1
|
Wang YY, Wang XL, Li ZC, Zhang C, Xu X, Cui BJ, Tian MZ, Zhou CJ, Xu N, Wu Y, Yang XL, Chen DD, Lu LF, Li S. Grass carp reovirus VP4 manipulates TOLLIP to degrade STING for inhibition of IFN production. J Virol 2025; 99:e0158324. [PMID: 39807855 PMCID: PMC11853074 DOI: 10.1128/jvi.01583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway. First, overexpression of VP4 inhibited the expression of IFN induced by GCRV and polyinosinic-polycytidylic acid (poly I:C) at both the promoter and mRNA levels. Second, VP4 was found to associate with STING, and the N-terminal transmembrane domain is essential for this interaction. Additionally, VP4 dramatically blocked STING-induced IFN expression and weakened its antiviral capacity. Further mechanistic studies revealed that VP4 degrades STING via the autophagy-lysosome pathway in a dose-dependent manner. Interestingly, toll-interacting protein (TOLLIP), a selective autophagy receptor, was found to interact with VP4 and reduce VP4-mediated STING degradation after tollip knockdown. Finally, overexpression of VP4 facilitated GCRV proliferation, while its depletion had the opposite effect. These findings indicate that GCRV VP4 recruits TOLLIP to degrade STING and achieve immune escape. This enhances our comprehension of aquatic virus pathogenesis. IMPORTANCE Upon virus invasion, fish cells employ a multitude of strategies to defend against infection. Consequently, viruses have evolved a plethora of tactics to evade host antiviral mechanisms. To date, fewer studies have been conducted on the immune evasion mechanism of grass carp reovirus (GCRV). In this study, we demonstrate that VP4 of GCRV-873 inhibits interferon expression by interacting with stimulator of IFN gene and degrading it in an autophagy-lysosome-dependent manner through the manipulation of the selective autophagy receptor toll-interacting protein. The findings of this study contribute to our understanding of the novel evasion mechanisms of GCRV and widen our knowledge of the virus-host interactions in lower vertebrates.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xue-Li Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, Tianjin, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xiao Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Bao-Jie Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Meng-Ze Tian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Chu-Jing Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Na Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yue Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xiao-Li Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Wuhan, China
| |
Collapse
|
2
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
3
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Szemere ZK, Ijezie E, Murphy EA. Herpes simplex virus-1 targets the 2'-3'cGAMP importer SLC19A1 as an antiviral countermeasure. Virology 2025; 603:110320. [PMID: 39637474 PMCID: PMC11839204 DOI: 10.1016/j.virol.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The extracellular addition of the STING agonist, 2-3cGAMP, induces an antiviral state that inhibits HSV-1 replication in a cell type dependent manner via the transportation of the cyclic-dinucleotide through the folate antiporter SLC19A1. To establish a successful infection, herpes simplex virus-1 (HSV-1), a ubiquitous virus with high seropositivity in the human population, must undermine a multitude of host innate and intrinsic immune defense mechanisms, including key players of the STimulator of INterferon Genes (STING) pathway. Herein, we report that HSV-1 infection results in the reduction of SLC19A1 transcription, translation, and importantly, the rapid removal of SLC19A1 from the cell surface of infected cells. Our data indicate SLC19A1 functions as a newly identified antiviral mediator for extracellular 2'-3'cGAMP which is undermined by HSV-1 protein ICP27. This work presents novel and important findings about how HSV-1 manipulates the host's immune environment for viral replication and discovers details about an important antiviral mechanism.
Collapse
Affiliation(s)
- Zsuzsa K Szemere
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA
| | - Emmanuel Ijezie
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA
| | - Eain A Murphy
- Microbiology and Immunology Department, SUNY-Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Zhou M, Shen Z. Advanced progress in the genetic modification of the oncolytic HSV-1 virus. Front Oncol 2025; 14:1525940. [PMID: 39906660 PMCID: PMC11790444 DOI: 10.3389/fonc.2024.1525940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
The use of replication-competent viruses for selective tumor oncolysis while sparing normal cells marks a significant advancement in cancer treatment. HSV-1 presents several advantages that position it as a leading candidate for oncolytic virotherapies. Its large genome can accommodate insertions over 30 kb or deletions of multiple virulence genes without compromising lytic replication in tumor cells. Additionally, anti-herpes drugs can inhibit its replication during accidental infections. Importantly, HSV-1 does not integrate into the host genome and cause mutations. The HSV-1 genome can be modified through genetic engineering in two main ways: first, by reducing infectivity and toxicity to normal cells via limited replication and assembly, altered protein-virus receptor binding, and minimized immune evasion; second, by enhancing anticancer activity through disruption of tumor cell metabolism, induction of autophagy, improved immune recognition, and modification of the tumor microenvironment. In this mini-review, we systematically examine genetic modification strategies for oncolytic HSV-1 while highlighting advancements from these modifications. Certain genetic alterations have shown efficacy in improving clinical outcomes for HSV-1-based therapies. These modifications include silencing specific genes and inserting exogenous genes into the HSV-1 genome. The insertion of exogenous genes has increasingly been used to develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated with oncolytic virotherapy at the conclusion of this review. As more clinical trials explore newly engineered therapies, they are likely to yield breakthroughs and promote broader adoption for cancer treatment.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Shen Y, Zhao X, Zheng C, Chen Q. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:61-74. [PMID: 39192119 DOI: 10.1007/978-1-0716-4108-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- The Cancer Center, Union Hospital, Fujian Medical University, Fu Zhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, AB, Canada
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
7
|
Chaudhari J, Lai DC, Vu HLX. African swine fever viral proteins that inhibit cGAS-STING pathway and type-I interferon production. Virology 2025; 602:110317. [PMID: 39616703 DOI: 10.1016/j.virol.2024.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of a lethal disease in pigs. Highly virulent strains of ASFV are known to suppress the induction of type I interferons (IFNs), while naturally attenuated strains do not exhibit this capability. Thus, the ability to suppress IFN is assumed to be associated with viral virulence. ASFV genome encodes many proteins capable of disrupting crucial components of host immune response pathways. Notably, these viral proteins interfere with the induction of type I IFNs by targeting various steps of the cGAS-STING signaling pathway. Additionally, certain viral proteins impede the expression of interferon-stimulated genes by interfering with the JAK-STAT pathway. Consequently, ASFV proteins hamper both IFN production and the induction of antiviral responses by IFNs. This review article summarizes the viral proteins responsible for suppressing various steps of the cGAS-STING and JAK-STAT signaling pathways and discusses the potential application of this knowledge to the rational design of a live-attenuated ASFV vaccine.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA
| | - Danh C Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA
| | - Hiep L X Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA; Department of Animal Science, University of Nebraska-Lincoln, 68583, Lincoln, NE, USA.
