1
|
Chong SMY, Hung RKY, Yuen Chang F, Atkinson C, Fernando R, Harber M, Magee CN, Salama AD, Reeves M. Composition of the neutralising antibody response predicts risk of BK virus DNAaemia in recipients of kidney transplants. EBioMedicine 2024; 110:105430. [PMID: 39546852 PMCID: PMC11609467 DOI: 10.1016/j.ebiom.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND BK polyomavirus (BKV) DNAaemia occurs in 10% of recipients of kidney transplants, contributing to premature allograft failure. Evidence suggests disease is donor derived. Hypothetically, recipient infection with a different BKV serotype increases risk due to poorer immunological control. Thus, understanding the composition and activity of the humoral anti-BKV responses in donor/recipient (D/R) pairs is critical. METHODS Using 224 paired pre-transplant D/R samples, BKV VP1 genotype-specific pseudoviruses were employed to define the breadth of the antibody response against different serotypes (ELISA) and, to characterise specific neutralising activity (nAb) using the 50% inhibitory concentration (LogIC50). Mismatch (MM) ratios were calculated using the ratio of recipient ELISA or nAb reactive BKV serotypes relative to the number of donor reactive serotypes. FINDINGS BKV DNAaemia was observed in 28/224 recipients of kidney transplants. These recipients had lower nAb titres against all the serotypes, with median logIC50 values of 1.19-2.91, compared to non-viraemic recipients' median logIC50 values of 2.13-3.30. nAb D/R MM ratios >0.67 associated with significantly higher risk of BKV viraemia, with an adjusted odds ratio of 5.12 (95% CI 2.07 to 13.04; p < 0.001). Notably, a mismatch against donor serotype Ic and II associated with adjusted odds ratios of 8.12 (95% CI 2.10 to 35.61; p = 0.002) and 4.52 (95% CI 1.19 to 19.23; p = 0.03) respectively. 21 recipients demonstrated broadly neutralising responses against all the serotypes, none of whom developed BKV DNAaemia post-transplant. In contrast, there was poor concordance with PsV-specific ELISA data that quantified the total antibody response against different serotypes. INTERPRETATION BKV nAb mismatch predicts post-transplant BKV DNAaemia. Specific mismatches in nAb, rather than total seroreactivity, are key indicators of BKV risk post-transplant. This has the potential to risk-stratify individuals and improve clinical outcomes by influencing the frequency of monitoring and individualised tailoring of immunosuppression. Furthermore, detailed examination of individuals with broadly neutralising responses may provide future therapeutic strategies. FUNDING The research was funded by St. Peters Trust, Royal Free Hospital Charity and Wellcome Trust (grant numbers RFCG1718/05, SPT97 and 204870/Z/WT_/Wellcome Trust/United Kingdom).
Collapse
Affiliation(s)
- Stephanie M Y Chong
- University College London Institute of Immunity and Transplantation, Royal Free Hospital, London, UK.
| | | | - Fernando Yuen Chang
- University College London Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - Claire Atkinson
- University College London Institute of Immunity and Transplantation, Royal Free Hospital, London, UK; London South Bank University, School of Applied Sciences, London, UK
| | | | - Mark Harber
- University College London, Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Ciara N Magee
- University College London, Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Alan D Salama
- University College London, Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK.
| | - Matthew Reeves
- University College London Institute of Immunity and Transplantation, Royal Free Hospital, London, UK.
| |
Collapse
|
2
|
Helle F, Aubry A, Morel V, Descamps V, Demey B, Brochot E. Neutralizing Antibodies Targeting BK Polyomavirus: Clinical Importance and Therapeutic Potential for Kidney Transplant Recipients. J Am Soc Nephrol 2024; 35:1425-1433. [PMID: 39352862 PMCID: PMC11452134 DOI: 10.1681/asn.0000000000000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Most of the world's adult population is latently infected by the BK polyomavirus. It causes asymptomatic infection in healthy individuals but emerged as a threat to kidney transplant recipients because of virus-associated nephropathy caused by immunosuppressive therapy. In these conditions, when a functional cellular response is impaired by immunosuppression, neutralizing antibodies may play a major role because they can directly prevent infection of target cells, independently of cell-mediated immunity, by binding to the viral particles. Studying the contribution of anti-BK virus neutralizing antibodies in viral control has long been hampered by the lack of convenient in vitro models, but major progress has been made in the past decade. The four BK virus genotypes have been demonstrated to behave as distinct serotypes. A low recipient neutralizing antibody titer against the donor's serotype before kidney transplant has been significantly associated with BK virus replication after transplant. Different mechanisms exploited by the BK virus to evade neutralizing antibodies have been described. Recent studies also support the potential benefit of administering intravenous Igs or monoclonal neutralizing antibodies as a therapeutic strategy, and more interestingly, this could also be used as preventive or preemptive therapy before advanced kidney damage has occurred. Besides, neutralizing antibodies could be induced by vaccination. In this review, we summarize accumulated knowledge on anti-BK virus neutralizing antibodies as well as their clinical importance and therapeutic potential for kidney transplant recipients.
Collapse
Affiliation(s)
- Francois Helle
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Aurélien Aubry
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Virginie Morel
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Véronique Descamps
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Baptiste Demey
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| | - Etienne Brochot
- UR-UPJV4294, Agents Infectieux, Résistance et chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
- Laboratoire de Virologie, Centre Hospitalier Universitaire, Amiens, France
| |
Collapse
|
3
|
Sato N, Shiraki A, Mori KP, Sakai K, Takemura Y, Yanagita M, Imoto S, Tanabe K, Shiraki K. Preemptive intravenous human immunoglobulin G suppresses BK polyomavirus replication and spread of infection in vitro. Am J Transplant 2024; 24:765-773. [PMID: 37977231 DOI: 10.1016/j.ajt.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
BK polyomavirus (BKPyV) infection causes various diseases in immunocompromised patients. Cells from human lung and kidney were infected with BKPyV and treated with commercially available intravenous immunoglobulin G (IVIG). Its effects on BKPyV replication and spread of infection were investigated, focusing on administration timing. IVIG treatment 3 hours after infection suppressed BKPyV replication assessed by real-time PCR and expression of the viral capsid protein 1 and large T-antigen. IVIG effectively reduced the number of BKPyV-infected cells 2 weeks after infection in an antibody titer-dependent manner. Virus release in the culture supernatants was not influenced by IVIG treatment 6-80 hours and 3-9 days after infection. Collectively, IVIG did not affect viral release from infected cells but inhibited the spread of infection by neutralizing the released virus and blocking the new infected cell formation, indicating greater efficacy in early localized infection. BKPyV replication resumed in IVIG-treated cultures at 7 days after IVIG removal. Early prophylactic administration of IVIG is expected to reduce the growth and spread of BKPyV infection, resulting in the reduction of infected cell lesions and prevention of BKPyV-associated diseases.
Collapse
Affiliation(s)
- Noriaki Sato
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Shiraki
- Department of Anesthesiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Kaoru Sakai
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazunari Tanabe
- Organ Transplant Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Kimiyasu Shiraki
- Faculty of Nursing, Senri Kinran University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Durairaj J, Follonier OM, Leuzinger K, Alexander LT, Wilhelm M, Pereira J, Hillenbrand CA, Weissbach FH, Schwede T, Hirsch HH. Structural implications of BK polyomavirus sequence variations in the major viral capsid protein Vp1 and large T-antigen: a computational study. mSphere 2024; 9:e0079923. [PMID: 38501831 PMCID: PMC11036806 DOI: 10.1128/msphere.00799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
BK polyomavirus (BKPyV) is a double-stranded DNA virus causing nephropathy, hemorrhagic cystitis, and urothelial cancer in transplant patients. The BKPyV-encoded capsid protein Vp1 and large T-antigen (LTag) are key targets of neutralizing antibodies and cytotoxic T-cells, respectively. Our single-center data suggested that variability in Vp1 and LTag may contribute to failing BKPyV-specific immune control and impact vaccine design. We, therefore, analyzed all available entries in GenBank (1516 VP1; 742 LTAG) and explored potential structural effects using computational approaches. BKPyV-genotype (gt)1 was found in 71.18% of entries, followed by BKPyV-gt4 (19.26%), BKPyV-gt2 (8.11%), and BKPyV-gt3 (1.45%), but rates differed according to country and specimen type. Vp1-mutations matched a serotype different than the assigned one or were serotype-independent in 43%, 18% affected more than one amino acid. Notable Vp1-mutations altered antibody-binding domains, interactions with sialic acid receptors, or were predicted to change conformation. LTag-sequences were more conserved, with only 16 mutations detectable in more than one entry and without significant effects on LTag-structure or interaction domains. However, LTag changes were predicted to affect HLA-class I presentation of immunodominant 9mers to cytotoxic T-cells. These global data strengthen single center observations and specifically our earlier findings revealing mutant 9mer epitopes conferring immune escape from HLA-I cytotoxic T cells. We conclude that variability of BKPyV-Vp1 and LTag may have important implications for diagnostic assays assessing BKPyV-specific immune control and for vaccine design. IMPORTANCE Type and rate of amino acid variations in BKPyV may provide important insights into BKPyV diversity in human populations and an important step toward defining determinants of BKPyV-specific immunity needed to protect vulnerable patients from BKPyV diseases. Our analysis of BKPyV sequences obtained from human specimens reveals an unexpectedly high genetic variability for this double-stranded DNA virus that strongly relies on host cell DNA replication machinery with its proof reading and error correction mechanisms. BKPyV variability and immune escape should be taken into account when designing further approaches to antivirals, monoclonal antibodies, and vaccines for patients at risk of BKPyV diseases.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Océane M. Follonier
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, Department Theragnostic, University Hospital Basel, Basel, Switzerland
| | - Leila T. Alexander
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Caroline A. Hillenbrand
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Fabian H. Weissbach
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, Department Acute Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Aubry A, Demey B, Castelain S, Helle F, Brochot E. The value and complexity of studying cellular immunity against BK Polyomavirus in kidney transplant recipients. J Clin Virol 2024; 171:105656. [PMID: 38412681 DOI: 10.1016/j.jcv.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
BK Polyomavirus is of particular concern for kidney transplant recipients, due to their immunosuppression. This problem is exacerbated by the high effectiveness of antirejection therapies, which also compromise the organism's ability to fight viral infections. The long-term risk is loss of graft function through BKPyV-associated nephropathy (BKPyVAN). The assessment of host immunity and its link to the control of viral infections is a major challenge. In terms of humoral immunity, researchers have highlighted the prognostic value of the pre-transplantation anti-BKPyV immunoglobulin G titer. However, humoral immunity alone does not guarantee viral clearance, and the correlation between the humoral response and the time course of the infection remains weak. In contrast, cellular immunity variables appear to be more closely associated with viral clearance, given that the cellular immune response to the kidney transplant is the main target of immunosuppressive treatments in recipients. However, the assessment of the cellular immune response to BK Polyomavirus is complex, and many details still need to be characterized. Here, we review the current state of knowledge about BKPyV cellular immunity, as well as the difficulties that may be encountered in studying it in kidney transplant recipient. This is an essential area of research for optimizing the management of transplant recipients and minimizing the risks associated with insidious BKPyV disease.
