1
|
Sultan HA, Talaat S, Amer SAM, Tantawy L, El-Zanaty AEI, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM, Elfeil WK. Experimental infection of Clades 2.2.1.2 (H5N1) and 2.3.4.4b (H5N8) of highly pathogenic avian influenza virus infection in commercial broilers. Comp Immunol Microbiol Infect Dis 2024; 113:102229. [PMID: 39332166 DOI: 10.1016/j.cimid.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Abstract
In this study the pathogenicity, infectivity, and transmissibility of H5N1 highly pathogenic avian influenza (HPAI) clade 2.2.1.2 and H5N8 HPAI clade 2.3.4.4b viruses were evaluated in commercial broilers on days 24 and 31. The mortality rate was 100 % in both challenge viruses and in contact birds either on day 24 or day 31 which confirmed the highly pathogenicity of both clades (2.2.1.2/ 2.3.4.4b) in commercial broilers. Both clades (H5N8 clade 2.3.4.4b/ H5N1 clade 2.2.1.2 viruses) were efficiently replicate within and transmitted between commercial broilers. The H5N8-infected birds shed high titer of viruses from oropharynx and cloaca, which associated with the field spread of AIV-H5N8 in commercial broilers. Mean lesion score in both challenged clades showed similar scores, which confirmed the pathogenicity of both clades in commercial broilers' organs (mainly spleen, cerebellum, thymus, Bursa, Lung) which confirm the neurogenic affinity of the virus. In the central nervous system, non-suppurative encephalitis consisting in multifocal areas of necrosis in cerebral hemispheres, intense spongiosis, neuronal chromatolysis and gliosis were commonly observed. In cerebrum, chromatolysis of Purkinje neurons was a common finding. In the lung, interstitial pneumonia consisting of moderate to severe increase of the cellularity (macrophages and lymphoid cells) in air capillaries and focal areas of necrosis associated with intense viral replication was commonly observed. In lymphoid tissues, including spleen, thymus, and bursa of Fabricius, multifocal areas of necrosis/apoptosis of variable intensity in mononuclear cells were present. Particularly, diffuse necrotic areas were present in the spleen. In the liver, we detected focal areas of necrosis with mild distention of hepatic sinusoids. To conclude the AIV either H5N1 or H5N8 have neurological affinity with immune suppression effect based on necrosis and apoptosis of lymphoid tissues.
Collapse
Affiliation(s)
- Hesham A Sultan
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Shaimaa Talaat
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Sameh Abdel-Moez Amer
- Department of Poultry Diseases, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Laila Tantawy
- Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | | | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wael K Elfeil
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
2
|
Yang F, Zhao X, Huo C, Miao X, Qin T, Chen S, Peng D, Liu X. An avian-origin internal backbone effectively increases the H5 subtype avian influenza vaccine candidate yield in both chicken embryonated eggs and MDCK cells. Poult Sci 2024; 103:103988. [PMID: 38970848 PMCID: PMC11269899 DOI: 10.1016/j.psj.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024] Open
Abstract
Inactivated vaccines play an important role in preventing and controlling the epidemic caused by the H5 subtype avian influenza virus. The vaccine strains are updated in response to alterations in surface protein antigens, while an avian-derived vaccine internal backbone with a high replicative capacity in chicken embryonated eggs and MDCK cells is essential for vaccine development. In this study, we constructed recombinant viruses using the clade 2.3.4.4d A/chicken/Jiangsu/GY5/2017(H5N6, CkG) strain as the surface protein donor and the clade 2.3.4.4b A/duck/Jiangsu/84512/2017(H5N6, Dk8) strain with high replicative ability as an internal donor. After optimization, the integration of the M gene from the CkG into the internal genes from Dk8 (8GM) was selected as the high-yield vaccine internal backbone, as the combination improved the hemagglutinin1/nucleoprotein (HA1/NP) ratio in recombinant viruses. The r8GMΔG with attenuated hemagglutinin and neuraminidase from the CkG exhibited high-growth capacity in both chicken embryos and MDCK cell cultures. The inactivated r8GMΔG vaccine candidate also induced a higher hemagglutination inhibition antibody titer and microneutralization titer than the vaccine strain using PR8 as the internal backbone. Further, the inactivated r8GMΔG vaccine candidate provided complete protection against wild-type strain challenge. Therefore, our study provides a high-yield, easy-to-cultivate candidate donor as an internal gene backbone for vaccine development.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chenzhi Huo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
3
|
Cargnin Faccin F, Cáceres CJ, Gay LC, Seibert B, van Bentem N, Rodriguez LA, Soares Fraiha AL, Cardenas M, Geiger G, Ortiz L, Carnaccini S, Kapczynski DR, Rajao DS, Perez DR. Mass vaccination with reassortment-impaired live H9N2 avian influenza vaccine. NPJ Vaccines 2024; 9:136. [PMID: 39097573 PMCID: PMC11297921 DOI: 10.1038/s41541-024-00923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nick van Bentem