| |
Collapse
|
8
|
Chen T, Li S, Deng D, Zhang W, Zhang J, Shen Z. Key role of interferon regulatory factor 1 (IRF-1) in regulating liver disease: progress and outlook. J Zhejiang Univ Sci B 2024; 25:451-470. [PMID: 38910492 PMCID: PMC11199090 DOI: 10.1631/jzus.b2300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 06/25/2024]
Abstract
Interferon regulatory factor 1 (IRF-1) is a member of the IRF family. It is the first transcription factor to be identified that could bind to the interferon-stimulated response element (ISRE) on the target gene and displays crucial roles in the interferon-induced signals and pathways. IRF-1, as an important medium, has all of the advantages of full cell cycle regulation, cell death signaling transduction, and reinforcing immune surveillance, which are well documented. Current studies indicate that IRF-1 is of vital importance to the occurrence and evolution of multifarious liver diseases, including but not limited to inhibiting the replication of the hepatitis virus (A/B/C/E), alleviating the progression of liver fibrosis, and aggravating hepatic ischemia-reperfusion injury (HIRI). The tumor suppression of IRF-1 is related to the clinical characteristics of liver cancer patients, which makes it a potential indicator for predicting the prognosis and recurrence of liver cancer; additionally, the latest studies have revealed other effects of IRF-1 such as protection against alcoholic/non-alcoholic fatty liver disease (AFLD/NAFLD), cholangiocarcinoma suppression, and uncommon traits in other liver diseases that had previously received little attention. Intriguingly, several compounds and drugs have featured a protective function in specific liver disease models in which there is significant involvement of the IRF-1 signal. In this paper, we hope to propose a prospective research basis upon which to help decipher translational medicine applications of IRF-1 in liver disease treatment.
Collapse
Affiliation(s)
- Tao Chen
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Shipeng Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Dewen Deng
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
| | - Weiye Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Jianjun Zhang
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Zhongyang Shen
- Department of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China.
- Key Laboratory of Organ Transplant, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
9
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
10
|
DePeaux K, Delgoffe GM. Integrating innate and adaptive immunity in oncolytic virus therapy. Trends Cancer 2024; 10:135-146. [PMID: 37880008 PMCID: PMC10922271 DOI: 10.1016/j.trecan.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Oncolytic viruses (OVs), viruses engineered to lyse tumor cells, work hand in hand with the immune response. While for decades the field isolated lytic capability and viral spread to increase response to virotherapy, there is now a wealth of research that demonstrates the importance of immunity in the OV mechanism of action. In this review, we will cover how OVs interact with the innate immune system to fully activate the adaptive immune system and yield exceptional tumor clearances as well as look forward at combination therapies which can improve clinical responses.
Collapse
Affiliation(s)
- Kristin DePeaux
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Enow JA, Sheikh HI, Rahman MM. Tumor Tropism of DNA Viruses for Oncolytic Virotherapy. Viruses 2023; 15:2262. [PMID: 38005938 PMCID: PMC10675630 DOI: 10.3390/v15112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as one of the most promising cancer immunotherapy agents that selectively target and kill cancer cells while sparing normal cells. OVs are from diverse families of viruses and can possess either a DNA or an RNA genome. These viruses also have either a natural or engineered tropism for cancer cells. Oncolytic DNA viruses have the additional advantage of a stable genome and multiple-transgene insertion capability without compromising infection or replication. Herpes simplex virus 1 (HSV-1), a member of the oncolytic DNA viruses, has been approved for the treatment of cancers. This success with HSV-1 was achievable by introducing multiple genetic modifications within the virus to enhance cancer selectivity and reduce the toxicity to healthy cells. Here, we review the natural characteristics of and genetically engineered changes in selected DNA viruses that enhance the tumor tropism of these oncolytic viruses.
Collapse
Affiliation(s)
- Junior A. Enow
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hummad I. Sheikh
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Masmudur M. Rahman
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
12
|
Froechlich G, Finizio A, Napolano A, Amiranda S, De Chiara A, Pagano P, Mallardo M, Leoni G, Zambrano N, Sasso E. The common H232 STING allele shows impaired activities in DNA sensing, susceptibility to viral infection, and in monocyte cell function, while the HAQ variant possesses wild-type properties. Sci Rep 2023; 13:19541. [PMID: 37945588 PMCID: PMC10636114 DOI: 10.1038/s41598-023-46830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Different innate immune pathways converge to Stimulator of interferon genes (STING) and trigger type I interferon responses after recognition of abnormal nucleic acids in the cells. This non-redundant function renders STING a major player in immunosurveillance, and an emerging target for cancer and infectious diseases therapeutics. Beyond somatic mutations that often occur in cancer, the human gene encoding STING protein, TMEM173 (STING1), holds great genetic heterogeneity; R232, HAQ (R71H-G230A-R293Q) and H232 are the most common alleles. Although some of these alleles are likely to be hypomorphic, their function is still debated, due to the available functional assessments, which have been performed in biased biological systems. Here, by using genetic background-matched models, we report on the functional evaluation of R232, HAQ and H232 variants on STING function, and on how these genotypes affect the susceptibility to clinically relevant viruses, thus supporting a potential contributing cause to differences in inter-individual responses to infections. Our findings also demonstrate a novel toll-like receptor-independent role of STING in modulating monocytic cell function and differentiation into macrophages. We further supported the interplay of STING1 variants and human biology by demonstrating how monocytes bearing the H232 allele were impaired in M1/M2 differentiation, interferon response and antigen presentation. Finally, we assessed the response to PD-1 inhibitor in a small cohort of melanoma patients stratified according to STING genotype. Given the contribution of the STING protein in sensing DNA viruses, bacterial pathogens and misplaced cancer DNA, these data may support the development of novel therapeutic options for infectious diseases and cancer.
