1
|
Zhang T, Liu X, Rossio V, Dawson SL, Gygi SP, Paulo JA. Enhancing Proteome Coverage by Using Strong Anion-Exchange in Tandem with Basic-pH Reversed-Phase Chromatography for Sample Multiplexing-Based Proteomics. J Proteome Res 2024; 23:2870-2881. [PMID: 37962907 PMCID: PMC11090996 DOI: 10.1021/acs.jproteome.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sample multiplexing-based proteomic strategies rely on fractionation to improve proteome coverage. Tandem mass tag (TMT) experiments, for example, can currently accommodate up to 18 samples with proteins spanning several orders of magnitude, thus necessitating fractionation to achieve reasonable proteome coverage. Here, we present a simple yet effective peptide fractionation strategy that partitions a pooled TMT sample with a two-step elution using a strong anion-exchange (SAX) spin column prior to gradient-based basic pH reversed-phase (BPRP) fractionation. We highlight our strategy with a TMTpro18-plex experiment using nine diverse human cell lines in biological duplicate. We collected three data sets, one using only BPRP fractionation and two others of each SAX-partition followed by BPRP. The three data sets quantified a similar number of proteins and peptides, and the data highlight noticeable differences in the distribution of peptide charge and isoelectric point between the SAX partitions. The combined SAX partition data set contributed 10% more proteins and 20% more unique peptides that were not quantified by BPRP fractionation alone. In addition to this improved fractionation strategy, we provide an online resource of relative abundance profiles for over 11,000 proteins across the nine human cell lines, as well as two additional experiments using ovarian and pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Schlotterose L, Cossais F, Lucius R, Hattermann K. Resveratrol Alleviates the Early Challenges of Implant-Based Drug Delivery in a Human Glial Cell Model. Int J Mol Sci 2024; 25:2078. [PMID: 38396755 PMCID: PMC10889494 DOI: 10.3390/ijms25042078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.
Collapse
Affiliation(s)
| | | | | | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany; (L.S.); (R.L.)
| |
Collapse
|
3
|
Fazlalipour M, Ghoreshi ZAS, Molaei HR, Arefinia N. The Role of DNA Viruses in Human Cancer. Cancer Inform 2023; 22:11769351231154186. [PMID: 37363356 PMCID: PMC10286548 DOI: 10.1177/11769351231154186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 06/28/2023] Open
Abstract
This review discusses the possible involvement of infections-associated cancers in humans, with virus infections contributing 15% to 20% of total cancer cases in humans. DNA virus encoded proteins interact with host cellular signaling pathways and control proliferation, cell death and genomic integrity viral oncoproteins are known to bind cellular Deubiquitinates (DUBs) such as cyclindromatosis tumor suppressor, ubiquitin-specific proteases 7, 11, 15 and 20, and A-20 to improve their intracellular stability and cellular signaling pathways and finally transformation. Human papillomaviruses (cervical carcinoma, oral cancer and laryngeal cancer); human polyomaviruses (mesotheliomas, brain tumors); Epstein-Barr virus (B-cell lymphoproliferative diseases and nasopharyngeal carcinoma); Kaposi's Sarcoma Herpesvirus (Kaposi's Sarcoma and primary effusion lymphomas); hepatitis B (hepatocellular carcinoma (HCC)) cause up to 20% of malignancies around the world.
Collapse
Affiliation(s)
- Mehdi Fazlalipour
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran (IPI), Tehran, Iran
- Research Center for Emerging and Reemerging Infectious diseases, Pasteur Institute of Iran (IPI), Tehran, Iran
| | | | - Hamid Reza Molaei
- Department of Medical Bacteriology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasir Arefinia
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
4
|
Hellmold D, Kubelt C, Daunke T, Beckinger S, Janssen O, Hauck M, Schütt F, Adelung R, Lucius R, Haag J, Sebens S, Synowitz M, Held-Feindt J. Sequential Treatment with Temozolomide Plus Naturally Derived AT101 as an Alternative Therapeutic Strategy: Insights into Chemoresistance Mechanisms of Surviving Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24109075. [PMID: 37240419 DOI: 10.3390/ijms24109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.
Collapse
Affiliation(s)
- Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Tina Daunke
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Silje Beckinger
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Ottmar Janssen
- Institute for Immunology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany
| | - Jochen Haag
- Department of Pathology, Kiel University, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
5
|
Schlotterose L, Cossais F, Lucius R, Hattermann K. Breaking the circulus vitiosus of neuroinflammation: Resveratrol attenuates the human glial cell response to cytokines. Biomed Pharmacother 2023; 163:114814. [PMID: 37148859 DOI: 10.1016/j.biopha.2023.114814] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Neuroinflammation is both cause and effect of many neurodegenerative disorders. Activation of astrocytes and microglia leads to the release of cytokines and reactive oxygen species followed by blood-brain barrier leakage and neurotoxicity. Transient neuroinflammation is considered to be largely protective, however, chronic neuroinflammation contributes to the pathology of Alzheimer's disease, multiple sclerosis, traumatic brain injury, and many more. In this study, we focus on the aspect of cytokine-induced neuroinflammation in human microglia and astrocytes. Here we show by mRNA and protein analysis that cytokines, released not only by microglia but also by astrocytes, lead to a circuit of proinflammatory activation. Moreover, we present how the natural compound resveratrol can stop the circuit of proinflammatory activation and facilitate return to resting conditions. These results will contribute to distinguishing between the causes and the effects of neuroinflammation, a better understanding of underlying mechanisms, and potential treatment options.