Collapse
Affiliation(s)
- Aurélien Aubry
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Sandrine Castelain
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - François Helle
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France.
| |
Collapse
|
6
|
Parajuli S, Aziz F, Zhong W, Djamali A. BK polyomavirus infection: more than 50 years and still a threat to kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1309927. [PMID: 38993764 PMCID: PMC11235301 DOI: 10.3389/frtra.2024.1309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 07/13/2024]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous human polyomavirus and a major infection after kidney transplantation, primarily due to immunosuppression. BKPyV reactivation can manifest as viruria in 30%-40%, viremia in 10%-20%, and BK polyomavirus-associated nephropathy (BKPyVAN) in 1%-10% of recipients. BKPyVAN is an important cause of kidney graft failure. Although the first case of BKPyV was identified in 1971, progress in its management has been limited. Specifically, there is no safe and effective antiviral agent or vaccine to treat or prevent the infection. Even in the current era, the mainstay approach to BKPyV is a reduction in immunosuppression, which is also limited by safety (risk of de novo donor specific antibody and rejection) and efficacy (graft failure). However, recently BKPyV has been getting more attention in the field, and some new treatment strategies including the utilization of viral-specific T-cell therapy are emerging. Given all these challenges, the primary focus of this article is complications associated with BKPyV, as well as strategies to mitigate negative outcomes.
Collapse
Affiliation(s)
- Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Fahad Aziz
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center Maine Health, Portland, ME, United States
| |
Collapse
|
7
|
Mineeva-Sangwo O, Van Loon E, Andrei G, Kuypers D, Naesens M, Snoeck R. Time-dependent variations in BK polyomavirus genome from kidney transplant recipients with persistent viremia. Sci Rep 2023; 13:13534. [PMID: 37598256 PMCID: PMC10439958 DOI: 10.1038/s41598-023-40714-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
BK polyomavirus (BKPyV) is a human DNA virus that resides latent in the host's renal tissue. Reactivation occurs occasionally and in case of kidney transplantation, it can lead to polyomavirus-associated nephropathy (PVAN). Due to the lack of specific antivirals for BKPyV and despite the risk of allograft rejection, reduction of immunosuppression remains the main approach for treating PVAN. Current data suggests that mutations can accumulate over time in the major capsid protein VP1 and can lead to neutralization escape in kidney transplant recipients. Herein, we show that mutations occur throughout the entire BKPyV genome, including in VP1. Changes were identified by per-patient comparison of viral genome sequences obtained in samples from 32 kidney recipients with persistent viremia collected at different post-transplant time-points. Amino acid changes were observed in both earlier and later post-transplant samples, although some of them were only found in later samples. Changes in VP1 mainly consisted in the introduction of a new amino acid. A switch back to the conservative amino acid was also observed. This should be considered in future approaches for treating BKPyV infection in kidney transplant recipients.
Collapse
Affiliation(s)
- Olga Mineeva-Sangwo
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Elisabet Van Loon
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium.
| | - Dirk Kuypers
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Peretti A, Scorpio DG, Kong WP, Pang YYS, McCarthy MP, Ren K, Jackson M, Graham BS, Buck CB, McTamney PM, Pastrana DV. A multivalent polyomavirus vaccine elicits durable neutralizing antibody responses in macaques. Vaccine 2023; 41:1735-1742. [PMID: 36764908 PMCID: PMC9992340 DOI: 10.1016/j.vaccine.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Both viruses cause brain disease and possibly bladder cancer in immunosuppressed individuals. Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomavirus vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of ≥ 25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN.
Collapse
Affiliation(s)
- Alberto Peretti
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Diana G Scorpio
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Wing-Pui Kong
- Virology Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Yuk-Ying S Pang
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| | - Michael P McCarthy
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Kuishu Ren
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Moriah Jackson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Christopher B Buck
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Patrick M McTamney
- Department of Infectious Diseases-Vaccines, MedImmune, Gaithersburg, MD 20878, United States
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, United States
| |
Collapse
|
9
|
Hejtmánková A, Caisová H, Tomanová T, Španielová H. The role of the DE and EF loop of BKPyV VP1 in the serological cross-reactivity between subtypes. Virus Res 2023; 324:199031. [PMID: 36587871 DOI: 10.1016/j.virusres.2022.199031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Helena Caisová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tereza Tomanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 166 10, Praha 5, Czech Republic.
| |
Collapse
|
10
|
McIlroy D, Peltier C, Nguyen ML, Manceau L, Mobuchon L, Le Baut N, Nguyen NK, Tran MC, Nguyen TC, Bressollette-Bodin C. Quantification of APOBEC3 Mutation Rates Affecting the VP1 Gene of BK Polyomavirus In Vivo. Viruses 2022; 14:v14092077. [PMID: 36146883 PMCID: PMC9504301 DOI: 10.3390/v14092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the BK polyomavirus (BKPyV) capsid accumulate in kidney transplant (KTx) recipients with persistent virus replication. They are associated with neutralization escape and appear to arise as a result of cytosine deamination by host cell APOBEC3A/B enzymes. To study the mutagenic processes occurring in patients, we amplified the typing region of the VP1 gene, sequenced the amplicons to a depth of 5000–10,000×, and identified rare mutations, which were fitted to COSMIC mutational signatures. Background mutations were identified in amplicons from plasmids carrying the BKPyV genome and compared to mutations observed in 148 samples from 23 KTx recipients in France and in Vietnam. Three mutational signatures were consistently observed in urine, serum, and kidney biopsy samples, two of which, SBS2 and SBS13, corresponded to APOBEC3A/B activity. In addition, a third signature with no known etiology, SBS89, was detected both in patient samples, and in cells infected in vitro with BKPyV. Quantitatively, APOBEC3A/B mutation rates in urine samples were strongly correlated with urine viral load, and also appeared to vary between individuals. These results confirm that APOBEC3A/B is a major, but not the only, source of BKPyV genome mutations in patients.
Collapse
Affiliation(s)
- Dorian McIlroy
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- Faculté des Sciences et des Techniques, Nantes Université, 44093 Nantes, France
- Correspondence: ; Tel.: +33-02-44-76-81-82
| | - Cécile Peltier
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - My-Linh Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Louise Manceau
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| | - Lenha Mobuchon
- Molecular Biology and Sequencing Services, CHU Nantes, 44000 Nantes, France
| | - Nicolas Le Baut
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Ngoc-Khanh Nguyen
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Minh-Chau Tran
- Department of Kidney Diseases and Dialysis, Vietduc University Hospital, Hanoi 110214, Vietnam
| | - The-Cuong Nguyen
- Department of Medical Microbiology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - Céline Bressollette-Bodin
- Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes Université, CHU Nantes, INSERM, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, 44093 Nantes, France
| |
Collapse
|
11
|
BK Virus Nephropathy in Kidney Transplantation: A State-of-the-Art Review. Viruses 2022; 14:v14081616. [PMID: 35893681 PMCID: PMC9330039 DOI: 10.3390/v14081616] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
BK virus maintains a latent infection that is ubiquitous in humans. It has a propensity for reactivation in the setting of a dysfunctional cellular immune response and is frequently encountered in kidney transplant recipients. Screening for the virus has been effective in preventing progression to nephropathy and graft loss. However, it can be a diagnostic and therapeutic challenge. In this in-depth state-of-the-art review, we will discuss the history of the virus, virology, epidemiology, cellular response, pathogenesis, methods of screening and diagnosis, evidence-based treatment strategies, and upcoming therapeutics, along with the issue of re-transplantation in patients.
Collapse
|
12
|
BK Virus Infection and BK-Virus-Associated Nephropathy in Renal Transplant Recipients. Genes (Basel) 2022; 13:genes13071290. [PMID: 35886073 PMCID: PMC9323957 DOI: 10.3390/genes13071290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Poliomavirus BK virus (BKV) is highly infective, causing asymptomatic infections during childhood. After the initial infection, a stable state of latent infection is recognized in kidney tubular cells and the uroepithelium with negligible clinical consequences. BKV is an important risk factor for BKV-associated diseases, and, in particular, for BKV-associated nephropathy (BKVN) in renal transplanted recipients (RTRs). BKVN affects up to 10% of renal transplanted recipients, and results in graft loss in up to 50% of those affected. Unfortunately, treatments for BK virus infection are restricted, and there is no efficient prophylaxis. In addition, consequent immunosuppressive therapy reduction contributes to immune rejection. Increasing surveillance and early diagnosis based upon easy and rapid analyses are resulting in more beneficial outcomes. In this report, the current status and perspectives in the diagnosis and treatment of BKV in RTRs are reviewed.