Collapse
Affiliation(s)
- Guendalina Froechlich
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna Finizio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alessandra Napolano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Sara Amiranda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Arianna De Chiara
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Pasqualina Pagano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Mallardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy
| | | | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131, Napoli, NA, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore S.C.aR.L., Via Gaetano Salvatore 486, 80145, Naples, Italy.
- ImGen-T Srl, Viale del Parco Carelli, Napoli, NA, Italy.
| |
Collapse
|
13
|
Idrees S, Paudel KR, Sadaf T, Hansbro PM. How different viruses perturb host cellular machinery via short linear motifs. EXCLI JOURNAL 2023; 22:1113-1128. [PMID: 38054205 PMCID: PMC10694346 DOI: 10.17179/excli2023-6328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The virus interacts with its hosts by developing protein-protein interactions. Most viruses employ protein interactions to imitate the host protein: A viral protein with the same amino acid sequence or structure as the host protein attaches to the host protein's binding partner and interferes with the host protein's pathways. Being opportunistic, viruses have evolved to manipulate host cellular mechanisms by mimicking short linear motifs. In this review, we shed light on the current understanding of mimicry via short linear motifs and focus on viral mimicry by genetically different viral subtypes by providing recent examples of mimicry evidence and how high-throughput methods can be a reliable source to study SLiM-mediated viral mimicry.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Tayyaba Sadaf
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Pennisi R, Sciortino MT. HSV-1 Triggers an Antiviral Transcriptional Response during Viral Replication That Is Completely Abrogated in PKR -/- Cells. Pathogens 2023; 12:1126. [PMID: 37764935 PMCID: PMC10536113 DOI: 10.3390/pathogens12091126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The activation of the innate immune response during HSV-1 infection stimulates several transcription factors, such as NF-κB and IRF3, which are critical regulators of IFN-β expression. The released IFN-β activates the ISGs, which encode antiviral effectors such as the PKR. We found that HSV-1 triggers an antiviral transcriptional response during viral replication by activating TBK1-IRF3-NF-κB network kinetically. In contrast, we reported that infected PKR-/- cells fail to activate the transcription of TBK1. Downstream, TBK1 was unable to activate the transcription of IRF3 and NF-κB. These data suggested that in PKR-/- cells, HSV-1 replication counteracts TBK1-IRF3-NF-κB network. In this scenario, a combined approach of gene knockout and gene silencing was used to determine how the lack of PKR facilitates HSV-1 replication. We reported that in HEp-2-infected cells, PKR can influence the TBK1-IRF3-NF-κB network, consequently interfering with viral replication. Otherwise, an abrogated PKR-mediated signaling sustains the HSV-1 replication. Our result allows us to add additional information on the complex HSV-host interaction network by reinforcing the concept of the PKR role in the innate response-related networks during HSV replication in an in vitro model.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
15
|
Zhou J, Zhuang Z, Li J, Feng Z. Significance of the cGAS-STING Pathway in Health and Disease. Int J Mol Sci 2023; 24:13316. [PMID: 37686127 PMCID: PMC10487967 DOI: 10.3390/ijms241713316] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a significant role in health and disease. In this pathway, cGAS, one of the major cytosolic DNA sensors in mammalian cells, regulates innate immunity and the STING-dependent production of pro-inflammatory cytokines, including type-I interferon. Moreover, the cGAS-STING pathway is integral to other cellular processes, such as cell death, cell senescence, and autophagy. Activation of the cGAS-STING pathway by "self" DNA is also attributed to various infectious diseases and autoimmune or inflammatory conditions. In addition, the cGAS-STING pathway activation functions as a link between innate and adaptive immunity, leading to the inhibition or facilitation of tumorigenesis; therefore, research targeting this pathway can provide novel clues for clinical applications to treat infectious, inflammatory, and autoimmune diseases and even cancer. In this review, we focus on the cGAS-STING pathway and its corresponding cellular and molecular mechanisms in health and disease.
Collapse
Affiliation(s)
- Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhan Zhuang
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Jiamian Li
- Key Laboratory of College of First Clinical Medicine, College of First Clinical Medicine, Fujian Medical University, Taijiang Campus, Fuzhou 350001, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
16
|
Fruhwürth S, Reinert LS, Öberg C, Sakr M, Henricsson M, Zetterberg H, Paludan SR. TREM2 is down-regulated by HSV1 in microglia and involved in antiviral defense in the brain. SCIENCE ADVANCES 2023; 9:eadf5808. [PMID: 37595041 PMCID: PMC10438464 DOI: 10.1126/sciadv.adf5808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Immunological control of viral infections in the brain exerts immediate protection and also long-term maintenance of brain integrity. Microglia are important for antiviral defense in the brain. Here, we report that herpes simplex virus type 1 (HSV1) infection of human induced pluripotent stem cell (hiPSC)-derived microglia down-regulates expression of genes in the TREM2 pathway. TREM2 was found to be important for virus-induced IFNB induction through the DNA-sensing cGAS-STING pathway in microglia and for phagocytosis of HSV1-infected neurons. Consequently, TREM2 depletion increased susceptibility to HSV1 infection in human microglia-neuron cocultures and in the mouse brain. TREM2 augmented STING signaling and activation of downstream targets TBK1 and IRF3. Thus, TREM2 is important for the antiviral immune response in microglia. Since TREM2 loss-of-function mutations and HSV1 serological status are both linked to Alzheimer's disease, this work poses the question whether genetic or virus-induced alterations of TREM2 activity predispose to post-infection neurological pathologies.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Line S. Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carl Öberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcelina Sakr
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Søren R. Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. Regulation of cGAS and STING signaling during inflammation and infection. J Biol Chem 2023; 299:104866. [PMID: 37247757 PMCID: PMC10316007 DOI: 10.1016/j.jbc.2023.104866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - W Alexander Stinson
- Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derek J Platt
- Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhajit Poddar
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
18
|
Duan Y, Sun L, Li Q. Herpes Simplex Virus 1 MicroRNAs: An Update. Intervirology 2023; 66:97-110. [PMID: 37285807 PMCID: PMC10389796 DOI: 10.1159/000531348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1), an important human pathogen, is capable of latent infection in neurons and productive (lytic) infection in other tissue cells. Once infected with HSV-1, the immune system of the organism cannot eliminate the virus and carries it lifelong. HSV-1 possesses approximately 150 kb of double-stranded linear genomic DNA and can encode at least 70 proteins and 37 mature microRNAs (miRNAs) derived from 18 precursor miRNAs (pre-miRNAs). SUMMARY These HSV-1-encoded miRNAs are widely involved in multiple processes in the life cycle of the virus and the host cell, including viral latent and lytic infection, as well as host cell immune signaling, proliferation, and apoptosis. KEY MESSAGE In this review, we focused primarily on recent advances in HSV-1-encoded miRNA expression, function, and mechanism, which may provide new research ideas and feasible research methods systemically and comprehensively.