Collapse
Affiliation(s)
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | | |
Collapse
|
6
|
Prezioso C, Moens U, Pietropaolo V. Reply to Henriksen, S.; Rinaldo, C.H. Should SVGp12 Be Used for JC Polyomavirus Studies? Comment on "Prezioso et al. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses 2022, 14, 2070". Viruses 2022; 15:93. [PMID: 36680133 PMCID: PMC9861638 DOI: 10.3390/v15010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
In relation to the comment by Henriksen and Rinaldo, the authors intend to emphasize that before every experiment with SVGp12 cells they routinely test the cells for the absence of BKPyV contamination. The scientists can state that the SVGp12 cells used in their laboratory were not infected by BKPyV and that their results were also validated on the COS-7 cell line, which is permissive for JCPyV infection. Therefore, the overall findings of the study and its conclusions remain authentic. The authors recommend the necessity of carefully testing SVGp12 cells for BKPyV infection before use or, alternatively, in case of a first purchase; moreover, it is possible to choose different cell lines to avoid running into this unpleasant situation.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCCS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Henriksen S, Rinaldo CH. Should SVGp12 Be Used for JC Polyomavirus Studies? Comment on Prezioso et al. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses 2022, 14, 2070. Viruses 2022; 15:89. [PMID: 36680132 PMCID: PMC9867049 DOI: 10.3390/v15010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
A recent paper in Viruses investigates the impact of the JC polyomavirus (JCPyV) microRNA on the replication of different JCPyV strains. Unfortunately, one of the cell lines used, the human fetal glial cell line SVGp12, is productively infected by the closely related BK polyomavirus (BKPyV), which may confound results. Scientists need to take this into account and the potential pitfalls.
Collapse
Affiliation(s)
- Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
- Metabolic and Renal Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
8
|
Baghi FR, Harzandi N, Moniri A, Nadji SA. Phylogenetic analysis of BKV genetic variations, based on the whole sequence of the genome and different genomic sections. J Med Virol 2022; 94:3930-3945. [PMID: 35437782 DOI: 10.1002/jmv.27791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE(S) BK polyomavirus virus primarily infects humans in their early life stages, and in later life stages, immunosuppressed patients may develop asymptomatic infections. The nucleotides 1744-1812 in the VP1 gene are traditionally used to determine this virus's genotype. MATERIALS AND METHODS The complete genome of the BKV samples from patients referred to Masih Daneshvari Hospital's virology research center was amplified by previously known primer sets. The phylogenetic diversity of the whole genome, different genomic sections, and the non-coding control region of BK virus samples were investigated. Using software Mega X and references, the samples' genotype was determined in separate genomic fragments and the whole genome. RESULTS The samples were classified into two genotypes (I and IV) and five subtypes (Ia, Ib-2, IVc-1, and IVc-2), but none of the isolates belonged to genotype II, III, V, or VI. The Large T antigen-based phylogenetic tree provided 100% bootstrap values for these divisions, which were superior to those (96-100%) used in the VP1 sequence. Among the genomic segments, LTag and VP1 had the most mutations. The non-coding control area contained mutations at the O41 position in the granulocyte/macrophage stimulus gene and the P31 position in the NF-1 gene. CONCLUSION The validity of the phylogenetic analysis was supported by sequence analysis, which found SNPs that could be useful for sub-classifying isolates. More research with a large number of samples and in the wider geographical areas is needed to understand the genetic diversity of the BKV in Iran and also to determine these SNPs' clinical significance in terms of patient outcome and viral load dynamics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Luo SM, Wu YP, Huang LC, Huang SM, Hueng DY. The Anti-Cancer Effect of Four Curcumin Analogues on Human Glioma Cells. Onco Targets Ther 2021; 14:4345-4359. [PMID: 34376999 PMCID: PMC8349541 DOI: 10.2147/ott.s313961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the primary aggressive malignancy of the brain with poor outcome. Curcumin analogues are polyphenolic compounds as the bioactive substances extracted from turmeric. This study aims to investigate the anti-cancer effects of four curcumin analogues. Furthermore, the molecular mechanisms of dimethoxycurcumin in human gliomas were analyzed by Western blot. Materials and Methods Human LN229 and GBM8401 glioma cells were treated by four curcumin analogues with different number of methoxy groups. The cell viability, cell cycle, apoptosis, proliferation and ROS production of human gliomas were analyzed by flow cytometry. Moreover, the effects of four curcumin analogues on tumorigenesis of gliomas were conducted by wound healing assay and colony formation assay. Furthermore, the molecular mechanisms of dimethoxycurcumin in human gliomas were analyzed by Western blot. Results Our data showed that four different curcumin analogues including curcumin, bisdemethoxycurcumin, demethoxycurcumin, and dimethoxycurcumin promote sub-G1 phase, G2/M arrest, apoptosis, and ROS production in human glioma cells. Moreover, dimethoxycurcumin suppressed cell viability, migration, and colony formation, induction of sub-G1, G2/M arrest, apoptosis, and ROS production in glioma cells. Moreover, the mechanism of dimethoxycurcumin is ROS production to increase LC3B-II expression to induce autophagy. Furthermore, dimethoxycurcumin suppressed apoptotic marker, BCL-2 to promote apoptosis in LN229 and GBM8401 glioma cells. Conclusion Our study found that dimethoxycurcumin induced apoptosis, autophagy, ROS production and suppressed cell viability in human gliomas. Dimethoxycurcumin might be a potential therapeutic candidate in human glioma cells.
