1
|
Liu YY, Li N, Chen XY, Wang H, Zhu SW, Yang L, Quan FY, Ma JC, Dai JW, Jiang YL, Xiang ZF, Cheng Q, Zhang WH, Chen KH, Hou W, Xiong HR. MicroRNA let-7a regulation of Hantaan virus replication by Targeting FAS Signaling Pathways. Virology 2024; 600:110254. [PMID: 39383773 DOI: 10.1016/j.virol.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Hantaan virus (HTNV) infection in humans can cause hemorrhagic fever and renal syndrome (HFRS). Understanding host responses to HTNV infection is crucial for developing effective disease intervention strategies. Previous RNA-sequencing studies have investigated the role of microRNAs (miRNAs) in the post-transcriptional regulation of host genes in response to HTNV infection. In this study, we demonstrated that HTNV infection induces let-7a expression in human umbilical vein endothelial cells (HUVEC) and that HTNV G protein upregulates the expression of let-7a. miRNA let-7a mimics and inhibitors validated the predicted targets, including cell apoptosis genes (FAS, caspase-8, and caspase-3) and inflammatory factors (IL-6 and its related factors). Modulation of miRNA let-7a levels by miRNA mimics and inhibitors affected HTNV replication, indicating that HTNV modulates host miRNA expression to affect the outcome of the antiviral host response.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ning Li
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xing-Yuan Chen
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Hui Wang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China
| | - Shao-Wei Zhu
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Lan Yang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Fang-Yi Quan
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Chun Ma
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Jian-Wei Dai
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ya-le Jiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Zhou-Fu Xiang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China
| | - Qi Cheng
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Wei-Hao Zhang
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China
| | - Ke-Han Chen
- School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Wei Hou
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China; School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Hai-Rong Xiong
- State Key Laboratory of Virology/ Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
2
|
Ma S, Qin Y, Ren W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in hematological diseases. Mol Med 2024; 30:165. [PMID: 39342091 PMCID: PMC11439276 DOI: 10.1186/s10020-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 belongs to a conserved family of RNA-binding proteins. It primarily promotes RNA stability, regulates translation and RNA localization, and mediates gene expression through its downstream effectors. Numerous studies have demonstrated that IGF2BP1 plays crucial roles in embryogenesis and carcinogenesis. IGF2BP1-modulated cell proliferation, invasion, and chemo-resistance in solid tumors have attracted researchers' attention. Additionally, several studies have highlighted the importance of IGF2BP1 in hematologic malignancies and hematological genetic diseases, positioning it as a promising therapeutic target for hematological disorders. However, there is a lack of systematic summaries regarding the IGF2BP1 gene within the hematological field. In this review, we provide a comprehensive overview of the discovery and molecular structure of IGF2BP1, along with recent studies on its role in regulating embryogenesis. We also focus on the mechanisms by which IGF2BP1 regulates hematological malignancies through its interactions with its targeted mRNAs. Furthermore, we systematically elucidate the function and mechanism of IGF2BP1 in promoting fetal hemoglobin expression in adult hematopoietic stem/progenitor cells. Finally, we discuss the limitations and challenges of IGF2BP1 as a therapeutic target, offering insights into its prospects.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yiran Qin
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Ahmadi Badi S, Kariman A, Bereimipour A, Shojaie S, Aghsadeghi M, Khatami S, Masotti A. Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection. Mol Biotechnol 2024:10.1007/s12033-024-01096-8. [PMID: 38456962 DOI: 10.1007/s12033-024-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran.
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Arian Kariman
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Bereimipour
- Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | | | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
4
|
Li F, Yu H, Qi A, Zhang T, Huo Y, Tu Q, Qi C, Wu H, Wang X, Zhou J, Hu L, Ouyang H, Pang D, Xie Z. Regulatory Non-Coding RNAs during Porcine Viral Infections: Potential Targets for Antiviral Therapy. Viruses 2024; 16:118. [PMID: 38257818 PMCID: PMC10818342 DOI: 10.3390/v16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Pigs play important roles in agriculture and bio-medicine; however, porcine viral infections have caused huge losses to the pig industry and severely affected the animal welfare and social public safety. During viral infections, many non-coding RNAs are induced or repressed by viruses and regulate viral infection. Many viruses have, therefore, developed a number of mechanisms that use ncRNAs to evade the host immune system. Understanding how ncRNAs regulate host immunity during porcine viral infections is critical for the development of antiviral therapies. In this review, we provide a summary of the classification, production and function of ncRNAs involved in regulating porcine viral infections. Additionally, we outline pathways and modes of action by which ncRNAs regulate viral infections and highlight the therapeutic potential of artificial microRNA. Our hope is that this information will aid in the development of antiviral therapies based on ncRNAs for the pig industry.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
5
|
You J, Xia H, Huang Z, He R, Zhao X, Chen J, Liu S, Xu Y, Cui Y. Research progress of circulating non-coding RNA in diagnosis and treatment of hepatocellular carcinoma. Front Oncol 2023; 13:1204715. [PMID: 37546394 PMCID: PMC10400719 DOI: 10.3389/fonc.2023.1204715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.
Collapse
Affiliation(s)
- Junqi You
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiali Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sidi Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Glaß M, Hüttelmaier S. IGF2BP1-An Oncofetal RNA-Binding Protein Fuels Tumor Virus Propagation. Viruses 2023; 15:1431. [PMID: 37515119 PMCID: PMC10385356 DOI: 10.3390/v15071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
7
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
8
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
9
|
Xu X, Shen HR, Zhang JR, Li XL. The role of insulin-like growth factor 2 mRNA binding proteins in female reproductive pathophysiology. Reprod Biol Endocrinol 2022; 20:89. [PMID: 35706003 PMCID: PMC9199150 DOI: 10.1186/s12958-022-00960-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs) family belongs to a highly conserved family of RNA-binding proteins (RBPs) and is responsible for regulating RNA processing including localization, translation and stability. Mammalian IMPs (IMP1-3) take part in development, metabolism and tumorigenesis, where they are believed to play a major role in cell growth, metabolism, migration and invasion. IMPs have been identified that are expressed in ovary, placenta and embryo. The up-to-date evidence suggest that IMPs are involved in folliculogenesis, oocyte maturation, embryogenesis, implantation, and placentation. The dysregulation of IMPs not only contributes to carcinogenesis but also disturbs the female reproduction, and may participate in the pathogenesis of reproductive diseases and obstetric syndromes, such as polycystic ovary syndrome (PCOS), pre-eclampsia (PE), gestational diabetes mellitus (GDM) and gynecological tumors. In this review, we summarize the role of IMPs in female reproductive pathophysiology, and hope to provide new insights into the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao-Ran Shen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jia-Rong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
10
|
Badami E, Busà R, Douradinha B, Russelli G, Miceli V, Gallo A, Zito G, Conaldi PG, Iannolo G. Hepatocellular carcinoma, hepatitis C virus infection and miRNA involvement: Perspectives for new therapeutic approaches. World J Gastroenterol 2022; 28:2417-2428. [PMID: 35979260 PMCID: PMC9258280 DOI: 10.3748/wjg.v28.i22.2417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is the principal etiology of cirrhosis and, ultimately, hepatocellular carcinoma (HCC). At present, approximately 71 million people are chronically infected with HCV, and 10%–20% of these are expected to develop severe liver complications throughout their lifetime. Scientific evidence has clearly shown the causal association between miRNAs, HCV infection and HCC. Although it is not completely clear whether miRNA dysregulation in HCC is the cause or the consequence of its development, variations in miRNA patterns have been described in different liver diseases, including HCC. Many studies have analyzed the importance of circulating miRNAs and their effect on cell proliferation and apoptosis. In this Review, we aim to summarize current knowledge on the association between miRNA, HCV and HCC from a diagnostic point of view, and also the potential implications for therapeutic approaches.
Collapse
Affiliation(s)
- Ester Badami
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED, Palermo 90127, Italy
| | - Rosalia Busà
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Bruno Douradinha
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED, Palermo 90127, Italy
| | - Giovanna Russelli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Vitale Miceli
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Alessia Gallo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Giovanni Zito
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Pier Giulio Conaldi
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| | - Gioacchin Iannolo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo 90127, Italy
| |
Collapse
|
11
|
Tsai YS, Huang CI, Tsai PC, Yeh ML, Huang CF, Hsieh MH, Liu TW, Lin YH, Liang PC, Lin ZY, Chen SC, Huang JF, Chuang WL, Dai CY, Yu ML. Circulating Let-7 Family Members as Non-Invasive Biomarkers for Predicting Hepatocellular Carcinoma Risk after Antiviral Treatment among Chronic Hepatitis C Patients. Cancers (Basel) 2022; 14:2023. [PMID: 35454929 PMCID: PMC9030777 DOI: 10.3390/cancers14082023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
HCC, a leading cause of cancer-related mortality, is diagnosed at advanced stages. Although antiviral therapy has reduced the risk of HCC among chronic hepatitis C (CHC) patients, the risk of HCC remains, thus, highlighting the unmet need for continuous surveillance. Therefore, stable and cost-effective biomarkers, such as circulating microRNAs, must be identified. We aimed to clarify whether serum levels of the Let-7 family can predict HCC risk in patients with CHC using univariate and multivariate Cox’s proportional hazards model. We analyzed the sera of 54 patients with CHC who developed HCC after antiviral therapy and compared the data with those of 173 patients without HCC development. The Let-7 family (except for let-7c) exhibited significant negative correlations with the fibrosis score (r = −0.2736 to −0.34, p = 0.0002 to <0.0001). After Cox’s regression model was used to adjust for age, sex, HCV genotype, and FIB-4 ≥ 3.25, patients with CHC with let-7i median ≥ −1.696 (adjusted hazard ratio [aHR] = 0.31, 95% CI: 0.08−0.94, p = 0.0372) in the sustained virologic response (SVR) groups and ≥−1.696 (aHR = 0.09, 95% CI: 0.08−0.94, p = 0.0022) in the non-SVR group were less likely to develop HCC. Thus, circulating let-7i can be used for early CHC surveillance in patients with HCC risk after antiviral treatment.