Collapse
Affiliation(s)
- Yongzhong Duan
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China,
| | - Le Sun
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Qihan Li
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
19
|
Coderch C, Arranz-Herrero J, Nistal-Villan E, de Pascual-Teresa B, Rius-Rocabert S. The Many Ways to Deal with STING. Int J Mol Sci 2023; 24:ijms24109032. [PMID: 37240378 DOI: 10.3390/ijms24109032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The stimulator of interferon genes (STING) is an adaptor protein involved in the activation of IFN-β and many other genes associated with the immune response activation in vertebrates. STING induction has gained attention from different angles such as the potential to trigger an early immune response against different signs of infection and cell damage, or to be used as an adjuvant in cancer immune treatments. Pharmacological control of aberrant STING activation can be used to mitigate the pathology of some autoimmune diseases. The STING structure has a well-defined ligand binding site that can harbor natural ligands such as specific purine cyclic di-nucleotides (CDN). In addition to a canonical stimulation by CDNs, other non-canonical stimuli have also been described, whose exact mechanism has not been well defined. Understanding the molecular insights underlying the activation of STING is important to realize the different angles that need to be considered when designing new STING-binding molecules as therapeutic drugs since STING acts as a versatile platform for immune modulators. This review analyzes the different determinants of STING regulation from the structural, molecular, and cell biology points of view.
Collapse
Affiliation(s)
- Claire Coderch
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Javier Arranz-Herrero
- Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
- Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Estanislao Nistal-Villan
- Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Sergio Rius-Rocabert
- Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
- Institute of Applied Molecular Medicine (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| |
Collapse
|
20
|
Diao F, Bai J, Jiang C, Sun Y, Gao Y, Nauwynck H, Jiang P, Liu X. The Papain-Like Protease of Porcine Reproductive and Respiratory Syndrome Virus Impedes STING Translocation from the Endoplasmic Reticulum to the Golgi Apparatus by Deubiquitinating STIM1. J Virol 2023; 97:e0018823. [PMID: 37039642 PMCID: PMC10134850 DOI: 10.1128/jvi.00188-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
21
|
Paulis A, Tramontano E. Unlocking STING as a Therapeutic Antiviral Strategy. Int J Mol Sci 2023; 24:ijms24087448. [PMID: 37108610 PMCID: PMC10138487 DOI: 10.3390/ijms24087448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Invading pathogens have developed weapons that subvert physiological conditions to weaken the host and permit the spread of infection. Cells, on their side, have thus developed countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an interesting and innovative target for the development of broad-spectrum antivirals. In this review, we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms developed by viruses, through which they escape this defense system; and the therapeutical strategies that have been developed to date to inhibit viral replication restoring STING functionality.
Collapse
Affiliation(s)
- Annalaura Paulis
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Università Degli Studi di Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
22
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Zhang L, Zhang L, Li F, Liu W, Tai Z, Yang J, Zhang H, Tuo J, Yu C, Xu Z. When herpes simplex virus encephalitis meets antiviral innate immunity. Front Immunol 2023; 14:1118236. [PMID: 36742325 PMCID: PMC9896518 DOI: 10.3389/fimmu.2023.1118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Herpes simplex virus (HSV) is the most common pathogen of infectious encephalitis, accounting for nearly half of the confirmed cases of encephalitis. Its clinical symptoms are often atypical. HSV PCR in cerebrospinal fluid is helpful for diagnosis, and the prognosis is usually satisfactory after regular antiviral treatment. Interestingly, some patients with recurrent encephalitis have little antiviral effect. HSV PCR in cerebrospinal fluid is negative, but glucocorticoid has a significant effect after treatment. Specific antibodies, such as the NMDA receptor antibody, the GABA receptor antibody, and even some unknown antibodies, can be isolated from cerebrospinal fluid, proving that the immune system contributes to recurrent encephalitis, but the specific mechanism is still unclear. Based on recent studies, we attempt to summarize the relationship between herpes simplex encephalitis and innate immunity, providing more clues for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China,*Correspondence: Jinmei Tuo, ; Changyin Yu, ; Zucai Xu,
| |
Collapse
|
24
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
25
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Interplay between Autophagy and Herpes Simplex Virus Type 1: ICP34.5, One of the Main Actors. Int J Mol Sci 2022; 23:ijms232113643. [DOI: 10.3390/ijms232113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that occasionally may spread to the central nervous system (CNS), being the most common cause of sporadic encephalitis. One of the main neurovirulence factors of HSV-1 is the protein ICP34.5, which although it initially seems to be relevant only in neuronal infections, it can also promote viral replication in non-neuronal cells. New ICP34.5 functions have been discovered during recent years, and some of them have been questioned. This review describes the mechanisms of ICP34.5 to control cellular antiviral responses and debates its most controversial functions. One of the most discussed roles of ICP34.5 is autophagy inhibition. Although autophagy is considered a defense mechanism against viral infections, current evidence suggests that this antiviral function is only one side of the coin. Different types of autophagic pathways interact with HSV-1 impairing or enhancing the infection, and both the virus and the host cell modulate these pathways to tip the scales in its favor. In this review, we summarize the recent progress on the interplay between autophagy and HSV-1, focusing on the intricate role of ICP34.5 in the modulation of this pathway to fight the battle against cellular defenses.