Collapse
|
13
|
Mineeva-Sangwo O, Martí-Carreras J, Cleenders E, Kuypers D, Maes P, Andrei G, Naesens M, Snoeck R. Polyomavirus BK Genome Comparison Shows High Genetic Diversity in Kidney Transplant Recipients Three Months after Transplantation. Viruses 2022; 14:v14071533. [PMID: 35891513 PMCID: PMC9318200 DOI: 10.3390/v14071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
BK polyomavirus (BKPyV) is a human DNA virus generally divided into twelve subgroups based on the genetic diversity of Viral Protein 1 (VP1). BKPyV can cause polyomavirus-associated nephropathy (PVAN) after kidney transplantation. Detection of BKPyV DNA in blood (viremia) is a source of concern and increase in plasma viral load is associated with a higher risk of developing PVAN. In this work, we looked for possible associations of specific BKPyV genetic features with higher plasma viral load in kidney transplant patients. We analyzed BKPyV complete genome in three-month samples from kidney recipients who developed viremia during their follow-up period. BKPyV sequences were obtained by next-generation sequencing and were de novo assembled using the new BKAnaLite pipeline. Based on the data from 72 patients, we identified 24 viral groups with unique amino acid sequences: three in the VP1 subgroup IVc2, six in Ib1, ten in Ib2, one in Ia, and four in II. In none of the groups did the mean plasma viral load reach a statistically significant difference from the overall mean observed at three months after transplantation. Further investigation is needed to better understand the link between the newly described BKPyV genetic variants and pathogenicity in kidney transplant recipients.
Collapse
Affiliation(s)
- Olga Mineeva-Sangwo
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
| | - Joan Martí-Carreras
- Zoonotic Infectious Diseases Unit, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (J.M.-C.); (P.M.)
| | - Evert Cleenders
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
| | - Dirk Kuypers
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE3000 Leuven, Belgium
| | - Piet Maes
- Zoonotic Infectious Diseases Unit, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (J.M.-C.); (P.M.)
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
- Correspondence: (G.A.); (R.S.)
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium; (E.C.); (D.K.); (M.N.)
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE3000 Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, BE3000 Leuven, Belgium;
- Correspondence: (G.A.); (R.S.)
| |
Collapse
|
14
|
Amorim AR, Mendes GS, Santos N. Genotyping of human polyomavirus 1 detected in saliva. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Abolbashari S, Shakeri M, Hami M, Gholoobi A, Hooshyar Chechaklou A, Damavandi M, Movaqar A, Yousefi R, Meshkat Z, Hajebi-Khaniki S. Higher Viral Load of Polyomavirus Type BK but not JC among Renal Transplant Recipients in Comparison to Donors. IRANIAN JOURNAL OF PATHOLOGY 2022; 17:8-14. [PMID: 35096083 PMCID: PMC8794561 DOI: 10.30699/ijp.2021.535072.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Background & Objective: Polyomaviruses types BK and JC and Cytomegalovirus (CMV) have been shown to be related to kidney transplantation complications. This study aimed to assess the prevalence of these viruses in patients receiving kidney transplantation. Methods: This cross-sectional study was performed on 40 kidney transplant recipients and 44 donors. Urine samples were used for the extraction of viral DNA. The prevalence of JC and BK viruses and their viral loads were determined by real-time polymerase chain reaction. Results: JC and BK viruses were identified in 31% and 92.3% of all subjects, respectively. The frequency of JC and BK cases was not statistically different between the recipient and donor groups (P>0.05). All patients in the donor group and 96.8% of the recipients were positive for CMV IgG antibody. The mean viral load of BK in donors and recipients was 4.5×1010 and 3.3×1011 copies, respectively. The mean viral load of JC was 8.6×107 copies in donors and 2.9×108 copies in recipients. The distribution of BKV was significantly higher in recipients than donors (P=0.001), while no difference was observed between the two studied groups for JCV. Conclusion: This study showed a relatively high prevalence of BK and JC viruria in both renal transplant donors and recipients. The viral load for BKV, but not JCV, was higher in recipients than in donors.
Collapse
Affiliation(s)
- Samaneh Abolbashari
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadtaghi Shakeri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hami
- Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammasadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Yousefi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Hajebi-Khaniki
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Rahimi Z, Yaghobi R, Afshari A, Roozbeh J, Mokhtari MJ, Hosseini AM. The effect of BKV reactivation on cytokines behavior in kidney transplanted patients. BMC Nephrol 2022; 23:20. [PMID: 34996392 PMCID: PMC8739991 DOI: 10.1186/s12882-021-02645-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND BK virus associated nephropathy (BKVAN) is one of the common causes of graft loss among kidney transplanted recipients (KTRs). The current treatment for BKV nephropathy is decreasing the immunosuppressive regimen in KTRs. Interleukin-27 (IL-27) is a multifunctional cytokine that might be the front-runner of an important pathway in this regard. Therefore, in current study it is tried to evaluate the changes in the expression level of IL-27 and some related molecules, resulting from BKV reactivation in KTR patients. METHODS EDTA-treated blood samples were collected from all participants. Patients were divided into two groups, 31 kidney transplant recipients with active and 32 inactive BKV infection, after being monitored by Real time PCR (Taq-Man) in plasma. Total of 30 normal individuals were considered as healthy control group. Real time PCR (SYBR Green) technique is used to determine the expression level of studied genes. RESULTS The results of gene expression comparisons showed that the expression level of IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 genes was significantly higher in inactive group in comparison to active group. The expression level of TLR4 was lower in both active and inactive groups in comparison to control group. ROC curve analysis showed that IL-27 and IRF7 are significantly different amongst other studied genes. Finally, the analyses revealed that the expression level of most of the studied genes (except for TNF-α and TLR4) have significant correlation with viral load. CONCLUSIONS Our findings revealed that IL-27, IFN-γ, TNF-α, TNFR2 and IRF7 expression level is higher in inactive group and TLR4 expression level is lower in patients' groups in comparison to control group. Also, ROC curve analysis showed IL-27 and IRF7 can significantly differentiate studied groups (BKV active vs. inactive). Therefore, these results might help elucidating the pattern in charge of BKV reactivation in kidney transplanted patients.
Collapse
Affiliation(s)
- Zahra Rahimi
- Department of Biology, Zarghan branch, Islamic Azad University, Zarghan, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Malek Hosseini
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Dakroub F, Touzé A, Sater FA, Fiore T, Morel V, Tinez C, Helle F, François C, Choukroun G, Presne C, Guillaume N, Duverlie G, Castelain S, Akl H, Brochot E. The impact of pre-graft serology on the risk of BKPyV infection post-renal transplantation. Nephrol Dial Transplant 2021; 37:781-788. [PMID: 34586413 DOI: 10.1093/ndt/gfab279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES BK polyomavirus associated nephropathy, is a troublesome disease induced by BK polyomavirus (BKPyV) infection in immunocompromised renal graft recipients with no effective available treatment, making immunosuppression reduction the only management option. Thus, pre-graft predictive BKPyV replication markers are needed for high-risk viremia patient identification. METHODS we conducted a retrospective study to assess the correlation between the BKPyV pre-transplant serostatus and post-transplant BKPyV infection incidence. Sera from 329 recipients and 222 matched donors were tested for anti-BKV antibodies against BKPyV serotypes I and IV by a VLPs-based IgG ELISA, and BKPyV DNA load was monitored for at least 1 year post transplantation. RESULTS 80 recipients were viruric and 59 recipients were viremic post transplantation. In the post-transplant period, the probability of developing viremia for serotype I was increasing from 4.3% for the D-/R + group to 12.1% for the D+/R + group and climbing to 37.5% for the D+/R- group (p < 0.05). When calculating the recipient mean titers for serotypes I and IV, we observed a clear difference in the proportions of viremia passing from 50% for mean titers < 400 to 13.5% for titers ≥ 400 (p < 0.001) with also a higher proportion of presumptive nephropathy (50% vs 23.1%, p < 0.05). In univariate analysis this parameter has an odds ratio of 6.41 for the risk of developing post-transplant BKPyV viremia (95% CI: 3.16-13.07; p < 0.0001). CONCLUSIONS Both donor and recipient BKPyV seropositivity determination before transplantation and antibody titer may serve as a predictive tool to manage clinical BKPyV infection by identification of patients at high risk.
Collapse
Affiliation(s)
- Fatima Dakroub
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Antoine Touzé
- Infectiologie et santé publique "Biologie des infections à Polyomavirus" team, UMR INRA 1282, University of Tours, Tours, France
| | - Fadi Abdel Sater
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Toni Fiore
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Virginie Morel
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Claire Tinez
- Department of Virology, Amiens University Medical Center, Amiens, France.,Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - François Helle
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Catherine François
- Department of Virology, Amiens University Medical Center, Amiens, France.,Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Gabriel Choukroun
- Department of Nephrology and Transplantation, Amiens University Hospital, Amiens, France
| | - Claire Presne
- Department of Nephrology and Transplantation, Amiens University Hospital, Amiens, France
| | - Nicolas Guillaume
- Department of Haematology and Histocompatibility, Amiens University Hospital, Amiens, France; UR4666, Jules Verne University of Picardie, Amiens, France
| | - Gilles Duverlie
- Department of Virology, Amiens University Medical Center, Amiens, France.,Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Sandrine Castelain
- Department of Virology, Amiens University Medical Center, Amiens, France.,Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| | - Haidar Akl
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France.,Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, France
| |
Collapse
|
18
|
BK Polyomavirus-Biology, Genomic Variation and Diagnosis. Viruses 2021; 13:v13081502. [PMID: 34452367 PMCID: PMC8402805 DOI: 10.3390/v13081502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
The BK polyomavirus (BKPyV), a representative of the family Polyomaviridae, is widespread in the human population. While the virus does not cause significant clinical symptoms in immunocompetent individuals, it is activated in cases of immune deficiency, both pharmacological and pathological. Infection with the BKPyV is of particular importance in recipients of kidney transplants or HSC transplantation, in which it can lead to the loss of the transplanted kidney or to haemorrhagic cystitis, respectively. Four main genotypes of the virus are distinguished on the basis of molecular differentiation. The most common genotype worldwide is genotype I, with a frequency of about 80%, followed by genotype IV (about 15%), while genotypes II and III are isolated only sporadically. The distribution of the molecular variants of the virus is associated with the region of origin. BKPyV subtype Ia is most common in Africa, Ib-1 in Southeast Asia, and Ib-2 in Europe, while Ic is the most common variant in Northeast Asia. The development of molecular methods has enabled significant improvement not only in BKPyV diagnostics, but in monitoring the effectiveness of treatment as well. Amplification of viral DNA from urine by PCR (Polymerase Chain Reaction) and qPCR Quantitative Polymerase Chain Reaction) is a non-invasive method that can be used to confirm the presence of the genetic material of the virus and to determine the viral load. Sequencing techniques together with bioinformatics tools and databases can be used to determine variants of the virus, analyse their circulation in populations, identify relationships between them, and investigate the directions of evolution of the virus.
