00261] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Enterovirus-induced infection of the central nervous system (CNS) results in acute inflammation of the brain (encephalitis) and constitutes a significant global burden to human health. These viruses are thought to be highly cytolytic, therefore normal brain function could be greatly compromised following enteroviral infection of the CNS. A further layer of complexity is added by evidence showing that some enteroviruses may establish a persistent infection within the CNS and eventually lead to pathogenesis of certain neurodegenerative disorders. Interestingly, enterovirus encephalitis is particularly common among young children, suggesting a potential causal link between the development of the neuroimmune system and enteroviral neuroinvasion. Although the CNS involvement in enterovirus infections is a relatively rare complication, it represents a serious underlying cause of mortality. Here we review a selection of enteroviruses that infect the CNS and discuss recent advances in the characterization of these enteroviruses with regard to their routes of CNS infection, tropism, virulence, and immune responses.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hou-Chen Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
33
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
34
|
Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive enterovirus A71 virulence in mice. PLoS Pathog 2019; 15:e1007863. [PMID: 31730673 PMCID: PMC6881073 DOI: 10.1371/journal.ppat.1007863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71. Enterovirus A71 (EV-A71) is the primary cause of hand, foot and mouth disease, and it can also infect the central nervous system and cause fatal outbreaks in young children. EV-A71 pathogenesis remains elusive. In this study, we demonstrated that EV-A71 variants with strong affinity to heparan sulfate (heparin) have a growth advantage in cell culture, but are disadvantaged in vivo. When inoculated into one-day old mice, strong heparin-binding virus variants are more likely to be adsorbed to peripheral tissues, resulting in impaired ability to disseminate, and are cleared from the bloodstream rapidly. The lower viremia level resulted in no neuroinvasion. In contrast, weak heparin-binding variants show greater levels of viremia, dissemination and subsequent neurovirulence in mice. We also provide evidence that the EV-A71 heparin-binding pattern is mediated by electrostatic surface charges on the virus capsid surface. In mice, EV-A71 undergoes adaptive mutation to acquire greater negative surface charges, thus generating new virulent variants with weak heparin-binding ability which allows greater viral spread. Our study underlines the importance of electrostatic surface charges in shaping EV-A71 virulence.
Collapse
|
35
|
Reverse Genetic Analysis of Adaptive Mutations within the Capsid Proteins of Enterovirus 71 (EV-A71) Strains Necessary for Infection of CHO-K1 Cells. Virol Sin 2019; 35:110-114. [PMID: 31637630 DOI: 10.1007/s12250-019-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
36
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
37
|
In Vitro and In Vivo Inhibition of the Infectivity of Human Enterovirus 71 by a Sulfonated Food Azo Dye, Brilliant Black BN. J Virol 2019; 93:JVI.00061-19. [PMID: 31167919 DOI: 10.1128/jvi.00061-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD), a highly contagious disease in children, is caused by human enteroviruses, including enterovirus 71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus A6 (CVA6). Although HFMD is usually mild and self-limiting, EV71 infection occasionally leads to fatal neurological disorders. Currently, no commercial antiviral drugs for HFMD treatment are available. Here, numerous sulfonated azo dyes, widely used as food additives, were identified as having potent antiviral activities against human enteroviruses. Among them, brilliant black BN (E151) was able to inhibit all EV71, CVA16, and CVA6 strains tested. In rhabdomyosarcoma cells, the 50% inhibitory concentrations of the dye E151 for various strains of EV71 ranged from 2.39 μM to 28.12 μM, whereas its 50% cytotoxic concentration was 1,870 μM. Food azo dyes, including E151, interacted with the vertex of the 5-fold axis of EV71 and prevented viral entry. Their efficacy in viral inhibition was regulated by amino acids at VP1-98, VP1-145, and/or VP1-246. Dye E151 not only prevented EV71 attachment but also eluted attached viruses in a concentration-dependent manner. Moreover, E151 inhibited the interaction between EV71 and its cellular uncoating factor cyclophilin A. In vivo studies demonstrated that E151 at a dose of 200 mg/kg of body weight/day given on the initial 4 days of challenge protected AG129 mice challenged with 10× the 50% lethal dose of wild-type EV71 isolates. Taken together, these data highlight E151 as a promising antiviral agent against EV71 infection.IMPORTANCE Human enterovirus 71 (EV71) is one of the causative agents of hand, foot, and mouth disease in children and is responsible for thousands of deaths in the past 20 years. Food azo dyes have been widely used since the nineteenth century; however, their biological effects on humans and microbes residing in humans are poorly understood. Here, we discovered that one of these dyes, brilliant black BN (E151), was particularly effective in inhibiting the infectivity of EV71 in both cell culture and mouse model studies. Mechanistic studies demonstrated that these sulfonated dyes mainly competed with EV71 attachment factors for viral binding to block viral attachment/entry to host cells. As no commercial antiviral drugs against EV71 are currently available, our findings open an avenue to exploit the development of permitted food dye E151 as a potential anti-EV71 agent.
