1
|
Kong Z, Chen X, Gong L, Wang L, Zhang Y, Guan K, Yao W, Kang Y, Lu X, Zhang Y, Du Y, Sun A, Zhuang G, Zhao J, Wan B, Zhang G. Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway. Front Immunol 2024; 15:1403070. [PMID: 39015575 PMCID: PMC11250390 DOI: 10.3389/fimmu.2024.1403070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024] Open
Abstract
Background The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.
Collapse
Affiliation(s)
- Zhengjie Kong
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xing Chen
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Gong
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifeng Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Wanzi Yao
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yu Kang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xinyi Lu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yuhang Zhang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongkun Du
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aijun Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoqing Zhuang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Wan
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Chau VQ, Kolb AW, Miller DL, Yannuzzi NA, Brandt CR. Phylogenetic and Genomic Characterization of Whole Genome Sequences of Ocular Herpes Simplex Virus Type 1 Isolates Identifies Possible Virulence Determinants in Humans. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37450309 DOI: 10.1167/iovs.64.10.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Purpose There are limited data on the prevalence and genetic diversity of herpes simplex virus type 1 (HSV-1) virulence genes in ocular isolates. Here, we sequenced 36 HSV-1 ocular isolates, collected by the Bascom Palmer Eye Institute, a university-based eye hospital, from three different ocular anatomical sites (conjunctiva, cornea, and eyelid) and carried out a genomic and phylogenetic analyses. Methods The PacBio Sequel II long read platform was used for genome sequencing. Phylogenetic analysis and genomic analysis were performed to help better understand genetic variability among common virulence genes in ocular herpetic disease. Results A phylogenetic network generated using the genome sequences of the 36 Bascom Palmer ocular isolates, plus 174 additional strains showed that ocular isolates do not group together phylogenetically. Analysis of the thymidine kinase and DNA polymerase protein sequences from the Bascom Palmer isolates showed multiple novel single nucleotide polymorphisms, but only one, BP-K14 encoded a known thymidine kinase acyclovir resistance mutation. An analysis of the multiple sequence alignment comprising the 51 total ocular isolates versus 159 nonocular strains detected several possible single nucleotide polymorphisms in HSV-1 genes that were found significantly more often in the ocular isolates. These genes included UL6, gM, VP19c, VHS, gC, VP11/12, and gG. Conclusions There does not seem to be a specific genetic feature of viruses causing ocular infection. The identification of novel and common recurrent polymorphisms may help to understand the drivers of herpetic pathogenicity and specific factors that may influence the virulence of ocular disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| | - Darlene L Miller
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Nicolas A Yannuzzi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, United States
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
3
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
4
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
5
|
Beier KT. Hitchhiking on the neuronal highway: Mechanisms of transsynaptic specificity. J Chem Neuroanat 2019; 99:9-17. [PMID: 31075318 PMCID: PMC6701464 DOI: 10.1016/j.jchemneu.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Transsynaptic viral tracers are an invaluable neuroanatomical tool to define neuronal circuit connectivity across single or multiple synapses. There are variants that label either inputs or outputs of defined starter populations, most of which are based on the herpes and rabies viruses. However, we still have an incomplete understanding of the factors influencing specificity of neuron-neuron transmission and labeling of inputs vs. outputs. This article will touch on three topics: First, how specific are the directional transmission patterns of these viruses? Second, what are the properties that confer synaptic specificity of viral transmission? Lastly, what can we learn from this specificity, and can we use it to devise better transsynaptic tracers?