Collapse
|
19
|
In Vivo Generation of BK and JC Polyomavirus Defective Viral Genomes in Human Urine Samples Associated with Higher Viral Loads. J Virol 2021; 95:JVI.00250-21. [PMID: 33827948 PMCID: PMC8316075 DOI: 10.1128/jvi.00250-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Defective viral genomes (DVGs) are parasitic viral sequences containing point mutations, deletions, or duplications that might interfere with replication. DVGs are often associated with viral passage at high multiplicities of infection in culture systems but have been increasingly reported in clinical specimens. To date however, only RNA viruses have been shown to contain DVGs in clinical specimens. Here, using direct deep sequencing with multiple library preparation strategies and confirmatory digital droplet PCR (ddPCR) of urine samples taken from immunosuppressed individuals, we show that clinical BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV) strains contain widespread genomic rearrangements across multiple loci that likely interfere with viral replication. BKPyV DVGs were derived from BKPyV genotypes Ia, Ib-1, and Ic. The presence of DVGs was associated with specimens containing higher viral loads but never reached clonality, consistent with a model of parasitized replication. These DVGs persisted during clinical infection as evidenced in two separate pairs of samples containing BK virus collected from the same individual up to 302 days apart. In a separate individual, we observed the generation of DVGs after a 57.5-fold increase in viral load. In summary, by extending the presence of DVGs in clinical specimens to DNA viruses, we demonstrate the ubiquity of DVGs in clinical virology. IMPORTANCE Defective viral genomes (DVGs) can have a significant impact on the production of infectious virus particles. DVGs have only been identified in cultured viruses passaged at high multiplicities of infection and RNA viruses collected from clinical specimens; no DNA virus in the wild has been shown to contain DVGs. Here, we identified BK and JC polyomavirus DVGs in clinical urine specimens and demonstrated that these DVGs are more frequently identified in samples with higher viral loads. The strains containing DVGs had rearrangements throughout their genomes, with the majority affecting genes required for viral replication. Longitudinal analysis showed that these DVGs can persist during an infection but do not reach clonality within the chronically infected host. Our identification of polyomavirus DVGs suggests that these parasitic sequences exist across the many classes of viruses capable of causing human disease.
Collapse
|
20
|
BK Polyomavirus Nephropathy in Kidney Transplantation: Balancing Rejection and Infection. Viruses 2021; 13:v13030487. [PMID: 33809472 PMCID: PMC7998398 DOI: 10.3390/v13030487] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus nephropathy (BKVN) and allograft rejection are two closely-associated diseases on opposite ends of the immune scale in kidney transplant recipients. The principle of balancing the immune system remains the mainstay of therapeutic strategy. While patient outcomes can be improved through screening, risk factors identification, and rapid reduction of immunosuppressants, a lack of standard curative therapy is the primary concern during clinical practice. Additionally, difficulty in pathological differential diagnosis and clinicopathology’s dissociation pose problems for a definite diagnosis. This article discusses the delicate evaluation needed to optimize immunosuppression and reviews recent advances in molecular diagnosis and immunological therapy for BKVN patients. New biomarkers for BKVN diagnosis are under development. For example, measurement of virus-specific T cell level may play a role in steering immunosuppressants. The development of cellular therapy may provide prevention, even a cure, for BKVN, a complex post-transplant complication.
Collapse
|
21
|
Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathog 2021; 17:e1009042. [PMID: 33592065 PMCID: PMC7886149 DOI: 10.1371/journal.ppat.1009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading. Dr Sylvia Gardner first discovered the BK polyomavirus (BKPyV) in the urine of a kidney-transplant recipient in 1970. In the 1990’s, the widespread use of potent immunosuppressive drugs such as tacrolimus, sirolimus or mycophenolate mofetil led to the emergence of BKPyV nephropathy. Recently, various studies reported a specific influx of myeloid dendritic cells (mDCs) in the renal tissue of kidney-transplant patients who were diagnosed with a BKPyV nephropathy. MDCs are immune cells both residing in tissues and migrating to other organs or compartments like the blood when changes in their environment occur. Their main functions are the detection of danger signals such as pathogens or tumors and the processing of antigens to prime naïve specific effectors of the adaptive immune response. Although anti-BKPyV cellular immune responses have been investigated in post-transplant recipients as well as healthy individuals, supporting an active role of mDCs little is known about how mDCs and BKPyV interact with each other. Our study provides the basis to understand the role played by mDCs in virus capture through an unprecedented endocytic mechanism and possibly in viral protection from neutralization by specific antibodies. Moreover, we showed that mDCs are unable to sense BKPyV particles or BKPyV-infected dying cells as a danger signal, supporting the view that other DC subsets might act as the true antigen presenting cells that promote the adaptive immune response against BKPyV infection.
Collapse
|
22
|
Solis M, Guffroy A, Lersy F, Soulier E, Gallais F, Renaud M, Douiri N, Argemi X, Hansmann Y, De Sèze J, Kremer S, Fafi-Kremer S. Inadequate Immune Humoral Response against JC Virus in Progressive Multifocal Leukoencephalopathy Non-Survivors. Viruses 2020; 12:v12121380. [PMID: 33276614 PMCID: PMC7761562 DOI: 10.3390/v12121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML) in immunosuppressed patients. There is currently no effective specific antiviral treatment and PML management relies on immune restoration. Prognosis markers are crucially needed in this disease because of its high mortality rate. In this work, we investigated the compartmentalization of JCV strains as well as the humoral neutralizing response in various matrices to further understand the pathophysiology of PML and define markers of survival. Four patients were included, of which three died in the few months following PML onset. Cerebrospinal fluid (CSF) viral loads were the highest, with plasma samples having lower viral loads and urine samples being mostly negative. Whether at PML onset or during follow-up, neutralizing antibody (NAb) titers directed against the same autologous strain (genotype or mutant) were the highest in plasma, with CSF titers being on average 430-fold lower and urine titers 500-fold lower at the same timepoint. Plasma NAb titers against autologous genotype or mutant were lower in non-survivor patients, though no neutralization “blind spot” was observed. The surviving patient was followed up until nine months after PML onset and presented, at that time, an increase in neutralizing titers, from 38-fold against the autologous genotype to around 200-fold against PML mutants. Our results suggest that patients’ humoral neutralizing response against their autologous strain may play a role in PML outcome, with survivors developing high NAb titers in both plasma and CSF.
Collapse
Affiliation(s)
- Morgane Solis
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France;
| | - François Lersy
- Service d’Imagerie 2, Strasbourg University Hospitals, 67000 Strasbourg, France; (F.L.); (S.K.)
| | - Eric Soulier
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Floriane Gallais
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Mathilde Renaud
- Neurology Department, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University Hospitals, 67000 Strasbourg, France; (M.R.); (J.D.S.)
| | - Nawal Douiri
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Xavier Argemi
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Yves Hansmann
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Jérôme De Sèze
- Neurology Department, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University Hospitals, 67000 Strasbourg, France; (M.R.); (J.D.S.)
- Clinical Investigation Center, INSERM 1434, Strasbourg University Hospitals, 67000 Strasbourg, France
| | - Stéphane Kremer
- Service d’Imagerie 2, Strasbourg University Hospitals, 67000 Strasbourg, France; (F.L.); (S.K.)
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, 67000 Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
- Correspondence: ; Tel.: +33-3-69-55-14-38; Fax: +33-3-68-85-37-50
| |
Collapse
|
23
|
Mayberry CL, Maginnis MS. Taking the Scenic Route: Polyomaviruses Utilize Multiple Pathways to Reach the Same Destination. Viruses 2020; 12:v12101168. [PMID: 33076363 PMCID: PMC7602598 DOI: 10.3390/v12101168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
Members of the Polyomaviridae family differ in their host range, pathogenesis, and disease severity. To date, some of the most studied polyomaviruses include human JC, BK, and Merkel cell polyomavirus and non-human subspecies murine and simian virus 40 (SV40) polyomavirus. Although dichotomies in host range and pathogenesis exist, overlapping features of the infectious cycle illuminate the similarities within this virus family. Of particular interest to human health, JC, BK, and Merkel cell polyomavirus have all been linked to critical, often fatal, illnesses, emphasizing the importance of understanding the underlying viral infections that result in the onset of these diseases. As there are significant overlaps in the capacity of polyomaviruses to cause disease in their respective hosts, recent advancements in characterizing the infectious life cycle of non-human murine and SV40 polyomaviruses are key to understanding diseases caused by their human counterparts. This review focuses on the molecular mechanisms by which different polyomaviruses hijack cellular processes to attach to host cells, internalize, traffic within the cytoplasm, and disassemble within the endoplasmic reticulum (ER), prior to delivery to the nucleus for viral replication. Unraveling the fundamental processes that facilitate polyomavirus infection provides deeper insight into the conserved mechanisms of the infectious process shared within this virus family, while also highlighting critical unique viral features.