Collapse
Affiliation(s)
- Yi-Shan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ta-Wei Liu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-S.T.); (C.-I.H.); (P.-C.T.); (M.-L.Y.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (C.-Y.D.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Di C, Zheng G, Zhang Y, Tong E, Ren Y, Hong Y, Song Y, Chen R, Tan X, Yang L. RTA and LANA Competitively Regulate let-7a/RBPJ Signal to Control KSHV Replication. Front Microbiol 2022; 12:804215. [PMID: 35069510 PMCID: PMC8777081 DOI: 10.3389/fmicb.2021.804215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi's sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA's inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.
Collapse
Affiliation(s)
- Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, China.,School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Guoxia Zheng
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yunheng Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Enyu Tong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Dual Effects of Let-7b in the Early Stage of Hepatitis C Virus Infection. J Virol 2021; 95:JVI.01800-20. [PMID: 33208444 DOI: 10.1128/jvi.01800-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNA let-7b expression is induced by infection of hepatitis C virus (HCV) and is involved in the regulation of HCV replication by directly targeting the HCV genome. The current study demonstrated that let-7b directly targets negative regulators of type I interferon (IFN) signaling thereby limiting HCV replication in the early stage of HCV infection. Let-7b-regulated genes which are involved in host cellular responses to HCV infection were unveiled by microarray profiling and bioinformatic analyses, followed by various molecular and cellular assays using Huh7 cells expressing wild-type (WT) or the seed region-mutated let-7b. Let-7b targeted the cytokine signaling 1 (SOCS1) protein, a negative regulator of JAK/STAT signaling, which then enhanced STAT1-Y701 phosphorylation leading to increased expression of the downstream interferon-stimulated genes (ISGs). Let-7b augmented retinoic acid-inducible gene I (RIG-I) signaling, but not MDA5, to phosphorylate and nuclear translocate IRF3 leading to increased expression of IFN-β. Let-7b directly targeted the ATG12 and IκB kinase alpha (IKKα) transcripts and reduced the interaction of the ATG5-ATG12 conjugate and RIG-I leading to increased expression of IFN, which may further stimulate JAK/STAT signaling. Let-7b induced by HCV infection elicits dual effects on IFN expression and signaling, along with targeting the coding sequences of NS5B and 5' UTR of the HCV genome, and limits HCV RNA accumulation in the early stage of HCV infection. Controlling let-7b expression is thereby crucial in the intervention of HCV infection.IMPORTANCE HCV is a leading cause of liver disease, with an estimated 71 million people infected worldwide. During HCV infection, type I interferon (IFN) signaling displays potent antiviral and immunomodulatory effects. Host factors, including microRNAs (miRNAs), play a role in upregulating IFN signaling to limit HCV replication. Let-7b is a liver-abundant miRNA that is induced by HCV infection and targets the HCV genome to suppress HCV RNA accumulation. In this study, we demonstrated that let-7b, as a positive regulator of type I IFN signaling, plays dual roles against HCV replication by increasing the expression of IFN and interferon-sensitive response element (ISRE)-driven interferon-stimulated genes (ISGs) in the early stage of HCV infection. This study sheds new insight into understanding the role of let-7b in combatting HCV infection. Clarifying IFN signaling regulated by miRNA during the early phase of HCV infection may help researchers understand the initial defense mechanisms to other RNA viruses.
Collapse
|
15
|
Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body? Stem Cell Rev Rep 2021; 17:214-230. [PMID: 33403490 PMCID: PMC7785129 DOI: 10.1007/s12015-020-10108-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.
Collapse
Affiliation(s)
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey. .,School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Tsai YS, Yeh ML, Tsai PC, Huang CI, Huang CF, Hsieh MH, Liu TW, Lin YH, Liang PC, Lin ZY, Chen SC, Huang JF, Chuang WL, Dai CY, Yu ML. Clusters of Circulating let-7 Family Tumor Suppressors Are Associated with Clinical Characteristics of Chronic Hepatitis C. Int J Mol Sci 2020; 21:4945. [PMID: 32668728 PMCID: PMC7404305 DOI: 10.3390/ijms21144945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hepatitis C virus (HCV) infections can cause permanent liver-related diseases, including hepatocellular carcinoma (HCC). Low mortality and incidence of HCC have been observed in patients with chronic hepatitis C undergoing direct-acting antiviral therapy. Tumor suppressive let-7 family members are down-regulated in HCC. The present study, therefore, aimed to investigate whether expression levels for the full spectrum of let-7 family members (let-7a, 7b, 7c, 7d, 7e, 7f, 7g, 7i, and miR-98) in the circulatory system are useful as surveillance biomarkers for liver-related diseases to monitor treatment efficacy during HCV infection. To this end, we measured the levels of mature circulating let-7 family members using quantitative reverse transcription-PCR in 236 patients with HCV infection, and 147 age- and sex-matched controls. Using hierarchical cluster analysis and principal component analysis, three clusters were obtained after measuring expression levels of let-7 family members in the patients and controls. Cluster 1 included let-7a/d/e/g, Cluster 2 comprised let-7b and let-7i, and Cluster 3 comprised let-7c/f/miR-98. Let-7b/c/g represented the three clusters and showed the best survival response to liver cancer when analyzed with respect to patient data. Therefore, considering the circulating levels of let7 b/c/g as representatives of the let-7 family may facilitate effective monitoring of liver-related disease.
Collapse
Affiliation(s)
- Yi-Shan Tsai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ta-Wei Liu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center (LSARC), Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center (LSARC), Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-S.T.); (M.-L.Y.); (P.-C.T.); (C.-I.H.); (C.-F.H.); (M.-H.H.); (T.-W.L.); (Y.-H.L.); (P.-C.L.); (Z.-Y.L.); (S.-C.C.); (J.-F.H.); (W.-L.C.); (M.-L.Y.)
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Lipid Science and Aging Research Center (LSARC), Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Herzog K, Bandiera S, Pernot S, Fauvelle C, Jühling F, Weiss A, Bull A, Durand SC, Chane-Woon-Ming B, Pfeffer S, Mercey M, Lerat H, Meunier JC, Raffelsberger W, Brino L, Baumert TF, Zeisel MB. Functional microRNA screen uncovers O-linked N-acetylglucosamine transferase as a host factor modulating hepatitis C virus morphogenesis and infectivity. Gut 2020; 69:380-392. [PMID: 31076402 PMCID: PMC7613422 DOI: 10.1136/gutjnl-2018-317423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Infection of human hepatocytes by the hepatitis C virus (HCV) is a multistep process involving both viral and host factors. microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Given that miRNAs were indicated to regulate between 30% and 75% of all human genes, we aimed to investigate the functional and regulatory role of miRNAs for the HCV life cycle. DESIGN To systematically reveal human miRNAs affecting the HCV life cycle, we performed a two-step functional high-throughput miRNA mimic screen in Huh7.5.1 cells infected with recombinant cell culture-derived HCV. miRNA targeting was then assessed using a combination of computational and functional approaches. RESULTS We uncovered miR-501-3p and miR-619-3p as novel modulators of HCV assembly/release. We discovered that these miRNAs regulate O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) protein expression and identified OGT and O-GlcNAcylation as regulators of HCV morphogenesis and infectivity. Furthermore, increased OGT expression in patient-derived liver tissue was associated with HCV-induced liver disease and cancer. CONCLUSION miR-501-3p and miR-619-3p and their target OGT are previously undiscovered regulatory host factors for HCV assembly and infectivity. In addition to its effect on HCV morphogenesis, OGT may play a role in HCV-induced liver disease and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Katharina Herzog
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Simonetta Bandiera
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Sophie Pernot
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Frank Jühling
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Amélie Weiss
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Anne Bull
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Sarah C. Durand
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Strasbourg, France,Architecture et Réactivité de l’ARN – UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Marion Mercey
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Hervé Lerat
- Institute for Applied Biosciences, Centre de Recherche UGA - Inserm U1209 - CNRS 5309, Grenoble, France
| | - Jean-Christophe Meunier
- Inserm U1259, Faculté de Médecine, Université François Rabelais and CHRU de Tours, Tours, France
| | - Wolfgang Raffelsberger
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Laurent Brino
- Université de Strasbourg, Strasbourg, France,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,CNRS, UMR7104, Illkirch, France,Inserm, U1258, Illkirch, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Université de Strasbourg, Strasbourg, France,Inserm, U1052, CNRS UMR 5286, Centre Léon Bérard (CLB), Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France,Corresponding authors. Dr. Mirjam B. Zeisel, Inserm U1052 – CRCL, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France, Phone: +33472681970, Fax: +33472681971, and Prof. Thomas F. Baumert, Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 rue Koeberlé, 67000 Strasbourg, France, Phone: +33368853703, Fax: +33368853724,
| |
Collapse
|
18
|
Jennings J, Sang Y. Porcine Interferon Complex and Co-Evolution with Increasing Viral Pressure after Domestication. Viruses 2019; 11:v11060555. [PMID: 31208045 PMCID: PMC6631851 DOI: 10.3390/v11060555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022] Open
Abstract
Consisting of nearly 60 functional genes, porcine interferon (IFN)-complex represents an evolutionary surge of IFN evolution in domestic ungulate species. To compare with humans and mice, each of these species contains about 20 IFN functional genes, which are better characterized using the conventional IFN-α/β subtypes as examples. Porcine IFN-complex thus represents an optimal model for studying IFN evolution that resulted from increasing viral pressure during domestication and industrialization. We hypothesize and justify that porcine IFN-complex may extend its functionality in antiviral and immunomodulatory activity due to its superior molecular diversity. Furthermore, these unconventional IFNs could even confer some functional and signaling novelty beyond that of the well-studied IFN-α/β subtypes. Investigations into porcine IFN-complex will further our understanding of IFN biology and promote IFN-based therapeutic designs to confront swine viral diseases.