Collapse
|
38
|
Wen X, Sun D, Guo J, Elgner F, Wang M, Hildt E, Cheng A. Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiol 2019; 14:1147-1157. [PMID: 31368347 DOI: 10.2217/fmb-2019-0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Enterovirus have a significant effect on human health, especially in infants and children. Since the viral genome has limited coding capacity, Enteroviruses subvert a range of cellular processes for viral infection via the interaction of viral proteins and numerous cellular factors. Intriguingly, the capsid-receptor interaction plays a crucial role in viral entry and has significant implications in viral pathogenesis. Moreover, interactions between structural proteins and host factors occur directly or indirectly in multiple steps of viral replication. In this review, we focus on the current understanding of the multifunctionality of structural proteins in the viral life cycle, which may constitute valuable targets for antiviral and therapeutic interventions.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China.,Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
39
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
40
|
Zhou D, Zhao Y, Kotecha A, Fry EE, Kelly JT, Wang X, Rao Z, Rowlands DJ, Ren J, Stuart DI. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat Microbiol 2019; 4:414-419. [PMID: 30531980 DOI: 10.1038/s41564-018-0319-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease-a disease endemic especially in the Asia-Pacific region1. Scavenger receptor class B member 2 (SCARB2) is the major receptor of EV71, as well as several other enteroviruses responsible for hand, foot and mouth disease, and plays a key role in cell entry2. The isolated structures of EV71 and SCARB2 are known3-6, but how they interact to initiate infection is not. Here, we report the EV71-SCARB2 complex structure determined at 3.4 Å resolution using cryo-electron microscopy. This reveals that SCARB2 binds EV71 on the southern rim of the canyon, rather than across the canyon, as predicted3,7,8. Helices 152-163 (α5) and 183-193 (α7) of SCARB2 and the viral protein 1 (VP1) GH and VP2 EF loops of EV71 dominate the interaction, suggesting an allosteric mechanism by which receptor binding might facilitate the low-pH uncoating of the virus in the endosome/lysosome. Remarkably, many residues within the binding footprint are not conserved across SCARB2-dependent enteroviruses; however, a conserved proline and glycine seem to be key residues. Thus, although the virus maintains antigenic variability even within the receptor-binding footprint, the identification of binding 'hot spots' may facilitate the design of receptor mimic therapeutics less likely to quickly generate resistance.