Collapse
Affiliation(s)
- Siou-Min Luo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Ping Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
10
|
Kubelt C, Molkewehrum H, Lucius R, Synowitz M, Held-Feindt J, Helmers AK. Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human Central Nervous System Cells In Vitro. Neuromolecular Med 2021; 24:169-182. [PMID: 34216357 PMCID: PMC9117383 DOI: 10.1007/s12017-021-08674-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1β in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Henri Molkewehrum
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany.
| |
Collapse
|
11
|
Schmitt C, Rasch F, Cossais F, Held-Feindt J, Lucius R, Vázquez AR, Nia AS, Lohe MR, Feng X, Mishra YK, Adelung R, Schütt F, Hattermann K. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomed Mater 2020; 16:015008. [DOI: 10.1088/1748-605x/aba796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Dörschmann P, Schmitt C, Bittkau KS, Neupane S, Synowitz M, Roider J, Alban S, Held-Feindt J, Klettner A. Evaluation of a Brown Seaweed Extract from Dictyosiphon foeniculaceus as a Potential Therapeutic Agent for the Treatment of Glioblastoma and Uveal Melanoma. Mar Drugs 2020; 18:E625. [PMID: 33302412 PMCID: PMC7762554 DOI: 10.3390/md18120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Ingredients of brown seaweed like fucoidans are often described for their beneficial biological effects, that might be interesting for a medical application. In this study, we tested an extract from Dictyosiphon foeniculaceus (DF) to evaluate the effects in glioblastoma and uveal melanoma, looking for a possible anti-cancer treatment. We investigated toxicity, VEGF (vascular endothelial growth factor) secretion and gene expression of tumor and non-tumor cells. SVGA (human fetal astrocytes), the human RPE (retinal pigment epithelium) cell line ARPE-19, the tumor cell line OMM-1 (human uveal melanoma), and two different human primary glioblastoma cultures (116-14 and 118-14) were used. Tests for cell viability were conducted with MTS-Assay (3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and the proliferation rate was determined with cell counting. VEGF secretion was assessed with ELISA (enzyme-linked immunosorbent assay). The gene expression of VEGF receptor 1 (VEGFR1), VEGF receptor 2 (VEGFR2) and VEGF-A was determined with real-time qPCR (quantitative polymerase chain reaction). DF lowered the cell viability of OMM-1. Proliferation rates of ARPE-19 and OMM-1 were decreased. The VEGF secretion was inhibited in ARPE-19 and OMM-1, whereas it was increased in SVGA and 116-14. The expression of VEGFR1 was absent and not influenced in OMM-1 and ARPE-19. VEGFR2 expression was lowered in 116-14 after 24 h, whereas VEGF-A was increased in 118-14 after 72 h. The extract lowered cell viability slightly and was anti-proliferative depending on the cell type investigated. VEGF was heterogeneously affected. The results in glioblastoma were not promising, but the anti-tumor properties in OMM-1 could make them interesting for further research concerning cancer diseases in the human eye.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | | | - Kaya Saskia Bittkau
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Sandesh Neupane
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Johann Roider
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, D-24118 Kiel, Germany; (K.S.B.); (S.N.); (S.A.)
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (M.S.); (J.H.-F.)
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, D-24105 Kiel, Germany; (J.R.); (A.K.)
| |
Collapse
|
13
|
Liu X, Gygi SP, Paulo JA. Isobaric Tag-Based Protein Profiling across Eight Human Cell Lines Using High-Field Asymmetric Ion Mobility Spectrometry and Real-Time Database Searching. Proteomics 2020; 21:e2000218. [PMID: 33015980 DOI: 10.1002/pmic.202000218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Indexed: 12/11/2022]
Abstract
A vast number of human cell lines are available for cell culture model-based studies, and as such the potential exists for discrepancies in findings due to cell line selection. To investigate this concept, the authors determine the relative protein abundance profiles of a panel of eight diverse, but commonly studied human cell lines. This panel includes HAP1, HEK293T, HeLa, HepG2, Jurkat, Panc1, SH-SY5Y, and SVGp12. A mass spectrometry-based proteomics workflow designed to enhance quantitative accuracy while maintaining analytical depth is used. To this end, this strategy leverages TMTpro16-based sample multiplexing, high-field asymmetric ion mobility spectrometry, and real-time database searching. The data show that the differences in the relative protein abundance profiles reflect cell line diversity. The authors also determine several hundred proteins to be highly enriched for a given cell line, and perform gene ontology and pathway analysis on these cell line-enriched proteins. An R Shiny application is designed to query protein abundance profiles and retrieve proteins with similar patterns. The workflows used herein can be applied to additional cell lines to aid cell line selection for addressing a given scientific inquiry or for improving an experimental design.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Flak DK, Adamski V, Nowaczyk G, Szutkowski K, Synowitz M, Jurga S, Held-Feindt J. AT101-Loaded Cubosomes as an Alternative for Improved Glioblastoma Therapy. Int J Nanomedicine 2020; 15:7415-7431. [PMID: 33116479 PMCID: PMC7549312 DOI: 10.2147/ijn.s265061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction AT101, the R-(-)-enantiomer of the cottonseed-derived polyphenol gossypol, is a promising drug in glioblastoma multiforme (GBM) therapy due to its ability to trigger autophagic cell death but also to facilitate apoptosis in tumor cells. It does have some limitations such as poor solubility in water-based media and consequent low bioavailability, which affect its response rate during treatment. To overcome this drawback and to improve the anti-cancer potential of AT101, the use of cubosome-based formulation for AT101 drug delivery has been proposed. This is the first report on the use of cubosomes as AT101 drug carriers in GBM cells. Materials and Methods Cubosomes loaded with AT101 were prepared from glyceryl monooleate (GMO) and the surfactant Pluronic F-127 using the top-down approach. The drug was introduced into the lipid prior to dispersion. Prepared formulations were then subjected to complex physicochemical and biological characterization. Results Formulations of AT101-loaded cubosomes were highly stable colloids with a high drug entrapment efficiency (97.7%) and a continuous, sustained drug release approaching 35% over 72 h. Using selective and sensitive NMR diffusometry, the drug was shown to be efficiently bound to the lipid-based cubosomes. In vitro imaging studies showed the high efficiency of cubosomal nanoparticles uptake into GBM cells, as well as their marked ability to penetrate into tumor spheroids. Treatment of GBM cells with the AT101-loaded cubosomes, but not with the free drug, induced cytoskeletal rearrangement and shortening of actin fibers. The prepared nanoparticles revealed stronger in vitro cytotoxic effects against GBM cells (A172 and LN229 cell lines), than against normal brain cells (SVGA and HMC3 cell lines). Conclusion The results indicate that GMO-AT101 cubosome formulations are a promising basic tool for alternative approaches to GBM treatment.