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luis A Rodriguez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ana Luiza Soares Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo, Horizonte, Minas Gerais, Brazil
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Liu H, Shaw-Saliba K, Westerbeck J, Jacobs D, Fenstermacher K, Chao CY, Gong YN, Powell H, Ma Z, Mehoke T, Ernlund AW, Dziedzic A, Vyas S, Evans J, Sauer LM, Wu CC, Chen SH, Rothman RE, Thielen P, Chen KF, Pekosz A. Effect of human H3N2 influenza virus reassortment on influenza incidence and severity during the 2017-18 influenza season in the USA: a retrospective observational genomic analysis. THE LANCET. MICROBE 2024; 5:100852. [PMID: 38734029 PMCID: PMC11338072 DOI: 10.1016/s2666-5247(24)00067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.
Collapse
Affiliation(s)
- Hsuan Liu
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Westerbeck
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Jacobs
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chia-Yu Chao
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Harrison Powell
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zexu Ma
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Mehoke
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Amanda W Ernlund
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Amanda Dziedzic
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siddhant Vyas
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jared Evans
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Lauren M Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chin-Chieh Wu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Hui Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Thielen
- Research and Exploratory Development Department, Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Kuan-Fu Chen
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Artificial Intelligence, College of Intelligent Computing, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Andrew Pekosz
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Nwokorogu VC, Pillai S, San JE, Pillay C, Nyaga MM, Sabiu S. A metagenomic investigation of the faecal RNA virome structure of asymptomatic chickens obtained from a commercial farm in Durban, KwaZulu-Natal province, South Africa. BMC Genomics 2024; 25:629. [PMID: 38914944 PMCID: PMC11194887 DOI: 10.1186/s12864-024-10517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Virome studies on birds, including chickens are relatively scarce, particularly from the African continent. Despite the continuous evolution of RNA viruses and severe losses recorded in poultry from seasonal viral outbreaks, the information on RNA virome composition is even scantier as a result of their highly unstable nature, genetic diversity, and difficulties associated with characterization. Also, information on factors that may modulate the occurrence of some viruses in birds is limited, particularly for domesticated birds. Viral metagenomics through advancements in sequencing technologies, has enabled the characterization of the entire virome of diverse host species using various samples. METHODS The complex RNA viral constituents present in 27 faecal samples of asymptomatic chickens from a South African farm collected at 3-time points from two independent seasons were determined, and the impact of the chicken's age and collection season on viral abundance and diversity was further investigated. The study utilized the non-invasive faecal sampling method, mRNA viral targeted enrichment steps, a whole transcriptome amplification strategy, Illumina sequencing, and bioinformatics tools. RESULTS The results obtained revealed a total of 48 viral species spanning across 11 orders, 15 families and 21 genera. Viral RNA families such as Coronaviridae, Picornaviridae, Reoviridae, Astroviridae, Caliciviridae, Picorbirnaviridae and Retroviridae were abundant, among which picornaviruses, demonstrated a 100% prevalence across the three age groups (2, 4 and 7 weeks) and two seasons (summer and winter) of the 27 faecal samples investigated. A further probe into the extent of variation between the different chicken groups investigated indicated that viral diversity and abundance were significantly influenced by age (P = 0.01099) and season (P = 0.00099) between chicken groups, while there was no effect on viral shedding within samples in a group (alpha diversity) for age (P = 0.146) and season (P = 0.242). CONCLUSION The presence of an exceedingly varied chicken RNA virome, encompassing avian, mammalian, fungal, and dietary-associated viruses, underscores the complexities inherent in comprehending the causation, dynamics, and interspecies transmission of RNA viruses within the investigated chicken population. Hence, chickens, even in the absence of discernible symptoms, can harbour viruses that may exhibit opportunistic, commensal, or pathogenic characteristics.