Collapse
Affiliation(s)
- Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA;
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
- Correspondence:
| |
Collapse
|
24
|
Lauver MD, Lukacher AE. JCPyV VP1 Mutations in Progressive MultifocalLeukoencephalopathy: Altering Tropismor Mediating Immune Evasion? Viruses 2020; 12:v12101156. [PMID: 33053912 PMCID: PMC7600905 DOI: 10.3390/v12101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Polyomaviruses are ubiquitous human pathogens that cause lifelong, asymptomatic infections in healthy individuals. Although these viruses are restrained by an intact immune system, immunocompromised individuals are at risk for developing severe diseases driven by resurgent viral replication. In particular, loss of immune control over JC polyomavirus can lead to the development of the demyelinating brain disease progressive multifocal leukoencephalopathy (PML). Viral isolates from PML patients frequently carry point mutations in the major capsid protein, VP1, which mediates virion binding to cellular glycan receptors. Because polyomaviruses are non-enveloped, VP1 is also the target of the host's neutralizing antibody response. Thus, VP1 mutations could affect tropism and/or recognition by polyomavirus-specific antibodies. How these mutations predispose susceptible individuals to PML and other JCPyV-associated CNS diseases remains to be fully elucidated. Here, we review the current understanding of polyomavirus capsid mutations and their effects on viral tropism, immune evasion, and virulence.
Collapse
|
25
|
BK polyomavirus-specific antibody and T-cell responses in kidney transplantation: update. Curr Opin Infect Dis 2020; 32:575-583. [PMID: 31567736 DOI: 10.1097/qco.0000000000000602] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW BK polyomavirus (BKPyV) has emerged as a significant cause of premature graft failure after kidney transplantation. Without effective antiviral drugs, treatment is based on reducing immunosuppression to regain immune control over BKPyV replication. The paradigm of high-level viruria/decoy cells, BKPyV-DNAemia, and proven nephropathy permits early interventions. Here, we review recent findings about BKPyV-specific antibody and T-cell responses and their potential role in risk stratification, immune monitoring, and therapy. RECENT FINDING Kidney transplant recipients having low or undetectable BKPyV-specific IgG immunoglobulin G (IgG) are higher risk for developing BKPyV-DNAemia if the donor has high BKPyV-specific IgG. This observation has been extended to neutralizing antibodies. Immunosuppression, impaired activation, proliferation, and exhaustion of BKPyV-specific T cells may increase the risk of developing BKPyV-DNAemia and nephropathy. Clearance of BKPyV-DNAemia was correlated with high CD8 T cell responses to human leukocyte antigen (HLA)-types presenting BKPyV-encoded immunodominant 9mers. For clinical translation, these data need to be assessed in appropriately designed clinical studies, as outlined in recent guidelines on BKPyV in kidney transplantation. SUMMARY Evaluation of BKPyV-specific immune responses in recipient and donor may help to stratify the risk of BKPyV-DNAemia, nephropathy, and graft loss. Future efforts need to evaluate clinical translation, vaccines, and immunotherapy to control BKPyV replication.
Collapse
|
26
|
McIlroy D, Hönemann M, Nguyen NK, Barbier P, Peltier C, Rodallec A, Halary F, Przyrowski E, Liebert U, Hourmant M, Bressollette-Bodin C. Persistent BK Polyomavirus Viruria is Associated with Accumulation of VP1 Mutations and Neutralization Escape. Viruses 2020; 12:v12080824. [PMID: 32751274 PMCID: PMC7472262 DOI: 10.3390/v12080824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
To investigate the relationship between neutralization escape and persistent high-level BK polyomavirus replication after kidney transplant (KTx), VP1 sequences were determined by Sanger and next-generation sequencing in longitudinal samples from KTx recipients with persistent high-level viruria (non-controllers) compared to patients who suppressed viruria (controllers). The infectivity and neutralization resistance of representative VP1 mutants were investigated using pseudotype viruses. In all patients, the virus population was initially dominated by wild-type VP1 sequences, then non-synonymous VP1 mutations accumulated over time in non-controllers. BC-loop mutations resulted in reduced infectivity in 293TT cells and conferred neutralization escape from cognate serum in five out of six non-controller patients studied. When taken as a group, non-controller sera were not more susceptible to neutralization escape than controller sera, so serological profiling cannot predict subsequent control of virus replication. However, at an individual level, in three non-controller patients the VP1 variants that emerged exploited specific “holes” in the patient’s humoral response. Persistent high-level BK polyomavirus replication in KTx recipients is therefore associated with the accumulation of VP1 mutations that can confer resistance to neutralization, implying that future BKPyV therapies involving IVIG or monoclonal antibodies may be more effective when used as preventive or pre-emptive, rather than curative, strategies.
Collapse
Affiliation(s)
- Dorian McIlroy
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes, France
- Correspondence: ; Tel.: +33-2-40-41-28-39
| | - Mario Hönemann
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Ngoc-Khanh Nguyen
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Paul Barbier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Cécile Peltier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Audrey Rodallec
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Emilie Przyrowski
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Uwe Liebert
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Maryvonne Hourmant
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, 44093 Nantes, France
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
- Faculté de Médecine, Université de Nantes, 44093 Nantes, France
| |
Collapse
|
27
|
Höcker B, Schneble L, Murer L, Carraro A, Pape L, Kranz B, Oh J, Zirngibl M, Dello Strologo L, Büscher A, Weber LT, Awan A, Pohl M, Bald M, Printza N, Rusai K, Peruzzi L, Topaloglu R, Fichtner A, Krupka K, Köster L, Bruckner T, Schnitzler P, Hirsch HH, Tönshoff B. Epidemiology of and Risk Factors for BK Polyomavirus Replication and Nephropathy in Pediatric Renal Transplant Recipients: An International CERTAIN Registry Study. Transplantation 2020; 103:1224-1233. [PMID: 30130322 DOI: 10.1097/tp.0000000000002414] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND BK polyomavirus-associated nephropathy (BKPyVAN) constitutes a serious cause of kidney allograft failure, but large-scale data in pediatric renal transplant recipients and a comprehensive analysis of specific risk factors are lacking. METHODS We analyzed the data of 313 patients in the Cooperative European Pediatric Renal Transplant Initiative Registry, with an observation period of 3.3 years (range, 1-5). The net state of immunosuppressive therapy was assessed by the modified Vasudev score. RESULTS Presumptive BKPyVAN (defined as sustained [>3 wk] high-level BK viremia >10 copies/mL) within 5 years posttransplant occurred in 49 (15.8%) of 311 patients, and biopsy-proven BKPyVAN in 14 (4.5%) of 313. BKPyV viremia was observed in 115 (36.7%) of 311 patients, of whom 11 (9.6%) of 115 developed viremia late, that is, after the second year posttransplant. In 6 (12.5%) of 48 patients with high-level viremia and in 3 (21.4%) of 14 with BKPyVAN, this respective event occurred late. According to multivariable analysis, BKPyV viremia and/or BKPyVAN were associated not only with a higher net state of immunosuppression (odds ratio [OR], 1.3; P < 0.01) and with tacrolimus-based versus ciclosporin-based immunosuppression (OR, 3.6; P < 0.01) but also with younger recipient age (OR, 1.1 per y younger; P < 0.001) and obstructive uropathy (OR, 12.4; P < 0.01) as primary renal disease. CONCLUSIONS Uncontrolled BKPyV replication affects a significant proportion of pediatric renal transplant recipients and is associated with unique features of epidemiology and risk factors, such as young recipient age, obstructive uropathy, and overall intensity of immunosuppressive therapy. BKPyV surveillance should be considered beyond 2 years posttransplant in pediatric patients at higher risk.
Collapse
Affiliation(s)
- Britta Höcker
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Lukas Schneble
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Luisa Murer
- Pediatric Nephrology, Dialysis and Transplantation Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padua, Italy
| | - Andrea Carraro
- Pediatric Nephrology, Dialysis and Transplantation Unit, Department of Woman's and Child's Health, University Hospital of Padova, Padua, Italy
| | - Lars Pape
- Hanover Medical School, Hanover, Germany
| | - Birgitta Kranz
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, Hamburg, Germany
| | | | - Luca Dello Strologo
- Pediatric Nephrology and Renal Transplant Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Anja Büscher
- Pediatric Nephrology, Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - Lutz T Weber
- Pediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Cologne, Germany
| | - Atif Awan
- Temple Street Children's University Hospital, Dublin, Ireland
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Bald
- Olga Children's Hospital, Clinic of Stuttgart, Stuttgart, Germany
| | - Nikoleta Printza
- 1st Pediatric Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Rezan Topaloglu
- Hacettepe University Faculty of Medicine, Department of Pediatric Nephrology, Ankara, Turkey
| | - Alexander Fichtner
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Kai Krupka
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Lennart Köster
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
28
|
Panou MM, Antoni M, Morgan EL, Loundras EA, Wasson CW, Welberry-Smith M, Mankouri J, Macdonald A. Glibenclamide inhibits BK polyomavirus infection in kidney cells through CFTR blockade. Antiviral Res 2020; 178:104778. [PMID: 32229236 PMCID: PMC7322401 DOI: 10.1016/j.antiviral.2020.104778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
BK polyomavirus (BKPyV) is a ubiquitous pathogen in the human population that is asymptomatic in healthy individuals, but can be life-threatening in those undergoing kidney transplant. To-date, no vaccines or anti-viral therapies are available to treat human BKPyV infections. New therapeutic strategies are urgently required. In this study, using a rational pharmacological screening regimen of known ion channel modulating compounds, we show that BKPyV requires cystic fibrosis transmembrane conductance regulator (CFTR) activity to infect primary renal proximal tubular epithelial cells. Disrupting CFTR function through treatment with the clinically available drug glibenclamide, the CFTR inhibitor CFTR172, or CFTR-silencing, all reduced BKPyV infection. Specifically, time of addition assays and the assessment of the exposure of VP2/VP3 minor capsid proteins indicated a role for CFTR during BKPyV transport to the endoplasmic reticulum, an essential step during the early stages of BKPyV infection. We thus establish CFTR as an important host-factor in the BKPyV life cycle and reveal CFTR modulators as potential anti-BKPyV therapies. BK polyomavirus (BKPyV) is life-threatening in those undergoing kidney transplant. BKPyV requires CFTR to infect primary kidney cells. Disrupting CFTR function pharmacologically reduces BKPyV infection. CFTR is required during BKPyV transport to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Margarita-Maria Panou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Michelle Antoni
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Eleni-Anna Loundras
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Christopher W Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | | | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, United Kingdom.
