1
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
2
|
Namusamba M, Wu Y, Yang J, Zhang Q, Wang C, Wang T, Wang B. BAP31 Promotes Angiogenesis via Galectin-3 Upregulation in Neuroblastoma. Int J Mol Sci 2024; 25:2946. [PMID: 38474195 PMCID: PMC10931962 DOI: 10.3390/ijms25052946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroblastoma (NB) is one of the highly vascularized childhood solid tumors, and understanding the molecular mechanisms underlying angiogenesis in NB is crucial for developing effective therapeutic strategies. B-cell receptor-associated protein 31 (BAP31) has been implicated in tumor progression, but its role in angiogenesis remains unexplored. This study investigated BAP31 modulation of pro-angiogenic factors in SH-SY5Y NB cells. Through protein overexpression, knockdown, antibody blocking, and quantification experiments, we demonstrated that overexpression of BAP31 led to increased levels of vascular endothelial growth factor A (VEGFA) and Galectin-3 (GAL-3), which are known to promote angiogenesis. Conditioned medium derived from BAP31-overexpressing neuroblastoma cells stimulated migration and tube formation in endothelial cells, indicating its pro-angiogenic properties. Also, we demonstrated that BAP31 enhances capillary tube formation by regulating hypoxia-inducible factor 1 alpha (HIF-1α) and its downstream target, GAL-3. Furthermore, GAL-3 downstream proteins, Jagged 1 and VEGF receptor 2 (VEGFR2), were up-regulated, and blocking GAL-3 partially inhibited the BAP31-induced tube formation. These findings suggest that BAP31 promotes angiogenesis in NB by modulating GAL-3 and VEGF signaling, thereby shaping the tumor microenvironment. This study provides novel insights into the pro-angiogenic role of BAP31 in NB.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Yufei Wu
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Jiaying Yang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| |
Collapse
|
3
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
4
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Chen B, Zhao L, Yang R, Xu T. Advances in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch Biochem Biophys 2023; 745:109716. [PMID: 37553047 DOI: 10.1016/j.abb.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
For a considerable duration, cervical cancer has posed a significant risk to the well-being and survival of women. The emergence and progression of cervical cancer have garnered extensive attention, with prolonged chronic infection of HPV serving as a crucial etiological factor. Consequently, investigating the molecular mechanism underlying HPV-induced cervical cancer has become a prominent research area. The HPV molecule is composed of a long control region (LCR), an early coding region and a late coding region.The early coding region encompasses E1, E2, E4, E5, E6, E7, while the late coding region comprises L1 and L2 ORF.The investigation into the molecular structure and function of HPV has garnered significant attention, with the aim of elucidating the carcinogenic mechanism of HPV and identifying potential targets for the treatment of cervical cancer. Research has demonstrated that the HPV gene and its encoded protein play a crucial role in the invasion and malignant transformation of host cells. Consequently, understanding the function of HPV oncoprotein is of paramount importance in comprehending the pathogenesis of cervical cancer. E6 and E7, the primary HPV oncogenic proteins, have been the subject of extensive study. Moreover, a number of contemporary investigations have demonstrated the significant involvement of HPV16 E5 oncoprotein in the malignant conversion of healthy cells through its regulation of cell proliferation, differentiation, and apoptosis via diverse pathways, albeit the precise molecular mechanism remains unclear. This manuscript aims to provide a comprehensive account of the molecular structure and life cycle of HPV.The HPV E5 oncoprotein mechanism modulates cellular processes such as proliferation, differentiation, apoptosis, and energy metabolism through its interaction with cell growth factor receptors and other cellular proteins. This mechanism is crucial for the survival, adhesion, migration, and invasion of tumor cells in the early stages of carcinogenesis. Recent studies have identified the HPV E5 oncoprotein as a promising therapeutic target for early-stage cervical cancer, thus offering a novel approach for treatment.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- The Second Hospital of Jilin University, Changchun, China
| | - Rulin Yang
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Ilahi NE, Siddique N, Rashid MI, Noreen M, Murad S. Decoding the Genetic and Structural Features of HPV16 E5 Oncogene in Cervical Cancer Isolates from Pakistan: A Pilot Study. IRANIAN BIOMEDICAL JOURNAL 2023; 27:388-96. [PMID: 38158635 PMCID: PMC10826910 DOI: 10.61186/ibj.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/12/2023] [Indexed: 01/03/2024]
Abstract
Background Many anogenital cancers are caused by high-risk HPV. The most common subtype is HPV16, which is prevalent in the world, including Pakistan. Various amino acid residues in HPV16 E5 are associated with high cell cycle progression and proliferation. Lack of studies on HPV16E5 in Pakistan prompted the current study. This is the first report on the occurrence of pathogenic E5 variant of HPV16 in tissue sections obtained from invasive cervical cancerous patients in Pakistan. Methods A subset of 11 samples from HPV-positive biopsies were subjected to E5 gene amplification using PCR and analyzed using bioinformatics programs. The bioinformatics analysis detected mutations causing structural variations, which potentially contribute to the oncogenic properties of proteins. Results The two-point mutations, C3979A and G4042A, observed in isolate 11 caused the substitution of isoleucine for leucine and valine at positions 44 and 65 in E5 protein. The rest of the isolates had Leu44Val65 amino acids. Intratypic variations and phylogenetic analysis revealed that the majority of the isolates were closely clustered with European-Asian lineage. Moreover, C3979A and G4042A contributed to higher degree of interactions with host receptors, i.e. EGFR. Conclusion This is the first study reporting HPV16 variants in a Pakistani population based on variations in the E5 region. Our findings indicate that isolate 11 has a strong interaction with the intracellular domain of EGFR, which may enhance the generation of downstream signals. Since this was a pilot study to explore E5 gene mutation, future studies with large samples are absolutely needed.