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, United States.
| |
Collapse
|
6
|
Ata EB, Zaghawa A, Ghazy AA, Elsify A, Abdelrahman K, Kasem S, Nayel M. Development and characterization of ORF68 negative equine herpes virus type-1, Ab4p strain. J Virol Methods 2018; 261:121-131. [PMID: 30165189 DOI: 10.1016/j.jviromet.2018.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 01/20/2023]
Abstract
Equine herpesvirus-1 (EHV-1) is an important pathogen, which infects horses worldwide with high morbidity but low mortality rates. The respiratory disorders and abortions are the most common indicators. Ab4p (an abortigenic and paralytic virus) is one of the most important and virulent strains. The development and functional characterization of the open reading frame-68 (ORF68) negative EHV-1 Ab4p mutants and an assessment of their roles in the infection at the cellular level were the main targets of the current study. Escherichia coli DH10β containing the Ab4p bacterial artificial chromosome (pAb4pBAC) and Red/ET expression vector were used to develop different ORF68 mutants. Multi-step growth kinetic experiments were conducted in order to evaluate the growth properties of the constructed mutant viruses. Growth of the Ab4pΔORF68 showed the lowest titer, compared to the Ab4pΔORF68R, Ab4pΔORF68R non-sense, and the parent Ab4p viruses without any significant difference (P > 0.05). The growth of the mutant viruses was almost similar across the cell types, but viruses growth was more efficient in FHK cells as judged by the number of the obtained virus particles. The plaque size of Ab4pΔORF68 was significantly (40%) smaller than those of Ab4p (P < 0.01), Ab4pΔORF68R, and Ab4pΔORF68R non-sense viruses which confirmed the importance of ORF68 protein in the cell-to-cell transmission of EHV-1. Subcellular localization of the green fluorescent protein (GFP) ORF68 gene fusion product showed late expression with intranuclear localization of the transfected cells while immunofluorescent antibody technique (IFAT) localized it at the nucleus and nuclear membranes of the infected cells. Hence, it could be concluded that ORF68 protein may not be essential for EHV-1 Ab4p growth but plays a crucial role in virus penetration and transmission at the cellular level. Therefore, the generated EHV-1 ORF68 negative mutant could be a prospective candidate for the development of a vaccine marker.
Collapse
Affiliation(s)
- Emad Beshir Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Ahmed Zaghawa
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Alaa A Ghazy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt
| | - Ahmed Elsify
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Khaled Abdelrahman
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre (NRC), Egypt
| | - Samy Kasem
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, El-Geish street, Kafrelsheikh, Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mohamed Nayel
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Egypt; Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
7
|
Lyu C, Wang S, Sun M, Tang Y, Peng J, Tian Z, Cai X. Deletion of pseudorabies virus US2 gene enhances viral titers in a porcine cerebral cortex primary culture system. Virus Genes 2018. [PMID: 29541931 DOI: 10.1007/s11262-018-1552-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudorabies virus (PRV) is a neurotropic virus with the ability to infect peripheral sensory ganglia. The transport of PRV from the peripheral to the central nervous system can cause lethal encephalitis in young piglets. However, the pathogenicity of PRV in the cerebral cortex remains poorly understood. In the present study, we developed a porcine cerebral cortex primary culture system (PCCS) using cerebral cortex tissue dissected from a 3-day-old piglet to investigate the pathogenicity of wild-type (WT) and US2 deleted (ΔUS2) PRV in the CNS in vitro. Immunofluorescence assays revealed cell bodies and neurites as the cellular locations infected by PRV. Growth kinetic analysis showed a persistent increase in WT and ΔUS2 viral titers in PCCS from 4 to 24 h post infection (hpi), thus indicating that US2 deletion did not disrupt viral growth. However, the mean plaque size was significantly higher in ΔUS2 PRV than in WT PRV in infected Vero cells. The viral titers and DNA levels of ΔUS2 PRV were significantly higher at 8 hpi than at 4 hpi, whereas those of WT showed no significant difference between the two time points in PCCS. Morphological investigation revealed induction of massive amounts of bouton-like swellings (varicosities) along the axon shaft in both WT and ΔUS2 PRV-infected neurons in the PCCS. Our data suggest that PRV US2 gene deletion enhances viral titers in PCCS but does not affect the varicosities induced by the viral infection.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Shuwen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Mingxia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Yandong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No. 678, Xiang Fang District, Harbin, 150069, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A. Prenylation of viral proteins by enzymes of the host: Virus-driven rationale for therapy with statins and FT/GGT1 inhibitors. Bioessays 2017; 39. [DOI: 10.1002/bies.201700014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