| |
Collapse
|
29
|
Blackard JT, Davies SM, Laskin BL. BK polyomavirus diversity-Why viral variation matters. Rev Med Virol 2020; 30:e2102. [PMID: 32128960 DOI: 10.1002/rmv.2102] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
BK polyomavirus (BKPyV or BKV) is a non-enveloped, circular double-stranded DNA virus that may exceed 80% seroprevalence in adults. BKV infection typically occurs during childhood, and the majority of adults are latently infected. While BKV infection is rarely associated with clinical disease in most individuals, in immunosuppressed individuals, reactivation may cause kidney (BK-associated nephropathy) or bladder (hemorrhagic cystitis and ureteral stenosis) injury. No antiviral therapies have been approved for the treatment of BKV infection. Reducing immunosuppression is the most effective therapy, although this is not feasible in many patients. Thus, a robust understanding of viral pathogenesis and viral diversity remains important for the development of future therapeutic strategies. Studies of BKV diversity are quite sparse compared to other common viral infections; thus, much of our understanding of BVK variability and evolution relies heavily analogous studies of other viruses such as HIV or viral hepatitis. We provide a comprehensive review of BKV diversity at the population and individual level with careful consideration of how viral variability may impact viral replication, pathogenesis, tropism, and protein function. We also discuss a number of outstanding questions related to BK virus diversity that should be explored rigorously in future studies.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Benjamin L Laskin
- Division of Nephrology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Kane JR, Fong S, Shaul J, Frommlet A, Frank AO, Knapp M, Bussiere DE, Kim P, Ornelas E, Cuellar C, Hyrina A, Abend JR, Wartchow CA. A polyomavirus peptide binds to the capsid VP1 pore and has potent antiviral activity against BK and JC polyomaviruses. eLife 2020; 9:50722. [PMID: 31960795 PMCID: PMC6974358 DOI: 10.7554/elife.50722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
In pursuit of therapeutics for human polyomaviruses, we identified a peptide derived from the BK polyomavirus (BKV) minor structural proteins VP2/3 that is a potent inhibitor of BKV infection with no observable cellular toxicity. The thirteen-residue peptide binds to major structural protein VP1 with single-digit nanomolar affinity. Alanine-scanning of the peptide identified three key residues, substitution of each of which results in ~1000 fold loss of binding affinity with a concomitant reduction in antiviral activity. Structural studies demonstrate specific binding of the peptide to the pore of pentameric VP1. Cell-based assays demonstrate nanomolar inhibition (EC50) of BKV infection and suggest that the peptide acts early in the viral entry pathway. Homologous peptide exhibits similar binding to JC polyomavirus VP1 and inhibits infection with similar potency to BKV in a model cell line. Lastly, these studies validate targeting the VP1 pore as a novel strategy for the development of anti-polyomavirus agents.
Collapse
Affiliation(s)
- Joshua R Kane
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States.,Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Susan Fong
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Jacob Shaul
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Alexandra Frommlet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Andreas O Frank
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Mark Knapp
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Dirksen E Bussiere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Peter Kim
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Elizabeth Ornelas
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Carlos Cuellar
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Anastasia Hyrina
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Johanna R Abend
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, United States
| | - Charles A Wartchow
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Emeryville, United States
| |
Collapse
|
31
|
Lorentzen EM, Henriksen S, Kaur A, Kro GB, Hammarström C, Hirsch HH, Midtvedt K, Rinaldo CH. Early fulminant BK polyomavirus-associated nephropathy in two kidney transplant patients with low neutralizing antibody titers receiving allografts from the same donor. Virol J 2020; 17:5. [PMID: 31924245 PMCID: PMC6954500 DOI: 10.1186/s12985-019-1275-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BK Polyomavirus (BKPyV) causes premature graft failure in 1 to 15% of kidney transplant (KT) recipients. High-level BKPyV-viruria and BKPyV-DNAemia precede polyomavirus-associated nephropathy (PyVAN), and guide clinical management decisions. In most cases, BKPyV appears to come from the donor kidney, but data from biopsy-proven PyVAN cases are lacking. Here, we report the early fulminant course of biopsy-proven PyVAN in two male KT recipients in their sixties, receiving kidneys from the same deceased male donor. CASE PRESENTATIONS Both recipients received intravenous basiliximab induction, and maintenance therapy consisting of tacrolimus (trough levels 3-7 ng/mL from time of engraftment), mycophenolate mofetil 750 mg bid, and prednisolone. At 4 weeks post-transplant, renal function was satisfactory with serum creatinine concentrations of 106 and 72 μmol/L in recipient #1 and recipient #2, respectively. Plasma BKPyV-DNAemia was first investigated at 5 and 8 weeks post-transplant being 8.58 × 104 and 1.12 × 106 copies/mL in recipient #1 and recipient #2, respectively. Renal function declined and biopsy-proven PyVAN was diagnosed in both recipients at 12 weeks post-transplant. Mycophenolate mofetil levels were reduced from 750 mg to 250 mg bid while tacrolimus levels were kept below 5 ng/mL. Recipient #2 cleared BKPyV-DNAemia at 5.5 months post-transplant, while recipient #1 had persistent BKPyV-DNAemia of 1.07 × 105 copies/mL at the last follow-up 52 weeks post-transplant. DNA sequencing of viral DNA from early plasma samples revealed apparently identical viruses in both recipients, belonging to genotype Ib-2 with archetype non-coding control region. Retrospective serological work-up, demonstrated that the donor had high BKPyV-IgG-virus-like particle ELISA activity and a high BKPyV-genotype I neutralizing antibody titer, whereas both KT recipients only had low neutralizing antibody titers pre-transplantation. By 20 weeks post-transplant, the neutralizing antibody titer had increased by > 1000-fold in both recipients, but only recipient #2 cleared BKPyV-DNAemia. CONCLUSIONS Low titers of genotype-specific neutralizing antibodies in recipients pre-transplant, may identify patients at high risk for early fulminant donor-derived BKPyV-DNAemia and PyVAN, but development of high neutralizing antibody titers may not be sufficient for clearance.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Amandeep Kaur
- Department Biomedicine Transplantation & Clinical Virology, University of Basel, Basel, Switzerland
| | - Grete Birkeland Kro
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Hammarström
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hans H. Hirsch
- Department Biomedicine Transplantation & Clinical Virology, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Karsten Midtvedt
- Department of Transplantation, Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
32
|
Evolution and molecular epidemiology of polyomaviruses. INFECTION GENETICS AND EVOLUTION 2019; 79:104150. [PMID: 31870972 DOI: 10.1016/j.meegid.2019.104150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Polyomaviruses (PyVs) are small DNA viruses that infect several species, including mammals, birds and fishes. Their study gained momentum after the report of previously unidentified viral species in the past decade, and especially, since the description of the first polyomavirus clearly oncogenic for humans. The aim of this work was to review the most relevant aspects of the evolution and molecular epidemiology of polyomaviruses, allowing to reveal general evolutionary patterns and to identify some unaddressed issues and future challenges. The main points analysed included: 1) the species and genera assignation criteria; 2) the hypotheses, mechanisms and timescale of the ancient and recent evolutionary history of polyomaviruses; and 3) the molecular epidemiology of human viruses, with special attention to JC, BK and Merkel cell polyomaviruses.
Collapse
|
33
|
McGann K, DeWolfe D, Jacobs M, Wojciechowski D, Pavlakis M, Tan CS. Comparing Urine and Blood Screening Methods to Detect BK Virus After Renal Transplant. EXP CLIN TRANSPLANT 2019; 19:104-109. [PMID: 31801449 DOI: 10.6002/ect.2019.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES BK polyomavirus can infect healthy individuals; however, in renal transplant recipients, it can cause nephropathy, which can lead to renal allograftfailure. There are currently no effective antiviral agents against BK polyomavirus. Surveillance after kidney transplant for BK polyomavirus is the only means to prevent allograft failure. Transplant centers routinely screen for BK polyomavirus in either urine or blood. If BK polyomavirus replication occurs, itis usually detected first in urine, which is followed by detection in blood in a subset of cases. Screening for BK polyomavirus in urine has the potential for earlier detection of viralreactivation.However, not all patients with BK polyomavirus in urine will progress to BK viremia. Therefore, adding urine screening could increase the cost oftests without a clear clinical benefit. MATERIALS AND METHODS We conducted an analysis of BK polyomavirus screening methods at 2 different centers and compared their clinical outcomes and efficiency of testing. RESULTS We analyzed 209 patientswith BK polyomavirus reactivation after kidney transplant at 2 different institutions from 2008 to 2018. BK polyomavirus reactivation in blood was detected earlierifthe patient was screened by urine screening protocol. However, measurable clinical outcomes were similarin all groups with different screening methods. CONCLUSIONS Although screening for BK polyomavirus in urine did detect viralreactivation earlier,there were no differences in graft or clinical outcomes when either the urine or blood screening method was used.