Collapse
Affiliation(s)
- Naureen Ehsan Ilahi
- Atta-Ur-Rehman School of Applied Biosciences, National University of Science and Technology, H-12 Campus, Hucknall Road, Islamabad, Pakistan
- Department of Biotechnology, Virtual University of Pakistan, Rawalpindi, Pakistan
| | - Nayyer Siddique
- Department of Molecular Biology and Genetics, Khyber Medical University, Peshawar, Pakistan
| | | | - Mamoona Noreen
- Department of Zoology, The Women University Multan, Multan, Pakistan
| | - Sheeba Murad
- Atta-Ur-Rehman School of Applied Biosciences, National University of Science and Technology, H-12 Campus, Hucknall Road, Islamabad, Pakistan
| |
Collapse
|
7
|
Yue M, Hu B, Li J, Chen R, Yuan Z, Xiao H, Chang H, Jiu Y, Cai K, Ding B. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production. EMBO J 2023; 42:e112542. [PMID: 37218505 PMCID: PMC10308351 DOI: 10.15252/embj.2022112542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance β-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.
Collapse
Affiliation(s)
- Mengzhen Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bing Hu
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Jiajia Li
- School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ruifeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hurong Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiChina
| | - Kun Cai
- Institute of Health Inspection and TestingHubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Cell Architecture Research InstituteHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Sudarshan SR, Schlegel R, Liu X. Two conserved amino acids differentiate the biology of high-risk and low-risk HPV E5 proteins. J Med Virol 2022; 94:4565-4575. [PMID: 35509176 PMCID: PMC9283228 DOI: 10.1002/jmv.27829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Abstract
The high-risk alpha human papillomaviruses (HPVs) are responsible for 99% of cervical cancers. While the biological functions of the HPV E6 and E7 oncoproteins are well-characterized, the function of E5 has remained elusive. Here, we examined gene expression changes induced by E5 proteins from high-risk HPV-16 and low-risk HPV-6b in multiple pools of primary human keratinocytes. Surprisingly, microarray analysis revealed that over 700 genes were significantly regulated by HPV-6b E5, while only 25 genes were consistently and significantly regulated by HPV-16 E5 in three biological replicates. However, we observed that more than thousand genes were altered in individual sample compared with vector. The gene expression profile induced by 16E5 in primary genital keratinocytes was very different from what has been previously published using immortalized HaCaT cells. Genes altered by HPV-16 E5 were unaffected by HPV-6b E5. Our data demonstrate that E5 proteins from the high- and low-risk HPVs have different functions in the HPV-host cell. Interestingly, conversion of two amino acids in HPV-16 E5 to the low-risk HPV-6b sequence eliminated the induction of high-risk related cellular genes.
Collapse
Affiliation(s)
- Sawali R. Sudarshan
- Department of PathologyCenter for Cell Reprogramming, Georgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Richard Schlegel
- Department of PathologyCenter for Cell Reprogramming, Georgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
| | - Xuefeng Liu
- Department of PathologyCenter for Cell Reprogramming, Georgetown University Medical SchoolWashingtonDistrict of ColumbiaUSA
- Department of PathologyWexner Medical Center, The James Comprehensive Cancer Center, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
9
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
10
|
Kumar A, Sahu U, Kumari P, Dixit A, Khare P. Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Sci Rep 2022; 12:9521. [PMID: 35681036 PMCID: PMC9184633 DOI: 10.1038/s41598-022-13442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the most common gynaecological cancer and reaches an alarming stage. HPVs are considered the main causative agents for cervical cancer and other sexually transmitted infections across the globe. Currently, three prophylactic vaccines are available against HPV infections with no therapeutic values. Due to a lack of effective therapeutic and prophylactic measures, the HPV infection is spreading in an uncontrolled manner. Next-generation of vaccine is needed to have both prophylactic and therapeutic values against HPV. Here first time we have designed a multi-epitope chimeric vaccine using the most oncogenic strain HPV 16 and HPV 18 through an immunoinformatic approach. In this study, we have used the L1, E5, E6 and E7 oncoproteins from both HPV 16 and HPV 18 strains for epitope prediction. Our recombinant chimeric vaccine construct consists, selected helper and cytotoxic T cell epitopes. Our computational analysis suggests that this chimeric construct is highly stable, non-toxic and also capable of inducing both cell-mediated and humoral immune responses. Furthermore, in silico cloning of the multi-epitope chimeric vaccine construct was done and the stabilization of the vaccine construct is validated with molecular dynamics simulation studies. Finally, our results indicated that our construct could be used for an effective prophylactic and therapeutic vaccine against HPV.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals (NIB), Noida, Uttar Pradesh, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India.
