1
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Su Y, Wu J, Li X, Li J, Zhao X, Pan B, Huang J, Kong Q, Han J. DTSEA: A network-based drug target set enrichment analysis method for drug repurposing against COVID-19. Comput Biol Med 2023; 159:106969. [PMID: 37105108 PMCID: PMC10121077 DOI: 10.1016/j.compbiomed.2023.106969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still wreaking havoc worldwide. Therefore, the urgent need for efficient treatments pushes researchers and clinicians into screening effective drugs. Drug repurposing may be a promising and time-saving strategy to identify potential drugs against this disease. Here, we developed a novel computational approach, named Drug Target Set Enrichment Analysis (DTSEA), to identify potent drugs against COVID-19. DTSEA first mapped the disease-related genes into a gene functional interaction network, and then it used a network propagation algorithm to rank all genes in the network by calculating the network proximity of genes to disease-related genes. Finally, an enrichment analysis was performed on drug target sets to prioritize disease-candidate drugs. It was shown that the top three drugs predicted by DTSEA, including Ataluren, Carfilzomib, and Aripiprazole, were significantly enriched in the immune response pathways indicating the potential for use as promising COVID-19 inhibitors. In addition to these drugs, DTSEA also identified several drugs (such as Remdesivir and Olumiant), which have obtained emergency use authorization (EUA) for COVID-19. These results indicated that DTSEA could effectively identify the candidate drugs for COVID-19, which will help to accelerate the development of drugs for COVID-19. We then performed several validations to ensure the reliability and validity of DTSEA, including topological analysis, robustness analysis, and prediction consistency. Collectively, DTSEA successfully predicted candidate drugs against COVID-19 with high accuracy and reliability, thus making it a formidable tool to identify potential drugs for a specific disease and facilitate further investigation.
Collapse
Affiliation(s)
- Yinchun Su
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, PR China
| | - Jiashuo Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Xiangmei Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Ji Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Xilong Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Bingyue Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Junling Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, PR China.
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
3
|
Maginnis MS. β-arrestins and G protein-coupled receptor kinases in viral entry: A graphical review. Cell Signal 2023; 102:110558. [PMID: 36509265 PMCID: PMC9811579 DOI: 10.1016/j.cellsig.2022.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins β-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, United States of America; Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, United States of America.
| |
Collapse
|
4
|
Hypothesis-Agnostic Network-Based Analysis of Real-World Data Suggests Ondansetron is Associated with Lower COVID-19 Any Cause Mortality. Drugs Real World Outcomes 2022; 9:359-375. [PMID: 35809196 PMCID: PMC9281575 DOI: 10.1007/s40801-022-00303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/08/2022] Open
Abstract
Background The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. Objectives The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. Methods A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. Conclusions The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources. Supplementary Information The online version contains supplementary material available at 10.1007/s40801-022-00303-9.
Collapse
|
5
|
Zhu D, Liu G, Song Y, Li S, Yang S, Hu D, Li P. Enterovirus 71 VP1 promotes 5-HT release by upregulating the expression of ERICH3 and methyltransferase ZC3H13: VP1 promotes 5-HT release by ERICH3 and ZC3H13 upregulation. Virus Res 2022; 318:198843. [PMID: 35660571 DOI: 10.1016/j.virusres.2022.198843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIM The effect of structural viral protein 1 (VP1) on neurological damage caused by enterovirus 71 (EV71) infection is unclear. This study aimed to explore the transcriptome changes in EV infected patients and the role of VP1 on the cell secretion pathway of neuron cells. METHODS In our cohort, EV infected patients were enrolled, and RNA-seq analysis was used to evaluate the distinct transcript patterns of cerebrospinal fluid (CSF). The EV71 VP1-overexpressing vector (pEGFP-c3-VP1) was generated and transfected into neuron cells. The relationship between Glutamate Rich 3 (ERICH3) and methyltransferase Zinc Finger CCCH-Type Containing 13 (ZC3H13) and their effect on the serotonin (5-HT) release of neuron cells were explored using small interfering RNA. The expression of ERICH3 and ZC3H13 and concentration of 5-HT were determined using real-time PCR, Western blot, and ELISA, respectively. RESULT The expression of ERICH3 and ZC3H13 were significantly upregulated in EV infected patients with neurological symptoms compared to those without (P<0.05). The ERICH3 gene had many N6-methyladenosine (m6A) binding sites that can be regulated by m6A modification. Further, the expression of ERICH3 and ZC3H13 were elevated significantly in EV71-VP1 overexpressing neuron cells (P<0.05). Moreover, ERICH3 or ZC3H13 deficiency could significantly downregulate the release of 5-HT in VP1-overexpressing cells (P<0.05). Nonetheless, ERICH3 expression was significantly suppressed when ZC3H13 was silenced in neuron cells and vice versa (P<0.05). CONCLUSIONS EV71-VP1 can promote 5-HT release by upregulating the expression of ERICH3 and ZC3H13. 5-HT might be a novel therapeutic target for EV71 infection-induced fatal neuronal damage.