Collapse
|
27
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
28
|
Deng L, Xu Z, Li F, Zhao J, Jian Z, Deng H, Lai S, Sun X, Geng Y, Zhu L. Insights on the cGAS-STING Signaling Pathway During Herpesvirus Infections. Front Immunol 2022; 13:931885. [PMID: 35844623 PMCID: PMC9284214 DOI: 10.3389/fimmu.2022.931885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Herpesviruses belong to large double-stranded DNA viruses. They are under a wide range of hosts and establish lifelong infection, which creates a burden on human health and animal health. Innate immunity is the host’s innate defense ability. Activating the innate immune signaling pathway and producing type I interferon is the host’s first line of defense against infectious pathogens. Emerging evidence indicates that the cGAS-STING signaling pathway plays an important role in the innate immunity in response to herpesvirus infections. In parallel, because of the constant selective pressure imposed by host immunity, herpesvirus also evolves to target the cGAS-STING signaling pathway to inhibit or escape the innate immune responses. In the current review, we insight on the classical cGAS-STING signaling pathway. We describe the activation of cGAS-STING signaling pathway during herpesvirus infections and strategies of herpesvirus targeting this pathway to evade host antiviral response. Furthermore, we outline the immunotherapy boosting cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Ling Zhu,
| |
Collapse
|
29
|
Wang S, Ma X, Guo J, Li F, Chen T, Ma W, He C, Wang H, He H. DDIT3 antagonizes innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway. Virulence 2022; 13:514-529. [PMID: 35259065 PMCID: PMC8920142 DOI: 10.1080/21505594.2022.2044667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3), a transcription factor, is typically involved in virus replication control. We are the first to report that DDIT3 promotes the replication of bovine viral diarrhea virus, an RNA virus, by inhibiting innate immunity. However, whether the DDIT3 gene participates in DNA virus replication by regulating innate immunity remains unclear. This study reported that DDIT3 suppressed the innate immune response caused by DNA viruses to promote bovine herpesvirus 1 (BoHV-1) replication. After BoHV-1 infection of Madin-Darby bovine kidney (MDBK) cells, upregulated expression of DDIT3 induced SQSTM1-mediated autophagy and promoted STING degradation. Overexpression of the SQSTM1 protein effectively reduced STING protein levels, whereas SQSTM1 knockdown increased STING protein levels. Coimmunoprecipitation experiments and confocal laser scanning microscopy revealed that the SQSTM1 protein interacts with and colocalizes with STING. Knockdown of SQSTM1 expression in DDIT3-overexpressing cell lines restored STING protein levels. Moreover, a dual-luciferase reporter assay revealed that DDIT3 directly binds to the bovine SQSTM1 promoter and induces SQSTM1 transcription. Overexpression of SQSTM1 promoted BoHV-1 replication by inhibiting IFN-β and IFN-stimulated genes (ISGs) production; silencing of SQSTM1 promoted the expression of IFN-β and ISGs to inhibit BoHV-1 replication. In conclusion, DDIT3 targets STING via SQSTM1-mediated autophagy to promote BoHV-1 replication. These results suggest a novel mechanism by which DDIT3 regulates DNA virus replication by targeting innate immunity. DDIT3 antagonizes the innate immune response to promote bovine alphaherpesvirus 1 replication via the DDIT3-SQSTM1-STING pathway.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jin Guo
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianhua Chen
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengqiang He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
31
|
Quinn CH, Beierle AM, Hutchins SC, Marayati R, Bownes LV, Stewart JE, Markert HR, Erwin MH, Aye JM, Yoon KJ, Friedman GK, Willey CD, Markert JM, Beierle EA. Targeting High-Risk Neuroblastoma Patient-Derived Xenografts with Oncolytic Virotherapy. Cancers (Basel) 2022; 14:cancers14030762. [PMID: 35159029 PMCID: PMC8834037 DOI: 10.3390/cancers14030762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death by disease in children, and over 15% of pediatric cancer-related mortalities are due to neuroblastoma. Current treatment options for neuroblastoma remain suboptimal as they often have significant toxicities, are associated with long-term side effects, and result in disease relapse in over half of children with high-risk disease. There is a dire need for new therapies, and oncolytic viruses may represent an effective solution. Oncolytic viruses attack tumor cells in two ways: direct infection of tumor cells leading to cytolysis, and production of a debris field that stimulates an anti-tumor immune response. Our group has previously shown that M002, an oncolytic herpes simplex virus (oHSV), genetically engineered to express murine interleukin-12 (mIL-12), was effective at targeting and killing long term passage tumor cell lines. In the current study, we investigated M002 in three neuroblastoma patient-derived xenografts (PDXs). PDXs better recapitulate the human condition, and these studies were designed to gather robust data for translation to a clinical trial. We found that all three PDXs expressed viral entry receptors, and that the virus actively replicated in the cells. M002 caused significant tumor cell death in 2D culture and 3D bioprinted tumor models. Finally, the PDXs displayed variable susceptibility to M002, with a more profound effect on high-risk neuroblastoma PDXs compared to low-risk PDX. These findings validate the importance of incorporating PDXs for preclinical testing of oncolytic viral therapeutics and showcase a novel technique, 3D bioprinting, to test therapies in PDXs. Collectively, our data indicate that oHSVs effectively target high-risk neuroblastoma, and support the advancement of this therapy to the clinical setting.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Andee M. Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.M.B.); (C.D.W.)
| | - Sara Claire Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Jamie M. Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Gregory K. Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.M.B.); (C.D.W.)
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
- Correspondence: ; Tel.: +1-205-638-9688
| |
Collapse
|
32
|
Liu X, Acharya D, Krawczyk E, Kangas C, Gack MU, He B. Herpesvirus-mediated stabilization of ICP0 expression neutralizes restriction by TRIM23. Proc Natl Acad Sci U S A 2021; 118:e2113060118. [PMID: 34903664 PMCID: PMC8713807 DOI: 10.1073/pnas.2113060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chase Kangas
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Bin He
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612;
| |
Collapse
|
33
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
34
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
How dendritic cells sense and respond to viral infections. Clin Sci (Lond) 2021; 135:2217-2242. [PMID: 34623425 DOI: 10.1042/cs20210577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
The ability of dendritic cells (DCs) to sense viral pathogens and orchestrate a proper immune response makes them one of the key players in antiviral immunity. Different DC subsets have complementing functions during viral infections, some specialize in antigen presentation and cross-presentation and others in the production of cytokines with antiviral activity, such as type I interferons. In this review, we summarize the latest updates concerning the role of DCs in viral infections, with particular focus on the complex interplay between DC subsets and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Despite being initiated by a vast array of immune receptors, DC-mediated antiviral responses often converge towards the same endpoint, that is the production of proinflammatory cytokines and the activation of an adaptive immune response. Nonetheless, the inherent migratory properties of DCs make them a double-edged sword and often viral recognition by DCs results in further viral dissemination. Here we illustrate these various aspects of the antiviral functions of DCs and also provide a brief overview of novel antiviral vaccination strategies based on DCs targeting.