Collapse
Affiliation(s)
- Vivian C Nwokorogu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - James E San
- Nelson Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing platform unit, University of KwaZulu- Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Tissue Tropism of H9N2 Low-Pathogenic Avian Influenza Virus in Broiler Chickens by Immunohistochemistry. Animals (Basel) 2023; 13:ani13061052. [PMID: 36978594 PMCID: PMC10044543 DOI: 10.3390/ani13061052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The H9N2 subtype of low-pathogenic avian influenza viruses (LPAIV) is a widespread pathogen of poultry that can also infect humans. The characterization of viral infections is a complex process, involving clinical, pathological, and virological investigations. The aim of this study was to adapt and optimize an immunohistochemical (IHC) technique developed for LPAIVs specifically for the detection of H9N2 virus antigens in infected tissues. Twenty-one-day-old broiler chickens were inoculated with three different strains of H9N2 virus by different infection routes (i.e., intranasal-intratracheal and intravenous) or co-infected with infectious bronchitis virus (IBV) and observed for 11 days post infection. The suggested IHC protocol was modified: (i) DAB (diamino-benzidine) was substituted with AEC (3-amino-9-ethyl carbazole) as chromogen; and (ii) indirect two-step immune reactions of monoclonal primary and peroxidase-labeled anti-mouse secondary antibodies were used instead of avidin–biotin complexes. Avian influenza virus antigen appears as a red precipitate in the nuclei of affected cells but can also be identified in the cytoplasm. Mild hyperemia and congestion were observed in the trachea, air sac, and lungs of the challenged birds, and fibrinous exudate was found at the bifurcation in a few cases. Neither gross pathological nor IHC lesions were found in the control group. Using the optimized protocol and an associated scoring scheme, it was demonstrated that the H9N2 strains tested exhibited respiratory and urinary tract tropism irrespective of the route of inoculation. On day 5, viral antigen was detected in the respiratory tract and kidney in 30–50% of the samples. On day 11, no IHC signal was observed, indicating the lack of viral replication. Slight differences in viral antigen expression were found between the different H9N2 virus strains, but, in contrast to highly pathogenic avian influenza (HPAI), no viral antigen was detected in the brain and pancreas. Thus, IHC can be considered as an informative, visual addition to the toolkit for the characterization of H9N2 LPAIV infections.