Collapse
Affiliation(s)
- Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James T Kelly
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- The Pirbright Institute, Pirbright, UK
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - David J Rowlands
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Didcot, UK.
| |
Collapse
|
41
|
Mizuta K, Tanaka W, Komabayashi K, Tanaka S, Seto J, Aoki Y, Ikeda T. Longitudinal Epidemiology of Viral Infectious Diseases Combining Virus Isolation, Antigenic Analysis, and Phylogenetic Analysis as Well as Seroepidemiology in Yamagata, Japan, between 1999 and 2018. Jpn J Infect Dis 2019; 72:211-223. [PMID: 30814463 DOI: 10.7883/yoken.jjid.2018.500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We introduced a microplate method for virus isolation in the Department of Microbiology, Yamagata Prefectural Institute of Public Health (YPIPH) in 1999 in Yamagata, Japan. We have since carried out longitudinal epidemiological studies on viral infectious diseases, particularly respiratory viruses, combining traditional technologies such as virus isolation and serological techniques and newly developed molecular methods. Here, we provide an overview of our activities at YPIPH between 1999 and 2018. During the study period, we observed emerging and re-merging diseases such as those caused by echovirus type 13, enterovirus D68, parechovirus-A3 (PeV-A3), and Saffold virus. With regard to PeV-A3, we proposed a new disease concept, "PeV-A3-associated myalgia/myositis." We also revealed the longitudinal epidemiologies of several viruses such as enterovirus A71 and coxsackievirus A16. To perform longitudinal epidemiological studies at any time in Yamagata, we established a system for stocking clinical specimens, viral isolates, complementary DNAs, and serum specimens. We have also pursued collaboration works with virology laboratories across Japan. We hope our experiences, findings, and research materials will further contribute to the development of countermeasures against viral infectious diseases and improvement in public health strategies in Yamagata, Japan, Asia, and around the world.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Waka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | | | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health
| |
Collapse
|
42
|
Mizuta K, Tanaka S, Komabayashi K, Aoki Y, Itagaki T, Katsushima F, Katsushima Y, Yoshida H, Ito S, Matsuzaki Y, Ikeda T. Phylogenetic and antigenic analyses of coxsackievirus A6 isolates in Yamagata, Japan between 2001 and 2017. Vaccine 2019; 37:1109-1117. [PMID: 30683510 DOI: 10.1016/j.vaccine.2018.12.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Although coxsackievirus A6 (CV-A6) is generally recognized as a causative agent of herpangina in children, CV-A6 infections globally emerged as a new and major cause of epidemic hand-foot-and-mouth-diseases (HFMDs) around 2008. To clarify the longitudinal epidemiology of CV-A6, we carried out sequence and phylogenetic analyses for the VP1 and partially for the VP4-3D regions as well as antigenic analysis using 115 CV-A6 isolates and 105 human sera in Yamagata, Japan between 2001 and 2017. Phylogenetic analysis revealed that CV-A6 isolates were clearly divided into two clusters; strains in circulation between 2001 and 2008 and those between 2010 and 2017. Neutralizing antibody titers of two rabbit antisera, which were immunized with Yamagata isolates in 2001 and 2015, respectively, against 28 Yamagata representative strains as well as the prototype Gdula strain were 1:2560-1:5120 and 1:160-1:640, respectively. The neutralizing antibody titers among residents in Yamagata against the above two strains were similar. Our analyses revealed that there were cross-antigenicities among all analyzed CV-A6 strains, although the newly emerged strains were introduced into Yamagata around 2010 and replaced the previous ones. With regard to control measures, these findings suggest that we can prevent CV-A6 infections through the development of a vaccine that effectively induces neutralizing antibodies against CV-A6, irrespective of genetic cluster.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan.
| | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | | | | | | | - Hiroshi Yoshida
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan
| | - Sueshi Ito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan; Ito Clinic, Department of Pediatrics, Hinode 1-17-8, Tsuruoka, Yamagata 997-0025, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University, Faculty of Medicine, Yamagata 990-9585, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| |
Collapse
|
43
|
Noisumdaeng P, Korkusol A, Prasertsopon J, Sangsiriwut K, Chokephaibulkit K, Mungaomklang A, Thitithanyanont A, Buathong R, Guntapong R, Puthavathana P. Longitudinal study on enterovirus A71 and coxsackievirus A16 genotype/subgenotype replacements in hand, foot and mouth disease patients in Thailand, 2000-2017. Int J Infect Dis 2019; 80:84-91. [PMID: 30639624 DOI: 10.1016/j.ijid.2018.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 12/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major causative agents of hand, foot and mouth disease (HFMD) worldwide, particularly in the Asia-Pacific region. Several strains have emerged, circulated, and faded out over time in recent decades. This study investigated the EV-A71 and CV-A16 circulating strains and replacement of genotypes/subgenotypes in Thailand during the years 2000-2017. METHODS The complete VP1 regions of 92 enteroviruses obtained from 90 HFMD patients, one asymptomatic adult contact case, and one encephalitic case were sequenced and investigated for serotypes, genotypes, and subgenotypes using a phylogenetic analysis. RESULTS The 92 enterovirus isolates were identified as 67 (72.8%) EV-A71 strains comprising subgenotypes B4, B5, C1, C2, C4a, C4b and C5, and 25 (27.2%) CV-A16 strains comprising subgenotypes B1a and B1b. Genotypic/subgenotypic replacements were evidenced during the study period. EV-A71 B5 and C4a have been the major circulating strains in Thailand for more than a decade, and CV-A16 B1a has been circulating for almost two decades. CONCLUSIONS This study provides chronological data on the molecular epidemiology of EV-A71 and CV-A16 subgenotypes in Thailand. Subgenotypic replacement frequently occurred with EV-A71, but not CV-A16. Monitoring for viral genetic and subgenotypic changes is important for molecular diagnosis, vaccine selection, and vaccine development.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit Center), Khlong Luang, Pathum Thani 12121, Thailand
| | - Achareeya Korkusol
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima 30280, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Ratigorn Guntapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok 10700, Thailand; Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
44
|
Wang H, Li Y. Recent Progress on Functional Genomics Research of Enterovirus 71. Virol Sin 2018; 34:9-21. [PMID: 30552635 DOI: 10.1007/s12250-018-0071-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main pathogens that causes hand-foot-and-mouth disease (HFMD). HFMD caused by EV71 infection is mostly self-limited; however, some infections can cause severe neurological diseases, such as aseptic meningitis, brain stem encephalitis, and even death. There are still no effective clinical drugs used for the prevention and treatment of HFMD. Studying EV71 protein function is essential for elucidating the EV71 replication process and developing anti-EV71 drugs and vaccines. In this review, we summarized the recent progress in the studies of EV71 non-coding regions (5' UTR and 3' UTR) and all structural and nonstructural proteins, especially the key motifs involving in viral infection, replication, and immune regulation. This review will promote our understanding of EV71 virus replication and pathogenesis, and will facilitate the development of novel drugs or vaccines to treat EV71.
Collapse
Affiliation(s)
- Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
45
|
Zhu J, Chen N, Zhou S, Zheng K, Sun L, Zhang Y, Cao L, Zhang X, Xiang Q, Chen Z, Wang C, Fan C, He Q. Severity of enterovirus A71 infection in a human SCARB2 knock-in mouse model is dependent on infectious strain and route. Emerg Microbes Infect 2018; 7:205. [PMID: 30518755 PMCID: PMC6281673 DOI: 10.1038/s41426-018-0201-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
Abstract
Enterovirus A71 (EV-A71) is a major etiological agent of human hand, foot and mouth disease, and it can cause severe neurological complications. Although several genotypes of EV-A71 strains are prevalent in different regions of the world, the genotype C4 has circulated in mainland China for more than 20 years. The pathogenicity of different EV-A71 clinical isolates varies and needs to be explored. In this study, hSCARB2 knock-in mice (N = 181) with a wide range of ages were tested for their susceptibility to two EV-A71 strains with the subgenotypes C4 and C2, and two infection routes (intracranial and venous) were compared. The clinical manifestations and pathology and their relationship to the measured viral loads in different tissues were monitored. We observed that 3 weeks is a crucial age, as mice younger than 3-week-old that were infected became extremely ill. However, mice older than 3 weeks displayed diverse clinical symptoms. Significant differences were observed in the pathogenicity of the two strains with respect to clinical signs, disease incidence, survival rate, and body weight change. We concluded that hSCARB2 knock-in mice are a sensitive model for investigating the clinical outcomes resulting from infection by different EV-A71 strains. The intracranial infection model appears to be suitable for evaluating EV-A71 neurovirulence, whereas the venous infection model is appropriate for studying the pathogenicity of EV-A71.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Shuya Zhou
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Lina Cao
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China
| | - Chenfei Wang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, 100069, China.