| |
Collapse
|
11
|
Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, Malik S, Kumar L, Kar S, Singh SK, Upadhye VJ, Iqbal D, Almojam S, Roychoudhury S, Ojha S, Ruokolainen J, Jha NK, Kesari KK. Mechanistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strategies. Crit Rev Oncol Hematol 2022; 174:103675. [DOI: 10.1016/j.critrevonc.2022.103675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
|
12
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
13
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
14
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
15
|
Namusamba M, Li Z, Zhang Q, Wang C, Wang T, Wang B. Biological roles of the B cell receptor-associated protein 31: Functional Implication in Cancer. Mol Biol Rep 2021; 48:773-786. [PMID: 33439410 DOI: 10.1007/s11033-020-06123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BAP31 is a ubiquitously expressed integral membrane protein of the endoplasmic reticulum. BAP31 is involved in various biological and molecular processes, including protein transport, viral processing, apoptosis signaling, MHC 1 antigen processing and presentation, mitochondria and ER calcium regulation, and proteasomal protein degradation. We employed a BAP31 interaction search using STRING and inBioMap™ protein-protein interaction networks, and the Metabolic Atlas, which revealed molecular and metabolic interactors involved in various pathways essential for cell growth, cell survival, and disease development. BAP31, as a chaperone and resident protein of the ER, was reported in the development of some central nervous system disorders and metabolic diseases about AD, ALS, and Liver disease. In addition, BAP31 is overexpressed in many cancers. Furthermore, research around BAP31 involvement in cancer has taken up a shape, focusing on its roles in cancer cell survival, disease prognosis, and targeted treatment. Here, we address published data on the Biological roles of BAP31 in both health and disease. We present an analytical description of BAP31 expression and functional implication in some human cancers and the impact of its expression and regulation while it models as a potential target in cancer therapy. Besides, a profound understanding of BAP31 is insightful of the gap between cancer development and neurodegeneration, thus generating novel ideas surrounding the link between the two different cell phenomena.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Zhi Li
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| |
Collapse
|
16
|
Silva RCDO, da Silva Júnior AHP, Gurgel APAD, Barros Junior MR, Santos DL, de Lima RDCP, Batista MVA, Pena LJ, Chagas BS, Freitas AC. Structural and functional impacts of E5 genetic variants of human papillomavirus type 31. Virus Res 2020; 290:198143. [PMID: 32871208 DOI: 10.1016/j.virusres.2020.198143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/29/2022]
Abstract
Persistent infections caused by high-risk human papillomavirus (HR-HPV) are important, for the development of cervical lesions, but environmental and genetic factors are also related in the process of carcinogenesis. Among the genetic factors, the genetic variants of HR-HPV appear to be related to the risk of persistent infections. Therefore, the present study investigates variants of HPV31 E5 oncogene in cervical scraping samples from Brazilian women to assess their functional and structural effects, in order to identify possible repercussions of these variants on the infectious and carcinogenic process. Our results detected nucleotide changes previously described in the HPV31 E5 oncogene, which may play a critical role in the development of cancer due to its ability to promote cell proliferation and signal transmission. In our study, the interaction percentage of the 31E5 sequence generated by the Immune Epitope Server database and the Analysis Resource (IEDB) allowed us to include possible immunogenic epitopes with the MHC-I and MHC-II molecules, which may represent a possible relationship between protein suppression of the immune system. In the structural analysis of the HPV31 E5 oncoprotein, the N5D, I48 V, P56A, F80I and V64I polymorphisms can be found inserted within transmembrane regions. The P56A mutation has been predicted to be highly stabilizing and, therefore, can cause a change in protein function. Regarding the interaction of the E5 protein from HPV31 with the signaling of NF-kB pathway, we observed that in all variants of the E5 gene from HPV-31, the activity of the NF-kB pathway was increased compared to the prototype. Our study contributes to a more refined design of studies with the E5 gene from HPV31 and provides important data for a better understanding of how variants can be distinguished under their clinical consequences.
Collapse
Affiliation(s)
- Ruany C de O Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - Ana P A D Gurgel
- Department of Engineering and Environment, Federal University of Paraiba, Paraiba, Brazil
| | - Marconi R Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Daffany L Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Rita de C P de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Marcus V A Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Federal University of Sergipe, Sergipe, Brazil
| | - Lindomar J Pena
- Department of Virology and Experimental Therapy, Research Center Aggeu Magalhães, Oswaldo Cruz Foundation, Pernambuco, Brazil
| | - Bárbara S Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil
| | - Antonio C Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Pernambuco, Brazil.
| |
Collapse
|
17
|
High-Risk Human Papillomaviruses and DNA Repair. Recent Results Cancer Res 2020. [PMID: 33200365 DOI: 10.1007/978-3-030-57362-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that infect basal epithelial cells and are the causative agents of cervical, anogenital, as well as oral cancers. High-risk HPVs are responsible for nearly half of all virally induced cancers. Viral replication and amplification are intimately linked to the stratified epithelium differentiation program. The E6 and E7 proteins contribute to the development of cancers in HPV positive individuals by hijacking cellular processes and causing genetic instability. This genetic instability induces a robust DNA damage response and activating both ATM and ATR repair pathways. These pathways are critical for the productive replication of high-risk HPVs, and understanding how they contribute to the viral life cycle can provide important insights into HPV's role in oncogenesis. This review will discuss the role that differentiation and the DNA damage responses play in productive replication of high-risk HPVs as well as in the development of cancer.