Collapse
Affiliation(s)
- Kevin McGann
- From the Center for Virology and Vaccines Research, , Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pre-Transplantation Assessment of BK Virus Serostatus: Significance, Current Methods, and Obstacles. Viruses 2019; 11:v11100945. [PMID: 31615131 PMCID: PMC6833059 DOI: 10.3390/v11100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
The immunosuppression required for graft tolerance in kidney transplant patients can trigger latent BK polyomavirus (BKPyV) reactivation, and the infection can progress to nephropathy and graft rejection. It has been suggested that pre-transplantation BKPyV serostatus in donors and recipients is a predictive marker for post-transplantation BKPyV replication. The fact that research laboratories have used many different assay techniques to determine BKPyV serostatus complicates these data analysis. Even studies based on the same technique differed in their standard controls choice, the antigenic structure type used for detection, and the cut-off for seropositivity. Here, we review the different BKPyV VP1 antigens types used for detection and consider the various BKPyV serostatus assay techniques’ advantages and disadvantages. Lastly, we highlight the obstacles in the implementation of a consensual BKPyV serologic assay in clinics (e.g., the guidelines absence in this field).
Collapse
|
35
|
Intravenous Immunoglobulin Administration Significantly Increases BKPyV Genotype-Specific Neutralizing Antibody Titers in Kidney Transplant Recipients. Antimicrob Agents Chemother 2019; 63:AAC.00393-19. [PMID: 31160292 DOI: 10.1128/aac.00393-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
BK polyomavirus (BKPyV)-associated nephropathy (BKPyVAN) is one of the major causes of kidney graft dysfunction, and there are no BKPyV-specific antiviral therapies available. BKPyV neutralizing antibodies (NAbs) play key roles in protecting against BKPyV replication and represent a potential therapeutic or preventive strategy. In this study, we evaluated NAb titers in intravenous immunoglobulin (i.v. Ig) preparations and in kidney transplant recipients (KTR) before and after i.v. Ig administration. NAb titers directed against major BKPyV genotypes were measured using a BKPyV pseudovirion system. Thirty-three KTR receiving high (1 g/kg of body weight/day; n = 17) or low (0.4 g/kg/day; n = 16) i.v. Ig doses were included. Median NAb titers in i.v. Ig preparations ranged from 5.9 log10 50% inhibitory concentration (IC50) for genotype I to 4.1 log10 IC50 for genotype IV. A mean of 90% of patients (range, 88% to 100%) displaying low or negative BKPyV NAb titers against genotype I reached 4 log10 IC50 after the first i.v. Ig administration. This value was reached by a mean of 44% (range, 13% to 83%) and 19% (range, 0% to 38%) of patients against genotype II and genotype IV, respectively. The benefit of i.v. Ig administration persisted until the following course of treatment (day 22 ± 7 days) for genotypes I and II, and no cumulative effect was observed through the three doses. Our findings demonstrate that i.v. Ig administration results in a significant increase in BKPyV NAb titers in KTR. These in vitro and in vivo pharmacokinetic data provide the rationale for a proof-of-concept study investigating the efficacy of i.v. Ig for the prevention of BKPyV infection in KTR.
Collapse
|
36
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
37
|
Wunderink HF, De Brouwer CS, Gard L, De Fijter JW, Kroes ACM, Rotmans JI, Feltkamp MCW. Source and Relevance of the BK Polyomavirus Genotype for Infection After Kidney Transplantation. Open Forum Infect Dis 2019; 6:ofz078. [PMID: 30949528 PMCID: PMC6440680 DOI: 10.1093/ofid/ofz078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
Background BK polyomavirus (BKPyV)–associated nephropathy (BKPyVAN) is a major threat for kidney transplant recipients (KTRs). The role of specific BKPyV genotypes/serotypes in development of BKPyVAN is poorly understood. Pretransplantation serotyping of kidney donors and recipients and posttransplantation genotyping of viremic recipients, could reveal the clinical relevance of specific BKPyV variants. Methods A retrospective cohort of 386 living kidney donor-recipient pairs was serotyped before transplantation against BKPyV genotype I–IV viral capsid protein 1 antigen, using a novel BKPyV serotyping assay. Replicating BKPyV isolates in viremic KTRs after transplantation were genotyped using real-time polymerase chain reaction and confirmed by means of sequencing. BKPyV serotype and genotype data were used to determine the source of infection and analyze the risk of viremia and BKPyVAN. Results Donor and recipient BKPyV genotype and serotype distribution was dominated by genotype I (>80%), especially Ib, over II, III and IV. Donor serotype was significantly correlated with the replicating genotype in viremic KTRs (P < .001). Individual donor and recipient serotype, serotype (mis)matching and the recipient replicating BKPyV genotype were not associated with development of viremia or BKPyVAN after transplantation. Conclusions BKPyV donor and recipient serotyping and genotyping indicates the donor origin of replicating BKPyV in viremic KTRs but provides no evidence for BKPyV genotype–specific virulence.
Collapse
Affiliation(s)
- H F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - C S De Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - L Gard
- Department of Medical Microbiology, University Medical Center Groningen, the Netherlands
| | - J W De Fijter
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - A C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - M C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
38
|
Korth J, Anastasiou OE, Bräsen JH, Brinkhoff A, Lehmann U, Kribben A, Dittmer U, Verheyen J, Wilde B, Ciesek S, Witzke O, Widera M. The detection of BKPyV genotypes II and IV after renal transplantation as a simple tool for risk assessment for PyVAN and transplant outcome already at early stages of BKPyV reactivation. J Clin Virol 2019; 113:14-19. [PMID: 30771597 DOI: 10.1016/j.jcv.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/07/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND After reactivation the BK-polyomavirus (BKPyV) associated nephropathy (PyVAN) is observed in 1-10% of renal transplant recipients, of which up to 80% undergo graft failure. BKPyV reactivation after renal transplantation was associated with donor-derived serotypes against which the recipient has no immunological protection. However, PyVAN risk assessment seroactivity testing is a time-consuming and cost intensive process. OBJECTIVES Since BKPyV serotypes can be attributed to distinct genotypes I to IV, in the present study we retrospectively analyzed whether a simple PCR-based BKPyV genotyping assay might be a fast and inexpensive method to assess the risk for PyVAN and transplant outcome already at early stages of BKPyV reactivation. STUDY DESIGN 56 patients who were renal transplanted and tested positive for BKPyV viremia were included into the study. The BKPyV-VP1-coding sequences were PCR-amplified, sequenced, and subjected to genotyping. For group specific analysis patients were grouped in genotype I (n = 46) and a second group including genotype II and IV (n = 10) and associated with their clinical outcomes. RESULTS The most abundant genotype I was detected in 46 of 56 (82%) patients, however, in the genotype II and IV group PyVAN was twice as frequent as compared to the genotype I group 24 months after transplantation (8 of 10 (80%) vs. 17 of 46 (37%); p = 0.001). Accordingly, graft failure was significantly more frequent in the genotype II and IV group (3 of 10 (30%) vs. 2 of 46 (4%); p = 0.007). CONCLUSION PCR-based BKPyV genotyping might represent a fast and inexpensive method to assess the risk for PyVAN and transplant outcome already at early stages of BKPyV reactivation even if matched samples of the donor are not available.
Collapse
Affiliation(s)
- Johannes Korth
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany.
| | - Olympia Evdoxia Anastasiou
- Department of Gastroenterology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jan Hinrich Bräsen
- Institute for Pathology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Alexandra Brinkhoff
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulrich Lehmann
- Institute for Pathology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Jens Verheyen
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Sandra Ciesek
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen Virchowstr. 179, 45147, Essen, Germany
| |
Collapse
|
39
|
Hejtmánková A, Roubalová K, Forejtová A, Žáčková Suchanová J, Forstová J, Viklický O, Španielová H. Prevalence of antibodies against BKPyV subtype I and IV in kidney transplant recipients and in the general Czech population. J Med Virol 2019; 91:856-864. [PMID: 30609063 DOI: 10.1002/jmv.25388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/24/2018] [Indexed: 01/04/2023]
Abstract
Active infection with BK polyomavirus (BKPyV) may cause serious complications in transplantation settings. Recently, the level of BKPyV IgG seroreactivity in graft donors has been shown to predict viremia and BKPyV-associated nephropathy in kidney transplant (KTx) recipients. Pretransplantation testing of the donor and recipient BKPyV serostatus could, therefore, identify patients at high risk. For the development of serological immunoassays, antibody response to the predominant BKPyV subtypes (BKPyV-I and BKPyV-IV) was studied using virus-like particle (VLP)-based enzyme-linked immunosorbent assay (ELISA). VLPs made from the capsid protein, VP1, derived from BKPyV-I and BKPyV-IV subtypes were produced using a baculovirus expression system and used as antigens. The tests were used for IgG antibody determination in 50 KTx recipients and 111 healthy blood donors. While 87% of samples reacted with mixed BKPyV-I and BKPyV-IV antigens, only 49% of samples were reactive in both ELISA tests when using BKPyV-I or BKPyV-IV antigens separately. Twenty-seven percent of healthy blood donors and 26% of KTx recipients were reactive only with BKPyV-I, while 9% and 20% were reactive only with BKPyV-IV, respectively. To determine the specificities of the antigens, selected seropositive samples were retested after preadsorption with soluble BKPyV-I, BKPyV-IV, or JC polyomavirus antigens. The experiments confirmed that recombinant VP1 VLP-based ELISAs predominantly detected BKPyV type-specific antibodies. The results imply that anti-BKPyV antibody ELISA tests should contain a mixture of subtype-specific VLP-based antigens instead of antigen derived from the most prevalent BKPyV-I subtype. The tests can be used for serological surveys of BKPyV infection and improved KTx patient management.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | - Jiřina Žáčková Suchanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Viklický
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
40
|
Wunderink HF, de Brouwer CS, van der Meijden E, Pastrana DV, Kroes ACM, Buck CB, Feltkamp MCW. Development and evaluation of a BK polyomavirus serotyping assay using Luminex technology. J Clin Virol 2018; 110:22-28. [PMID: 30529638 DOI: 10.1016/j.jcv.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The BK polyomavirus (BKPyV) is subdivided into four genotypes. The consequences of each genotype and of donor-recipient genotype (mis)match for BKPyV-associated nephropathy (BKPyVAN) in kidney transplant recipients (KTRs) are unknown. OBJECTIVES To develop and evaluate a genotype-specific IgG antibody-based BKPyV serotyping assay, in order to classify kidney transplant donors and recipients accordingly. STUDY DESIGN VP1 antigens of six BKPyV variants (Ib1, Ib2, Ic, II, III and IV) were expressed as recombinant glutathione-s-transferase-fusion proteins and coupled to fluorescent Luminex beads. Sera from 87 healthy blood donors and 39 KTRs were used to analyze seroreactivity and serospecificity against the different BKPyV genotypes. Six sera with marked BKPyV serotype profiles were analyzed further for genotype-specific BKPyV pseudovirus neutralizing capacity. RESULTS Seroreactivity was observed against all genotypes, with seropositivity rates above 77% comparable for KTRs and blood donors. Strong cross-reactivity (r > 0.8) was observed among genotype I subtypes, and among genotypes II, III and IV. Seroresponses against genotypes I and IV seemed genuine, while those against II and III could be out(cross)competed. GMT (Luminex) and IC50 (neutralization assay) values showed good agreement in determining the genotype with the strongest seroresponse within an individual. CONCLUSIONS Despite some degree of cross-reactivity, this serotyping assay seems a useful tool to identify the main infecting BKPyV genotype within a given individual. This information, which cannot be obtained otherwise from nonviremic/nonviruric individuals, could provide valuable information regarding the prevalent BKPyV genotype in kidney donors and recipients and warrants further study.