Collapse
Affiliation(s)
- Jordan Jennings
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
19
|
Qi Y, Zheng G, Di C, Zhang J, Wang X, Hong Y, Song Y, Chen R, Yang Y, Yan Y, Xu L, Tan X, Yang L. Latency-associated nuclear antigen inhibits lytic replication of Kaposi's sarcoma-associated herpesvirus by regulating let-7a/RBPJ signaling. Virology 2019; 531:69-78. [PMID: 30856484 DOI: 10.1016/j.virol.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Latency-associated nuclear antigen (LANA) is the key factor in the establishment and maintenance of latency of Kaposi's sarcoma-associated herpesvirus (KSHV). A cellular protein, recombination signal binding protein for immunoglobulin kappa J region (RBPJ), is essential for the lytic reactivation of KSHV. However, whether RBPJ expression is regulated by KSHV is not clear. Here, we show that LANA upregulates let-7a and its primary transcripts in parallel with its reduction of RBPJ expression. An increase in notch intracellular domain (NICD) and the downregulation of NF-κB and LIN28B contribute to the upregulation of let-7a by LANA. Let-7a represses RBPJ expression by directly binding the 3' untranslated region of RBPJ. Let-7a overexpression or RBPJ knockdown led to a dose- and time-dependent inhibition of lytic reactivation of KSHV. Collectively, these findings support a model wherein LANA inhibits the lytic replication of KSHV by regulating let-7a/RBPJ signaling.
Collapse
Affiliation(s)
- Yan Qi
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Guoxia Zheng
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Chunhong Di
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Jinxia Zhang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobo Wang
- Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Hong
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yang Song
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Chen
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutao Yan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Liangwen Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Gilles ME, Slack FJ. Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets 2018; 22:929-939. [PMID: 30328720 DOI: 10.1080/14728222.2018.1535594] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION MicroRNAs (miRNA) are a class of small non-coding RNA that play a major role in various cellular processes by negatively regulating gene expression. In the past decade, miRNA dysregulation has been reported to be closely linked to inflammatory diseases. The immune response modulates cancer initiation and progression; miRNAs including let-7 family members have been shown to act as key regulators of the immune responses in various diseases and cancers. Notably, the let-7 miRNA has been reported to be closely associated with immunity, specifically with Toll-like receptors that mediate cytokine expression during pathogen infection and with the regulation of various other immune effectors. Areas covered: In this review, the authors describe the discovery of let-7 as the starting point of the RNA revolution and highlight let-7 as an efficient tool for cancer and immune therapy. Expert opinion: let-7 miRNA has emerged as a key player in cancer therapy and immune responses and it has potential role as a new immunotherapeutic target. However, while there are challenges regarding miRNA delivery, the exciting emergence of personalized medicine for cancer and immunotherapy could be beneficial for the development of let-7 therapeutics.
Collapse
Affiliation(s)
- Maud-Emmanuelle Gilles
- a Harvard Medical School initiative for RNA Medicine, Department of Pathology , Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Frank J Slack
- a Harvard Medical School initiative for RNA Medicine, Department of Pathology , Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
21
|
Cheng M, Niu Y, Fan J, Chi X, Liu X, Yang W. Interferon down-regulation of miR-1225-3p as an antiviral mechanism through modulating Grb2-associated binding protein 3 expression. J Biol Chem 2018; 293:5975-5986. [PMID: 29496996 DOI: 10.1074/jbc.ra117.000738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Induction of interferons (IFNs) is a central event of antiviral innate immunity. As crucial posttranscriptional regulators, microRNAs (miRNAs) are important for IFN-mediated host defense. Although screening has indicated a substantial number of miRNAs to be differentially expressed after IFN stimulation, the detailed mechanisms of these miRNAs in the antiviral response are underexplored and of great significance. Here, we show that hsa-miR-1225-3p is specifically down-regulated by type I IFN through the IFN/JAK/STAT signaling pathway. Silencing endogenous miR-1225-3p inhibited infection by multiple IFN-susceptible viruses, including hepatitis C virus, Sendai virus, and Newcastle disease virus. In contrast, overexpression of miR-1225-3p impaired the antiviral effect of IFNs and facilitated viral infection. Regarding the mechanism, we identified growth factor receptor-bound protein 2-associated binding protein 3 (GAB3) as a direct target of miR-1225-3p. GAB3 expression was up-regulated by IFN, and overexpression of GAB3 demonstrated potent antiviral effects through enhancing IFN response and virus-triggered innate immune activation. Taken together, our findings reveal the biological function of miR-1225-3p for the first time and propose a novel antiviral regulation pathway in which miRNA and GAB3 participate. This study contributes to the understanding of host miRNA participation in antiviral processes of IFN.
Collapse
Affiliation(s)
- Min Cheng
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Yuqiang Niu
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Jingjing Fan
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Xiaojing Chi
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Xiuying Liu
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Wei Yang
- From the MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| |
Collapse
|
22
|
He CL, Liu M, Tan ZX, Hu YJ, Zhang QY, Kuang XM, Kong WL, Mao Q. Hepatitis C virus core protein-induced miR-93-5p up-regulation inhibits interferon signaling pathway by targeting IFNAR1. World J Gastroenterol 2018; 24:226-236. [PMID: 29375208 PMCID: PMC5768941 DOI: 10.3748/wjg.v24.i2.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism by which hepatitis C virus (HCV) core protein-induced miR-93-5p up-regulation regulates the interferon (IFN) signaling pathway.
METHODS HCV-1b core protein was exogenously expressed in Huh7 cells using pcDNA3.1 (+) vector. The expression of miR-93-5p and interferon receptor 1 (IFNAR1) was measured using quantitative reverse transcription-polymerase chain reaction and Western blot. The protein expression and phosphorylation level of STAT1 were evaluated by Western blot. The overexpression and silencing of miR-93-5p and IFNAR1 were performed using miR-93-5p agomir and antagomir, and pcDNA3.1-IFNAR1 and IFNAR1 siRNA, respectively. Luciferase assay was used to identify whether IFNAR1 is a target of miR-93-5p. Cellular experiments were also conducted.
RESULTS Serum miR-93-5p level was increased in patients with HCV-1b infection and decreased to normal level after HCV-1b clearance, but persistently increased in those with pegylated interferon-α resistance, compared with healthy subjects. Serum miR-93-5p expression had an AUC value of 0.8359 in distinguishing patients with pegylated interferon-α resistance from those with pegylated interferon-α sensitivity. HCV-1b core protein increased miR-93-5p expression and induced inactivation of the IFN signaling pathway in Huh7 cells. Furthermore, IFNAR1 was identified as a direct target of miR-93-5p, and IFNAR1 restore could rescue miR-93-5p-reduced STAT1 phosphorylation, suggesting that the miR-93-5p-IFNAR1 axis regulates the IFN signaling pathway.
CONCLUSION HCV-1b core protein-induced miR-93-5p up-regulation inhibits the IFN signaling pathway by directly targeting IFNAR1, and the miR-93-5p-IFNAR1 axis regulates STAT1 phosphorylation. This axis may be a potential therapeutic target for HCV-1b infection.