Collapse
|
7
|
Mashaal D, Mahmoud SH, Müller C, Abo Shama NM, Kamer AA, Abdelaziz AA, Ali MA, Pleschka S, Mostafa A. Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems. Pathogens 2022; 11:1385. [PMID: 36422635 PMCID: PMC9698692 DOI: 10.3390/pathogens11111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2023] Open
Abstract
Avian influenza virus (AIV) H9N2 was declared to be endemic in birds of the Middle East, in particular in Egypt, with multiple cases of human infections. Despite concerns about the pandemic threat posed by H9N2 AIV, due to the fact that its receptor specificity is similar to that of human influenza viruses, its morbidity and mortality rates in humans are so far negligible. However, the acquisition of specific adaptive amino acid (aa) mutations in the viral polymerase can enhance cross-species transmission of the virus itself or of reassortants, which gained these changes. The polymerase basic protein 2 (PB2) is one of the key determinants for AIV adaptation towards mammals. Although mammalian pathogenicity-related mutations (MPMs) in PB2 genes were identified in different AIVs, the specific effect of single or multiple mutations on viral fitness has not been compared so far. Here, we studied the effect of the aa K at position 591, which was frequently reported in the PB2 of Egyptian H9N2 isolates, on the proliferation efficiency and polymerase activity of an H5N1 (clade 2.2.1.2) AIV already carrying the mammalian adaptive mutation 627K. Using reverse genetics, we generated a set of recombinant parental strains and H5N1 variants carrying the avian-like 591Q/627E or mammalian-like adaptive mutations 591K/627K (H5N1EGY, H9N2EGY, H5N1PB2-H9N2EGY, H5N1H9N2_PB2_K591Q, H5N1PB2_K627E, H5N1PB2_K627E/591K, H5N1PB2_627K/591K). Regardless of the avian-like 627E or the mammalian-adaptive 627K, both variants carrying the 591K (H5N1PB2_K627E/591K, H5N1PB2_627K/591K) and the reassortant H5N1PB2-H9N2EGY replicated to significantly higher levels in mammalian continuous MDCK and Calu-3 cell lines and primary normal human bronchial epithelial cells than the parental H5N1EGY virus (carrying solely the 627K adaptive mutation). Expectedly, the H5N1 variants carrying avian-like PB2 mutations (H5N1H9N2_PB2_K591Q, H5N1PB2_K627E) replicated to significantly lower levels than the parental H5N1EGY virus in the predefined primary and continuous mammalian cell line systems. Consistently, the activity of H5N1 subtype AIV polymerase complexes comprising PB2 segments with singular 591K or combined with 627K was significantly enhanced when compared to parental H5N1EGY and H9N2EGY. This study emphasizes the significant impact of 591K containing PB2 segments in the background of H5N1 polymerase on viral fitness in addition to the well-known MPM 627K in vitro.
Collapse
Affiliation(s)
- Dayly Mashaal
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Abdelaziz
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
8
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
9
|
Coinfection of Chickens with H9N2 and H7N9 Avian Influenza Viruses Leads to Emergence of Reassortant H9N9 Virus with Increased Fitness for Poultry and a Zoonotic Potential. J Virol 2022; 96:e0185621. [PMID: 35019727 PMCID: PMC8906417 DOI: 10.1128/jvi.01856-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.
Collapse
|
10
|
Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Walker D, Jeevan T, Mukherjee N, El-Shesheny R, Seiler P, Franks J, McKenzie P, Kercher L, Webster RG, Webby RJ. Distinct but connected avian influenza virus activities in wetlands and live poultry markets in Bangladesh, 2018-2019. Transbound Emerg Dis 2022; 69:e605-e620. [PMID: 34989481 DOI: 10.1111/tbed.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
From April 2018 to October 2019, we continued active surveillance for influenza viruses in Bangladeshi live poultry markets (LPMs) and in Tanguar Haor, a wetland region of Bangladesh where domestic ducks have frequent contact with migratory birds. The predominant virus subtypes circulating in the LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses of the H5N1-R1 genotype, like those found in previous years. Viruses of the H5N1-R2 genotype, which were previously reported as co-circulating with H5N1-R1 genotype viruses in LPM, were not detected. In addition to H9N2 viruses, which were primarily found in chicken and quail, H2N2, H3N8 and H11N3 LPAI viruses were detected in LPMs, exclusively in ducks. Viruses in domestic ducks and/or wild birds in Tanguar Haor were more diverse, with H1N1, H4N6, H7N1, H7N3, H7N4, H7N6, H8N4, H10N3, H10N4 and H11N3 detected. Phylogenetic analyses of these LPAI viruses suggested that some were new to Bangladesh (H2N2, H7N6, H8N4, H10N3 and H10N4), likely introduced by migratory birds of the Central Asian flyway. Our results show a complex dynamic of viral evolution and diversity in Bangladesh based on factors such as host populations and geography. The LPM environment was characterised by maintenance of viruses with demonstrated zoonotic potential and H5N1 genotype turnover. The wetland environment was characterised by greater viral gene pool diversity but a lower overall influenza virus detection rate. The genetic similarity of H11N3 viruses in both environments demonstrates that LPM and wetlands are connected despite their having distinct influenza ecologies.
