1
|
Tong T, D’Addabbo A, Xu J, Chawla H, Nguyen A, Ochoa P, Crispin M, Binley JM. Impact of stabilizing mutations on the antigenic profile and glycosylation of membrane-expressed HIV-1 envelope glycoprotein. PLoS Pathog 2023; 19:e1011452. [PMID: 37549185 PMCID: PMC10434953 DOI: 10.1371/journal.ppat.1011452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
Recent HIV-1 vaccine development has centered on "near native" soluble envelope glycoprotein (Env) trimers that are artificially stabilized laterally (between protomers) and apically (between gp120 and gp41). These mutations have been leveraged for use in membrane-expressed Env mRNA vaccines, although their effects in this context are unclear. To address this question, we used virus-like particle (VLP) produced in 293T cells. Uncleaved (UNC) trimers were laterally unstable upon gentle lysis from membranes. However, gp120/gp41 processing improved lateral stability. Due to inefficient gp120/gp41 processing, UNC is incorporated into VLPs. A linker between gp120 and gp41 neither improved trimer stability nor its antigenic profile. An artificially introduced enterokinase cleavage site allowed post-expression gp120/gp41 processing, concomitantly increasing trimer stability. Gp41 N-helix mutations I559P and NT1-5 imparted lateral trimer stability, but also reduced gp120/gp41 processing and/or impacted V2 apex and interface NAb binding. I559P consistently reduced recognition by HIV+ human plasmas, further supporting antigenic differences. Mutations in the gp120 bridging sheet failed to stabilize membrane trimers in a pre-fusion conformation, and also reduced gp120/gp41 processing and exposed non-neutralizing epitopes. Reduced glycan maturation and increased sequon skipping were common side effects of these mutations. In some cases, this may be due to increased rigidity which limits access to glycan processing enzymes. In contrast, viral gp120 did not show glycan skipping. A second, minor species of high mannose gp160 was unaffected by any mutations and instead bypasses normal folding and glycan maturation. Including the full gp41 cytoplasmic tail led to markedly reduced gp120/gp41 processing and greatly increased the proportion of high mannose gp160. Remarkably, monoclonal antibodies were unable to bind to this high mannose gp160 in native protein gels. Overall, our findings suggest caution in leveraging stabilizing mutations in nucleic acid-based immunogens to ensure they impart valuable membrane trimer phenotypes for vaccine use.
Collapse
Affiliation(s)
- Tommy Tong
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Alessio D’Addabbo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jiamin Xu
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Albert Nguyen
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Paola Ochoa
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, California, United States of America
| |
Collapse
|
2
|
Martin GM, Russell RA, Mundsperger P, Harris S, Jovanoska L, Trajano LF, Schiffner T, Fabian K, Tolazzi M, Scarlatti G, McFarlane L, Cheeseman H, Aldon Y, Schermer EE, Breemen M, Sliepen K, Katinger D, Kunert R, Sanders RW, Shattock R, Ward AB, Sattentau QJ. Profound structural conservation of chemically cross-linked HIV-1 envelope glycoprotein experimental vaccine antigens. NPJ Vaccines 2023; 8:101. [PMID: 37443366 PMCID: PMC10345191 DOI: 10.1038/s41541-023-00696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Philip Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Scarlett Harris
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Lu Jovanoska
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | | | - Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Katalin Fabian
- Department of Immunology, National Food Chain Safety Office, Directorate of Veterinary Medicinal Products, Budapest, Hungary
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Leon McFarlane
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Hannah Cheeseman
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Yoann Aldon
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Edith E Schermer
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Breemen
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands
| | - Robin Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W2 1PG, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
4
|
High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. NPJ Vaccines 2022; 7:27. [PMID: 35228534 PMCID: PMC8885667 DOI: 10.1038/s41541-022-00446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/01/2022] Open
Abstract
Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.
Collapse
|
5
|
Suleiman E, Mayer J, Lehner E, Kohlhauser B, Katholnig A, Batzoni M, Damm D, Temchura V, Wagner A, Überla K, Vorauer-Uhl K. Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics 2020; 12:E979. [PMID: 33081278 PMCID: PMC7589475 DOI: 10.3390/pharmaceutics12100979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
The display of native-like human immunodeficiency virus type 1 envelope (HIV-1 Env) trimers on liposomes has gained wide attention over the last few years. Currently, available methods have enabled the preparation of Env-liposome conjugates of unprecedented quality. However, these protocols require the Env trimer to be tagged and/or to carry a specific functional group. For this reason, we have investigated N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide/N-Hydroxysulfosuccinimide (EDC/Sulfo-NHS) chemistry for its potential to covalently conjugate tag-free, non-functionalized native-like Env trimers onto the surface of carboxyl-functionalized liposomes. The preservation of the liposome's physical integrity and the immunogen's conformation required a fine-tuned two-step approach based on the controlled use of β-mercaptoethanol. The display of Env trimers was strictly limited to activated liposomes of positive charge, i.e., liposomes with a positive zeta potential that carry amine-reactive Sulfo-NHS esters on their surface. In agreement with that, conjugation was found to be highly ionic strength- and pH-dependent. Overall, we have identified electrostatic pre-concentration (i.e., close proximity between negatively charged Env trimers and positively charged liposomes established through electrostatic attraction) to be crucial for conjugation reactions to proceed. The present study highlights the requirements and limitations of potentially scalable EDC/Sulfo-NHS-based approaches and represents a solid basis for further research into the controlled conjugation of tag-free, non-functionalized native-like Env trimers on the surface of liposomes, and other nanoparticles.
Collapse
Affiliation(s)
- Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Bianca Kohlhauser
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- University of Vienna, 1010 Vienna, Austria
| | - Alexandra Katholnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Mirjam Batzoni
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Andreas Wagner
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| |
Collapse
|
6
|
Center RJ, Boo I, Phu L, McGregor J, Poumbourios P, Drummer HE. Enhancing the antigenicity and immunogenicity of monomeric forms of hepatitis C virus E2 for use as a preventive vaccine. J Biol Chem 2020; 295:7179-7192. [PMID: 32299914 PMCID: PMC7247312 DOI: 10.1074/jbc.ra120.013015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.