Collapse
|
18
|
Abdou AG, Diab A, Marae A. Immunohistochemical expression of BCAP 31 in chronic plaque psoriasis. J Immunoassay Immunochem 2020; 41:852-863. [PMID: 32608336 DOI: 10.1080/15321819.2020.1785493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Psoriasis is a common chronic skin inflammatory disease characterized by an exaggerated proliferation of keratinocytes. B-cell receptor-associated protein 31 (BCAP 31) plays critical roles in induction of proliferation and apoptosis. The current study aimed at evaluation of the immunohistochemical localization of BCAP 31 in psoriatic skin compared to normal skin in addition of correlating BCAP31 expression with the clinical and pathological parameters of psoriasis. The present study was carried out on skin biopsies from 30 psoriatic patients and 10 normal skin (control group). BCAP31 was not expressed in normal skin either epidermis or dermis, while it was expressed in epidermis of 15 psoriatic cases and in dermis of 13 cases with a significant difference between the two groups (p < .05). Strong epidermal BCAP 31 expression was associated with marked parakeratosis (p = .025). There was a significant co-parallel epidermal and dermal expression of BCAP31 in psoriasis (p < .05). The role of BCAP 31 is not only confined to its expression by affected keratinocytes but extended to its localization to dermal lymphocytes where they were correlated with each other. The up- regulation of BCAP 31 in psoriatic lesion compared to normal skin may suggest its use as a target therapy for treatment of psoriasis that necessitates further studies to clarify.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Faculty of Medicine, Pathology and Dermatology, Andology and STDs Departments
| | - Aya Diab
- Faculty of Medicine, Menoufia University , Shebein Elkom, Egypt
| | - Alaa Marae
- Faculty of Medicine, Menoufia University , Shebein Elkom, Egypt
| |
Collapse
|
19
|
Na Rangsee N, Yanatatsaneejit P, Pisitkun T, Somparn P, Jintaridth P, Topanurak S. Host proteome linked to HPV E7-mediated specific gene hypermethylation in cancer pathways. Infect Agent Cancer 2020; 15:7. [PMID: 32025240 PMCID: PMC6998090 DOI: 10.1186/s13027-020-0271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer. Methods HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively. Results Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions. Conclusions HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.
Collapse
Affiliation(s)
- Nopphamon Na Rangsee
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | | | - Trairak Pisitkun
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand.,4Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pornrutsami Jintaridth
- 5Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
20
|
Impact of HPV E5 on viral life cycle via EGFR signaling. Microb Pathog 2020; 139:103923. [DOI: 10.1016/j.micpath.2019.103923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022]
|
21
|
BAP31 Inhibits Cell Adaptation to ER Stress Conditions, Negatively Regulating Autophagy Induction by Interaction with STX17. Cells 2019; 8:cells8111350. [PMID: 31671609 PMCID: PMC6912744 DOI: 10.3390/cells8111350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer cells modulate their metabolism to proliferate and survive under the metabolic stress condition, which is known as endoplasmic reticulum (ER) stress. Therefore, cancer cells should suppress ER stress-mediated cell death and induce autophagy—which recycles metabolites to provide energy and new macromolecules. In this study, we demonstrate that the ER membrane protein BAP31 acts to suppress adaptation to ER stress conditions, induce cell death, and suppress autophagy by forming a BAP31-STX17 protein complex. The loss of BAP31 stimulates tumor growth in metabolic stress conditions in vivo and enhances invasion activity. Therefore, BAP31 stimulates cell death and inhibits autophagy, and it can be considered a novel tumor suppressor factor that acts by preventing ER stress adaptation.
Collapse
|
22
|
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol 2019; 9:682. [PMID: 31428574 PMCID: PMC6688195 DOI: 10.3389/fonc.2019.00682] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with human papillomavirus (HPV) initiates ~5% of all human cancers, and particularly cervical and oropharyngeal cancers. HPV vaccines prevent HPV infection, but do not eliminate existing HPV infections. Papillomaviruses induce hyperproliferation of epithelial cells. In this review we discuss how hyperproliferation renders epithelial cells less sensitive to immune attack, and impacts upon the efficiency of the local immune system. These observations have significance for the design of therapeutic HPV cancer immunotherapies.
Collapse
Affiliation(s)
- Chenhao Zhou
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian Hector Frazer
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Papillomaviruses and Endocytic Trafficking. Int J Mol Sci 2018; 19:ijms19092619. [PMID: 30181457 PMCID: PMC6163501 DOI: 10.3390/ijms19092619] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Endocytic trafficking plays a major role in transport of incoming human papillomavirus (HPVs) from plasma membrane to the trans Golgi network (TGN) and ultimately into the nucleus. During this infectious entry, several cellular sorting factors are recruited by the viral capsid protein L2, which plays a critical role in ensuring successful transport of the L2/viral DNA complex to the nucleus. Later in the infection cycle, two viral oncoproteins, E5 and E6, have also been shown to modulate different aspects of endocytic transport pathways. In this review, we highlight how HPV makes use of and perturbs normal endocytic transport pathways, firstly to achieve infectious virus entry, secondly to produce productive infection and the completion of the viral life cycle and, finally, on rare occasions, to bring about the development of malignancy.