Collapse
Affiliation(s)
- Danping Zhu
- Pediatric Emergency Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guangming Liu
- Pediatric Emergency Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongling Song
- Pediatric Emergency Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Suyun Li
- Pediatric Emergency Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sida Yang
- Pediatric Neurology Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dandan Hu
- Department of Child Healthcare, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Peiqing Li
- Pediatric Emergency Department, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Fang Y, Xiong C, Wang X. Association between early ondansetron administration and in-hospital mortality in critically ill patients: analysis of the MIMIC-IV database. J Transl Med 2022; 20:223. [PMID: 35568908 PMCID: PMC9107069 DOI: 10.1186/s12967-022-03401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background While ondansetron (OND) is widespread availability, the contribution of OND to improve patient outcomes among intensive care unit (ICU) patients has not been examined. This study aimed to illustrate the association between early OND use and in-hospital mortality in critically ill patients and investigate whether this association differed according to OND dose. Methods The MIMIC-IV database was employed to identify patients who had and had not received OND. Statistical approaches included multivariate logistic regression, propensity score matching (PSM), and propensity score-based inverse probability of treatment weighting (IPTW) models to ensure the robustness of our findings. Results In total, 51,342 ICU patients were included. A significant benefit in terms of in-hospital mortality was observed in the OND patients compared to the non-OND group in the early stage [odds ratio (OR) = 0.75, 95% CI 0.63–0.89, p < 0.001]. In the circulatory system group, the early OND administration was associated with improved in-hospital mortality in ICU patients (OR 0.48, 95% CI 0.34–0.66; P < 0.001). The risk of in-hospital mortality was also lower in early OND users than in non-OND users both in the medical admission group and the surgical ICU admission group, and ORs were 0.57 (95% CI 0.42–0.76; P < 0.001) and 0.79 (95% CI 0.62–0.91; P < 0.001), respectively. A positive role of daily low- and moderate-dose OND treatment in early-stage was showed on the in-hospital mortality in PSM cohort, and the ORs were 0.75 (95% CI 0.62–0.90; P < 0.001) and 0.63 (95% CI 0.43–0.91; P < 0.001), respectively. The relationship between the daily low- and moderate-dose of OND and in-hospital mortality was also significant in ICU patients with cardiovascular diseases, and ORs were 0.51(95% CI 0.36–0.73; P < 0.001), and 0.26(95% CI 0.11–0.65; P < 0.001), respectively. Daily low-to-moderate dose of OND was also associated with in-hospital mortality in ICU entire cohort. Conclusions Early OND use is closely associated with lower in-hospital mortality in ICU patients. Daily low-to-moderate dose of OND application is protective against in-hospital mortality. This association is more evident in the circulatory system group. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03401-y.
Collapse
Affiliation(s)
- Yingying Fang
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chao Xiong
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinghe Wang
- Department of Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
7
|
Mpekoulis G, Tsopela V, Chalari A, Kalliampakou KI, Panos G, Frakolaki E, Milona RS, Sideris DC, Vassilacopoulou D, Vassilaki N. Dengue Virus Replication Is Associated with Catecholamine Biosynthesis and Metabolism in Hepatocytes. Viruses 2022; 14:v14030564. [PMID: 35336971 PMCID: PMC8948859 DOI: 10.3390/v14030564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Anna Chalari
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
8
|
Abstract
The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.