Collapse
Affiliation(s)
- Chang-Long He
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Ming Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Zhao-Xia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Ya-Jun Hu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Qiao-Yue Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Xue-Mei Kuang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Wei-Long Kong
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing 400037, China
| |
Collapse
|
23
|
Tornesello ML, Buonaguro L, Izzo F, Buonaguro FM. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 2018; 7:25087-102. [PMID: 26943571 PMCID: PMC5041890 DOI: 10.18632/oncotarget.7837] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses encode multifunctional regulatory proteins activating several oncogenic pathways, which induce accumulation of multiple genetic alterations in the infected hepatocytes. Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important anti-cancer targets. In this review, we highlight the molecular mechanisms underlying the pathogenesis of primary liver cancer, with particular emphasis on the host genetic variations identified by high-throughput technologies. In addition, we discuss the importance of genetic alterations, such as mutations in the telomerase reverse transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification for development of more effective treatment approaches.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Department, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| |
Collapse
|
24
|
Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Immunol 2017; 8:1775. [PMID: 29312306 PMCID: PMC5732478 DOI: 10.3389/fimmu.2017.01775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Snakehead vesiculovirus (SHVV), a new rhabdovirus isolated from diseased hybrid snakehead, has emerged as an important pathogen during the past few years in China with great economical losses in snakehead fish cultures. However, little is known about the mechanism of its pathogenicity. MicroRNAs are small noncoding RNAs that posttranscriptionally modulate gene expression and have been indicated to regulate almost all cellular processes. Our previous study has revealed that miR-214 was downregulated upon SHVV infection. Results The overexpression of miR-214 in striped snakehead (SSN-1) cells inhibited SHVV replication and promoted IFN-α expression, while miR-214 inhibitor facilitated SHVV replication and reduced IFN-α expression. These findings suggested that miR-214 negatively regulated SHVV replication probably through positively regulating IFN-α expression. Further investigation revealed that adenosine 5′-monophosphate-activated protein kinase (AMPK) was a target gene of miR-214. Knockdown of AMPK by siRNA inhibited SHVV replication and promoted IFN-α expression, suggesting that cellular AMPK positively regulated SHVV replication and negatively regulated IFN-α expression. Moreover, we found that siAMPK-mediated inhibition of SHVV replication could be partially restored by miR-214 inhibitor, indicating that miR-214 inhibited SHVV replication at least partially via targeting AMPK. Conclusion The findings of this study complemented our early study, and provide insights for the mechanism of SHVV pathogenicity. SHVV infection downregulated miR-214, and in turn, the downregulated miR-214 increased the expression of its target gene AMPK, which promoted SHVV replication via reducing IFN-α expression. It can therefore assume that cellular circumstance with low level of miR-214 is beneficial for SHVV replication and that SHVV evades host antiviral innate immunity through decreasing IFN-α expression via regulating cellular miR-214 expression.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Commun 2017; 8:1789. [PMID: 29176620 PMCID: PMC5702611 DOI: 10.1038/s41467-017-01954-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular microRNAs (miRNAs) have been shown to regulate hepatitis C virus (HCV) replication, yet a systematic interrogation of the repertoire of miRNAs impacting HCV life cycle is lacking. Here we apply integrative functional genomics strategies to elucidate global HCV–miRNA interactions. Through genome-wide miRNA mimic and hairpin inhibitor phenotypic screens, and miRNA–mRNA transcriptomics analyses, we identify three proviral and nine antiviral miRNAs that interact with HCV. These miRNAs are functionally linked to particular steps of HCV life cycle and related viral host dependencies. Further mechanistic studies demonstrate that miR-25, let-7, and miR-130 families repress essential HCV co-factors, thus restricting viral infection at multiple stages. HCV subverts the antiviral actions of these miRNAs by dampening their expression in cell culture models and HCV-infected human livers. This comprehensive HCV–miRNA interaction map provides fundamental insights into HCV-mediated pathogenesis and unveils molecular pathways linking RNA biology to viral infections. Using genome-wide miRNA mimic and hairpin inhibitor screens, Li et al. identify 31 miRNAs that either inhibit or promote hepatitis C virus (HCV) replication at different steps of the viral life cycle. Furthermore, human liver biopsies show that HCV down-regulates identified miRNAs with antiviral function.
Collapse
|
26
|
Castrillón-Betancur JC, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Mem Inst Oswaldo Cruz 2017; 112:281-291. [PMID: 28327787 PMCID: PMC5354610 DOI: 10.1590/0074-02760160404] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dengue is considered one of the world’s most important mosquito-borne diseases.
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that play an
important role in the regulation of gene expression in eukaryotes. Although miRNAs
possess antiviral activity against many mammalian-infecting viruses, their
involvement in Dengue virus (DENV) replication remains poorly understood. OBJECTIVE To determine the role of miR-484 and miR-744 in DENV infection and to examine
whether DENV infection alters the expression of both miRNAs. METHODS We used bioinformatics tools to explore the relationship between DENV and
cellular miRNAs. We then overexpressed miR-484 or miR-744 in Vero cells to examine
their role in DENV replication using flow cytometry, reverse transcriptase
quantitative polymerase chain reaction (RT-qPCR), and western blotting. FINDINGS We found several cellular miRNAs that target a conserved region within the 3′
untranslated region (3′ UTR) of the genome of the four DENV serotypes and found
that overexpression of miR-484 or miR-744 inhibits infection by DENV-1 to DENV-4.
Furthermore, we observed that DENV RNA might be involved in the downregulation of
endogenous miR-484 and miR-744. CONCLUSION Our study identifies miR-484 and miR-744 as two possible restriction host factors
against DENV infection. However, further studies are needed to directly verify
whether miR-484 and miR-744 both have an anti-DENV effect in vivo.
Collapse
Affiliation(s)
| | - Silvio Urcuqui-Inchima
- Universidad de Antioquia, Facultad de Medicina, Grupo Inmunovirología, Medellín, Colombia
| |
Collapse
|
27
|
Orr-Burks NL, Shim BS, Wu W, Bakre AA, Karpilow J, Tripp RA. MicroRNA screening identifies miR-134 as a regulator of poliovirus and enterovirus 71 infection. Sci Data 2017; 4:170023. [PMID: 28248924 PMCID: PMC5332013 DOI: 10.1038/sdata.2017.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) regulate virus replication through multiple mechanisms. Poliovirus causes a highly debilitating disease and though global efforts to eradicate polio have sharply decreased polio incidence, unfortunately three countries (Afghanistan, Nigeria and Pakistan) remain polio-endemic. We hypothesize that understanding the host factors involved in polio replication will identify novel prophylactic and therapeutic targets against polio and related viruses. In this data set, employing genome wide screens of miRNA mimics and inhibitors, we identified miRNAs which significantly suppressed polio replication. Specifically, miR-134 regulates poliovirus replication via modulation of ras-related nuclear protein (RAN), an important component of the nuclear transport system. MiR-134 also inhibited other Picornaviridae viruses including EV71, a growing concern and a high priority for vaccination in Asian countries like China. These findings demonstrate a novel mechanism for miRNA regulation of poliovirus and other Picornaviridae viruses in host cells, and thereby may provide a novel approach in combating infection and a potential approach for the development of anti-Picornaviridae strategies.
Collapse
Affiliation(s)
- Nichole Lynn Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Byoung-Shik Shim
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | - Jon Karpilow
- Proventus Bio, 220 Riverbend Rd, Athens, Georgia 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
28
|
Li D, Cheng M, Niu Y, Chi X, Liu X, Fan J, Fan H, Chang Y, Yang W. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c. Int J Biol Sci 2017; 13:349-357. [PMID: 28367099 PMCID: PMC5370442 DOI: 10.7150/ijbs.16635] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/14/2017] [Indexed: 12/27/2022] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are master regulators of hepatic lipid homeostasis. Aberrant expression of SREBPs frequently leads to lipid metabolism dysregulation. Long non-coding RNAs (lncRNAs) have been identified with diverse biological functions, but the effects of lncRNAs on lipid metabolism are rarely reported. Here, we identified a novel human specific lncRNA, lncHR1, as a negative regulator of SREBP-1c expression. Overexpression of lncHR1 inhibited expression of SREBP-1c and fatty acid synthase (FAS) and then repressed oleic acid-induced hepatic cell triglyceride (TG) and lipid droplet (LD) accumulation. In vivo, the data of established transgenic animals showed that mice with lncHR1 expression had less hepatic expression of SREBP-1c, FAS, Acetyl-CoA carboxylase α (ACCα), and less hepatic and plasma TG after being fed a high-fat diet. Therefore, we report a novel lncRNA which can decrease lipid metabolism by repressing SREBP-1c gene expression.