Collapse
|
24
|
Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, Zhang C, Jin B, Wang J, Yang K. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis 2018; 9:791. [PMID: 30022068 PMCID: PMC6052025 DOI: 10.1038/s41419-018-0824-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
Malignant tumors typically undergo an atavistic regression characterized by the overexpression of embryonic genes and proto-oncogenes, including a variety of cancer/testis antigens (CTAs) that are testis-derived and are not expressed or expressed in trace amounts in somatic tissues. Based on this theory, we established a new method to identify unknown CTAs, the spermatogenic cells-specific monoclonal antibody-defined cancer/testis antigen (SADA) method. Using the SADA method, we identified BAP31 as a novel CTA and confirmed that BAP31 expression is associated with progression and metastasis of several cancers, particularly in cervical cancer. We found that BAP31 was significantly upregulated in stage I, II, and III cervical cancer patients and highly correlated with poor clinic outcomes. We further demonstrated that BAP31 regulates cervical cancer cell proliferation by arresting the cell cycle at the G0/G1 stage and that depletion of BAP31 inhibits hyper-proliferation. Moreover, depletion of BAP31 inhibits cervical cancer cell invasion and migration by regulating the expression and subcellular localization of Drebrin, M-RIP, SPECC1L, and Nexilin, and then affect the cytoskeleton assemblage. Finally, the depletion of BAP31 prevents cervical cancer progression and metastasis in vivo. These findings provide a new method for identifying novel CTAs as well as mechanistic insights into how BAP31 regulates cervical cancer hyper-proliferation and metastasis.
Collapse
Affiliation(s)
- Erle Dang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,Department of Dermatology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Shuya Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chaojun Song
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,School of Life Science, Northwestern Polytechnic University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongbo Jiang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zichao Li
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wei Fan
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yuanjie Sun
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Liang Tao
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jing Wang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Tingting Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chunmei Zhang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jian Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Kun Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
26
|
Wechsler EI, Tugizov S, Herrera R, Da Costa M, Palefsky JM. E5 can be expressed in anal cancer and leads to epidermal growth factor receptor-induced invasion in a human papillomavirus 16-transformed anal epithelial cell line. J Gen Virol 2018; 99:631-644. [PMID: 29624161 DOI: 10.1099/jgv.0.001061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We created the first human papillomavirus (HPV)-16-immortalized anal epithelial cell line, known as AKC2 cells to establish an in vitro model of HPV-16-induced anal carcinogenesis. Consistent with detection of E6, E7 and E5 expression in anal cancer biopsies, AKC2 cells expressed high levels of all three HPV oncogenes. Also, similar to findings in anal cancer biopsies, epidermal growth factor receptor (EGFR) was overexpressed in AKC2 cells. AKC2 cells exhibited a poorly differentiated and invasive phenotype in three-dimensional raft culture and inhibition of EGFR function abrogated AKC2 invasion. Reducing E5 expression using E5-targeted siRNAs in AKC2 cells led to knockdown of E5 expression, but also HPV-16 E2, E6 and E7 expression. AKC2 cells treated with E5-targeted siRNA had reduced levels of total and phosphorylated EGFR, and reduced invasion. Rescue of E6/E7 expression with simultaneous E5 knockdown confirmed that E5 plays a key role in EGFR overexpression and EGFR-induced invasion.
Collapse
Affiliation(s)
- Erin Isaacson Wechsler
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sharof Tugizov
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rossana Herrera
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Maria Da Costa
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Joel M Palefsky
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
Moody C. Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes. Viruses 2017; 9:v9090261. [PMID: 28925973 PMCID: PMC5618027 DOI: 10.3390/v9090261] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells.
Collapse
Affiliation(s)
- Cary Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
de Freitas AC, de Oliveira THA, Barros MR, Venuti A. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:71. [PMID: 28545552 PMCID: PMC5445378 DOI: 10.1186/s13046-017-0541-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil.
| | - Talita Helena Araújo de Oliveira
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Marconi Rego Barros
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Aldo Venuti
- Department of Research, HPV-Unit, UOSD Tumor Immunology and Immunotherapy Unit, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
29
|
Paolini F, Curzio G, Cordeiro MN, Massa S, Mariani L, Pimpinelli F, de Freitas AC, Franconi R, Venuti A. HPV 16 E5 oncoprotein is expressed in early stage carcinogenesis and can be a target of immunotherapy. Hum Vaccin Immunother 2016; 13:291-297. [PMID: 27929754 DOI: 10.1080/21645515.2017.1264777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HPV16 persistent infection is a well-known condition that precedes human cancer development. High risk HPV E5 proteins cooperate with E6/E7 oncogenes to promote hyper-proliferation of infected cells leading to possible cancer progression. Thus, presence of E5 viral transcripts could be a key marker of active infection and, in turn, a target of immunotherapy. Purpose of the study is to detect E5 transcripts in clinical samples and to explore the activity of novel anti-HPV16 E5 DNA vaccines. HPV transcripts were detected by PCR with specific primers encompassing the splice-donor sites of E5 transcript. For E5-based immunotherapies, 2 E5-based versions of DNA vaccines carrying whole E5 gene or a synthetic multiepitope gene were improved by fusion to sequence of PVX coat protein. These vaccines were challenged with a new luminescent animal model based on C3-Luc cell line. E5 transcripts were detected in clinical samples of women with HPV positive low-grade SIL, demonstrating the validity of our test. In C3 pre-clinical mouse model, vaccine candidates were able to induce a strong cellular immunity as indicated by ELISPOT assays. In addition, E5-CP vaccines elicited strong anti-tumor effects as showed by decreased tumor growth monitored by animal imaging. The tumor growth inhibition was comparable to those obtained with anti-E7 DNA vaccines. In conclusion, detection of E5 transcripts in clinical samples indicates that E5 is a possible target of immunotherapy. Data from pre-clinical model demonstrate that E5 genetic immunization is feasible, efficacious and could be utilized in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Silvia Massa
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Luciano Mariani
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| | | | | | - Rosella Franconi
- c ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia , Rome , Italy
| | - Aldo Venuti
- a Regina Elena National Cancer Institute, HPV Unit , Rome , Italy
| |
Collapse
|
30
|
Anacker DC, Moody CA. Modulation of the DNA damage response during the life cycle of human papillomaviruses. Virus Res 2016; 231:41-49. [PMID: 27836727 DOI: 10.1016/j.virusres.2016.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted viral infection. Infection with certain types of HPV pose a major public health risk as these types are associated with multiple human cancers, including cervical cancer, other anogenital malignancies and an increasing number of head and neck cancers. The HPV life cycle is closely tied to host cell differentiation with late viral events such as structural gene expression and viral genome amplification taking place in the upper layers of the stratified epithelium. The DNA damage response (DDR) is an elaborate signaling network of proteins that regulate the fidelity of replication by detecting, signaling and repairing DNA lesions. ATM and ATR are two kinases that are major regulators of DNA damage detection and repair. A multitude of studies indicate that activation of the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3-related) pathways are critical for HPV to productively replicate. This review outlines how HPV interfaces with the ATM- and ATR-dependent DNA damage responses throughout the viral life cycle to create an environment supportive of viral replication and how activation of these pathways could impact genomic stability.