Collapse
|
9
|
Mpekoulis G, Tsopela V, Panos G, Siozos V, Kalliampakou KI, Frakolaki E, Sideris CD, Vassiliou AG, Sideris DC, Vassilacopoulou D, Vassilaki N. Association of Hepatitis C Virus Replication with the Catecholamine Biosynthetic Pathway. Viruses 2021; 13:v13112139. [PMID: 34834946 PMCID: PMC8624100 DOI: 10.3390/v13112139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Vasileiοs Siozos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Constantinos D. Sideris
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
| | - Alice G. Vassiliou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece;
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (G.P.); (V.S.); (K.I.K.); (E.F.); (C.D.S.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
10
|
Cerebral Organoids Derived from a Parkinson's Patient Exhibit Unique Pathogenesis from Chikungunya Virus Infection When Compared to a Non-Parkinson's Patient. Pathogens 2021; 10:pathogens10070913. [PMID: 34358063 PMCID: PMC8308834 DOI: 10.3390/pathogens10070913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arboviruses of medical and veterinary significance have been identified on all seven continents, with every human and animal population at risk for exposure. Like arboviruses, chronic neurodegenerative diseases, like Alzheimer’s and Parkinson’s disease, are found wherever there are humans. Significant differences in baseline gene and protein expression have been determined between human-induced pluripotent stem cell lines derived from non-Parkinson’s disease individuals and from individuals with Parkinson’s disease. It was hypothesized that these inherent differences could impact cerebral organoid responses to viral infection. (2) Methods: In this study, cerebral organoids from a non-Parkinson’s and Parkinson’s patient were infected with Chikungunya virus and observed for two weeks. (3) Results: Parkinson’s organoids lost mass and exhibited a differential antiviral response different from non-Parkinson’s organoids. Neurotransmission data from both infected non-Parkinson’s and Parkinson’s organoids had dysregulation of IL-1, IL-10, and IL-6. These cytokines are associated with mood and could be contributing to persistent depression seen in patients following CHIKV infection. Both organoid types had increased expression of CXCL10, which is linked to demyelination. (4) Conclusions: The differential antiviral response of Parkinson’s organoids compared with non-Parkinson’s organoids highlights the need for more research in neurotropic infections in a neurologically compromised host.
Collapse
|
11
|
Bayat V, Ryono R, Phelps S, Geis E, Sedghi F, Etminani P, Holodniy M. Reduced Mortality With Ondansetron Use in SARS-CoV-2-Infected Inpatients. Open Forum Infect Dis 2021; 8:ofab336. [PMID: 34307731 PMCID: PMC8294673 DOI: 10.1093/ofid/ofab336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has led to a surge in clinical trials evaluating investigational and approved drugs. Retrospective analysis of drugs taken by COVID-19 inpatients provides key information on drugs associated with better or worse outcomes. Methods We conducted a retrospective cohort study of 10 741 patients testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection within 3 days of admission to compare risk of 30-day all-cause mortality in patients receiving ondansetron using multivariate Cox proportional hazard models. All-cause mortality, length of hospital stay, adverse events such as ischemic cerebral infarction, and subsequent positive COVID-19 tests were measured. Results Administration of ≥8 mg of ondansetron within 48 hours of admission was correlated with an adjusted hazard ratio for 30-day all-cause mortality of 0.55 (95% CI, 0.42-0.70; P < .001) and 0.52 (95% CI, 0.31-0.87; P = .012) for all and intensive care unit-admitted patients, respectively. Decreased lengths of stay (9.2 vs 11.6; P < .001), frequencies of subsequent positive SARS-CoV-2 tests (53.6% vs 75.0%; P = .01), and long-term risks of ischemic cerebral ischemia (3.2% vs 6.1%; P < .001) were also noted. Conclusions If confirmed by prospective clinical trials, our results suggest that ondansetron, a safe, widely available drug, could be used to decrease morbidity and mortality in at-risk populations.