Collapse
Affiliation(s)
- Dorota K Flak
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Vivian Adamski
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Michael Synowitz
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Janka Held-Feindt
- Department of Neurosurgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Schmitt C, Lechanteur A, Cossais F, Bellefroid C, Arnold P, Lucius R, Held-Feindt J, Piel G, Hattermann K. Liposomal Encapsulated Curcumin Effectively Attenuates Neuroinflammatory and Reactive Astrogliosis Reactions in Glia Cells and Organotypic Brain Slices. Int J Nanomedicine 2020; 15:3649-3667. [PMID: 32547020 PMCID: PMC7259452 DOI: 10.2147/ijn.s245300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. Methods We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. Results We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. Discussion and Perspective In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.
Collapse
Affiliation(s)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | | - Coralie Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | - Philipp Arnold
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Ralph Lucius
- Institute of Anatomy, University Kiel, Kiel D-24098, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Kiel D-24105, Germany
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB), CIRM, University of Liège, Liège, Belgium
| | | |
Collapse
|
16
|
Rasch F, Schmitt C, Saure LM, Meyer R, Adamski V, Dengiz D, Scherließ R, Lucius R, Synowitz M, Mishra YK, Hattermann K, Adelung R, Held-Feindt J, Schütt F. Macroscopic Silicone Microchannel Matrix for Tailored Drug Release and Localized Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3388-3397. [DOI: 10.1021/acsbiomaterials.0c00094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Florian Rasch
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Christina Schmitt
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Lena M. Saure
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Rieke Meyer
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Duygu Dengiz
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Yogendra K. Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark
| | - Kirsten Hattermann
- Department of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Rainer Adelung
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Fabian Schütt
- Chair for Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| |
Collapse
|
17
|
Establishment of a glioblastoma in vitro (in)complete resection dual co-culture model suitable for drug testing. Ann Anat 2020; 228:151440. [DOI: 10.1016/j.aanat.2019.151440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
|
18
|
Paulo JA, Gygi SP. mTMT: An Alternative, Nonisobaric, Tandem Mass Tag Allowing for Precursor-Based Quantification. Anal Chem 2019; 91:12167-12172. [PMID: 31490667 DOI: 10.1021/acs.analchem.9b03162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stable isotope labeling of peptides is the basis for numerous mass-spectrometry-based quantification strategies. Isobaric tagging and metabolic labeling, namely, tandem mass tagging (TMT) and SILAC, are among the most widely used techniques for relative protein quantification. Here we report an alternative, precursor-based quantification method using nonisobaric TMT variants: TMTzero (TMT0) and superheavy TMT (shTMT). We term this strategy mass difference tandem mass tagging (mTMT). These TMT variants differ by 11 mass units; however, peptides labeled with these reagents coelute, analogous to SILAC-labeled peptide pairs. As a proof-of-concept, we profiled the proteomes of two cell lines that are frequently used in neuroscience studies, SH-SY5Y and SVGp12, using mTMT and standard SILAC-labeling approaches. We show similar quantified proteins and peptides for each method, with highly correlated fold-changes between workflows. We conclude that mTMT is a suitable alternative for precursor-based protein quantification.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Steven P Gygi
- Department of Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
19
|
Cai JY, Xu TT, Wang Y, Chang JJ, Li J, Chen XY, Chen X, Yin YF, Ni XJ. Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells. Int J Oncol 2018; 53:2758-2768. [PMID: 30272277 DOI: 10.3892/ijo.2018.4564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/07/2018] [Indexed: 11/06/2022] Open
Abstract
Glioma is the most lethal type of primary brain tumor characterized by aggressiveness and a poor prognosis. Histone deacetylase 4 (HDAC4) is frequently dysregulated in human malignancies. However, its biological functions in the development of glioma are not fully understood. The present study aimed to evaluate HDAC4 expression in human glioma and to elucidate the mechanistic role of HDAC4 in glioma. The results suggested that HDAC4 was significantly upregulated in glioma tissues and a number of glioma cell lines compared with adjacent non-tumor tissues and the non-cancerous human glial cell line SVG p12, respectively (P<0.05). The proliferation, adenosine triphosphate (ATP) levels and invasion ability were substantially enhanced in U251 cells with HDAC4 overexpression, and suppressed in U251 cells with a knockdown of HDAC4 compared with that in U251 cells transfected with the negative control. Knockdown of HDAC4 resulted in cell cycle arrest at the G0/G1 phase and induced the increase of reactive oxygen species level in U251 cells. Furthermore, HDAC4 overexpression was revealed to substantially inhibit the expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27, and the expression of E-cadherin and β‑catenin in glioma U251 cells. Knockdown of HDAC4 substantially promoted the expression of CDK1 and CDK2 and vimentin in glioma U251 cells. Mechanistically, the results of the present study demonstrated that HDAC4 displayed a significant upregulation in glioma, and promoted glioma cell proliferation and invasion mediated through the repression of p21, p27, E-cadherin and β‑catenin, and the potentiation of CDK1, CDK2 and vimentin. Altogether, the present study revealed that HDAC4 overexpression was central for the tumorigenesis of glioma, which may serve as a useful prognostic biomarker and potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun-Yan Cai