Collapse
Affiliation(s)
- Daniel C Anacker
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA
| | - Cary A Moody
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
32
|
Emerging Roles of Viroporins Encoded by DNA Viruses: Novel Targets for Antivirals? Viruses 2015; 7:5375-87. [PMID: 26501313 PMCID: PMC4632388 DOI: 10.3390/v7102880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Studies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle. Recent discoveries have identified proteins encoded by the small DNA tumor viruses that display a number of viroporin like properties. This review article summarizes the recent developments in our understanding of these novel viroporins; describes their roles in the virus life cycles and in pathogenesis and speculates on their potential as targets for anti-viral therapeutic intervention.
Collapse
|
33
|
Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein. Virology 2015; 482:105-10. [DOI: 10.1016/j.virol.2015.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Accepted: 03/17/2015] [Indexed: 11/23/2022]
|
34
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
35
|
Tummers B, Burg SHVD. High-risk human papillomavirus targets crossroads in immune signaling. Viruses 2015; 7:2485-506. [PMID: 26008697 PMCID: PMC4452916 DOI: 10.3390/v7052485] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Persistent infections with a high-risk type human papillomavirus (hrHPV) can progress to cancer. High-risk HPVs infect keratinocytes (KCs) and successfully suppress host immunity for up to two years despite the fact that KCs are well equipped to detect and initiate immune responses to invading pathogens. Viral persistence is achieved by active interference with KCs innate and adaptive immune mechanisms. To this end hrHPV utilizes proteins encoded by its viral genome, as well as exploits cellular proteins to interfere with signaling of innate and adaptive immune pathways. This results in impairment of interferon and pro-inflammatory cytokine production and subsequent immune cell attraction, as well as resistance to incoming signals from the immune system. Furthermore, hrHPV avoids the killing of infected cells by interfering with antigen presentation to antigen-specific cytotoxic T lymphocytes. Thus, hrHPV has evolved multiple mechanisms to avoid detection and clearance by both the innate and adaptive immune system, the molecular mechanisms of which will be dealt with in detail in this review.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Sjoerd H Van Der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
36
|
Chen J. Signaling pathways in HPV-associated cancers and therapeutic implications. Rev Med Virol 2015; 25 Suppl 1:24-53. [PMID: 25752815 DOI: 10.1002/rmv.1823] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
37
|
Müller M, Prescott EL, Wasson CW, Macdonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Future Virol 2015. [DOI: 10.2217/fvl.14.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Mucosal human papillomaviruses express a small, hydrophobic, protein called E5, which plays an important role in the HPV life cycle by delaying normal epithelial cell differentiation while maintaining cell cycle progression. In addition, E5 exhibits transforming abilities in a number of cell culture systems and transgenic mouse models. Lacking any described enzymatic activity, E5 is thought to function by binding to host proteins and modulating their activities. In particular, members of the growth factor receptor family are known targets for subversion. This review article summarizes our latest understanding of this enigmatic oncoprotein, including its role in the HPV life cycle, interactions with host proteins and contribution toward tumorigenesis.
Collapse
Affiliation(s)
- Marietta Müller
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Emma L Prescott
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Christopher W Wasson
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
38
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Hong S, Laimins LA. Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Future Microbiol 2014; 8:1547-57. [PMID: 24266355 DOI: 10.2217/fmb.13.127] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HPVs are the causative agents of cervical and other anogenital cancers. HPVs infect stratified epithelia and link their productive life cycles to cellular differentiation. Low levels of viral genomes are stably maintained in undifferentiated cells and productive replication or amplification is restricted to differentiated suprabasal cells. Amplification is dependent on the activation of the ATM DNA damage factors that are recruited to viral replication centers and inhibition of this pathway blocks productive replication. The STAT-5 protein appears to play a critical role in mediating activation of the ATM pathway in HPV-positive cells. While HPVs need to activate the DNA damage pathway for replication, cervical cancers contain many genomic alterations suggesting that this pathway is circumvented during progression to malignancy.