Collapse
Affiliation(s)
- Rob J Center
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Irene Boo
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia
| | - Lilian Phu
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Joey McGregor
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Pantelis Poumbourios
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia
| | - Heidi E Drummer
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Australia; Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia; Department of Microbiology, Monash University, Clayton 3056, Australia.
| |
Collapse
|
7
|
Gorini G, Fourati S, Vaccari M, Rahman MA, Gordon SN, Brown DR, Law L, Chang J, Green R, Barrenäs F, Liyanage NPM, Doster MN, Schifanella L, Bissa M, Silva de Castro I, Washington-Parks R, Galli V, Fuller DH, Santra S, Agy M, Pal R, Palermo RE, Tomaras GD, Shen X, LaBranche CC, Montefiori DC, Venzon DJ, Trinh HV, Rao M, Gale M, Sekaly RP, Franchini G. Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathog 2020; 16:e1008377. [PMID: 32163525 PMCID: PMC7093029 DOI: 10.1371/journal.ppat.1008377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/24/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The recombinant Canarypox ALVAC-HIV/gp120/alum vaccine regimen was the first to significantly decrease the risk of HIV acquisition in humans, with equal effectiveness in both males and females. Similarly, an equivalent SIV-based ALVAC vaccine regimen decreased the risk of virus acquisition in Indian rhesus macaques of both sexes following intrarectal exposure to low doses of SIVmac251. Here, we demonstrate that the ALVAC-SIV/gp120/alum vaccine is also efficacious in female Chinese rhesus macaques following intravaginal exposure to low doses of SIVmac251 and we confirm that CD14+ classical monocytes are a strong correlate of decreased risk of virus acquisition. Furthermore, we demonstrate that the frequency of CD14+ cells and/or their gene expression correlates with blood Type 1 CD4+ T helper cells, α4β7+ plasmablasts, and vaginal cytocidal NKG2A+ cells. To better understand the correlate of protection, we contrasted the ALVAC-SIV vaccine with a NYVAC-based SIV/gp120 regimen that used the identical immunogen. We found that NYVAC-SIV induced higher immune activation via CD4+Ki67+CD38+ and CD4+Ki67+α4β7+ T cells, higher SIV envelope-specific IFN-γ producing cells, equivalent ADCC, and did not decrease the risk of SIVmac251 acquisition. Using the systems biology approach, we demonstrate that specific expression profiles of plasmablasts, NKG2A+ cells, and monocytes elicited by the ALVAC-based regimen correlated with decreased risk of virus acquisition.
Collapse
Affiliation(s)
- Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shari N. Gordon
- Department of Infectious Diseases, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Fredrik Barrenäs
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Deborah H. Fuller
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Agy
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ranajit Pal
- Advanced Bioscience Laboratories, Rockville, Maryland, United States of America
| | - Robert E. Palermo
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, and Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Rafick P. Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Expression of CD40L by the ALVAC-Simian Immunodeficiency Virus Vector Abrogates T Cell Responses in Macaques. J Virol 2020; 94:JVI.01933-19. [PMID: 31896599 DOI: 10.1128/jvi.01933-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Immunization with recombinant ALVAC/gp120 alum vaccine provided modest protection from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) acquisition in humans and macaques. Vaccine-mediated protection was associated with the elicitation of IgG against the envelope V2 loop and of envelope-specific CD4+ T cell responses. We hypothesized that the simultaneous expression of the costimulatory molecule CD40L (CD154) by the ALVAC-HIV vector could increase both protective humoral and cellular responses. We engineered an ALVAC-SIV coexpressing CD40L with SIVmac251 (ALVAC-SIV/CD40L) gag, pol, and env genes. We compared its immunogenicity in macaques with that of a canonical ALVAC-SIV, with both given as a vector-prime/gp120 in alum boost strategy. The ALVAC-SIV/CD40L was superior to the ALVAC-SIV regimen in inducing binding and tier 1 neutralizing antibodies against the gp120. The increase in humoral responses was associated with the expression of the membrane-bound form of the CD40L by CD4+ T cells in lymph nodes. Unexpectedly, the ALVAC-SIV/CD40L vector had a blunting effect on CD4+ Th1 helper responses and instead favored the induction of myeloid-derived suppressor cells, the immune-suppressive interleukin-10 (IL-10) cytokine, and the down-modulatory tryptophan catabolism. Ultimately, this strategy failed to protect macaques from SIV acquisition. Taken together, these results underlie the importance of balanced vaccine-induced activating versus suppressive immune responses in affording protection from HIV.IMPORTANCE CD40-CD40 ligand (CD40L) interaction is crucial for inducing effective cytotoxic and humoral responses against pathogens. Because of its immunomodulatory function, CD40L has been used to enhance immune responses to vaccines, including candidate vaccines for HIV. The only successful vaccine ever tested in humans utilized a strategy combining canarypox virus-based vector (ALVAC) together with an envelope protein (gp120) adjuvanted in alum. This strategy showed limited efficacy in preventing HIV-1/SIV acquisition in humans and macaques. In both species, protection was associated with vaccine-induced antibodies against the HIV envelope and CD4+ T cell responses, including type 1 antiviral responses. In this study, we tested whether augmenting CD40L expression by coexpressing it with the ALVAC vector could increase the protective immune responses. Although coexpression of CD40L did increase humoral responses, it blunted type 1 CD4+ T cell responses against the SIV envelope protein and failed to protect macaques from viral infection.
Collapse
|
9
|
Schifanella L, Barnett SW, Bissa M, Galli V, Doster MN, Vaccari M, Tomaras GD, Shen X, Phogat S, Pal R, Montefiori DC, LaBranche CC, Rao M, Trinh HV, Washington-Parks R, Liyanage NPM, Brown DR, Liang F, Loré K, Venzon DJ, Magnanelli W, Metrinko M, Kramer J, Breed M, Alter G, Ruprecht RM, Franchini G. ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathog 2019; 15:e1008121. [PMID: 31794588 PMCID: PMC6890176 DOI: 10.1371/journal.ppat.1008121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1β, respectively.