- Department of Rehabilitation, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Tong-Tong Xu
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Wang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing-Jian Chang
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiao-Yang Chen
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xi Chen
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi-Fei Yin
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xue-Jun Ni
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
20
|
Adamski V, Schmitt C, Ceynowa F, Adelung R, Lucius R, Synowitz M, Hattermann K, Held-Feindt J. Effects of sequentially applied single and combined temozolomide, hydroxychloroquine and AT101 treatment in a long-term stimulation glioblastoma in vitro model. J Cancer Res Clin Oncol 2018; 144:1475-1485. [PMID: 29858681 DOI: 10.1007/s00432-018-2680-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a poorly curable disease due to its heterogeneity that enables single cells to survive treatment regimen and initiate tumor regrowth. Although some progress in therapy has been achieved in the last years, the efficient treatment of GBMs is still a clinical challenge. Besides the standard therapeutic drug temozolomide (TMZ), quinoline-based antimalarial drugs such as hydroxychloroquine (HCQ) and BH3 mimetics such as AT101 were considered as possible drugs for GBM therapy. METHODS We investigated the effects of sequentially applied single and combined TMZ, HCQ and AT101 treatments in a long-term stimulation GBM in vitro model. We performed all investigations in parallel in human astrocytes and two differentially TMZ-responsive human GBM cell lines and adjusted used drug concentrations to known liquor/plasma concentrations in patients. We determined amounts of dead cells and still remaining growth rates and depicted our results in a heatmap-like summary to visualize which sequential long-term treatment schedule seemed to be most promising. RESULTS We showed that sequential stimulations yielded higher cytotoxicity and better tumor growth control in comparison to single TMZ treatment. This was especially the case for the sequences TMZ/HCQ and TMZ + AT101/AT101 which was as effective as the non-sequential combination TMZ + AT101. Importantly, those affected both less and more TMZ-responsive glioma cell lines, whilst being less harmful for astrocytes in comparison to single TMZ treatment. CONCLUSIONS Sequential treatment with mechanistically different acting drugs might be an option to reduce side effects in long-term treatment, for example in local administration approaches.
Collapse
Affiliation(s)
- Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | | | - Florian Ceynowa
- Institute for Materials Science, University of Kiel, 24143, Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, University of Kiel, 24143, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | | | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany.
| |
Collapse
|
21
|
Novel Human Polyomavirus Noncoding Control Regions Differ in Bidirectional Gene Expression according to Host Cell, Large T-Antigen Expression, and Clinically Occurring Rearrangements. J Virol 2018; 92:JVI.02231-17. [PMID: 29343574 DOI: 10.1128/jvi.02231-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
Human polyomavirus (HPyV) DNA genomes contain three regions denoted the early viral gene region (EVGR), encoding the regulatory T-antigens and one microRNA, the late viral gene region (LVGR), encoding the structural Vp capsid proteins, and the noncoding control region (NCCR). The NCCR harbors the origin of viral genome replication and bidirectional promoter/enhancer functions governing EVGR and LVGR expression on opposite DNA strands. Despite principal similarities, HPyV NCCRs differ in length, sequence, and architecture. To functionally compare HPyV NCCRs, sequences from human isolates were inserted into a bidirectional reporter vector using dsRed2 for EVGR expression and green fluorescent protein (GFP) for LVGR expression. Transfecting HPyV NCCR reporter vectors into human embryonic kidney 293 (HEK293) cells and flow cytometry normalized to archetype BKPyV NCCR revealed a hierarchy of EVGR expression levels with MCPyV, HPyV12, and STLPyV NCCRs conferring stronger levels and HPyV6, HPyV9, and HPyV10 NCCRs weaker levels, while LVGR expression was less variable and showed comparable activity levels. Transfection of HEK293T cells expressing simian virus 40 (SV40) large T antigen (LTag) increased EVGR expression for most HPyV NCCRs, which correlated with the number of LTag-binding sites (Spearman's r, 0.625; P < 0.05) and decreased following SV40 LTag small interfering RNA (siRNA) knockdown. LTag-dependent activation was specifically confirmed for two different MCPyV NCCRs in 293MCT cells expressing the cognate MCPyV LTag. HPyV NCCR expression in different cell lines derived from skin (A375), cervix (HeLaNT), lung (A549), brain (Hs683), and colon (SW480) demonstrated that host cell properties significantly modulate the baseline HPyV NCCR activity, which partly synergized with SV40 LTag expression. Clinically occurring NCCR sequence rearrangements of HPyV7 PITT-1 and -2 and HPyV9 UF1 were found to increase EVGR expression compared to the respective HPyV archetype, but this was partly host cell type specific.IMPORTANCE HPyV NCCRs integrate essential viral functions with respect to host cell specificity, persistence, viral replication, and disease. Here, we show that HPyV NCCRs not only differ in sequence length, number, and position of LTag- and common transcription factor-binding sites but also confer differences in bidirectional viral gene expression. Importantly, EVGR reporter expression was significantly modulated by LTag expression and by host cell properties. Clinical sequence variants of HPyV7 and HPyV9 NCCRs containing deletions and insertions were associated with increased EVGR expression, similar to BKPyV and JCPyV rearrangements, emphasizing that HPyV NCCR sequences are major determinants not only of host cell tropism but also of pathogenicity. These results will help to define secondary HPyV cell tropism beyond HPyV surface receptors, to identify key viral and host factors shaping the viral life cycle, and to develop preclinical models of HPyV persistence and replication and suitable antiviral targets.