- Department of Medical Microbiology and Immunology, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
46
|
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog 2018; 14:e1007190. [PMID: 30075025 PMCID: PMC6093697 DOI: 10.1371/journal.ppat.1007190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HES-SO/University of Applied Sciences, Geneva, Western Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
47
|
Kobayashi K, Sudaka Y, Takashino A, Imura A, Fujii K, Koike S. Amino Acid Variation at VP1-145 of Enterovirus 71 Determines Attachment Receptor Usage and Neurovirulence in Human Scavenger Receptor B2 Transgenic Mice. J Virol 2018; 92:e00681-18. [PMID: 29848584 PMCID: PMC6052303 DOI: 10.1128/jvi.00681-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Infection by enterovirus 71 (EV71) is affected by cell surface receptors, including the human scavenger receptor B2 (hSCARB2), which are required for viral uncoating, and attachment receptors, such are heparan sulfate (HS), which bind virus but do not support uncoating. Amino acid residue 145 of the capsid protein VP1 affects viral binding to HS and virulence in mice. However, the contribution of this amino acid to pathogenicity in humans is not known. We produced EV71 having glycine (VP1-145G) or glutamic acid (VP1-145E) at position 145. VP1-145G, but not VP1-145E, enhanced viral infection in cell culture in an HS-dependent manner. However, VP1-145G virus showed an attenuated phenotype in wild-type suckling mice and in a transgenic mouse model expressing hSCARB2, while VP1-145E virus showed a virulent phenotype in both models. Thus, the HS-binding property and in vivo virulence are negatively correlated. Immunohistochemical analyses showed that HS is highly expressed in vascular endothelial cells and some other cell types where hSCARB2 is expressed at low or undetectable levels. VP1-145G virus bound to tissue homogenate of both hSCARB2 transgenic and nontransgenic mice in vitro, and the viral titer was reduced in the bloodstream immediately after intravenous inoculation. Furthermore, VP1-145G virus failed to disseminate well in the mouse organs. These data suggest that VP1-145G virus is adsorbed by attachment receptors such as HS during circulation in vivo, leading to abortive infection of HS-positive cells. This trapping effect is thought to be a major mechanism of attenuation of the VP1-145G virus.IMPORTANCE Attachment receptors expressed on the host cell surface are thought to enhance EV71 infection by increasing the chance of encountering true receptors. Although this has been confirmed using cell culture for some viruses, the importance of attachment receptors in vivo is unknown. This report provides an unexpected answer to this question. We demonstrated that the VP1-145G virus binds to HS and shows an attenuated phenotype in an hSCARB2-dependent animal infection model. HS is highly expressed in cells that express hSCARB2 at low or undetectable levels. Our data indicate that HS binding directs VP1-145G virus toward abortive infection and keeps virus away from hSCARB2-positive cells. Thus, although the ability of VP1-145G virus to use HS might be an advantage in replication in certain cultured cells, it becomes a serious disadvantage in replication in vivo This adsorption is thought to be a major mechanism of attenuation associated with attachment receptor usage.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yui Sudaka
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayako Takashino
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ayumi Imura
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken Fujii
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|