Collapse
Affiliation(s)
- Shiyuan Hong
- Department of Microbiology-Immunology, Northwestern University, Feinberg, School of Medicine, Chicago Avenue, Morton 6-681, Chicago, IL 60611, USA
| | | |
Collapse
|
40
|
Bol V, Grégoire V. Biological basis for increased sensitivity to radiation therapy in HPV-positive head and neck cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696028. [PMID: 24804233 PMCID: PMC3996288 DOI: 10.1155/2014/696028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
Abstract
Although development of head and neck squamous cell carcinomas (HNSCCs) is commonly linked to the consumption of tobacco and alcohol, a link between human papillomavirus (HPV) infection and a subgroup of head and neck cancers has been established. These HPV-positive tumors represent a distinct biological entity with overexpression of viral oncoproteins E6 and E7. It has been shown in several clinical studies that HPV-positive HNSCCs have a more favorable outcome and greater response to radiotherapy. The reason for improved prognosis of HPV-related HNSCC remains speculative, but it could be owned to multiple factors. One hypothesis is that HPV-positive cells are intrinsically more sensitive to standard therapies and thus respond better to treatment. Another possibility is that HPV-positive tumors uniquely express viral proteins that induce an immune response during therapy that helps clear tumors and prevents recurrence. Here, we will review current evidence for the biological basis of increased radiosensitivity in HPV-positive HNSCC.
Collapse
Affiliation(s)
- V. Bol
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| | - V. Grégoire
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), B1.5407 Avenue Hippocrate, No. 54-55, 1200 Brussels, Belgium
| |
Collapse
|
41
|
Kotnik Halavaty K, Regan J, Mehta K, Laimins L. Human papillomavirus E5 oncoproteins bind the A4 endoplasmic reticulum protein to regulate proliferative ability upon differentiation. Virology 2014; 452-453:223-30. [PMID: 24606699 DOI: 10.1016/j.virol.2014.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/16/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
Abstract
Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system. The A4 protein co-localizes with HPV 31 E5 in perinuclear regions and forms complexes with E5 and Bap31. In normal keratinocytes, A4 is found primarily in basal cells while in HPV positive cells high levels of A4 are seen in both undifferentiated and differentiated cells. Reduction of A4 expression by shRNAs, enhanced HPV genome amplification and increased cell proliferation ability following differentiation but this was not seen in cells lacking E5. Our studies suggest that the A4 protein is an important E5 binding partner that plays a role in regulating cell proliferation ability upon differentiation.
Collapse
Affiliation(s)
- Katarina Kotnik Halavaty
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Jennifer Regan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Kavi Mehta
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Abstract
Human papillomaviruses (HPVs) are the causative agents of cervical and other anogenital as well as oral cancers. Approximately fifty percent of virally induced cancers in the USA are associated with HPV infections. HPVs infect stratified epithelia and link productive replication with differentiation. The viral oncoproteins, E6, E7, and E5, play important roles in regulating viral functions during the viral life cycle and also contribute to the development of cancers. p53 and Rb are two major targets of the E6 and E7 oncoproteins, but additional cellular proteins also play important roles. E5 plays an auxiliary role in contributing to the development of cancers. This review will discuss the various targets of these viral proteins and what roles they play in viral pathogenesis.
Collapse
|
43
|
Viral channel proteins in intracellular protein-protein communication: Vpu of HIV-1, E5 of HPV16 and p7 of HCV. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1113-21. [PMID: 24035804 DOI: 10.1016/j.bbamem.2013.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/20/2023]
Abstract
Viral channel forming proteins are known for their capability to make the lipid membrane of the host cell and its subcellular compartments permeable to ions and small compounds. There is increasing evidence that some of the representatives of this class of proteins are also strongly interacting with host proteins and the effectiveness of this interaction seems to be high. Interaction of viral channel proteins with host factors has been proposed by bioinformatics approaches and has also been identified experimentally. An overview of the interactions with host proteins is given for Vpu from HIV-1, E5 from HPV-16 and p7 from HCV. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
|
44
|
DiMaio D, Petti LM. The E5 proteins. Virology 2013; 445:99-114. [PMID: 23731971 DOI: 10.1016/j.virol.2013.05.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/23/2022]
Abstract
The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating these activities. The primary target of the 44-amino acid BPV1 E5 protein is the PDGF β receptor, whereas the EGF receptor appears to be an important target of the 83-amino acid HPV16 E5 protein. Both E5 proteins also bind to the vacuolar ATPase and affect MHC class I expression and cell-cell communication. Continued studies of the E5 proteins will elucidate important aspects of transmembrane protein-protein interactions, cellular signal transduction, cell biology, virus replication, and tumorigenesis.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, USA; Department of Therapeutic Radiology, Yale School of Medicine, USA; Department of Molecular Biophysics & Biochemistry, Yale University, USA; Yale Cancer Center, USA.
| | | |
Collapse
|
45
|
Abstract
Approximately 18% of human cancers have a viral etiology and the majority of these involve transformation of epithelial cells. Viral proteins transform epithelia by inducing alterations in the normal cell growth and differentiation pathways through the targeting of host proteins. Among the DNA viruses responsible for causing carcinomas are the human papillomaviruses as well as several members of the herpes and polyomavirus families. A number of techniques have been developed to study the mechanisms by which viruses immortalize epithelial cells and alter differentiation properties. These methods include the generation of immortalized lines by transfection or infection as well as the use of organotypic raft cultures, suspension in methylcellulose, and treatment with high calcium levels to examine how differentiation is altered.