Collapse
|
22
|
Müller DC, Rämö M, Naegele K, Ribi S, Wetterauer C, Perrina V, Quagliata L, Vlajnic T, Ruiz C, Balitzki B, Grobholz R, Gosert R, Ajuh ET, Hirsch HH, Bubendorf L, Rentsch CA. Donor-derived, metastatic urothelial cancer after kidney transplantation associated with a potentially oncogenic BK polyomavirus. J Pathol 2018; 244:265-270. [DOI: 10.1002/path.5012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/30/2023]
Affiliation(s)
- David C Müller
- Department of Urology; University Hospital Basel, University of Basel; Basel Switzerland
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Maarit Rämö
- Department of Urology; University Hospital Basel, University of Basel; Basel Switzerland
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Klaudia Naegele
- Division of Infection Diagnostics, Department of Biomedicine; University of Basel; Basel Switzerland
| | - Sebastian Ribi
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Christian Wetterauer
- Department of Urology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Valeria Perrina
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Luca Quagliata
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Tatjana Vlajnic
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Christian Ruiz
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Beate Balitzki
- Institute of Forensic Medicine; University of Basel; Basel Switzerland
| | | | - Rainer Gosert
- Division of Infection Diagnostics, Department of Biomedicine; University of Basel; Basel Switzerland
| | - Elvis T Ajuh
- Transplantation & Clinical Virology, Department of Biomedicine; University of Basel; Basel Switzerland
| | - Hans H Hirsch
- Division of Infection Diagnostics, Department of Biomedicine; University of Basel; Basel Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine; University of Basel; Basel Switzerland
| | - Lukas Bubendorf
- Institute for Pathology; University Hospital Basel, University of Basel; Basel Switzerland
| | - Cyrill A Rentsch
- Department of Urology; University Hospital Basel, University of Basel; Basel Switzerland
| |
Collapse
|
23
|
Cason C, Campisciano G, Zanotta N, Valencic E, Delbue S, Bella R, Comar M. SV40 Infection of Mesenchymal Stromal Cells From Wharton's Jelly Drives the Production of Inflammatory and Tumoral Mediators. J Cell Physiol 2016; 232:3060-3066. [PMID: 27925194 DOI: 10.1002/jcp.25723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023]
Abstract
The Mesenchymal Stromal Cells from umbilical cord Wharton's jelly (WJSCs) are a source of cells with high potentiality for the treatment of human immunological disorders. Footprints of the oncogenic viruses Simian Virus 40 (SV40) and JC Virus (JCPyV) have been recently detected in human WJSCs specimens. The aim of this study is to evaluate if WJSCs can be efficiently infected by these Polyomaviruses and if they can potentially exert tumoral activity. Cell culture experiments indicated that WJSCs could sustain both SV40 and JCPyV infections. A transient and lytic replication was observed for JCPyV, while SV40 persistently infected WJSCs over a long period of time, releasing a viral progeny at low titer without evident cytopathic effect (CPE). Considering the association between SV40 and human tumors and the reported ability of the oncogenic viruses to drive the host innate immune response to cell transformation, the expression profile of a large panel of immune mediators was evaluated in supernatants by the Bioplex platform. RANTES, IL-3, MIG, and IL-12p40, involved in chronic inflammation, cells differentiation, and transformation, were constantly measured at high concentration comparing to control. These findings represent a new aspect of SV40 biological activity in the humans, highlighting its interaction with specific host cellular pathways. In view of these results, it seems to be increasingly urgent to consider Polyomaviruses in the management of WJSCs for their safely use as promising therapeutic source. J. Cell. Physiol. 232: 3060-3066, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carolina Cason
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical Science, University of Trieste, Trieste, Italy
| | | | - Nunzia Zanotta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Erica Valencic
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milano, Italy
| | - Ramona Bella
- Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milano, Italy
| | - Manola Comar
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy.,Department of Medical Science, University of Trieste, Trieste, Italy
| |
Collapse
|
24
|
Imperfect Symmetry of Sp1 and Core Promoter Sequences Regulates Early and Late Virus Gene Expression of the Bidirectional BK Polyomavirus Noncoding Control Region. J Virol 2016; 90:10083-10101. [PMID: 27581987 DOI: 10.1128/jvi.01008-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