Collapse
Affiliation(s)
- Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Inc, Cambridge, Massachusetts, United States of America
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Rockville, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Celia C. LaBranche
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Hung V. Trinh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Namal P. M. Liyanage
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | | | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Magnanelli
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Michelle Metrinko
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Josh Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Matthew Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard Cambridge, Boston, Massachusetts, United States of America
| | - Ruth M. Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Karch CP, Bai H, Torres OB, Tucker CA, Michael NL, Matyas GR, Rolland M, Burkhard P, Beck Z. Design and characterization of a self-assembling protein nanoparticle displaying HIV-1 Env V1V2 loop in a native-like trimeric conformation as vaccine antigen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:206-216. [DOI: 10.1016/j.nano.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
|
11
|
Blasi M, Negri D, LaBranche C, Alam SM, Baker EJ, Brunner EC, Gladden MA, Michelini Z, Vandergrift NA, Wiehe KJ, Parks R, Shen X, Bonsignori M, Tomaras GD, Ferrari G, Montefiori DC, Santra S, Haynes BF, Moody MA, Cara A, Klotman ME. IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Commun Biol 2018; 1:134. [PMID: 30272013 PMCID: PMC6125466 DOI: 10.1038/s42003-018-0131-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
HIV continues to be a major global health issue. In spite of successful prevention interventions and treatment methods, the development of an HIV vaccine remains a major priority for the field and would be the optimal strategy to prevent new infections. We showed previously that a single immunization with a SIV-based integrase-defective lentiviral vector (IDLV) expressing the 1086.C HIV-1-envelope induced durable, high-magnitude immune responses in non-human primates (NHPs). In this study, we have further characterized the humoral responses by assessing antibody affinity maturation and antigen-specific memory B-cell persistence in two vaccinated macaques. These animals were also boosted with IDLV expressing the heterologous 1176.C HIV-1-Env to determine if neutralization breadth could be increased, followed by evaluation of the injection sites to assess IDLV persistence. IDLV-Env immunization was associated with persistence of the vector DNA for up to 6 months post immunization and affinity maturation of antigen-specific memory B cells. Maria Blasi et al. report the anti-HIV-1 humoral response elicited in rhesus macaques following vaccination with an SIV-based integrase-defective lentiviral vector (IDLV). They find that a single IDLV-Env immunization induces continuous antibody avidity maturation and boosting with a heterologous HIV-1 Env results in lower peak antibody titers than autologous boost.
Collapse
Affiliation(s)
- Maria Blasi
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.
| | - Donatella Negri
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - S Munir Alam
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, 27710, NC, USA
| | - Erich J Baker
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Elizabeth C Brunner
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Morgan A Gladden
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | | | - Nathan A Vandergrift
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Kevin J Wiehe
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Robert Parks
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, 27710, NC, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, 02215, MA, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA.,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA
| | - Michael A Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, 27710, NC, USA
| | - Andrea Cara
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA. .,Istituto Superiore di Sanità, Rome, 00161, Italy.
| | - Mary E Klotman
- Department of Medicine, Duke University Medical Center, Durham, 27710, NC, USA. .,Duke Human Vaccine Institute, Duke University Medical Center, Durham, 27710, NC, USA.
| |
Collapse
|
12
|
Yacoob C, Lange MD, Cohen K, Lathia K, Feng J, Glenn J, Carbonetti S, Oliver B, Vigdorovich V, Sather DN, Stamatatos L. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques. PLoS Pathog 2018; 14:e1007120. [PMID: 29933399 PMCID: PMC6033445 DOI: 10.1371/journal.ppat.1007120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutralizing antibodies. Env-based immunogens tested so far in various animal species and humans have elicited binding and autologous neutralizing antibodies but not bNAbs (with a few notable exceptions). The underlying reasons for this are not well understood despite intensive efforts to characterize the binding specificities of the elicited antibodies; mostly by employing serologic methodologies and monoclonal antibody isolation and characterization. These approaches provide limited information on the ontogenies and clonal B cell lineages that expand following Env-immunization. Thus, our current understanding on how the expansion of particular B cell lineages by Env may be linked to the development of non-neutralizing antibodies is limited. Here, in addition to serological analysis, we employed high-throughput BCR sequence analysis from the periphery, lymph nodes and bone marrow, as well as B cell- and antibody-isolation and characterization methods, to compare in great detail the B cell and antibody responses elicited in non-human primates by two forms of the clade C HIV Env 426c: one representing the full length extracellular portion of Env while the other lacking the variable domains 1, 2 and 3 and three conserved N-linked glycosylation sites. The two forms were equally immunogenic, but only the latter elicited neutralizing antibodies by stimulating a more restricted expansion of B cells to a narrower set of IGH/IGK/IGL-V genes that represented a small fraction (0.003-0.02%) of total B cells. Our study provides new information on how Env antigenic differences drastically affect the expansion of particular B cell lineages and supports immunogen-design efforts aiming at stimulating the expansion of cells expressing particular B cell receptors.
Collapse
Affiliation(s)
- Christina Yacoob
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Miles Darnell Lange
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Kristen Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Kanan Lathia
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Jolene Glenn
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Sara Carbonetti
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Brian Oliver
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Vladimir Vigdorovich
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - David Noah Sather
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
- University of Washington, Department of Global Health, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| |
Collapse
|
13
|
Vaccari M, Fourati S, Gordon SN, Brown DR, Bissa M, Schifanella L, Silva de Castro I, Doster MN, Galli V, Omsland M, Fujikawa D, Gorini G, Liyanage NPM, Trinh HV, McKinnon KM, Foulds KE, Keele BF, Roederer M, Koup RA, Shen X, Tomaras GD, Wong MP, Munoz KJ, Gach JS, Forthal DN, Montefiori DC, Venzon DJ, Felber BK, Rosati M, Pavlakis GN, Rao M, Sekaly RP, Franchini G. HIV vaccine candidate activation of hypoxia and the inflammasome in CD14 + monocytes is associated with a decreased risk of SIV mac251 acquisition. Nat Med 2018; 24:847-856. [PMID: 29785023 PMCID: PMC5992093 DOI: 10.1038/s41591-018-0025-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023]