Collapse
|
36
|
Sharma N, Wang C, Kessler P, Sen GC. Herpes simplex virus 1 evades cellular antiviral response by inducing microRNA-24, which attenuates STING synthesis. PLoS Pathog 2021; 17:e1009950. [PMID: 34591940 PMCID: PMC8483329 DOI: 10.1371/journal.ppat.1009950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3’ untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING’s antiviral action. The type I interferon system is the first line of cellular antiviral innate immune response. Virus infection is recognized by various pattern recognition receptors in the infected cell and it activates the interferon system to inhibit virus replication. However, viruses have evolved various mechanisms to evade the cellular immune response and enhance viral replication. Our study uncovers an immune evasion strategy used by the Herpes Simplex virus to circumvent the cGAS/STING signaling pathway which is the pivotal innate immune response to combat DNA virus replication. miR-24 induction by HSV1 targets STING and hence, dampens Type I Immune response against the virus. The induction of miR-24 is regulated by virus induced MAPK activation, which are also required during early lytic cycles of HSV1 replication and is indispensable for HSV1 reactivation from latency in neurons; depicting a new direct co-relation between MAPK activation and HSV1 replication orchestrated through cellular miR-24. Silencing of miR-24 in mice brain curtails viral replication and disease severity. Overall, these results indicate possible therapeutic use of stable antimiR-24 against HSV1 and other diseases that are alleviated by STING.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Chenyao Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Patricia Kessler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ganes C Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
37
|
Dixon CR, Malik P, de las Heras JI, Saiz-Ros N, de Lima Alves F, Tingey M, Gaunt E, Richardson AC, Kelly DA, Goldberg MW, Towers GJ, Yang W, Rappsilber J, Digard P, Schirmer EC. STING nuclear partners contribute to innate immune signaling responses. iScience 2021; 24:103055. [PMID: 34541469 PMCID: PMC8436130 DOI: 10.1016/j.isci.2021.103055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
STimulator of INterferon Genes (STING) is an adaptor for cytoplasmic DNA sensing by cGAMP/cGAS that helps trigger innate immune responses (IIRs). Although STING is mostly localized in the ER, we find a separate inner nuclear membrane pool of STING that increases mobility and redistributes to the outer nuclear membrane upon IIR stimulation by transfected dsDNA or dsRNA mimic poly(I:C). Immunoprecipitation of STING from isolated nuclear envelopes coupled with mass spectrometry revealed a distinct nuclear envelope-STING proteome consisting of known nuclear membrane proteins and enriched in DNA- and RNA-binding proteins. Seventeen of these nuclear envelope STING partners are known to bind direct interactors of IRF3/7 transcription factors, and testing a subset of these revealed STING partners SYNCRIP, MEN1, DDX5, snRNP70, RPS27a, and AATF as novel modulators of dsDNA-triggered IIRs. Moreover, we find that SYNCRIP is a novel antagonist of the RNA virus, influenza A, potentially shedding light on reports of STING inhibition of RNA viruses.
Collapse
Affiliation(s)
- Charles R. Dixon
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Poonam Malik
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Jose I. de las Heras
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Natalia Saiz-Ros
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Eleanor Gaunt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - David A. Kelly
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Greg J. Towers
- Department of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Juri Rappsilber
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, 13355 Berlin, Germany
| | - Paul Digard
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
38
|
Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses 2021; 13:v13071408. [PMID: 34372614 PMCID: PMC8310378 DOI: 10.3390/v13071408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a therapeutic modality that has seen substantial success for the treatment of cancer, though much remains to be improved. Commonly attenuated through the deletion or alteration of the γ134.5 neurovirulence gene, the basis for the success of oHSV relies in part on the malignant silencing of cellular pathways critical for limiting these viruses in healthy host tissue. However, only recently have the molecular mechanisms underlying the success of these treatments begun to emerge. Further clarification of these mechanisms can strengthen rational design approaches to develop the next generation of oHSV. Herein, we review our current understanding of the molecular basis for tumor susceptibility to γ134.5-attenuated oHSV, with particular focus on the malignant suppression of nucleic acid sensing, along with strategies meant to improve the clinical efficacy of these therapeutic viruses.
Collapse
|
39
|
Bhowmik D, Zhu F. Evasion of Intracellular DNA Sensing by Human Herpesviruses. Front Cell Infect Microbiol 2021; 11:647992. [PMID: 33791247 PMCID: PMC8005619 DOI: 10.3389/fcimb.2021.647992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Sensing of viral constituents is the first and critical step in the host innate immune defense against viruses. In mammalian cells, there are a variety of pathogen recognition receptors (PRRs) that detect diverse pathogen-associated molecular patterns (PAMPs) including viral RNA and DNA. In the past decade, a number of host DNA sensors have been discovered and the underlying sensing mechanisms have been elucidated. Herpesviruses belong to a large family of enveloped DNA viruses. They are successful pathogens whose elaborate immune evasion mechanisms contribute to high prevalence of infection among their hosts. The three subfamilies of herpesviruses have all been found to employ diverse and overlapping strategies to interfere with host DNA sensing. These strategies include masking viral DNA or the DNA sensor, degradation of the DNA sensor, and post-transcriptional modification of the DNA sensor or its adaptor protein. In this review, we will discuss the current state of our knowledge on how human herpesviruses use these strategies to evade DNA-induced immune responses. Comprehensive understanding of herpesvirus immune-evasion mechanisms will aid in the development of vaccines and antivirals for herpesvirus-associated diseases.