Collapse
Affiliation(s)
- Vafa Bayat
- Bitscopic Inc., Palo Alto, California, USA
| | | | | | | | | | | | - Mark Holodniy
- Public Health Surveillance and Research, Department of Veterans Affairs, Washington, DC, USA.,Division of Infectious Disease & Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
13
|
Mpekoulis G, Frakolaki E, Taka S, Ioannidis A, Vassiliou AG, Kalliampakou KI, Patas K, Karakasiliotis I, Aidinis V, Chatzipanagiotou S, Angelakis E, Vassilacopoulou D, Vassilaki N. Alteration of L-Dopa decarboxylase expression in SARS-CoV-2 infection and its association with the interferon-inducible ACE2 isoform. PLoS One 2021; 16:e0253458. [PMID: 34185793 PMCID: PMC8241096 DOI: 10.1371/journal.pone.0253458] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, National and Kapodistrian University of Athens Medical School, Evangelismos Hospital, Athens, Greece
| | | | - Kostas Patas
- Department of Medical Biopathology, Medical School, University of Athens, Eginition Hospital, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilis Aidinis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Medical School, University of Athens, Eginition Hospital, Athens, Greece
| | - Emmanouil Angelakis
- Department of Diagnostics, Hellenic Pasteur Institute, Athens, Greece
- Aix Marseille Univ, IRD, IHU Méditerranée Infection, VITROME, Marseille, France
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
14
|
Pashaei Y. Drug repurposing of selective serotonin reuptake inhibitors: Could these drugs help fight COVID-19 and save lives? J Clin Neurosci 2021; 88:163-172. [PMID: 33992179 PMCID: PMC7973060 DOI: 10.1016/j.jocn.2021.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/09/2023]
Abstract
The current 2019 novel coronavirus disease (COVID-19), an emerging infectious disease, is undoubtedly the most challenging pandemic in the 21st century. A total of 92,977,768 confirmed cases of COVID-19 and 1,991,289 deaths were reported globally up to January 14, 2021. COVID-19 also affects people's mental health and quality of life. At present, there is no effective therapeutic strategy for the management of this disease. Therefore, in the absence of a specific vaccine or curative treatment, it is an urgent need to identify safe, effective and globally available drugs for reducing COVID-19 morbidity and fatalities. In this review, we focus on selective serotonin reuptake inhibitors (SSRIs: a class of antidepressant drugs with widespread availability and an optimal tolerability profile) that can potentially be repurposed for COVID-19 and are currently being tested in clinical trials. We also summarize the existing literature on what is known about the link between serotonin (5-HT) and the immune system. From the evidence reviewed here, we propose fluoxetine as an adjuvant therapeutic agent for COVID-19 based on its known immunomodulatory, anti-inflammatory and antiviral properties. Fluoxetine may potentially reduce pro-inflammatory chemokine/cytokines levels (such as CCL-2, IL-6, and TNF-α) in COVID-19 patients. Furthermore, fluoxetine may help to attenuate neurological complications of COVID-19.
Collapse
|
15
|
GRK2 mediates β-arrestin interactions with 5-HT 2 receptors for JC polyomavirus endocytosis. J Virol 2021; 95:JVI.02139-20. [PMID: 33441347 PMCID: PMC8092707 DOI: 10.1128/jvi.02139-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
JC polyomavirus (JCPyV) infects the majority of the population, establishing a lifelong, asymptomatic infection in the kidney of healthy individuals. People that become severely immunocompromised may experience JCPyV reactivation, which can cause progressive multifocal leukoencephalopathy (PML), a neurodegenerative disease. Due to a lack of therapeutic options, PML results in fatality or significant debilitation among affected individuals. Cellular internalization of JCPyV is mediated by serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs) via clathrin-mediated endocytosis. The JCPyV entry process requires the clathrin-scaffolding proteins β-arrestin, adaptor protein 2 (AP2), and dynamin. Further, a β-arrestin interacting domain, the Ala-Ser-Lys (ASK) motif, within the C-terminus of 5-HT2AR is important for JCPyV internalization and infection. Interestingly, 5-HT2R subtypes A, B, and C equally support JCPyV entry and infection, and all subtypes contain an ASK motif, suggesting a conserved mechanism for viral entry. However, the role of the 5-HT2R ASK motifs and the activation of β-arrestin-associated proteins during internalization has not been fully elucidated. Through mutagenesis, the ASK motifs within 5-HT2BR and 5-HT2CR were identified as critical for JCPyV internalization and infectivity. Further, utilizing biochemical pulldown techniques, mutagenesis of the ASK motifs in 5-HT2BR and 5-HT2CR resulted in reduced β-arrestin binding. Utilizing small-molecule chemical inhibitors and RNA interference, G-protein receptor kinase 2 (GRK2) was determined to be required for JCPyV internalization and infection by mediating interactions between β-arrestin and the ASK motif of 5-HT2Rs. These findings demonstrate that GRK2 and β-arrestin interactions with 5-HT2Rs are critical for JCPyV entry by clathrin-mediated endocytosis and resultant infection.IMPORTANCE As intracellular parasites, viruses require a host cell to replicate and cause disease. Therefore, virus-host interactions contribute to viral pathogenesis. JC polyomavirus (JCPyV) infects most of the population, establishing a lifelong asymptomatic infection within the kidney. Under conditions of severe immunosuppression JCPyV may spread to the central nervous system, causing the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). Individuals living with HIV or undergoing immunomodulatory therapies are at risk for developing PML. The mechanisms of how JCPyV uses specific receptors on the surface of host cells to initiate internalization and infection is a poorly understood process. We have further identified cellular proteins involved in JCPyV internalization and infection and elucidated their specific interactions that are responsible for activation of receptors. Collectively, these findings illuminate how viruses usurp cellular receptors during infection, contributing to current development efforts for therapeutic options for the treatment or prevention of PML.