Abstract
Qualitative differences in the innate and adaptive responses elicited by different HIV vaccine candidates have not been thoroughly investigated. We tested the ability of the Aventis Pasteur live recombinant canarypox vector (ALVAC)-SIV, DNA-SIV and Ad26-SIV vaccine prime modalities together with two ALVAC-SIV + gp120 protein boosts to reduce the risk of SIVmac251 acquisition in rhesus macaques. We found that the DNA and ALVAC prime regimens were effective, but the Ad26 prime was not. The activation of hypoxia and the inflammasome in CD14+CD16- monocytes, gut-homing CCR5-negative CD4+ T helper 2 (TH2) cells and antibodies to variable region 2 correlated with a decreased risk of SIVmac251 acquisition. By contrast, signal transducer and activator of transcription 3 activation in CD16+ monocytes was associated with an increased risk of virus acquisition. The Ad26 prime regimen induced the accumulation of CX3CR1+CD163+ macrophages in lymph nodes and of long-lasting CD4+ TH17 cells in the gut and lungs. Our data indicate that the selective engagement of monocyte subsets following a vaccine prime influences long-term immunity, uncovering an unexpected association of CD14+ innate monocytes with a reduced risk of SIVmac251 acquisition.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shari N Gordon
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dallas R Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Massimilano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dai Fujikawa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hung V Trinh
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Katherine M McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Marcus P Wong
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Karissa J Munoz
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mangala Rao
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
14
|
Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. J Virol 2018; 92:JVI.00277-18. [PMID: 29618643 DOI: 10.1128/jvi.00277-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The mature envelope glycoprotein (Env) spike on the surfaces of human immunodeficiency virus type 1 (HIV-1)-infected cells and virions is derived from proteolytic cleavage of a trimeric gp160 glycoprotein precursor. In these studies, we compared the conformations of cleaved and uncleaved membrane Envs with truncated cytoplasmic tails to those of stabilized soluble gp140 SOSIP.664 Env trimers. Deletion of the gp41 cytoplasmic tail did not significantly affect the sensitivity of viruses with the HIV-1AD8 Env to inhibition by antibodies or a CD4-mimetic compound. After glutaraldehyde fixation and purification from membranes, a cleaved Env exhibited a hydrodynamic radius of ∼10 nm and an antibody-binding profile largely consistent with that expected based on virus neutralization sensitivity. The purified cleaved Env trimers exhibited a hollow architecture with a central void near the trimer axis. Uncleaved Env, cross-linked and purified in parallel, exhibited a hydrodynamic radius similar to that of the cleaved Env. However, the uncleaved Env was recognized by poorly neutralizing antibodies and appeared by negative-stain electron microscopy to sample multiple conformations. Compared with membrane Envs, stabilized soluble gp140 SOSIP.664 Env trimers appear to be more compact, as reflected in their smaller hydrodynamic radii and negative-stain electron microscopy structures. The antigenic features of the soluble gp140 SOSIP.664 Env trimers differed from those of the cleaved membrane Env, particularly in gp120 V3 and some CD4-binding-site epitopes. Thus, proteolytic maturation allows the membrane-anchored Env to achieve a conformation that retains functional metastability but masks epitopes for poorly neutralizing antibodies.IMPORTANCE The entry of human immunodeficiency virus type 1 (HIV-1) into host cells is mediated by the envelope glycoprotein (Env) spike on the surface of the virus. Host antibodies elicited during natural HIV-1 infection or by vaccination can potentially recognize the Env spike and block HIV-1 infection. However, the changing shape of the HIV-1 Env spike protects the virus from antibody binding. Understanding the shapes of natural and man-made preparations of HIV-1 Envs will assist the development of effective vaccines against the virus. Here, we evaluate the effects of several Env modifications commonly used to produce Env preparations for vaccine studies and the determination of structure. We found that the cleavage of the HIV-1 Env precursor helps Env to assume its natural shape, which resists the binding of many commonly elicited antibodies. Stabilized soluble Envs exhibit more compact shapes but expose some Env elements differently than the natural Env.
Collapse
|
15
|
Schiffner T, Pallesen J, Russell RA, Dodd J, de Val N, LaBranche CC, Montefiori D, Tomaras GD, Shen X, Harris SL, Moghaddam AE, Kalyuzhniy O, Sanders RW, McCoy LE, Moore JP, Ward AB, Sattentau QJ. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathog 2018; 14:e1006986. [PMID: 29746590 PMCID: PMC5944921 DOI: 10.1371/journal.ppat.1006986] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.
Collapse
MESH Headings
- AIDS Vaccines/chemistry
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Specificity
- Antigen-Antibody Reactions/immunology
- Cross-Linking Reagents
- Cryoelectron Microscopy
- HIV Antibodies/immunology
- HIV Antigens/chemistry
- HIV Antigens/immunology
- HIV Antigens/ultrastructure
- HIV-1/chemistry
- HIV-1/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Protein Conformation
- Protein Stability
- Protein Structure, Quaternary
- Rabbits
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/ultrastructure
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Jesper Pallesen
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca A Russell
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Jonathan Dodd
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Natalia de Val
- Center for Molecular Microscopy (CMM), National Cancer Institute (NCI), Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Departments of Immunology and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scarlett L Harris
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Amin E Moghaddam
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Oleksandr Kalyuzhniy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Soldemo M, Àdori M, Stark JM, Feng Y, Tran K, Wilson R, Yang L, Guenaga J, Wyatt RT, Karlsson Hedestam GB. Glutaraldehyde Cross-linking of HIV-1 Env Trimers Skews the Antibody Subclass Response in Mice. Front Immunol 2017; 8:1654. [PMID: 29230223 PMCID: PMC5711779 DOI: 10.3389/fimmu.2017.01654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
Well-ordered soluble HIV-1 envelope glycoprotein (Env) spike mimetics such as Native Flexibly Linked (NFL) trimers display high homogeneity, desired antigenicity, and high in vitro stability compared to previous generation soluble HIV-1 Env trimers. Glutaraldehyde (GLA) cross-linking was shown to further increase the thermostability of clade C 16055 NFL trimers and enhance the induction of tier 2 autologous neutralizing antibodies in guinea pigs. Here, we investigated if GLA fixation affected other aspects of the Env-specific immune response by performing a comparative immunogenicity study in C57BL/6 mice with non-fixed and GLA-fixed 16055 NFL trimers administered in AbISCO-100 adjuvant. We detected lower Env-specific binding antibody titers and increased skewing toward Th2 responses in mice immunized with GLA-fixed trimers compared to mice immunized with unfixed trimers, as shown by a higher Env-specific IgG1:IgG2b antibody subclass ratio. These results suggest that the presence of GLA adducts on Env influences the quality of the induced antibody response.