Collapse
Affiliation(s)
- Duan Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China;; Department of Microbiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Min Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| | - Yuqiang Niu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| | - Xiaojing Chi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| | - Xiuying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| | - Jingjing Fan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| | - Heng Fan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Yongsheng Chang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, P.R. China
| |
Collapse
|
29
|
Yu HR, Hsu TY, Huang HC, Kuo HC, Li SC, Yang KD, Hsieh KS. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults. Front Immunol 2016; 7:615. [PMID: 28066425 PMCID: PMC5165026 DOI: 10.3389/fimmu.2016.00615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Kuender D Yang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
30
|
Hartling HJ, Ballegaard VC, Nielsen NS, Gaardbo JC, Nielsen SD. Immune regulation in chronic hepatitis C virus infection. Scand J Gastroenterol 2016; 51:1387-97. [PMID: 27436030 DOI: 10.3109/00365521.2016.1170875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immunological result of infection with Hepatitis C virus (HCV) depends on the delicate balance between a vigorous immune response that may clear the infection, but with a risk of unspecific inflammation and, or a less inflammatory response that leads to chronic infection. In general, exhaustion and impairment of cytotoxic function of HCV-specific T cells and NK cells are found in patients with chronic HCV infection. In contrast, an increase in immune regulatory functions is found primarily in form of increased IL-10 production possibly due to increased level and function of anti-inflammatory Tregs. Thus, the major immune players during chronic HCV infection are characterized by a decrease of cytotoxic function and increase of inhibitory functions. This may be an approach to diminish intrahepatic and systemic inflammation. Finally, there has been increasing awareness of regulatory functions of epigenetic changes in chronic HCV infection. A vast amount of studies have revealed the complexity of immune regulation in chronic HCV infection, but the interplay between immune regulation in virus and host remains incompletely understood. This review provides an overview of regulatory functions of HCV-specific T cells, NK cells, Tregs, IL-10, and TGF-β, as well as epigenetic changes in the setting of chronic HCV infection.
Collapse
Affiliation(s)
- Hans Jakob Hartling
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Vibe Cecilie Ballegaard
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Nick Schou Nielsen
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Julie Christine Gaardbo
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Susanne Dam Nielsen
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| |
Collapse
|
31
|
Matsuura K, De Giorgi V, Schechterly C, Wang RY, Farci P, Tanaka Y, Alter HJ. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatology 2016; 64:732-45. [PMID: 27227815 PMCID: PMC4992455 DOI: 10.1002/hep.28660] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED The goal of this study was to determine whether an association exists between circulating microRNA (miRNA) levels and disease progression in chronic hepatitis C (CHC), whether plasma or extracellular vesicles (EVs) were optimal for miRNA measurement and their correlation with hepatic miRNA expression, and the mechanistic plausibility of this association. We studied 130 CHC patients prospectively followed over several decades. A comprehensive miRNA profile in plasma using microarray with 2578 probe sets showed 323 miRNAs differentially expressed between healthy individuals and CHC patients, but only six that distinguished patients with mild versus severe chronic hepatitis. Eventually, let-7a/7c/7d-5p and miR-122-5p were identified as candidate predictors of disease progression. Cross-sectional analyses at the time of initial liver biopsy showed that reduced levels of let-7a/7c/7d-5p (let-7s) in plasma were correlated with advanced histological hepatic fibrosis stage and other fibrotic markers, whereas miR-122-5p levels in plasma were positively correlated with inflammatory activity, but not fibrosis. Measuring let-7s levels in EVs was not superior to intact plasma for discriminating significant hepatic fibrosis. Longitudinal analyses in 60 patients with paired liver biopsies showed that let-7s levels in plasma markedly declined over time in parallel with fibrosis progression. However, circulating let-7s levels did not parallel those in the liver. CONCLUSION Of all miRNAs screened, the let-7 family showed the best correlation with hepatic fibrosis in CHC. A single determination of let-7s levels in plasma did not have superior predictive value for significant hepatic fibrosis compared with that of fibrosis-4 index, but the rate of let-7s decline in paired longitudinal samples correlated well with fibrosis progression. Pathway analysis suggested that low levels of let-7 may influence hepatic fibrogenesis through activation of transforming growth factor β signaling in hepatic stellate cells. (Hepatology 2016;64:732-745).
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Cathy Schechterly
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Richard Y. Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Harvey J. Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD,Corresponding author: Harvey J. Alter, M.D., Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD. Building 10, Room 1C-711, 10 Center Drive, Bethesda, MD 20892. ; Tel: 301-496-8393; fax: 301-402-2965
| |
Collapse
|
32
|
Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, Yuan W, Qi Z. Exosomal MicroRNAs Derived From Umbilical Mesenchymal Stem Cells Inhibit Hepatitis C Virus Infection. Stem Cells Transl Med 2016; 5:1190-203. [PMID: 27496568 DOI: 10.5966/sctm.2015-0348] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED : Hepatitis C virus (HCV) is a significant global public health problem, causing more than 350,000 deaths every year. Although the development of direct-acting antivirals has improved the sustained virological response rate in HCV patients, novel anti-HCV agents with higher efficacy as well as better tolerance and cheaper production costs are still urgently needed. Cell-based therapy, especially its unique and strong paracrine ability to transfer information to other cells via extracellular vesicles such as exosomes, has become one of the most popular therapeutic methods in recent years. In our study, exosomes secreted from umbilical mesenchymal stem cells (uMSCs), which are widely used in regenerative medicine, inhibited HCV infection in vitro, especially viral replication, with low cell toxicity. Our analysis revealed that microRNAs (miRNAs) from uMSC-derived exosomes (uMSC-Exo) had their unique expression profiles, and these functional miRNAs, mainly represented by let-7f, miR-145, miR-199a, and miR-221 released from uMSC-Exo, largely contributed to the suppression of HCV RNA replication. These four miRNAs possessed binding sites in HCV RNA as demonstrated by the target prediction algorithm. In addition, uMSC-Exo therapy showed synergistic effect when combined with U.S. Food and Drug Administration-approved interferon-α or telaprevir, enhancing their anti-HCV ability and thus improving the clinical significance of these regenerative substances for future application as optimal adjuvants of anti-HCV therapy. SIGNIFICANCE This work reported, for the first time, the identification of stem cell-derived exosomes of antiviral activity. Umbilical mesenchymal stem cell-secreted exosomes inhibited hepatitis C virus infection through transporting a mixture of microRNAs complementing the viral genomes to the host cells. This finding provides insights and prospects for physiologically secreted substances for antiviral therapy.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China
| | - Shuo Fang
- Department of Plastic and Reconstruction, Changhai Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, People's Republic of China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Houqi Liu
- Research Center of Developmental Biology, Second Military Medical University, Shanghai, People's Republic of China
| | - Wen Yuan
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Jinato T, Chuaypen N, Poomipak W, Praianantathavorn K, Makkoch J, Kiatbumrung R, Jampoka K, Tangkijvanich P, Payungporn S. Original Research: Analysis of hepatic microRNA alterations in response to hepatitis B virus infection and pegylated interferon alpha-2a treatment. Exp Biol Med (Maywood) 2016; 241:1803-10. [PMID: 27190255 DOI: 10.1177/1535370216647184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022] Open
Abstract
Interferons play important roles in defense mechanisms against viral infection, and thus interferon therapy has been a standard treatment in chronic hepatitis B patients. Interferons signaling pathways promote interferon-inducible genes including microRNAs. In this research, we aimed to determine microRNAs expression profiles in vitro and in vivo For in vitro model, Huh7 cells were transfected with or without hepatitis B virus plasmid for 6 h, and then treated with 100 ng of pegylated-interferon alpha-2a for 24 h. In vivo, we defined microRNAs expression profiles in pair-liver tissues of chronic hepatitis B patients in comparison between before and after treatment of pegylated-interferon alpha-2a for 48 weeks. Cellular small RNAs were extracted followed by library preparation. To determine microRNAs expression profiles, the next-generation sequencing was carried out on MiSeq platform (Illumina®). In vitro analysis demonstrated that microRNAs can be classified into up-regulated and down-regulated microRNAs in response to hepatitis B virus, interferon, and combination of hepatitis B virus and interferon. Moreover, in vivo analysis revealed microRNAs profiles in non-responders, responders without hepatitis B surface antigen clearance, and responders with hepatitis B surface antigen clearance. The target genes of the candidate microRNAs were determined in terms of roles in cellular pathways and immune response, which might be related to treatment in chronic hepatitis B patients. Results revealed that two down-regulated microRNAs including miR-185-5p and miR-186-5p were correlated in both in vitro and in vivo studies. These two microRNAs might be represented as specific hepatic microRNAs responding to hepatitis B virus and pegylated-interferon alpha-2a treatment, which may remarkable and attractive for further study involving in the association of their target genes and prediction of pegylated-interferon alpha-2a response. Interestingly, microRNAs expression patterns might be useful for understanding the response mechanism and serve as biomarkers for prediction of pegylated-interferon alpha-2a treatment response in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Thananya Jinato
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natthaya Chuaypen
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand Research Unit of Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Witthaya Poomipak
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rattanaporn Kiatbumrung
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanisa Jampoka
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand Research Unit of Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand Research Unit of Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Li X, Niu Y, Cheng M, Chi X, Liu X, Yang W. AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein. Antiviral Res 2016; 131:26-34. [PMID: 27079945 DOI: 10.1016/j.antiviral.2016.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) infects 130 million people worldwide and is a leading cause of liver cirrhosis, end-stage liver disease and hepatocellular carcinoma. The interactions between viral elements and host factors play critical role on HCV invade, replication and release. Here, we identified adaptor protein complex 1 sigma 3 subunit (AP1S3) as a dependency factor for the efficient HCV infection in hepatoma cells. AP1S3 silencing in cultivated Huh7.5.1 cells significantly reduced the production of HCV progeny particles. Immunoprecipitation analysis revealed that AP1S3 interacted with the HCV E2 protein. With this interaction, AP1S3 could protect HCV E2 from ubiquitin-mediated proteasomal degradation. Using in vivo ubiquitylation assay, we identified that E6-Associated Protein (E6AP) was associated with HCV E2. In addition, treatment with synthetic peptide that contains the AP1S3-recognized motif inhibited HCV infection in Huh7.5.1 cells. Our data reveal AP1 as a novel host network that is required by viruses during infection and provides a potential target for developing broad-spectrum anti-virus strategies.