Collapse
|
16
|
Costa LHA, Santos BM, Branco LGS. Can selective serotonin reuptake inhibitors have a neuroprotective effect during COVID-19? Eur J Pharmacol 2020; 889:173629. [PMID: 33022271 PMCID: PMC7832208 DOI: 10.1016/j.ejphar.2020.173629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
The absence of a specific treatment for SARS-CoV-2 infection led to an intense global effort in order to find new therapeutic interventions and improve patient outcomes. One important feature of COVID-19 pathophysiology is the activation of immune cells, with consequent massive production and release of inflammatory mediators that may cause impairment of several organ functions, including the brain. In addition to its classical role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) has immunomodulatory properties, downregulating the inflammatory response by central and peripheral mechanisms. In this review, we describe the roles of 5-HT in the regulation of systemic inflammation and the potential benefits of the use of specific serotonin reuptake inhibitors as a coadjutant therapy to attenuate neurological complications of COVID-19.
Collapse
Affiliation(s)
- Luis H A Costa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Bruna M Santos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-904, Brazil.
| |
Collapse
|
17
|
Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms 2020; 8:microorganisms8091365. [PMID: 32906603 PMCID: PMC7563460 DOI: 10.3390/microorganisms8091365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are members of the Togaviridae family that are mainly transmitted by arthropods such as mosquitoes. In the last decades, several alphaviruses have re-emerged, causing outbreaks worldwide. One example is the re-emergence of chikungunya virus (CHIKV) in 2004, which caused massive epidemics in the Indian Ocean region after which the virus dramatically spread to the Americas in late 2013. Besides CHIKV, other alphaviruses, such as the Ross River virus (RRV), Mayaro virus (MAYV), and Venezuelan equine encephalitis virus (VEEV), have emerged and have become a serious public health concern in recent years. Infections with the Old World alphaviruses (e.g., CHIKV, RRV) are primarily associated with polyarthritis and myalgia that can persist for months to years. On the other hand, New World alphaviruses such as VEEV cause mainly neurological disease. Despite the worldwide (re-)emergence of these viruses, there are no antivirals or vaccines available for the treatment or prevention of infections with alphaviruses. It is therefore of utmost importance to develop antiviral strategies against these viruses. We here provided an overview of the reported antiviral strategies against arthritogenic alphaviruses. In addition, we highlighted the future perspectives for the development and the proper use of such antivirals.
Collapse
|
18
|
Bouma EM, van de Pol DPI, Sanders ID, Rodenhuis-Zybert IA, Smit JM. Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway. J Virol 2020; 94:e00274-20. [PMID: 32321803 PMCID: PMC7307168 DOI: 10.1128/jvi.00274-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity.IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV.