- School of Computer Engineering; Nanyang Technological University; Singapore
| | - Ancha Baranova
- School of Systems Biology; George Mason University; Fairfax VA USA
- Research Centre for Medical Genetics; Russian Academy of Medical Sciences; Moscow Russia
| |
Collapse
|
9
|
The Us2 Gene Product of Herpes Simplex Virus 2 modulates NF-κB activation by targeting TAK1. Sci Rep 2017; 7:8396. [PMID: 28827540 PMCID: PMC5566419 DOI: 10.1038/s41598-017-08856-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
HSV-2 is one of the most common sexually transmitted pathogens worldwide and HSV-2 infection triggers cytokine and chemokine production. However, little is known about which HSV-2 genes engage in the regulation of NF-κB signaling and what mechanisms are involved. In a screen of the unique short (Us) regions of HSV-2, we observed that HSV-2 Us2 activates NF-κB signaling. We additionally indicated that deficiencies of Us2 decrease HSV-2 WT mediated NF-κB activation and cytokine and chemokine production, and overexpression of Us2 showed opposite effects. Co-immunoprecipitations indicated that Us2 interacted with TGF-β activated kinase 1 (TAK1), a serine/threonine kinase essential for NF-κB activation, and Us2 has the ability to regulate the TAK1-mediated pathway and induces TAK1 downstream signaling. Further studies verified that Us2 induced the phosphorylation of TAK1, resulting in the activation of TAK1 mediated downstream signaling. The role of Us2 in HSV-2 induced NF-κB pathways was also confirmed in the Us2-deficient mutant and HSV-2 WT infected mice. Our results indicate that HSV-2 Us2 gene product binds to TAK1 to positively regulate NF-κB signaling and, for the first time, provide insights into the molecular mechanism.
Collapse
|
10
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
11
|
Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown. J Virol 2014; 88:6003-11. [PMID: 24623429 DOI: 10.1128/jvi.00501-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Herpesvirus capsid morphogenesis occurs in the nucleus, while final maturation takes place in the cytosol, requiring translocation of capsids through the nuclear envelope. The nuclear egress complex, consisting of homologs of herpes simplex virus pUL31 and pUL34, is required for efficient nuclear egress via primary envelopment and de-envelopment. Recently, we described an alternative mode of nuclear escape by fragmentation of the nuclear envelope induced by replication-competent pUL31 and pUL34 deletion mutants of the alphaherpesvirus pseudorabies virus (PrV), which had been selected by serial passaging in cell culture. Both passaged viruses carry congruent mutations in seven genes, including UL46, which encodes one of the major tegument proteins. Herpesvirus pUL46 homologs have recently been shown to activate the PI3K-Akt and ERK1/2 signaling pathways, which are involved in regulation of mitosis and apoptosis. Since in uninfected cells fragmentation of the nuclear envelope occurs during mitosis and apoptosis, we analyzed whether pUL46 of PrV is involved in signaling events impairing the integrity of the nuclear envelope. We show here that PrV pUL46 is able to induce phosphorylation of ERK1/2 and, thus, expression of ERK1/2 target genes but fails to activate the PI3K-Akt pathway. Deletion of UL46 from PrV-ΔUL34Pass and PrV-ΔUL31Pass or replacement by wild-type UL46 resulted in enhanced nuclear envelope breakdown, indicating that the mutations in pUL46 may limit the extent of NEBD. Thus, although pUL46 induces ERK1/2 phosphorylation, controlling the integrity of the nuclear envelope is independent of the ERK1/2 signaling pathway. IMPORTANCE Herpesvirus nucleocapsids can leave the nucleus by regulated, vesicle-mediated transport through the nuclear envelope, designated nuclear egress, or by inducing nuclear envelope breakdown (NEBD). The viral proteins involved in NEBD are unknown. We show here that the pseudorabies virus tegument protein pUL46 induces the ERK1/2 signaling pathway and modulates NEBD. However, these two processes are independent and ERK1/2 signaling induced by pUL46 is not involved in herpesvirus-induced NEBD.
Collapse
|