Rearrangements or point mutations in the noncoding control region (NCCR) of BK polyomavirus (BKPyV) have been associated with higher viral loads and more pronounced organ pathology in immunocompromised patients. The respective alterations affect a multitude of transcription factor binding sites (TFBS) but consistently cause increased expression of the early viral gene region (EVGR) at the expense of late viral gene region (LVGR) expression. By mutating TFBS, we identified three phenotypic groups leading to strong, intermediate, or impaired EVGR expression and corresponding BKPyV replication. Unexpectedly, Sp1 TFBS mutants either activated or inhibited EVGR expression when located proximal to the LVGR (sp1-4) or the EVGR (sp1-2), respectively. We now demonstrate that the bidirectional balance of EVGR and LVGR expression is dependent on affinity, strand orientation, and the number of Sp1 sites. Swapping the LVGR-proximal high-affinity SP1-4 with the EVGR-proximal low-affinity SP1-2 in site strand flipping or inserting an additional SP1-2 site caused a rearranged NCCR phenotype of increased EVGR expression and faster BKPyV replication. The 5' rapid amplification of cDNA ends revealed an imperfect symmetry between the EVGR- and LVGR-proximal parts of the NCCR, consisting of TATA and TATA-like elements, initiator elements, and downstream promoter elements. Mutation or deletion of the archetypal LVGR promoter, which is found in activated NCCR variants, abrogated LVGR expression, which could be restored by providing large T antigen (LTag) in trans Thus, whereas Sp1 sites control the initial EVGR-LVGR expression balance, LTag expression can override inactivation of the LVGR promoter and acts as a key driver of LVGR expression independently of the Sp1 sites and core promoter elements. IMPORTANCE Polyomaviridae currently comprise more than 70 members, including 13 human polyomaviruses (PyVs), all of which share a bidirectional genome organization mediated by the NCCR, which determines species and host cell specificity, persistence, replication, and virulence. Here, we demonstrate that the BKPyV NCCR is fine-tuned by an imperfect symmetry of core promoter elements centered around TATA and TATA-like sequences close to the EVGR and LVGR, respectively, which are governed by the directionality and affinity of two Sp1 sites. The data indicated that the BKPyV NCCR is poised toward EVGR expression, which can be readily unlatched by a simple switch affecting Sp1 binding. The resulting LTag, which is the major EVGR protein, drives viral genome replication, renders subsequent LVGR expression independently of archetypal promoter elements, and can overcome enhancer/promoter mutations and deletions. The data are pivotal for understanding how human PyV NCCRs mediate secondary host cell specificity, reactivation, and virulence in their natural hosts.
Collapse
|
25
|
The Presumed Polyomavirus Viroporin VP4 of Simian Virus 40 or Human BK Polyomavirus Is Not Required for Viral Progeny Release. J Virol 2016; 90:10398-10413. [PMID: 27630227 DOI: 10.1128/jvi.01326-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023] Open
Abstract
The minor capsid protein of human BK polyomavirus (BKPyV), VP2, and its N-terminally truncated form, VP3, are both important for viral entry. The closely related simian virus 40 (SV40) reportedly produces an additional truncated form of VP2/3, denoted VP4, apparently functioning as a viroporin promoting progeny release. The VP4 open reading frame is conserved in some polyomaviruses, including BKPyV. In this study, we investigated the role of VP4 in BKPyV replication. By transfecting viral genomes into primary human renal proximal tubule epithelial cells, we demonstrated that unaltered BKPyV and mutants with start codon substitutions in VP4 (VP2M229I and VP2M229A) abolishing putative VP4 production were released at the same level to supernatants. However, during infection studies, VP2M229I and VP2M229A exhibited 90% and 65% reduced infectivity, respectively, indicating that isoleucine substitution inadvertently disrupted VP2/3 function to the detriment of viral entry, while inhibition of VP4 production during late infection was well tolerated. Unexpectedly, and similarly to BKPyV, wild-type SV40 and the corresponding VP4 start codon mutants (VP2M228I and VP2M228A) transfected into monkey kidney cell lines were also released at equal levels. Upon infection, only the VP2M228I mutant exhibited reduced infectivity, a 43% reduction, which also subsequently led to delayed host cell lysis. Mass spectrometry analysis of nuclear extracts from SV40-infected cells failed to identify VP4. Our results suggest that neither BKPyV nor SV40 require VP4 for progeny release. Moreover, our results reveal an important role in viral entry for the amino acid in VP2/VP3 unavoidably changed by VP4 start codon mutagenesis. IMPORTANCE Almost a decade ago, SV40 was reported to produce a late nonstructural protein, VP4, which forms pores in the nuclear membrane, facilitating progeny release. By performing transfection studies with unaltered BKPyV and SV40 and their respective VP4-deficient mutants, we found that VP4 is dispensable for progeny release, contrary to the original findings. However, infection studies demonstrated a counterintuitive reduction of infectivity of certain VP4-deficient mutants. In addition to the isoleucine-substituted SV40 mutant of the original study, we included alanine-substituted VP4-deficient mutants of BKPyV (VP2M229A) and SV40 (VP2M228A). These revealed that the reduction in infectivity was not caused by a lack of VP4 but rather depended on the identity of the single amino acid substituted within VP2/3 for VP4 start codon mutagenesis. Hopefully, our results will correct the longstanding misconception of VP4's role during infection and stimulate continued work on unraveling the mechanism for release of polyomavirus progeny.
Collapse
|
26
|
Barth H, Solis M, Kack-Kack W, Soulier E, Velay A, Fafi-Kremer S. In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection. Viruses 2016; 8:E292. [PMID: 27782080 PMCID: PMC5086624 DOI: 10.3390/v8100292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.