Collapse
Affiliation(s)
- Ellen M Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Denise P I van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilson D Sanders
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Enhanced Killing of Triple-Negative Breast Cancer Cells by Reassortant Reovirus and Topoisomerase Inhibitors. J Virol 2019; 93:JVI.01411-19. [PMID: 31511390 DOI: 10.1128/jvi.01411-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women in the United States. Triple-negative breast cancer constitutes a subset of breast cancer that is associated with higher rates of relapse, decreased survival, and limited therapeutic options for patients afflicted with this type of breast cancer. Mammalian orthoreovirus (reovirus) selectively infects and kills transformed cells, and a serotype 3 reovirus is in clinical trials to assess its efficacy as an oncolytic agent against several cancers. It is unclear if reovirus serotypes differentially infect and kill triple-negative breast cancer cells and if reovirus-induced cytotoxicity of breast cancer cells can be enhanced by modulating the activity of host molecules and pathways. Here, we generated reassortant reoviruses by forward genetics with enhanced infective and cytotoxic properties in triple-negative breast cancer cells. From a high-throughput screen of small-molecule inhibitors, we identified topoisomerase inhibitors as a class of drugs that enhance reovirus infectivity and cytotoxicity of triple-negative breast cancer cells. Treatment of triple-negative breast cancer cells with topoisomerase inhibitors activates DNA damage response pathways, and reovirus infection induces robust production of type III, but not type I, interferon (IFN). Although type I and type III IFNs can activate STAT1 and STAT2, triple-negative breast cancer cellular proliferation is only negatively affected by type I IFN. Together, these data show that reassortant viruses with a novel genetic composition generated by forward genetics in combination with topoisomerase inhibitors more efficiently infect and kill triple-negative breast cancer cells.IMPORTANCE Patients afflicted by triple-negative breast cancer have decreased survival and limited therapeutic options. Reovirus infection results in cell death of a variety of cancers, but it is unknown if different reovirus types lead to triple-negative breast cancer cell death. In this study, we generated two novel reoviruses that more efficiently infect and kill triple-negative breast cancer cells. We show that infection in the presence of DNA-damaging agents enhances infection and triple-negative breast cancer cell killing by reovirus. These data suggest that a combination of a genetically engineered oncolytic reovirus and topoisomerase inhibitors may provide a potent therapeutic option for patients afflicted with triple-negative breast cancer.
Collapse
|
20
|
Sarshar M, Scribano D, Tranquilli G, Di Pietro M, Filardo S, Zagaglia C, Sessa R, Palamara AT, Ambrosi C. A simple, fast and reliable scan-based technique as a novel approach to quantify intracellular bacteria. BMC Microbiol 2019; 19:252. [PMID: 31718545 PMCID: PMC6849193 DOI: 10.1186/s12866-019-1625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background Quantification of intracellular bacteria is fundamental in many areas of cellular and clinical microbiology to study acute and chronic infections. Therefore, rapid, accurate and low-cost methods represent valuable tools in determining bacterial ability to persist and proliferate within eukaryotic cells. Results Herein, we present the first application of the immunofluorescence In-Cell Western (ICW) assay aimed at quantifying intracellular bacteria in in vitro infection models. The performance of this new approach was evaluated in cell culture infection models using three microorganisms with different lifestyles. Two facultative intracellular bacteria, the fast-growing Shigella flexneri and a persistent strain of Escherichia coli, as well as the obligate intracellular bacterium Chlamydia trachomatis were chosen as bacterial models. The ICW assay was performed in parallel with conventional quantification methods, i.e. colony forming units (CFUs) and inclusion forming units (IFUs). The fluorescence signal intensity values from the ICW assay were highly correlated to CFU/IFUs counting and showed coefficients of determination (R2), ranging from 0,92 to 0,99. Conclusions The ICW assay offers several advantages including sensitivity, reproducibility, high speed, operator-independent data acquisition and overtime stability of fluorescence signals. All these features, together with the simplicity in performance, make this assay particularly suitable for high-throughput screening and diagnostic approaches.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - Giulia Tranquilli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Cecilia Ambrosi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy. .,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy.
| |
Collapse
|
21
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
22
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
23
|
Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. J Virol 2018; 92:JVI.01982-17. [PMID: 29491159 DOI: 10.1128/jvi.01982-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.