Collapse
Affiliation(s)
- Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Aloysius C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4263, USA
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
42
|
Krejci K, Tichy T, Bednarikova J, Zamboch K, Zadrazil J. BK virus-induced renal allograft nephropathy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:165-177. [DOI: 10.5507/bp.2018.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
|
43
|
Geoghegan EM, Pastrana DV, Schowalter RM, Ray U, Gao W, Ho M, Pauly GT, Sigano DM, Kaynor C, Cahir-McFarland E, Combaluzier B, Grimm J, Buck CB. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses. Cell Rep 2018; 21:1169-1179. [PMID: 29091757 DOI: 10.1016/j.celrep.2017.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/08/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV). JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs) can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies.
Collapse
Affiliation(s)
- Eileen M Geoghegan
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Rachel M Schowalter
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Upasana Ray
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Wei Gao
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gary T Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Dina M Sigano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | | | | - Jan Grimm
- Neurimmune Holding AG, Schlieren-Zurich, Switzerland
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA.
| |
Collapse
|
44
|
Peretti A, Geoghegan EM, Pastrana DV, Smola S, Feld P, Sauter M, Lohse S, Ramesh M, Lim ES, Wang D, Borgogna C, FitzGerald PC, Bliskovsky V, Starrett GJ, Law EK, Harris RS, Killian JK, Zhu J, Pineda M, Meltzer PS, Boldorini R, Gariglio M, Buck CB. Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. Cell Host Microbe 2018; 23:628-635.e7. [PMID: 29746834 PMCID: PMC5953553 DOI: 10.1016/j.chom.2018.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/05/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
BK polyomavirus (BKV) frequently causes nephropathy (BKVN) in kidney transplant recipients (KTRs). BKV has also been implicated in the etiology of bladder and kidney cancers. We characterized BKV variants from two KTRs who developed BKVN followed by renal carcinoma. Both patients showed a swarm of BKV sequence variants encoding non-silent mutations in surface loops of the viral major capsid protein. The temporal appearance and disappearance of these mutations highlights the intra-patient evolution of BKV. Some of the observed mutations conferred resistance to antibody-mediated neutralization. The mutations also modified the spectrum of receptor glycans engaged by BKV during host cell entry. Intriguingly, all observed mutations were consistent with DNA damage caused by antiviral APOBEC3 cytosine deaminases. Moreover, APOBEC3 expression was evident upon immunohistochemical analysis of renal biopsies from KTRs. These results provide a snapshot of in-host BKV evolution and suggest that APOBEC3 may drive BKV mutagenesis in vivo.
Collapse
Affiliation(s)
- Alberto Peretti
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eileen M Geoghegan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sigrun Smola
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Pascal Feld
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Marlies Sauter
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University, Homburg/Saar 66421, Germany
| | - Mayur Ramesh
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, MI 48202 USA
| | - Efrem S Lim
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David Wang
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy
| | - Peter C FitzGerald
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Valery Bliskovsky
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Keith Killian
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack Zhu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marbin Pineda
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul S Meltzer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara 28100, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy
| | - Christopher B Buck
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Solis M, Velay A, Moulin B, Caillard S, Fafi-Kremer S. The Authors Reply. J Am Soc Nephrol 2018; 29:1578. [PMID: 29467142 PMCID: PMC5967774 DOI: 10.1681/asn.2018010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Affiliation(s)
- Morgane Solis
- Virology Laboratory and
- Unitè Mixte de Recherche 1109, Institut National de la Santè et de la Recherche Mèdicale, Strasbourg University, Strasbourg, France
| | - Aurélie Velay
- Virology Laboratory and
- Unitè Mixte de Recherche 1109, Institut National de la Santè et de la Recherche Mèdicale, Strasbourg University, Strasbourg, France
| | - Bruno Moulin
- Unitè Mixte de Recherche 1109, Institut National de la Santè et de la Recherche Mèdicale, Strasbourg University, Strasbourg, France
- Nephrology Department, Strasbourg University Hospitals, Strasbourg, France
| | - Sophie Caillard
- Unitè Mixte de Recherche 1109, Institut National de la Santè et de la Recherche Mèdicale, Strasbourg University, Strasbourg, France
- Nephrology Department, Strasbourg University Hospitals, Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory and
- Unitè Mixte de Recherche 1109, Institut National de la Santè et de la Recherche Mèdicale, Strasbourg University, Strasbourg, France
| |
Collapse
|
46
|
Hurdiss DL, Frank M, Snowden JS, Macdonald A, Ranson NA. The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors. Structure 2018; 26:839-847.e3. [PMID: 29706532 PMCID: PMC5992339 DOI: 10.1016/j.str.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
Abstract
BK polyomavirus (BKV) causes polyomavirus-associated nephropathy and hemorrhagic cystitis in immunosuppressed patients. These are diseases for which we currently have limited treatment options, but potential therapies could include pre-transplant vaccination with a multivalent BKV vaccine or therapeutics which inhibit capsid assembly or block attachment and entry into target cells. A useful tool in such efforts would be a high-resolution structure of the infectious BKV virion and how this interacts with its full repertoire of cellular receptors. We present the 3.4-Å cryoelectron microscopy structure of native, infectious BKV in complex with the receptor fragment of GT1b ganglioside. We also present structural evidence that BKV can utilize glycosaminoglycans as attachment receptors. This work highlights features that underpin capsid stability and provides a platform for rational design and development of urgently needed pharmacological interventions for BKV-associated diseases. Present the cryo-EM structure of native, infectious BKV virion at 3.4 Å resolution Reveal interpentamer interactions that mediate capsid assembly Determine the interaction of BKV with a receptor fragment of GT1b ganglioside Identify possible sites for glycosaminoglycan binding on the virion surface
Collapse
Affiliation(s)
- Daniel L Hurdiss
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Frank
- Biognos AB, P.O. Box 8963, Gothenburg 40274, Sweden
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
47
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Despite improvements in posttransplant care, BK virus (BKV) remains one of the most challenging posttransplant infections in kidney transplant recipients with high rates of allograft failure. In the absence of well tolerated and efficacious viral specific therapeutics, treatment is primarily focused on reduction of immunosuppression, which poses a risk of rejection and fails to lead to viral clearance in a number of patients. RECENT FINDINGS Recent work has turned toward preventive therapies analogous to those used for other infections like cytomegalovirus. These efforts have focused on the use of quinolone antibiotic prophylaxis to prevent BKV infection and pretransplant vaccination to boost humoral and cellular immunity. SUMMARY Despite promising in-vitro and observational data, quinolone antibiotic prophylaxis has not been effective in preventing BKV infection in prospective studies. However, prophylaxis with newer less toxic viral specific agents such as brincidofovir - the lipid oral formulation of cidofovir - may yet prove effective. Strategies focused on eliciting a humoral immune response to recombinant virus-like particles or using adoptive transfer of BKV-specific T cells have also shown significant potential to prevent BKV infection in organ transplant recipients.
Collapse
|
49
|
Helle F, Brochot E, Handala L, Martin E, Castelain S, Francois C, Duverlie G. Biology of the BKPyV: An Update. Viruses 2017; 9:v9110327. [PMID: 29099746 PMCID: PMC5707534 DOI: 10.3390/v9110327] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The BK virus (BKPyV) is a member of the Polyomaviridae family first isolated in 1971. BKPyV causes frequent infections during childhood and establishes persistent infections with minimal clinical implications within renal tubular cells and the urothelium. However, reactivation of BKPyV in immunocompromised individuals may cause serious complications. In particular, with the implementation of more potent immunosuppressive drugs in the last decade, BKPyV has become an emerging pathogen in kidney and bone marrow transplant recipients where it often causes associated nephropathy and haemorrhagic cystitis, respectively. Unfortunately, no specific antiviral against BKPyV has been approved yet and the only therapeutic option is a modulation of the immunosuppressive drug regimen to improve immune control though it may increase the risk of rejection. A better understanding of the BKPyV life cycle is thus needed to develop efficient treatment against this virus. In this review, we provide an update on recent advances in understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Francois Helle
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Etienne Brochot
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Lynda Handala
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Elodie Martin
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Sandrine Castelain
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Catherine Francois
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Gilles Duverlie
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| |
Collapse
|
50
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|