Collapse
Affiliation(s)
- Xiang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Yuqiang Niu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Min Cheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiaojing Chi
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Xiuying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
35
|
Chou WW, Huang CF, Yeh ML, Tsai YS, Hsieh MY, Huang CI, Huang JF, Tsai PC, Hsi E, Juo SHH, Tsai WL, Chuang WL, Yu ML, Dai CY. MicroRNA let-7g cooperates with interferon/ribavirin to repress hepatitis C virus replication. J Mol Med (Berl) 2016; 94:311-320. [PMID: 26489607 DOI: 10.1007/s00109-015-1348-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNA) have been implicated in HCV infection. The present study analyzed the effects of let-7g on HCV infection in vitro, in clinical tissue and serum samples. Here, we show that the expression of let-7g in serum and liver tissue is significantly higher in patients with sustained virologic response (SVR). We show that interferon (IFN)/ribavirin (RBV) induces let-7g expression through p38/AP-1 signaling. Overexpression of let-7g reduced HCV gene or core protein level and inhibited the HCV viral load. The let-7g and IFN/RBV have additively inhibitory effect on HCV replication. These data implicate let-7g as a new therapeutic drug to additively cooperate with IFN/RBV to repress HCV replication. Key messages: let-7g expression is increased in serum and liver tissue of patients with SVR. Interferon/ribavirin induces let-7g expression through p38/AP-1 signaling. Overexpression of let-7g can repress HCV replication. Let-7g additively cooperates with interferon/ribavirin to repress HCV replication. Lin28B silencing can reverse let-7g expression and repress HCV replication.
Collapse
Affiliation(s)
- Wen-Wen Chou
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Shan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Edward Hsi
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Lipid Science and Aging Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Lipid Science and Aging Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Infectious Disease and Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Lipid Science and Aging Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Fawzy IO, Hamza MT, Hosny KA, Esmat G, Abdelaziz AI. Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors 2016; 34:42-50. [PMID: 27126374 DOI: 10.3109/08977194.2016.1169532] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IGF2BP 1, 2 and 3 control the fate of many transcripts. Immunoprecipitation studies demonstrated the IGF2BPs to bind to IGF1R mRNA, and our laboratory has recently shown them to post-transcriptionally regulate IGF1R. This study sought to identify a microRNA regulating the IGF2BPs and consequently IGF1R. All three IGF2BPs were among the top-ranked predicted targets of let-7i. Let-7i was downregulated in HCC tissues, and transfection of HuH-7 with let-7i inhibited malignant cell behaviors and decreased IGF2BPs transcripts. Direct binding of let-7i to IGF2BP2 and IGF2BP3 3'UTRs was confirmed, and the effect of let-7i caused a decrease in the IGF2BPs' target gene, the IGF1R. IGF1R mRNA was inversely correlated with let-7i in HCC tissues and was reduced upon let-7i transfection into HuH-7. Reporter assays validated IGF1R as a target of let-7i. Therefore, let-7i may control HCC tumorigenesis by regulating IGF1R directly and indirectly by interrupting the interplay between IGF1R and the IGF2BPs.
Collapse
Affiliation(s)
- Injie Omar Fawzy
- a Department of Pharmacology and Toxicology , German University in Cairo, Main Entrance Al Tagamoa Al Khames , Cairo , Egypt
| | - Mohammed Tarif Hamza
- b Department of Clinical Pathology , Ain Shams University , Khalifa El-Maamoun St, Abbasiya Square , Cairo , Egypt
| | - Karim Adel Hosny
- c Department of Endemic Medicine and Hepatology , Cairo University , Kasr El-Aini St , Cairo , Egypt , and
| | - Gamal Esmat
- c Department of Endemic Medicine and Hepatology , Cairo University , Kasr El-Aini St , Cairo , Egypt , and
| | - Ahmed Ihab Abdelaziz
- d Department of Biology , American University in Cairo , AUC Avenue , New Cairo City, Cairo , Egypt
| |
Collapse
|
37
|
Shim BS, Wu W, Kyriakis CS, Bakre A, Jorquera PA, Perwitasari O, Tripp RA. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol 2015; 97:659-668. [PMID: 26683768 DOI: 10.1099/jgv.0.000372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.
Collapse
Affiliation(s)
- Byoung-Shik Shim
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Constantinos S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Olivia Perwitasari
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Ye F, Xin Z, Han W, Fan J, Yin B, Wu S, Yang W, Yuan J, Qiang B, Sun W, Peng X. Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines. PLoS One 2015; 10:e0142082. [PMID: 26544179 PMCID: PMC4636247 DOI: 10.1371/journal.pone.0142082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/16/2015] [Indexed: 01/16/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is one of the leading causes of severe hepatitis. The molecular mechanisms underlying HCV replication and pathogenesis remain unclear. The development of the subgenome replicon model system significantly enhanced study of HCV. However, the permissiveness of the HCV subgenome replicon greatly differs among different hepatoma cell lines. Proteomic analysis of different permissive cell lines might provide new clues in understanding HCV replication. In this study, to detect potential candidates that might account for the differences in HCV replication. Label-free and iTRAQ labeling were used to analyze the differentially expressed protein profiles between Huh7.5.1 wt and HepG2 cells. A total of 4919 proteins were quantified in which 114 proteins were commonly identified as differentially expressed by both quantitative methods. A total of 37 differential proteins were validated by qRT-PCR. The differential expression of Glutathione S-transferase P (GSTP1), Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), carboxylesterase 1 (CES1), vimentin, Proteasome activator complex subunit1 (PSME1), and Cathepsin B (CTSB) were verified by western blot. And over-expression of CTSB or knock-down of vimentin induced significant changes to HCV RNA levels. Additionally, we demonstrated that CTSB was able to inhibit HCV replication and viral protein translation. These results highlight the potential role of CTSB and vimentin in virus replication.
Collapse
Affiliation(s)
- Fei Ye
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongshuai Xin
- Division of Hormone, National Institute for Food and Drug Control, Beijing, China
| | - Wei Han
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Fan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuzhen Wu
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangang Yuan
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (WS)
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (WS)
| |
Collapse
|
39
|
Feng Y, Feng YM, Feng Y, Lu C, Liu L, Sun X, Dai J, Xia X. Identification and Characterization of Liver MicroRNAs of the Chinese Tree Shrew via Deep Sequencing. HEPATITIS MONTHLY 2015; 15:e29053. [PMID: 26587035 PMCID: PMC4644573 DOI: 10.5812/hepatmon.29053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/15/2015] [Accepted: 08/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chinese tree shrew (Tupaia belangeri chinensis) is a small animal that possess many features, which are valuable in biomedical research, as experimental models. Currently, there are numerous attempts to utilize tree shrews as models for hepatitis C virus (HCV) infection. OBJECTIVES This study aimed to construct a liver microRNA (miRNA) data of the tree shrew. MATERIALS AND METHODS Three second filial generation tree shrews were used in this study. Total RNA was extracted from each liver of the tree shrew and equal quality mixed, then reverse-transcribed to complementary DNA (cDNA). The cDNAs were amplified by polymerase chain reaction and subjected to high-throughput sequencing. RESULTS A total of 2060 conserved miRNAs were identified through alignment with the mature miRNAs in miRBase 20.0 database. The gene ontology and Kyoto encyclopedia of genes and genomes analyses of the target genes of the miRNAs revealed several candidate miRNAs, genes and pathways that may involve in the process of HCV infection. The abundance of miR-122 and Let-7 families and their other characteristics provided us more evidences for the utilization of this animal, as a potential model for HCV infection and other related biomedical research. Moreover, 80 novel microRNAs were predicted using the software Mireap. The top 3 abundant miRNAs were validated in other tree samples, based on stem-loop quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS According to the liver microRNA data of Chinese tree shrew, characteristics of the miR-122 and Let-7 families further highlight the suitability of tree shrew as the animal model in HCV research.