Collapse
Affiliation(s)
- Martina Soldemo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yu Feng
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen Tran
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard Wilson
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | - Lifei Yang
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | - Javier Guenaga
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, Neutralizing Antibody Center, International AIDS Vaccine Initiative, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
17
|
Bruun TH, Grassmann V, Zimmer B, Asbach B, Peterhoff D, Kliche A, Wagner R. Mammalian cell surface display for monoclonal antibody-based FACS selection of viral envelope proteins. MAbs 2017; 9:1052-1064. [PMID: 28816583 PMCID: PMC5627598 DOI: 10.1080/19420862.2017.1364824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The elicitation of broadly and efficiently neutralizing antibodies in humans by active immunization is still a major obstacle in the development of vaccines against pathogens such as the human immunodeficiency virus (HIV), influenza virus, hepatitis C virus or cytomegalovirus. Here, we describe a mammalian cell surface display and monoclonal antibody (mAb)-mediated panning technology that allows affinity-based selection of envelope (Env) variants from libraries. To this end, we established an experimental setup featuring: 1) single and site specific integration of Env to link genotype and phenotype, 2) inducible Env expression to avoid cytotoxicity effects, 3) translational coupling of Env and enhanced green fluorescent protein expression to normalize for Env protein levels, and 4) display on HEK cells to ensure native folding and mammalian glycosylation. For proof of concept, we applied our method to a chimeric HIV-1 Env model library comprising variants with differential binding affinities to the V3-loop-directed mAbs 447–52D and HGN194. Fluorescence-activated cell sorting selectively enriched a high affinity variant up to 56- and 55-fold for 447–52D and HGN194, respectively, after only a single round of panning. Similarly, the low affinity variants for each antibody could be selectively enriched up to 237-fold. The binding profiles of membrane-bound gp145 and soluble gp140 chimeras showed identical affinity ranking, suggesting that the technology can guide the identification of Env variants with optimized antigenic properties for subsequent use as vaccine candidates. Finally, our mAb-based cellular display and selection strategy may also prove useful for the development of prophylactic vaccines against pathogens other than HIV.
Collapse
Affiliation(s)
- Tim-Henrik Bruun
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - Veronika Grassmann
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - Benjamin Zimmer
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - Benedikt Asbach
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - David Peterhoff
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - Alexander Kliche
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany
| | - Ralf Wagner
- a Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology) , University Regensburg , Regensburg , Germany.,b Institute of Clinical Microbiology , University Hospital Regensburg , Regensburg . Germany
| |
Collapse
|
18
|
Abstract
In 2009, Dimitrov's group reported that the inferred germline (iGL) forms of several HIV-1 broadly neutralizing antibodies (bNAbs) did not display measurable binding to a recombinant gp140 Env protein (derived from the dual-tropic 89.6 virus), which was efficiently recognized by the mature (somatically mutated) antibodies. At that time, a small number of bNAbs were available, but in the following years, the implementation of high-throughput B-cell isolation and sequencing assays and of screening methodologies facilitated the isolation of greater numbers of bNAbs from infected subjects. Using these newest bNAbs, and a wide range of diverse recombinant Envs, we and others confirmed the observations made by Dimitrov's group. The results from these studies created a paradigm shift in our collective thinking as to why recombinant Envs are ineffective in eliciting bNAbs and has led to the "germline-targeting" immunization approach. Here we discuss this approach in detail: what has been done so far, the advantages and limitations of the current germline-targeting immunogens and of the animal models used to test them, and we conclude with a few thoughts about future directions in this area of research.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
19
|
Abstract
Purpose of review To provide an update on the latest developments in the field of HIV-1 antibody-based soluble envelope glycoprotein (Env) trimer design for vaccine use. Recent findings The development of soluble native-like HIV-1 Env trimer immunogens has moved the field of antibody-based vaccine design forward dramatically over the past few years with refinement of various stabilizing approaches. However, despite this progress, significant challenges remain. Firstly, although trimers are relatively stable in solution, they nevertheless sample different conformational states, some of which may be less relevant to binding and induction of broadly neutralizing antibodies (bNAbs). Secondly, these trimers expose unwanted immunodominant surfaces that may distract the adaptive immune response from recognizing more immunorecessive but conserved neutralization-relevant surfaces on the trimer. The availability of atomic-resolution structural information has allowed guided design of mutations that have further stabilized trimers and allowed reduced exposure of unwanted epitopes. Moreover, chemical cross-linking approaches that do not require structural information have also contributed to trimer stabilization and selection of particular conformational forms. However, current knowledge suggests that strategies additional to trimer stabilization will be required to elicit bNAb, including targeting naïve B cell receptors with specific immunogens, and guiding B cell lineages toward recognizing conserved surfaces on Env with high affinity. Summary This review will give a perspective on these challenges, and summarize current approaches to overcoming them with the aim of developing immunogens to elicit bNAb responses in humans by active vaccination.
Collapse
|
20
|
Witt KC, Castillo-Menendez L, Ding H, Espy N, Zhang S, Kappes JC, Sodroski J. Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS One 2017; 12:e0170672. [PMID: 28151945 PMCID: PMC5289478 DOI: 10.1371/journal.pone.0170672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
The entry of human immunodeficiency virus (HIV-1) into host cells is mediated by the viral envelope glycoproteins (Envs), which are derived by the proteolytic cleavage of a trimeric gp160 Env precursor. The mature Env trimer is a major target for entry inhibitors and vaccine-induced neutralizing antibodies. Env interstrain variability, conformational flexibility and heavy glycosylation contribute to evasion of the host immune response, and create challenges for structural characterization and vaccine development. Here we investigate variables associated with reconstitution of the HIV-1 Env precursor into nanodiscs, nanoscale lipid bilayer discs enclosed by membrane scaffolding proteins. We identified detergents, as well as lipids similar in composition to the viral lipidome, that allowed efficient formation of Env-nanodiscs (Env-NDs). Env-NDs were created with the full-length Env precursor and with an Env precursor with the majority of the cytoplasmic tail intact. The self-association of Env-NDs was decreased by glutaraldehyde crosslinking. The Env-NDs exhibited an antigenic profile expected for the HIV-1 Env precursor. Env-NDs were recognized by broadly neutralizing antibodies. Of note, neutralizing antibody epitopes in the gp41 membrane-proximal external region and in the gp120:gp41 interface were well exposed on Env-NDs compared with Env expressed on cell surfaces. Most Env epitopes recognized by non-neutralizing antibodies were masked on the Env-NDs. This antigenic profile was stable for several days, exhibiting a considerably longer half-life than that of Env solubilized in detergents. Negative selection with weak neutralizing antibodies could be used to improve the antigenic profile of the Env-NDs. Finally, we show that lipid adjuvants can be incorporated into Env-NDs. These results indicate that Env-NDs represent a potentially useful platform for investigating the structural, functional and antigenic properties of the HIV-1 Env trimer in a membrane context.
Collapse
Affiliation(s)
- Kristen C. Witt
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Luis Castillo-Menendez
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Haitao Ding
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Nicole Espy
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Shijian Zhang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - John C. Kappes
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
We describe the development and potential use of various designs of recombinant HIV-1 envelope glycoprotein trimers that mimic the structure of the virion-associated spike, which is the target for neutralizing antibodies. The goal of trimer development programs is to induce broadly neutralizing antibodies with the potential to intervene against multiple circulating HIV-1 strains. Among the topics we address are the designs of various constructs; how native-like trimers can be produced and purified; the properties of such trimers in vitro and their immunogenicity in various animals; and the immunization strategies that may lead to the eventual elicitation of broadly neutralizing antibodies. In summary, native-like trimers are a now a platform for structure- and immunology-based design improvements that could eventually yield immunogens of practical value for solving the long-standing HIV-1 vaccine problem.