Collapse
Affiliation(s)
- Jennifer A Regan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
46
|
Kammula EC, Mötter J, Gorgels A, Jonas E, Hoffmann S, Willbold D. Brain transcriptome-wide screen for HIV-1 Nef protein interaction partners reveals various membrane-associated proteins. PLoS One 2012; 7:e51578. [PMID: 23284715 PMCID: PMC3524239 DOI: 10.1371/journal.pone.0051578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/02/2012] [Indexed: 01/23/2023] Open
Abstract
HIV-1 Nef protein contributes essentially to the pathology of AIDS by a variety of protein-protein-interactions within the host cell. The versatile functionality of Nef is partially attributed to different conformational states and posttranslational modifications, such as myristoylation. Up to now, many interaction partners of Nef have been identified using classical yeast two-hybrid screens. Such screens rely on transcriptional activation of reporter genes in the nucleus to detect interactions. Thus, the identification of Nef interaction partners that are integral membrane proteins, membrane-associated proteins or other proteins that do not translocate into the nucleus is hampered. In the present study, a split-ubiquitin based yeast two-hybrid screen was used to identify novel membrane-localized interaction partners of Nef. More than 80% of the hereby identified interaction partners of Nef are transmembrane proteins. The identified hits are GPM6B, GPM6A, BAP31, TSPAN7, CYB5B, CD320/TCblR, VSIG4, PMEPA1, OCIAD1, ITGB1, CHN1, PH4, CLDN10, HSPA9, APR-3, PEBP1 and B3GNT, which are involved in diverse cellular processes like signaling, apoptosis, neurogenesis, cell adhesion and protein trafficking or quality control. For a subfraction of the hereby identified proteins we present data supporting their direct interaction with HIV-1 Nef. We discuss the results with respect to many phenotypes observed in HIV infected cells and patients. The identified Nef interaction partners may help to further elucidate the molecular basis of HIV-related diseases.
Collapse
Affiliation(s)
- Ellen C. Kammula
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Jessica Mötter
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Gorgels
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Esther Jonas
- Institute of Physical Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Silke Hoffmann
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
47
|
Sahab Z, Sudarshan SR, Liu X, Zhang Y, Kirilyuk A, Kamonjoh CM, Simic V, Dai Y, Byers SW, Doorbar J, Suprynowicz FA, Schlegel R. Quantitative measurement of human papillomavirus type 16 e5 oncoprotein levels in epithelial cell lines by mass spectrometry. J Virol 2012; 86:9465-73. [PMID: 22740411 PMCID: PMC3416135 DOI: 10.1128/jvi.01032-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/19/2012] [Indexed: 11/20/2022] Open
Abstract
The high-risk human papillomavirus type 16 (HPV-16) E5 protein (16E5) induces tumors in a transgenic mouse model and may contribute to early stages of cervical carcinogenesis. Although high-risk E5 expression is generally thought to be lost during the progression to cervical carcinoma following integration of HPV DNA into the host genome, episomal viral DNA has been documented in a subset of HPV-16-positive malignant lesions. Numerous studies have shown that transcripts that could potentially encode 16E5 are present in cervical biopsy specimens and cervical cancer cell lines, but the presence of E5 protein has been demonstrated in only two reports that have not been corroborated. In the present study, we show that trypsin cleavage of 16E5 generates a unique four-amino-acid C-terminal peptide (FLIT) that serves as a marker for E5 expression in transfected cells and epithelial cell lines containing integrated and episomal HPV-16 DNA. Following trypsin cleavage, reversed-phase chromatography and mass spectrometry (MS) were used to detect FLIT. Immunoprecipitation assays using a newly generated anti-16E5 antibody confirmed that 16E5 was solely responsible for the FLIT signal, and deuterated FLIT peptide provided an internal standard that enabled us to quantify the number of 16E5 molecules per cell. We show that 16E5 is expressed in the Caski but not in the SiHa cervical cancer cell line, suggesting that 16E5 may contribute to the malignant phenotype of some cervical cancers, even in cells exclusively containing an integrated HPV genome.
Collapse
Affiliation(s)
- Ziad Sahab
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC, USA
| | - Sawali R. Sudarshan
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - YiYu Zhang
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - Alexander Kirilyuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC, USA
| | | | - Vera Simic
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - Yuhai Dai
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - Stephen W. Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC, USA
| | - John Doorbar
- Division of Virology, National Institute for Medical Research, London, United Kingdom
| | - Frank A. Suprynowicz
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, DC, USA
| |
Collapse
|
48
|
Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:335-47. [DOI: 10.1016/j.bbamcr.2011.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/20/2023]
|
49
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
50
|
Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer 2011; 10:140. [PMID: 22078316 PMCID: PMC3248866 DOI: 10.1186/1476-4598-10-140] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses (PVs) are established agents of human and animal cancers. They infect cutaneous and mucous epithelia. High Risk (HR) Human PVs (HPVs) are consistently associated with cancer of the uterine cervix, but are also involved in the etiopathogenesis of other cancer types. The early oncoproteins of PVs: E5, E6 and E7 are known to contribute to tumour progression. While the oncogenic activities of E6 and E7 are well characterised, the role of E5 is still rather nebulous. The widespread causal association of PVs with cancer makes their study worthwhile not only in humans but also in animal model systems. The Bovine PV (BPV) system has been the most useful animal model in understanding the oncogenic potential of PVs due to the pivotal role of its E5 oncoprotein in cell transformation. This review will highlight the differences between HPV-16 E5 (16E5) and E5 from other PVs, primarily from BPV. It will discuss the targeting of E5 as a possible therapeutic agent.
Collapse
Affiliation(s)
- Aldo Venuti
- Department of Pathology and Animal Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|