Collapse
Affiliation(s)
- Yue Feng
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yue-Mei Feng
- Academy of Public Health, Kunming Medical University, Kunming, China
| | - Yang Feng
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Li Liu
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
- Corresponding Authors: Jiejie Dai, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China. Tel/Fax: +86-087168181259, E-mail: ; Xueshan Xia, Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China. Tel: +86-087165920756, Fax: +86-087165920570, E-mail:
| | - Xueshan Xia
- Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Corresponding Authors: Jiejie Dai, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China. Tel/Fax: +86-087168181259, E-mail: ; Xueshan Xia, Yunnan Provincial Center for Molecular Medicine, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China. Tel: +86-087165920756, Fax: +86-087165920570, E-mail:
| |
Collapse
|
40
|
Sehgal M, Zeremski M, Talal AH, Ginwala R, Elrod E, Grakoui A, Li QG, Philip R, Khan ZK, Jain P. IFN-α-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment. J Interferon Cytokine Res 2015; 35:698-709. [PMID: 26090579 PMCID: PMC4560851 DOI: 10.1089/jir.2014.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Although interferon (IFN)-α is known to exert immunomodulatory and antiproliferative effects on dendritic cells (DCs) through induction of protein-coding IFN-stimulated genes (ISGs), little is known about IFN-α-regulated miRNAs in DCs. Since several miRNAs are involved in regulating DC functions, it is important to investigate whether IFN-α's effects on DCs are mediated through miRNAs as well. In this study, we examined miRNA expression patterns in myeloid DCs (mDCs) and plasmacytoid DCs after exposing them to IFN-α. We report that IFN-α downregulates miR-221 in both DC subsets via inhibition of STAT3. We validated proapoptotic proteins BCL2L11 and CDKN1C as miR-221 targets suggesting that IFN-α can induce DC apoptosis via miR-221 downregulation. In addition, we validated another miR-221 target, SOCS1, which is known to be a negative regulator of JAK/STAT signaling. Consistent with this, miR-221 overexpression in mDCs enhanced the secretion of proinflammatory cytokines IL-6 and TNF-α. In peripheral blood mononuclear cells (PBMCs) of HIV-1/HCV co-infected individuals undergoing IFN-α-based treatment the baseline miR-221 expression was lower in non-responders compared with responders; and miR-221 expression directly correlated with DC frequency and IL-6/TNF-α secretion. In addition to PBMCs, we isolated total liver cells and kupffer cells from HCV-infected individuals and individuals with alcoholic cirrhosis. We found that both total liver cells and kupffer cells from HCV-infected individuals had significantly higher miR-221 levels compared with individuals with cirrhosis. Overall, we demonstrate that IFN-α exerts both antiproliferative and immunomodulatory effects on mDCs via miR-221 downregulation; and IFN-miR-221 axis can play important role in HCV pathogenesis and treatment.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Andrew H. Talal
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - Qi-Ging Li
- Duke University Medical Center, Durham, North Carolina
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Forster SC, Tate MD, Hertzog PJ. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response. Front Immunol 2015. [PMID: 26217335 PMCID: PMC4495342 DOI: 10.3389/fimmu.2015.00334] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia ; Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute , Hinxton , UK
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia
| |
Collapse
|
42
|
miR-1275: A single microRNA that targets the three IGF2-mRNA-binding proteins hindering tumor growth in hepatocellular carcinoma. FEBS Lett 2015; 589:2257-65. [PMID: 26160756 DOI: 10.1016/j.febslet.2015.06.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023]
Abstract
This study aimed to identify a single miRNA or miR (microRNA) which regulates the three insulin-like growth factor-2-mRNA-binding proteins (IGF2BP1, 2 and 3). Bioinformatics predicted miR-1275 to simultaneously target the three IGF2BPs, and screening revealed miR-1275 to be underexpressed in hepatocellular carcinoma (HCC) tissues. Transfection of HuH-7 cells with miR-1275 suppressed IGF2BPs expression and all three IGF2BPs were confirmed as targets of miR-1275. Ectopic expression of miR-1275 and knockdown of IGF2BPs inhibited malignant cell behaviors, and also reduced IGF1R protein and mRNA. Finally IGF1R was validated as a direct target of miR-1275. These findings indicate that the tumor-suppressor miR-1275 can control HCC tumor growth partially through simultaneously regulating the oncogenic IGF2BPs and IGF1R.
Collapse
|
43
|
Campbell CL, Torres-Perez F, Acuna-Retamar M, Schountz T. Transcriptome markers of viral persistence in naturally-infected andes virus (bunyaviridae) seropositive long-tailed pygmy rice rats. PLoS One 2015; 10:e0122935. [PMID: 25856432 PMCID: PMC4391749 DOI: 10.1371/journal.pone.0122935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Long-tailed pygmy rice rats (Oligoryzomys longicaudatus) are principal reservoir hosts of Andes virus (ANDV) (Bunyaviridae), which causes most hantavirus cardiopulmonary syndrome cases in the Americas. To develop tools for the study of the ANDV-host interactions, we used RNA-Seq to generate a de novo transcriptome assembly. Splenic RNA from five rice rats captured in Chile, three of which were ANDV-infected, was used to generate an assembly of 66,173 annotated transcripts, including noncoding RNAs. Phylogenetic analysis of selected predicted proteins showed similarities to those of the North American deer mouse (Peromyscus maniculatus), the principal reservoir of Sin Nombre virus (SNV). One of the infected rice rats had about 50-fold more viral burden than the others, suggesting acute infection, whereas the remaining two had levels consistent with persistence. Differential expression analysis revealed distinct signatures among the infected rodents. The differences could be due to 1) variations in viral load, 2) dimorphic or reproductive differences in splenic homing of immune cells, or 3) factors of unknown etiology. In the two persistently infected rice rats, suppression of the JAK-STAT pathway at Stat5b and Ccnot1, elevation of Casp1, RIG-I pathway factors Ppp1cc and Mff, and increased FC receptor-like transcripts occurred. Caspase-1 and Stat5b activation pathways have been shown to stimulate T helper follicular cell (TFH) development in other species. These data are also consistent with reports suggestive of TFH stimulation in deer mice experimentally infected with hantaviruses. In the remaining acutely infected rice rat, the apoptotic pathway marker Cox6a1 was elevated, and putative anti-viral factors Abcb1a, Fam46c, Spp1, Rxra, Rxrb, Trmp2 and Trim58 were modulated. Transcripts for preproenkephalin (Prenk) were reduced, which may be predictive of an increased T cell activation threshold. Taken together, this transcriptome dataset will permit rigorous examination of rice rat-ANDV interactions and may lead to better understanding of virus ecology.
Collapse
Affiliation(s)
- Corey L. Campbell
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Fernando Torres-Perez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Tony Schountz
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
44
|
Rebucci M, Sermeus A, Leonard E, Delaive E, Dieu M, Fransolet M, Arnould T, Michiels C. miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Mol Cancer 2015; 14:79. [PMID: 25889892 PMCID: PMC4403945 DOI: 10.1186/s12943-015-0349-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Background Tumor hypoxia is one of the features of tumor microenvironment that contributes to chemoresistance. miRNAs have recently been shown to play important roles in tumorigenesis and drug resistance. Moreover, hypoxia also regulates the expression of a series of miRNAs. However, the interaction between chemoresistance, hypoxia and miRNAs has not been explored yet. The aim of this study is to understand the mechanisms activated/inhibited by miRNAs under hypoxia that induce resistance to chemotherapy-induced apoptosis. Methods TaqMan low-density array was used to identify changes in miRNA expression when cells were exposed to etoposide under hypoxia or normoxia. The effects of miR-196b overexpression on apoptosis and cell proliferation were studied in HepG2 cells. miR-196b target mRNAs were identified by proteomic analysis, luciferase activity assay, RT-qPCR and western blot analysis. Results Results showed that hypoxia down-regulated miR-196b expression that was induced by etoposide. miR-196b overexpression increased the etoposide-induced apoptosis and reversed the protection of cell death observed under hypoxia. By a proteomic approach combined with bioinformatics analyses, we identified IGF2BP1 as a potential target of miR-196b. Indeed, miR-196b overexpression decreased IGF2BP1 RNA expression and protein level. The IGF2BP1 down-regulation by either miR-196b or IGF2BP1 siRNA led to an increase in apoptosis and a decrease in cell viability and proliferation in normal culture conditions. However, IGF2BP1 silencing did not modify the chemoresistance induced by hypoxia, probably because it is not the only target of miR-196b involved in the regulation of apoptosis. Conclusions In conclusion, for the first time, we identified IGF2BP1 as a direct and functional target of miR-196b and showed that miR-196b overexpression reverses the chemoresistance induced by hypoxia. These results emphasize that the chemoresistance induced by hypoxia is a complex mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0349-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Elodie Leonard
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Marc Dieu
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
45
|
Abstract
Hepatitis C virus (HCV) is a global health burden with an estimated 170-200 million peoples chronically infected worldwide. HCV infection remains as an independent risk factor for chronic hepatitis, liver cirrhosis, hepatocellular carcinoma, and a major reason for liver transplantation. Discovery of direct acting antiviral (DAA) drugs have shown promising results with more than 90% success rate in clearing the HCV RNA in patients, although long-term consequences remain to be evaluated. microRNAs (miRNAs) are important players in establishment of HCV infection and target crucial host cellular factors needed for productive HCV replication and augmented cell growth. Altered expression of miRNAs is involved in the pathogenesis associated with HCV infection by controlling signaling pathways such as immune response, proliferation and apoptosis. miRNA is emerging as a means of communication between various cell types inside the liver. There is likely possibility of developing circulating miRNAs as biomarkers of disease progression and can also serve as diagnostic tool with potential of early therapeutic intervention in HCV associated end stage liver disease. This review focuses on recent studies highlighting the contribution of miRNAs in HCV life cycle and their coordinated regulation in HCV mediated liver disease progression.