Collapse
Affiliation(s)
- Rogier W. Sanders
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
- Department of Medical MicrobiologyAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - John P. Moore
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
| |
Collapse
|
22
|
Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, Liu C, Tao X, Tseng CTK, Perlman S, Jiang S, Zhou Y, Li F. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Nat Commun 2016; 7:13473. [PMID: 27874853 PMCID: PMC5121417 DOI: 10.1038/ncomms13473] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Viral subunit vaccines often contain immunodominant non-neutralizing epitopes that divert host immune responses. These epitopes should be eliminated in vaccine design, but there is no reliable method for evaluating an epitope's capacity to elicit neutralizing immune responses. Here we introduce a new concept 'neutralizing immunogenicity index' (NII) to evaluate an epitope's neutralizing immunogenicity. To determine the NII, we mask the epitope with a glycan probe and then assess the epitope's contribution to the vaccine's overall neutralizing immunogenicity. As proof-of-concept, we measure the NII for different epitopes on an immunogen comprised of the receptor-binding domain from MERS coronavirus (MERS-CoV). Further, we design a variant form of this vaccine by masking an epitope that has a negative NII score. This engineered vaccine demonstrates significantly enhanced efficacy in protecting transgenic mice from lethal MERS-CoV challenge. Our study may guide the rational design of highly effective subunit vaccines to combat MERS-CoV and other life-threatening viruses.
Collapse
Affiliation(s)
- Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yang Yang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chang Liu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Xinrong Tao
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shibo Jiang
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, USA
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
23
|
Chen Y, Wilson R, O'Dell S, Guenaga J, Feng Y, Tran K, Chiang CI, Arendt HE, DeStefano J, Mascola JR, Wyatt RT, Li Y. An HIV-1 Env-Antibody Complex Focuses Antibody Responses to Conserved Neutralizing Epitopes. THE JOURNAL OF IMMUNOLOGY 2016; 197:3982-3998. [PMID: 27815444 DOI: 10.4049/jimmunol.1601134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
Abstract
Elicitation of broadly neutralizing Ab (bNAb) responses to the conserved elements of the HIV-1 envelope glycoproteins (Env), including the primary receptor CD4 binding site (CD4bs), is a major focus of vaccine development yet to be accomplished. However, a large number of CD4bs-directed bNAbs have been isolated from HIV-1-infected individuals. Comparison of the routes of binding used by the CD4bs-directed bNAbs from patients and the vaccine-elicited CD4bs-directed mAbs indicates that the latter fail to neutralize primary virus isolates because they approach the Env spike with a vertical angle and contact the specific surface residues occluded in the native spike, including the bridging sheet on gp120. To preferentially expose the CD4bs and direct the immune response away from the bridging sheet, resulting in an altered angle of approach, we engineered an immunogen consisting of gp120 core in complex with the prototypic CD4-induced Ab, 17b. This mAb directly contacts the bridging sheet but not the CD4bs. The complex was further stabilized by chemical crosslinking to prevent dissociation. Rabbits immunized with the crosslinked complex displayed earlier affinity maturation, achieving tier 1 virus neutralization compared with animals immunized with gp120 core alone. Immunization with the crosslinked complex induced transient Ab responses with binding specificity similar to the CD4bs-directed bNAbs. mAbs derived from complex-immunized rabbits displayed footprints on gp120 more distal from the bridging sheet as compared with previous vaccine-elicited CD4bs Abs, indicating that Env-Ab complexes effectively dampen immune responses to undesired immunodominant bridging sheet determinants.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Richard Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Javier Guenaga
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Yu Feng
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Karen Tran
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | | | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard T Wyatt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037.,Scripps Center for HIV Vaccine Immunogen Discovery, La Jolla, CA 92037
| | - Yuxing Li
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; .,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037.,Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| |
Collapse
|
24
|
McCoy LE, van Gils MJ, Ozorowski G, Messmer T, Briney B, Voss JE, Kulp DW, Macauley MS, Sok D, Pauthner M, Menis S, Cottrell CA, Torres JL, Hsueh J, Schief WR, Wilson IA, Ward AB, Sanders RW, Burton DR. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Rep 2016; 16:2327-38. [PMID: 27545891 DOI: 10.1016/j.celrep.2016.07.074] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/25/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
Abstract
A major advance in the search for an HIV vaccine has been the development of a near-native Envelope trimer (BG505 SOSIP.664) that can induce robust autologous Tier 2 neutralization. Here, potently neutralizing monoclonal antibodies (nAbs) from rabbits immunized with BG505 SOSIP.664 are shown to recognize an immunodominant region of gp120 centered on residue 241. Residue 241 occupies a hole in the glycan defenses of the BG505 isolate, with fewer than 3% of global isolates lacking a glycan site at this position. However, at least one conserved glycan site is missing in 89% of viruses, suggesting the presence of glycan holes in most HIV isolates. Serum evidence is consistent with targeting of holes in natural infection. The immunogenic nature of breaches in the glycan shield has been under-appreciated in previous attempts to understand autologous neutralizing antibody responses and has important potential consequences for HIV vaccine design.