Collapse
Affiliation(s)
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
40
|
Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, Gale M, He B. The herpesvirus accessory protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathog 2021; 17:e1009446. [PMID: 33770145 PMCID: PMC7996975 DOI: 10.1371/journal.ppat.1009446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yijie Ma
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Bin He
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
41
|
Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes Simplex Virus and Pattern Recognition Receptors: An Arms Race. Front Immunol 2021; 11:613799. [PMID: 33584700 PMCID: PMC7878388 DOI: 10.3389/fimmu.2020.613799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex viruses (HSVs) are experts in establishing persistent infection in immune-competent humans, in part by successfully evading immune activation through diverse strategies. Upon HSV infection, host deploys pattern recognition receptors (PRRs) to recognize various HSV-associated molecular patterns and mount antiviral innate immune responses. In this review, we describe recent advances in understanding the contributions of cytosolic PRRs to detect HSV and the direct manipulations on these receptors by HSV-encoded viral proteins as countermeasures. The continuous update and summarization of these mechanisms will deepen our understanding on HSV-host interactions in innate immunity for the development of novel antiviral therapies, vaccines and oncolytic viruses.
Collapse
Affiliation(s)
- Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
42
|
Generation of a Novel Mesothelin-Targeted Oncolytic Herpes Virus and Implemented Strategies for Manufacturing. Int J Mol Sci 2021; 22:ijms22020477. [PMID: 33418877 PMCID: PMC7825047 DOI: 10.3390/ijms22020477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 01/19/2023] Open
Abstract
Background: HER2-based retargeted viruses are in advanced phases of preclinical development of breast cancer models. Mesothelin (MSLN) is a cell-surface tumor antigen expressed in different subtypes of breast and non-breast cancer. Its recent identification as a marker of some triple-negative breast tumors renders it an attractive target, presently investigated in clinical trials employing antibody drug conjugates and CAR-T cells. The availability of MSLN-retargeted oncolytic viruses may complement the current immunotherapeutic panel of biological drugs against HER2-negative breast and non-breast tumors. Methods: A fully virulent, tumor-targeted oncolytic Herpes simplex virus-1 (MSLN-THV) with a selectivity for mesothelin-expressing cancer cells was generated. Recombineering technology was used to replace an essential moiety of the viral glycoprotein D with antibody fragments derived from clinically validated MSLN monoclonal antibodies, and to allow IL12 cargo expression in infected cells. Panels of breast and female reproductive system cell lines were used to verify the oncolytic potential of the viral constructs. A platform for production of the retargeted viruses was developed in HEK 293 cells, providing stable expression of a suitable chimeric receptor. Results: We demonstrated the selectivity of viral infection and cytotoxicity by MSLN-retargeted viruses in a panel of mesothelin-positive cancer cells, originating from breast and female reproductive system tumors. We also developed a second-generation oncolytic MSLN-THV, encoding IL12, to enhance the immunotherapeutic potential of the viral backbone. A non-tumor cell line expressing a chimeric MSLN/Nectin-1 receptor, de-sensitized from antiviral responses by genetic inactivation of the Stimulator of Interferon Genes (STING)-dependent pathway was engineered, to optimize viral yields. Conclusions: Our proof-of-concept study proposes MSLN-retargeted herpesviruses as potential cancer immunotherapeutics for assessments in preclinical models of MSLN-positive tumors, complementing the available panel of oncolytic viruses to HER2-negative breast tumors.
Collapse
|
43
|
Zhu H, Zheng C. The Race between Host Antiviral Innate Immunity and the Immune Evasion Strategies of Herpes Simplex Virus 1. Microbiol Mol Biol Rev 2020; 84:e00099-20. [PMID: 32998978 PMCID: PMC7528619 DOI: 10.1128/mmbr.00099-20] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is very successful in establishing acute and latent infections in humans by counteracting host antiviral innate immune responses. HSV-1 has evolved various strategies to evade host antiviral innate immunity and some cellular survival-associated pathways. Since there is still no vaccine available for HSV-1, a continuous update of information regarding the interaction between HSV-1 infection and the host antiviral innate immunity will provide novel insights to develop new therapeutic strategies for HSV-1 infection and its associated diseases. Here, we update recent studies about how HSV-1 evades the host antiviral innate immunity, specifically how HSV-1 proteins directly or indirectly target the adaptors in the antiviral innate immunity signaling pathways to downregulate the signal transduction. Additionally, some classical intracellular stress responses, which also play important roles in defense of viral invasion, will be discussed here. With a comprehensive review of evasion mechanisms of antiviral innate immunity by HSV-1, we will be able to develop potential new targets for therapies and a possible vaccine against HSV-1 infections.
Collapse
Affiliation(s)
- Huifang Zhu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Froechlich G, Caiazza C, Gentile C, D’Alise AM, De Lucia M, Langone F, Leoni G, Cotugno G, Scisciola V, Nicosia A, Scarselli E, Mallardo M, Sasso E, Zambrano N. Integrity of the Antiviral STING-mediated DNA Sensing in Tumor Cells Is Required to Sustain the Immunotherapeutic Efficacy of Herpes Simplex Oncolytic Virus. Cancers (Basel) 2020; 12:cancers12113407. [PMID: 33213060 PMCID: PMC7698602 DOI: 10.3390/cancers12113407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Oncolytic viruses are emerging immunotherapeutics in cancer treatments. The conflicting role of innate immunity in the antitumor activity of oncolytic viruses is still a matter of debate. The STING-dependent DNA sensing axis is considered detrimental for viral replication and cancer cell clearance. Accordingly, we observed that STING loss in tumor cells was associated with improved lytic potential by a herpes-based oncolytic virus. However, STING-knockout cancer cells infected with the oncolytic virus showed impaired immunogenicity, as immunogenic cell death was improperly triggered. In agreement with these observations, STING-knockout tumors raised in a murine syngeneic model were more resistant to a combined treatment of the oncolytic virus with PD-1 blockade. The present study demonstrates the antitumor benefit of antiviral immunity and sheds lights on the mechanisms of immune resistance to oncovirotherapy exerted by STING-loss in tumor cells. Abstract The dichotomic contribution of cancer cell lysis and tumor immunogenicity is considered essential for effective oncovirotherapy, suggesting that the innate antiviral immune response is a hurdle for efficacy of oncolytic viruses. However, emerging evidence is resizing this view. By sensing cytosolic DNA, the cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) axis can both counteract viral spread and contribute to the elicitation of adaptive immunity via type I interferon responses. In this paper, we analyzed the tumor-resident function of Sting-mediated DNA sensing in a combined approach of oncovirotherapy and PD-1 immune checkpoint blockade, in an immunocompetent murine model. While supporting increased lytic potential by oncolytic HER2-retargeted HSV-1 in vitro and in vivo, Sting-knockout tumors showed molecular signatures of an immunosuppressive tumor microenvironment. These signatures were correspondingly associated with ineffectiveness of the combination therapy in a model of established tumors. Results suggest that the impairment in antiviral response of Sting-knockout tumors, while favoring viral replication, is not able to elicit an adequate immunotherapeutic effect, due to lack of immunogenic cell death and the inability of Sting-knockout cancer cells to promote anti-tumor adaptive immune responses. Accordingly, we propose that antiviral, tumor-resident Sting provides fundamental contributions to immunotherapeutic efficacy of oncolytic viruses.