Collapse
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Wallys Kack-Kack
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Eric Soulier
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Aurélie Velay
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
27
|
Schmidt K, Keiser S, Günther V, Georgiev O, Hirsch HH, Schaffner W, Bethge T. Transcription enhancers as major determinants of SV40 polyomavirus growth efficiency and host cell tropism. J Gen Virol 2016; 97:1597-1603. [PMID: 27100458 PMCID: PMC5410105 DOI: 10.1099/jgv.0.000487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The non-coding control region (NCCR) of polyomaviruses includes the promoters for early and late genes, a transcription enhancer and the origin of DNA replication. Particularly virulent variants of the human pathogens BKPyV and JCPyV, as well as of simian virus 40 (SV40), occur in vitro and in vivo. These strains often harbour rearrangements in their NCCR, typically deletions of some DNA segment(s) and/or duplications of others. Using an SV40-based model system we provide evidence that duplications of enhancer elements, whether from SV40 itself or from the related BKPyV and JCPyV, increase early gene transcription and replicative capacity. SV40 harbouring subsegments of the strong cytomegalovirus (HCMV) enhancer replicated better than the common 'wild-type' SV40 in the human cell lines HEK293 and U2OS. In conclusion, replacing the SV40 enhancer with heterologous enhancers can profoundly influence SV40's infective capacity, underscoring the potential of small DNA viruses to overcome cell type and species barriers.
Collapse
Affiliation(s)
- Katharina Schmidt
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Simon Keiser
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Viola Günther
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Petersplatz 10, University of Basel, CH-4009 Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Walter Schaffner
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Tobias Bethge
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Ray U, Cinque P, Gerevini S, Longo V, Lazzarin A, Schippling S, Martin R, Buck CB, Pastrana DV. JC polyomavirus mutants escape antibody-mediated neutralization. Sci Transl Med 2015; 7:306ra151. [PMID: 26400912 DOI: 10.1126/scitranslmed.aab1720] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
JC polyomavirus (JCV) persistently infects the urinary tract of most adults. Under conditions of immune impairment, JCV causes an opportunistic brain disease, progressive multifocal leukoencephalopathy (PML). JCV strains found in the cerebrospinal fluid of PML patients contain distinctive mutations in surface loops of the major capsid protein, VP1. We hypothesized that VP1 mutations might allow the virus to evade antibody-mediated neutralization. Consistent with this hypothesis, neutralization serology revealed that plasma samples from PML patients neutralized wild-type JCV strains but failed to neutralize patient-cognate PML-mutant JCV strains. This contrasted with serological results for healthy individuals, most of whom robustly cross-neutralized all tested JCV variants. Mice administered a JCV virus-like particle (VLP) vaccine initially showed neutralizing "blind spots" (akin to those observed in PML patients) that closed after booster immunization. A PML patient administered an experimental JCV VLP vaccine likewise showed markedly increased neutralizing titer against her cognate PML-mutant JCV. The results indicate that deficient humoral immunity is a common aspect of PML pathogenesis and that vaccination may overcome this humoral deficiency. Thus, vaccination with JCV VLPs might prevent the development of PML.
Collapse
Affiliation(s)
- Upasana Ray
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paola Cinque
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simonetta Gerevini
- Neuroradiology Unit, Head and Neck Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Longo
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Adriano Lazzarin
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy. San Raffaele University, 20132 Milan, Italy
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
| | - Christopher B Buck
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Diana V Pastrana
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Human BK Polyomavirus Plasmid pBKV (34-2) (Dunlop) Contains Mutations Not Found in the Originally Published Sequences. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00046-15. [PMID: 25814590 PMCID: PMC4384130 DOI: 10.1128/genomea.00046-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasmid pBKV (34-2) (ATCC 45025) contains the entire BK polyomavirus Dunlop genome. Sequencing revealed 12 point mutations compared to the GenBank sequence, but only 4 point mutations compared to the published sequence. The origin of these differences is unknown, but may impact virological as well as diagnostic research and development.
Collapse
|
30
|
Contamination of SVG p12 cells with BK polyomavirus occurred after deposit in the American Type Culture Collection. J Virol 2014; 88:12928-9. [PMID: 25288626 DOI: 10.1128/jvi.01600-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Reply to "Contamination of SVG p12 cells with BK polyomavirus occurred after deposit in the American type culture collection". J Virol 2014; 88:12930. [PMID: 25288627 DOI: 10.1128/jvi.02153-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Antiviral effects of artesunate on JC polyomavirus replication in COS-7 cells. Antimicrob Agents Chemother 2014; 58:6724-34. [PMID: 25155602 DOI: 10.1128/aac.03714-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human JC polyomavirus (JCPyV) causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). A growing number of patients with induced or acquired immunosuppression are at risk for infection, and no effective antiviral therapy is presently available. The widely used antimalarial drug artesunate has shown broad antiviral activity in vitro but limited clinical success. The aim of this study was to investigate the effect of artesunate on JCPyV replication in vitro. The permissivity for JCPyV MAD-4 was first compared in four cell lines, and the monkey kidney cell line COS-7 was selected. Artesunate caused a concentration-dependent decrease in the extracellular JCPyV DNA load 96 h postinfection, with a 50% effective concentration (EC50) of 2.9 μM. This effect correlated with a decreased expression of capsid protein VP1 and a reduced release of infectious viral progeny. For concentrations of <20 μM, transient reductions in cellular DNA replication and proliferation were seen, while for higher concentrations, some cytotoxicity was detected. A selective index of 16.6 was found when cytotoxicity was calculated based on cellular DNA replication in the mock-infected cells, but interestingly, cellular DNA replication in the JCPyV-infected cells was more strongly affected. In conclusion, artesunate is efficacious in inhibiting JCPyV replication at micromolar concentrations, which are achievable in plasma. The inhibition at EC50 probably reflects an effect on cellular proteins and involves transient cytostatic effects. Our results, together with the favorable distribution of the active metabolite dihydroartemisinin to the central nervous system, suggest a potential use for artesunate in patients with PML.
Collapse
|