Collapse
Affiliation(s)
- Laura E McCoy
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infection & Immunity, University College London, London WC1E 6BT, UK
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Gabriel Ozorowski
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan Briney
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Voss
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica Hsueh
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Ian A Wilson
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Dennis R Burton
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Thermostability of Well-Ordered HIV Spikes Correlates with the Elicitation of Autologous Tier 2 Neutralizing Antibodies. PLoS Pathog 2016; 12:e1005767. [PMID: 27487086 PMCID: PMC4972253 DOI: 10.1371/journal.ppat.1005767] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022] Open
Abstract
In the context of HIV vaccine design and development, HIV-1 spike mimetics displaying a range of stabilities were evaluated to determine whether more stable, well-ordered trimers would more efficiently elicit neutralizing antibodies. To begin, in vitro analysis of trimers derived from the cysteine-stabilized SOSIP platform or the uncleaved, covalently linked NFL platform were evaluated. These native-like trimers, derived from HIV subtypes A, B, and C, displayed a range of thermostabilities, and were “stress-tested” at varying temperatures as a prelude to in vivo immunogenicity. Analysis was performed both in the absence and in the presence of two different adjuvants. Since partial trimer degradation was detected at 37°C before or after formulation with adjuvant, we sought to remedy such an undesirable outcome. Cross-linking (fixing) of the well-ordered trimers with glutaraldehyde increased overall thermostability, maintenance of well-ordered trimer integrity without or with adjuvant, and increased resistance to solid phase-associated trimer unfolding. Immunization of unfixed and fixed well-ordered trimers into animals revealed that the elicited tier 2 autologous neutralizing activity correlated with overall trimer thermostability, or melting temperature (Tm). Glutaraldehyde fixation also led to higher tier 2 autologous neutralization titers. These results link retention of trimer quaternary packing with elicitation of tier 2 autologous neutralizing activity, providing important insights for HIV-1 vaccine design. As the sole determinant exposed on the viral surface to the host B cells, development of native-like HIV-1 envelope glycoprotein (Env) functional spikes has been a major initial objective in HIV-1 vaccine design. As immunogens, these trimer mimetics should remain stable in a native-like conformation to preferentially present conserved neutralizing epitopes, as opposed to non-neutralizing epitopes, to better elicit neutralizing B cell responses and antibodies in vivo during the immune response. We assessed SOSIP or NFL trimers displaying a range of stabilities, including chemical fixation. We demonstrate that increased resistance to high temperature-induced unfolding correlated with enhanced elicitation of tier 2 autologous neutralizing antibodies that are capable of penetrating this well-shielded viral pathogen, an important consideration for HIV vaccine development.
Collapse
|
26
|
Vaccari M, Gordon SN, Fourati S, Schifanella L, Liyanage NPM, Cameron M, Keele BF, Shen X, Tomaras GD, Billings E, Rao M, Chung AW, Dowell KG, Bailey-Kellogg C, Brown EP, Ackerman ME, Vargas-Inchaustegui DA, Whitney S, Doster MN, Binello N, Pegu P, Montefiori DC, Foulds K, Quinn DS, Donaldson M, Liang F, Loré K, Roederer M, Koup RA, McDermott A, Ma ZM, Miller CJ, Phan TB, Forthal DN, Blackburn M, Caccuri F, Bissa M, Ferrari G, Kalyanaraman V, Ferrari MG, Thompson D, Robert-Guroff M, Ratto-Kim S, Kim JH, Michael NL, Phogat S, Barnett SW, Tartaglia J, Venzon D, Stablein DM, Alter G, Sekaly RP, Franchini G. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med 2016; 22:762-70. [PMID: 27239761 PMCID: PMC5916782 DOI: 10.1038/nm.4105] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 12/24/2022]
Abstract
A recombinant vaccine containing Aventis Pasteur's canarypox vector (ALVAC)-HIV and gp120 alum decreased the risk of HIV acquisition in the RV144 vaccine trial. The substitution of alum with the more immunogenic MF59 adjuvant is under consideration for the next efficacy human trial. We found here that an ALVAC-simian immunodeficiency virus (SIV) and gp120 alum (ALVAC-SIV + gp120) equivalent vaccine, but not an ALVAC-SIV + gp120 MF59 vaccine, was efficacious in delaying the onset of SIVmac251 in rhesus macaques, despite the higher immunogenicity of the latter adjuvant. Vaccine efficacy was associated with alum-induced, but not with MF59-induced, envelope (Env)-dependent mucosal innate lymphoid cells (ILCs) that produce interleukin (IL)-17, as well as with mucosal IgG to the gp120 variable region 2 (V2) and the expression of 12 genes, ten of which are part of the RAS pathway. The association between RAS activation and vaccine efficacy was also observed in an independent efficacious SIV-vaccine approach. Whether RAS activation, mucosal ILCs and antibodies to V2 are also important hallmarks of HIV-vaccine efficacy in humans will require further studies.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Shari N Gordon
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve, Cleveland, Ohio, USA
| | - Luca Schifanella
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
- Department of Biomedical and Clinical Sciences, 'L. Sacco' Hospital, University of Milan, Italy
| | - Namal P M Liyanage
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark Cameron
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | - Erik Billings
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Amy W Chung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | - Melvin N Doster
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicolo Binello
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Poonam Pegu
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Kathryn Foulds
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | - David S Quinn
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | - Mitzi Donaldson
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Mario Roederer
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Koup
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | - Adrian McDermott
- Vaccine Research Center, US National Institutes of Health, Bethesda, Maryland, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, California, USA
| | - Christopher J Miller
- California National Primate Research Center, University of California, Davis, California, USA
| | - Tran B Phan
- University of California, Irvine School of Medicine, Irvine, California, USA
| | - Donald N Forthal
- University of California, Irvine School of Medicine, Irvine, California, USA
| | - Matthew Blackburn
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Francesca Caccuri
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Massimiliano Bissa
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | | | - DeVon Thompson
- Advanced Bioscience Laboratories, Rockville, Maryland, USA
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Silvia Ratto-Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
| | | | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Negri D, Blasi M, LaBranche C, Parks R, Balachandran H, Lifton M, Shen X, Denny T, Ferrari G, Vescio MF, Andersen H, Montefiori DC, Tomaras GD, Liao HX, Santra S, Haynes BF, Klotman ME, Cara A. Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Mol Ther 2016; 24:2021-2032. [PMID: 27455880 PMCID: PMC5154473 DOI: 10.1038/mt.2016.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/11/2016] [Indexed: 02/05/2023] Open
Abstract
The design of an effective HIV-1 vaccine remains a major challenge. Several vaccine strategies based on viral vectors have been evaluated in preclinical and clinical trials, with largely disappointing results. Integrase defective lentiviral vectors (IDLV) represent a promising vaccine candidate given their ability to induce durable and protective immune responses in mice after a single immunization. Here, we evaluated the immunogenicity of a SIV-based IDLV in nonhuman primates. Six rhesus monkeys were primed intramuscularly with IDLV-Env and boosted with the same vector after 1 year. A single immunization with IDLV-Env induced broad humoral and cellular immune responses that waned over time but were still detectable at 1 year postprime. The boost with IDLV-Env performed at 1 year from the prime induced a remarkable increase in both antibodies and T-cell responses. Antibody binding specificity showed a predominant cross-clade gp120-directed response. Monkeys' sera efficiently blocked anti-V2 and anti-CD4 binding site antibodies, neutralized the tier 1 MW965.26 pseudovirus and mediated antibody-dependent cellular cytotoxicity (ADCC). Durable polyfunctional Env-specific T-cell responses were also elicited. Our study demonstrates that an IDLV-Env-based vaccine induces functional, comprehensive, and durable immune responses in Rhesus macaques. These results support further evaluation of IDLV as a new HIV-1 vaccine delivery platform.