Collapse
Affiliation(s)
- Guendalina Froechlich
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Chiara Gentile
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Anna Morena D’Alise
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Maria De Lucia
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Francesca Langone
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Guido Leoni
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Gabriella Cotugno
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Vittorio Scisciola
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Alfredo Nicosia
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Elisa Scarselli
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Emanuele Sasso
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
- Correspondence:
| | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| |
Collapse
|
45
|
Lei V, Petty AJ, Atwater AR, Wolfe SA, MacLeod AS. Skin Viral Infections: Host Antiviral Innate Immunity and Viral Immune Evasion. Front Immunol 2020; 11:593901. [PMID: 33240281 PMCID: PMC7677409 DOI: 10.3389/fimmu.2020.593901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
The skin is an active immune organ that functions as the first and largest site of defense to the outside environment. Serving as the primary interface between host and pathogen, the skin’s early immune responses to viral invaders often determine the course and severity of infection. We review the current literature pertaining to the mechanisms of cutaneous viral invasion for classical skin-tropic, oncogenic, and vector-borne skin viruses. We discuss the skin’s evolved mechanisms for innate immune viral defense against these invading pathogens, as well as unique strategies utilized by the viruses to escape immune detection. We additionally explore the roles that demographic and environmental factors, such as age, biological sex, and the cutaneous microbiome, play in altering the host immune response to viral threats.
Collapse
Affiliation(s)
- Vivian Lei
- Department of Dermatology, Duke University, Durham, NC, United States.,School of Medicine, Duke University, Durham, NC, United States
| | - Amy J Petty
- School of Medicine, Duke University, Durham, NC, United States
| | - Amber R Atwater
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Sarah A Wolfe
- Department of Dermatology, Duke University, Durham, NC, United States
| | - Amanda S MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States.,Department of Immunology, Duke University, Durham, NC, United States.,Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
46
|
Zhang L, Wang W, Wang R, Zhang N, Shang H, Bi Y, Chen D, Zhang C, Li L, Yin J, Zhang H, Cao Y. Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma. Mol Ther 2020; 29:744-761. [PMID: 33130310 DOI: 10.1016/j.ymthe.2020.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ T cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China
| | - Ruikun Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Hang Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Yang Bi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Da Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China
| | - Cuizhu Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Long Li
- Department of Immunology, Tianjin Medical University, Tianjin 300070, PR China; Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin 300070, PR China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin 300070, PR China; Tianjin Medical University, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin 300070, PR China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, PR China.
| | - Youjia Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, PR China; Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
47
|
Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020; 11:2064. [PMID: 33133062 PMCID: PMC7550420 DOI: 10.3389/fimmu.2020.02064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2',3'-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) by the host and microbial proteins.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
48
|
Jeffries AM, Marriott I. Cytosolic DNA Sensors and CNS Responses to Viral Pathogens. Front Cell Infect Microbiol 2020; 10:576263. [PMID: 33042875 PMCID: PMC7525022 DOI: 10.3389/fcimb.2020.576263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Viral central nervous system (CNS) infections can lead to life threatening encephalitis and long-term neurological deficits in survivors. Resident CNS cell types, such as astrocytes and microglia, are known to produce key inflammatory and antiviral mediators following infection with neurotropic DNA viruses. However, the mechanisms by which glia mediate such responses remain poorly understood. Recently, a class of intracellular pattern recognition receptors (PRRs), collectively known as DNA sensors, have been identified in both leukocytic and non-leukocytic cell types. The ability of such DNA sensors to initiate immune mediator production and contribute to infection resolution in the periphery is increasingly recognized, but our understanding of their role in the CNS remains limited at best. In this review, we describe the evidence for the expression and functionality of DNA sensors in resident brain cells, with a focus on their role in neurotropic virus infections. The available data indicate that glia and neurons can constitutively express, and/or can be induced to express, various disparate DNA sensing molecules previously described in peripheral cell types. Furthermore, multiple lines of investigation suggest that these sensors are functional in resident CNS cells and are required for innate immune responses to viral infections. However, it is less clear whether DNA sensormediated glial responses are beneficial or detrimental, and the answer to this question appears to dependent on the context of the infection with regard to the identity of the pathogen, host cell type, and host species. Defining such parameters will be essential if we are to successfully target these molecules to limit damaging inflammation while allowing beneficial host responses to improve patient outcomes.
Collapse
Affiliation(s)
- Austin M Jeffries
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
49
|
Herpes Simplex Virus Type 1 Interactions with the Interferon System. Int J Mol Sci 2020; 21:ijms21145150. [PMID: 32708188 PMCID: PMC7404291 DOI: 10.3390/ijms21145150] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) system is one of the first lines of defense activated against invading viral pathogens. Upon secretion, IFNs activate a signaling cascade resulting in the production of several interferon stimulated genes (ISGs), which work to limit viral replication and establish an overall anti-viral state. Herpes simplex virus type 1 is a ubiquitous human pathogen that has evolved to downregulate the IFN response and establish lifelong latent infection in sensory neurons of the host. This review will focus on the mechanisms by which the host innate immune system detects invading HSV-1 virions, the subsequent IFN response generated to limit viral infection, and the evasion strategies developed by HSV-1 to evade the immune system and establish latency in the host.
Collapse
|
50
|
Chiocca EA, Nakashima H, Kasai K, Fernandez SA, Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev 2020; 17:871-893. [PMID: 32373649 PMCID: PMC7195500 DOI: 10.1016/j.omtm.2020.03.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Collapse
Affiliation(s)
- E. Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kazue Kasai
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soledad A. Fernandez
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|