Collapse
|
24
|
Berger AK, Yi H, Kearns DB, Mainou BA. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability. PLoS Pathog 2017; 13:e1006768. [PMID: 29211815 PMCID: PMC5734793 DOI: 10.1371/journal.ppat.1006768] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Enteric viruses encounter diverse environments as they migrate through the gastrointestinal tract to infect their hosts. The interaction of eukaryotic viruses with members of the host microbiota can greatly impact various aspects of virus biology, including the efficiency with which viruses can infect their hosts. Mammalian orthoreovirus, a human enteric virus that infects most humans during childhood, is negatively affected by antibiotic treatment prior to infection. However, it is not known how components of the host microbiota affect reovirus infectivity. In this study, we show that reovirus virions directly interact with Gram positive and Gram negative bacteria. Reovirus interaction with bacterial cells conveys enhanced virion thermostability that translates into enhanced attachment and infection of cells following an environmental insult. Enhanced virion thermostability was also conveyed by bacterial envelope components lipopolysaccharide (LPS) and peptidoglycan (PG). Lipoteichoic acid and N-acetylglucosamine-containing polysaccharides enhanced virion stability in a serotype-dependent manner. LPS and PG also enhanced the thermostability of an intermediate reovirus particle (ISVP) that is associated with primary infection in the gut. Although LPS and PG alter reovirus thermostability, these bacterial envelope components did not affect reovirus utilization of its proteinaceous cellular receptor junctional adhesion molecule-A or cell entry kinetics. LPS and PG also did not affect the overall number of reovirus capsid proteins σ1 and σ3, suggesting their effect on virion thermostability is not mediated through altering the overall number of major capsid proteins on the virus. Incubation of reovirus with LPS and PG did not significantly affect the neutralizing efficiency of reovirus-specific antibodies. These data suggest that bacteria enhance reovirus infection of the intestinal tract by enhancing the thermal stability of the reovirus particle at a variety of temperatures through interactions between the viral particle and bacterial envelope components.
Collapse
Affiliation(s)
- Angela K. Berger
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Bernardo A. Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
25
|
Abstract
Purpose of Review The ability of viruses to infect host cells is dependent on several factors including the availability of cell-surface receptors, antiviral state of cells, and presence of host factors needed for viral replication. Here, we review findings from in vitro and in vivo studies using mammalian orthoreovirus (reovirus) that have identified an intricate group of molecules and mechanisms used by the virus to attach and enter cells. Recent Findings Recent findings provide an improved mechanistic understanding of reovirus cell entry. Of special note is the identification of a cellular mediator of cell entry in neuronal and non-neuronal cells, the effect of cell entry on the outcome of infection and cytopathic effects on the host cell, and an improved understanding of the components that promote viral penetration of cellular membranes. Summary A mechanistic understanding of the interplay between host and viral factors has enhanced our view of how viruses usurp cellular processes during infection.
Collapse
Affiliation(s)
- Bernardo A Mainou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322.,Children's Healthcare of Atlanta, Atlanta, GA, 30322
| |
Collapse
|
26
|
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus that has caused epidemics of fever, arthralgia, and rash worldwide. There are currently no licensed vaccines or antiviral therapies available for the prevention or treatment of CHIKV disease. We conducted a high-throughput, chemical compound screen that identified digoxin, a cardiac glycoside that blocks the sodium-potassium ATPase, as a potent inhibitor of CHIKV infection. Treatment of human cells with digoxin or a related cardiac glycoside, ouabain, resulted in a dose-dependent decrease in infection by CHIKV. Inhibition by digoxin was cell type-specific, as digoxin treatment of either murine or mosquito cells did not diminish CHIKV infection. Digoxin displayed antiviral activity against other alphaviruses, including Ross River virus and Sindbis virus, as well as mammalian reovirus and vesicular stomatitis virus. The digoxin-mediated block to CHIKV and reovirus infection occurred at one or more postentry steps, as digoxin inhibition was not bypassed by fusion of CHIKV at the plasma membrane or infection with cell surface-penetrating reovirus entry intermediates. Selection of digoxin-resistant CHIKV variants identified multiple mutations in the nonstructural proteins required for replication complex formation and synthesis of viral RNA. These data suggest a role for the sodium-potassium ATPase in promoting postentry steps of CHIKV replication and provide rationale for modulation of this pathway as a broad-spectrum antiviral strategy. Mitigation of disease induced by globally spreading, mosquito-borne arthritogenic alphaviruses requires the development of new antiviral strategies. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics and illuminate host pathways required for viral infection. Our study describes the potent inhibition of CHIKV and related alphaviruses by the cardiac glycoside digoxin and demonstrates a function for the sodium-potassium ATPase in CHIKV infection.
Collapse
|