Collapse
Affiliation(s)
- Donatella Negri
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Blasi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Parks
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Michelle Lifton
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas Denny
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mary E Klotman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Andrea Cara
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
28
|
Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates. J Virol 2016; 90:5315-5328. [PMID: 27009957 PMCID: PMC4934744 DOI: 10.1128/jvi.00230-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no protection (and may have increased susceptibility to a simian-HIV vaginal challenge), while the microbicide reduced the infection risk compared to that of vaccinated and naive animals. Importantly, the combined interventions provided the greatest level of protection, which was sustained following withdrawal of the microbicide. The data suggest that provision of ARV prophylaxis during vaccination reduces the potential for unexpected increased risks of infection following immunization and augments vaccine efficacy. These findings are important for the potential adoption of ARV prophylaxis as the baseline intervention for future HIV/AIDS vaccines.
Collapse
|
29
|
Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J Virol 2015; 90:813-28. [PMID: 26512083 PMCID: PMC4702668 DOI: 10.1128/jvi.01942-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023] Open
Abstract
Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.
Collapse
|
30
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
31
|
Broad spectrum assessment of the epitope fluctuation--Immunogenicity hypothesis. Vaccine 2015; 33:5945-9. [PMID: 26187254 DOI: 10.1016/j.vaccine.2015.06.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/13/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022]
Abstract
Prediction of immunogenicity is a substantial barrier in vaccine design. Here, a molecular dynamics approach to assessing the immunogenicity of nanoparticles based on structure is presented. Molecular properties of epitopes on nonenveloped viral particles are quantified via a set of metrics. One such metric, epitope fluctuation (and implied flexibility), is shown to be inversely correlated with immunogenicity for each of a broad spectrum of nonenveloped viruses. The molecular metrics and experimentally determined immunogenicities for these viruses are archived in the open-source vaccine computer-aided design database. Results indicate the promise of computer-aided vaccine design to bring greater efficiency to traditional lab-based vaccine discovery approaches.
Collapse
|
32
|
Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A, Ringe R, Kim HJ, Sanders RW, Doores KJ, Burton DR, Wilson IA, Ward AB, Moore JP, Crispin M. Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Rep 2015; 11:1604-13. [PMID: 26051934 DOI: 10.1016/j.celrep.2015.05.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system, but paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles' heel that can be exploited for bNAb recognition and vaccine design.
Collapse
Affiliation(s)
- Laura K Pritchard
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Rajesh Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Helen J Kim
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA; Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Katie J Doores
- King's College London School of Medicine at Guy's, King's and St. Thomas' Hospitals, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and the collaboration for AIDS Vaccine Discovery, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, NY 10021, USA
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
33
|
Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. J Virol 2015; 89:8525-39. [PMID: 26041302 DOI: 10.1128/jvi.01265-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.
Collapse
|
34
|
Vaccine-Induced Linear Epitope-Specific Antibodies to Simian Immunodeficiency Virus SIVmac239 Envelope Are Distinct from Those Induced to the Human Immunodeficiency Virus Type 1 Envelope in Nonhuman Primates. J Virol 2015; 89:8643-50. [PMID: 26018159 DOI: 10.1128/jvi.03635-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/17/2015] [Indexed: 01/04/2023] Open
Abstract
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.
Collapse
|
35
|
Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes. J Virol 2015; 89:6725-45. [PMID: 25878116 DOI: 10.1128/jvi.03738-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non-neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens.
Collapse
|
36
|
Bruun TH, Mühlbauer K, Benen T, Kliche A, Wagner R. A mammalian cell based FACS-panning platform for the selection of HIV-1 envelopes for vaccine development. PLoS One 2014; 9:e109196. [PMID: 25279768 PMCID: PMC4184847 DOI: 10.1371/journal.pone.0109196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022] Open
Abstract
An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.
Collapse
Affiliation(s)
- Tim-Henrik Bruun
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Katharina Mühlbauer
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Thomas Benen
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, Regensburg, Bavaria, Germany
- * E-mail:
| |
Collapse
|
37
|
Abstract
Despite the great advances made in controlling human immunodeficiency virus type 1 (HIV-1) infection with antiretroviral drug treatment, a safe and efficacious HIV vaccine has yet to be developed. Here, we discuss why clinical trials and vaccine development for HIV have so far been disappointing, with an emphasis on the lack of protective antibodies. We review approaches for developing appropriate HIV immunogens and the stimulation of long-lasting B-cell responses with antibody maturation. We conclude that candidate reagents in the pipeline for HIV vaccine development are unlikely to be particularly effective. Although the major funders of HIV vaccine research and development are placing increasing emphasis on clinical product development, a genuine breakthrough in preventing HIV infection through vaccines is more likely to come from novel immunogen research.
Collapse
Affiliation(s)
- F Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
38
|
Ringe RP, Sanders RW, Yasmeen A, Kim HJ, Lee JH, Cupo A, Korzun J, Derking R, van Montfort T, Julien JP, Wilson IA, Klasse PJ, Ward AB, Moore JP. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc Natl Acad Sci U S A 2013; 110:18256-61. [PMID: 24145402 PMCID: PMC3831437 DOI: 10.1073/pnas.1314351110] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120-gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.
Collapse
Affiliation(s)
- Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Rogier W. Sanders
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; and
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Helen J. Kim
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery and
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery and
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Jacob Korzun
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; and
| | - Thijs van Montfort
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; and
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery and
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery and
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology & Immunogen Discovery and
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
39
|
Sattentau QJ. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel) 2013; 1:497-512. [PMID: 26344344 PMCID: PMC4494206 DOI: 10.3390/vaccines1040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE, UK.
| |
Collapse
|
40
|
Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology 2013; 10:72. [PMID: 23866844 PMCID: PMC3722125 DOI: 10.1186/1742-4690-10-72] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The focus of most current HIV-1 vaccine development is on antibody-based approaches. This is because certain antibody responses correlated with protection from HIV-1 acquisition in the RV144 phase III trial, and because a series of potent and broad spectrum neutralizing antibodies have been isolated from infected individuals. Taken together, these two findings suggest ways forward to develop a neutralizing antibody-based vaccine. However, understanding of the correlates of protection from disease in HIV-1 and other infections strongly suggests that we should not ignore CTL-based research. Here we review recent progress in the field and highlight the challenges implicit in HIV-1 vaccine design and some potential solutions.
Collapse
Affiliation(s)
- Torben Schiffner
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|