Collapse
Affiliation(s)
| | - Robert Steele
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Ratna B Ray
- Departments of Pathology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Nagalakshmi VK, Lindner V, Wessels A, Yu J. microRNA-dependent temporal gene expression in the ureteric bud epithelium during mammalian kidney development. Dev Dyn 2014; 244:444-56. [PMID: 25369991 DOI: 10.1002/dvdy.24221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Our previous study on mouse mutants with the ureteric bud (UB) epithelium-specific Dicer deletion (Dicer UB mutants) demonstrated the significance of UB epithelium-derived miRNAs in UB development. RESULTS Our whole-genome transcriptional profiling showed that the Dicer mutant UB epithelium abnormally retained transcriptional features of the early UB epithelium and failed to express many genes associated with collecting duct differentiation. Furthermore, we identified a temporal expression pattern of early UB genes during UB epithelium development in which gene expression was detected at early developmental stages and became undetectable by embryonic day 14.5. In contrast, expression of early UB genes persisted at later stages in the Dicer mutant UB epithelium and increased at early stages. Our bioinformatic analysis of the abnormally persistently expressed early genes in the Dicer mutant UB epithelium showed significant enrichment of the let-7 family miRNA targets. We further identified a temporal expression pattern of let-7 miRNAs in the UB epithelium that is anti-parallel to that of some early UB genes during kidney development. CONCLUSIONS We propose a model in which the let-7 family miRNAs silence the expression of a subset of early genes in the UB epithelium at later developmental stages to promote collecting duct differentiation. Developmental Dynamics 244:444-456, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | |
Collapse
|
47
|
Brunetto MR, Cavallone D, Oliveri F, Moriconi F, Colombatto P, Coco B, Ciccorossi P, Rastelli C, Romagnoli V, Cherubini B, Teilum MW, Blondal T, Bonino F. A serum microRNA signature is associated with the immune control of chronic hepatitis B virus infection. PLoS One 2014; 9:e110782. [PMID: 25350115 PMCID: PMC4211710 DOI: 10.1371/journal.pone.0110782] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022] Open
Abstract
Background and Aims The virus/host interplay mediates liver pathology in chronic HBV infection. MiRNAs play a pivotal role in virus/host interactions and are detected in both serum and HBsAg-particles, but studies of their dynamics during chronic infection and antiviral therapy are missing. We studied serum miRNAs during different phases of chronic HBV infection and antiviral treatment. Methods MiRNAs were profiled by miRCURY-LNA-Universal-RT-miRNA-PCR (Exiqon-A/S) and qPCR-panels-I/II-739-miRNA-assays and single-RT-q-PCRs. Two cohorts of well-characterized HBsAg-carriers were studied (median follow-up 34–52 months): a) training-panel (141 sera) and HBsAg-particles (32 samples) from 61 HBsAg-carriers and b) validation-panel (136 sera) from 84 carriers. Results Thirty-one miRNAs were differentially expressed in inactive-carriers (IC) and chronic-hepatitis-B (CHB) with the largest difference for miR-122-5p, miR-99a-5p and miR-192-5p (liver-specific-miRNAs), over-expressed in both sera and HBsAg-particles of CHB (ANOVA/U-test p-values: <0.000001/0.000001; <0.000001/0.000003; <0.000001/0.000005, respectively) and significantly down-regulated during- and after-treatment in sustained-virological-responders (SVR). MiRNA-profiles of IC and SVR clustered in the heatmap. Liver-miRNAs were combined with miR-335, miR-126 and miR-320a (internal controls) to build a MiR-B-Index with 100% sensitivity, 83.3% and 92.5% specificity (−1.7 cut-off) in both training and validation cohorts to identify IC. MiR-B-Index (−5.72, −20.43/14.38) correlated with ALT (49, 10/2056 U/l, ρ = −0.497, p<0.001), HBV-DNA (4.58, undetectable/>8.3 Log10 IU/mL, ρ = −0.732, p<0.001) and HBsAg (3.40, 0.11/5.49 Log10 IU/mL, ρ = −0.883, p<0.001). At multivariate analysis HBV-DNA (p = 0.002), HBsAg (p<0.001) and infection-phase (p<0.001), but not ALT (p = 0.360) correlated with MiR-B-Index. In SVR to Peg-IFN/NUCs MiR-B-Index improved during-therapy and post-treatment reaching IC-like values (5.32, −1.65/10.91 vs 6.68, 0.54/9.53, p = 0.324) beckoning sustained HBV-immune-control earlier than HBsAg-decline. Conclusions Serum miRNA profile change dynamically during the different phases of chronic HBV infection. We identified a miRNA signature associated with both natural-occurring and therapy-induced immune control of HBV infection. The MiR-B-Index might be a useful biomarker for the early identification of the sustained switch from CHB to inactive HBV-infection in patients treated with antivirals.
Collapse
Affiliation(s)
- Maurizia Rossana Brunetto
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
- * E-mail:
| | - Daniela Cavallone
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Filippo Oliveri
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Francesco Moriconi
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Piero Colombatto
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Barbara Coco
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Pietro Ciccorossi
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Carlotta Rastelli
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Veronica Romagnoli
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | - Beatrice Cherubini
- Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Hepatology Unit, Reference Center of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Pisa, Italy
| | | | | | - Ferruccio Bonino
- Digestive and Liver Disease, General Medicine II Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Fan HX, Tang H. Complex interactions between microRNAs and hepatitis B/C viruses. World J Gastroenterol 2014; 20:13477-13492. [PMID: 25309078 PMCID: PMC4188899 DOI: 10.3748/wjg.v20.i37.13477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/28/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate the expression of many target genes via mRNA degradation or translation inhibition. Many studies have shown that miRNAs are involved in the modulation of gene expression and replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) and play a pivotal role in host-virus interactions. Increasing evidence also demonstrates that viral infection leads to alteration of the miRNA expression profile in hepatic tissues or circulation. The deregulated miRNAs participate in hepatocellular carcinoma (HCC) initiation and progression by functioning as oncogenes or tumor suppressor genes by targeting various genes involved in cancer-related signaling pathways. The distinct expression pattern of miRNAs may be a useful marker for the diagnosis and prognosis of virus-related diseases considering the limitation of currently used biomarkers. Moreover, the role of deregulated miRNA in host-virus interactions and HCC development suggested that miRNAs may serve as therapeutic targets or as tools. In this review, we summarize the recent findings about the deregulation and the role of miRNAs during HBV/HCV infection and HCC development, and we discuss the possible mechanism of action of miRNAs in the pathogenesis of virus-related diseases. Furthermore, we discuss the potential of using miRNAs as markers for diagnosis and prognosis as well as therapeutic targets and drugs.
Collapse
|
49
|
Waldron PR, Holodniy M. MicroRNA and hepatitis C virus--challenges in investigation and translation: a review of the literature. Diagn Microbiol Infect Dis 2014; 80:1-12. [PMID: 24996839 DOI: 10.1016/j.diagmicrobio.2014.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 12/25/2022]
Abstract
Investigations into the role of microRNA (miRNA) in hepatitis C virus (HCV) infection, disease pathogenesis and host immune and treatment response have potential to produce innovations in diagnosis, prognosis and therapy. However, investigational challenges remain in generating clinically useful and reproducible results. We review the literature with a primary emphasis on methods and technologies used to construct our current understanding of miRNA and HCV disease. A second emphasis is to understand potential clinical research applications and provide clarification of previous study results. Many miRNA have key roles in viral and immunopathogenesis of HCV infection across multiple tissue compartments. Controversy exists among published studies regarding relative measurements, temporal changes and biological significance of specific miRNA and HCV infection. To reconcile diverging data, additional research into optimal sample processing, in vitro models, techniques for microarray differential expression of miRNAs, practices for sample result normalization, and effect of HCV genotype variation on expression are all necessary. Microarray and miRNA isolation techniques should be selected based on ability to generate reproducible results in the sample type of interest. More direct comparisons of efficacy and reliability of various multiplex microarrays and an improved consensus around miRNA normalization and quantitation are necessary so that data can be compared across studies.
Collapse
Affiliation(s)
- Paul Ravi Waldron
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA.
| | - Mark Holodniy
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA; Office of Public Health, Department of Veterans Affairs, Washington, DC
| |
Collapse
|
50
|
Hepatitis C virus and microRNAs: miRed in a host of possibilities. Curr Opin Virol 2014; 7:1-10. [PMID: 24721496 DOI: 10.1016/j.coviro.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022]
Abstract
It is well-established that the host microRNA (miRNA) milieu has a significant influence on the etiology of disease. In the context of viruses, such as hepatitis C virus (HCV), microRNAs have been shown to influence viral life cycles both directly, through interactions with the viral genome, and indirectly, through regulation of critical virus-associated host pathways. Several miRNA profiling studies have demonstrated that HCV infection aberrantly regulates a significant number of human miRNA. However, the biological relevance of these modulations remains poorly understood. In this review, we summarize recent research that has shed light on the pro-viral and anti-viral roles of HCV-induced changes in human miRNA expression and their significance in the development of HCV related sequelae and response to therapy.
Collapse
|