Collapse
Affiliation(s)
- Jasmine C M Turner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Md Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - David Walker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
11
|
El-Shesheny R, Kandeil A, Mostafa A, Ali MA, Webby RJ. H5 Influenza Viruses in Egypt. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038745. [PMID: 32122919 DOI: 10.1101/cshperspect.a038745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For almost a decade, Egypt has been endemic for highly pathogenic avian influenza (HPAI) A(H5N1) viruses. In addition to being catastrophic for poultry production, A(H5N1) has also caused 359 human infections in the country (∼40% of global cases), with 120 being fatal. From 2017, A(H5N1) viruses have been gradually replaced by HPAI A(H5N8) viruses seeded from Southeast Asia through Europe; no human cases have been reported since. This lack of human cases is not a consequence of fewer H5 infections in poultry. Despite governmental outbreak control, the number of avian influenza outbreaks has increased since 2006 partially fueled by noncompliance with preventive measures and suboptimal vaccination programs. Adherence to control measures is low because of social norms, especially among women and children-the main caretakers of household flocks in rural areas-and declining public awareness in the community. Egypt has thus become an epicenter for A(H5) virus evolution, with no clear resolution in sight.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
12
|
Landmann M, Scheibner D, Graaf A, Gischke M, Koethe S, Fatola OI, Raddatz B, Mettenleiter TC, Beer M, Grund C, Harder T, Abdelwhab EM, Ulrich R. A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses 2021; 13:v13050868. [PMID: 34065126 PMCID: PMC8151536 DOI: 10.3390/v13050868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
The main findings of the post-mortem examination of poultry infected with highly pathogenic avian influenza viruses (HPAIV) include necrotizing inflammation and viral antigen in multiple organs. The lesion profile displays marked variability, depending on viral subtype, strain, and host species. Therefore, in this study, a semiquantitative scoring system was developed to compare histopathological findings across a wide range of study conditions. Briefly, the severity of necrotizing lesions in brain, heart, lung, liver, kidney, pancreas, and/or lymphocytic depletion in the spleen is scored on an ordinal four-step scale (0 = unchanged, 1 = mild, 2 = moderate, 3 = severe), and the distribution of the viral antigen in parenchymal and endothelial cells is evaluated on a four-step scale (0 = none, 1 = focal, 2 = multifocal, 3 = diffuse). These scores are used for a meta-analysis of experimental infections with H7N7 and H5N8 (clade 2.3.4.4b) HPAIV in chickens, turkeys, and ducks. The meta-analysis highlights the rather unique endotheliotropism of these HPAIV in chickens and a more severe necrotizing encephalitis in H7N7-HPAIV-infected turkeys. In conclusion, the proposed scoring system can be used to condensate HPAIV-typical pathohistological findings into semiquantitative data, thus enabling systematic phenotyping of virus strains and their tissue tropism.
Collapse
Affiliation(s)
- Maria Landmann
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Olanrewaju I. Fatola
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Barbara Raddatz
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.G.); (S.K.); (M.B.); (C.G.); (T.H.)
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.S.); (M.G.); (T.C.M.); (E.M.A.)
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany; (M.L.); (B.R.)
- Correspondence: ; Tel.: +49-341-973-8270
| |
Collapse
|
13
|
Adel A, Mosaad Z, Shalaby AG, Selim K, Samy M, Abdelmagid MA, Hagag NM, Arafa AS, Hassan WM, Shahien MA. Molecular evolution of the hemagglutinin gene and epidemiological insight into low-pathogenic avian influenza H9N2 viruses in Egypt. Res Vet Sci 2021; 136:540-549. [PMID: 33887563 DOI: 10.1016/j.rvsc.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the low pathogenicity of the H9N2 avian influenza viruses, they can induce severe economic losses in various poultry sectors in conjunction with other factors. In Egypt, low-pathogenic avian influenza (LPAI) H9N2 became endemic in 2011 and has undergone continuous genetic evolution since then. The regular monitoring of the evolution of the virus is necessary to control its spread. During 2017-2020, there were 44 positive samples isolated, and these viruses were genetically sequenced to determine the hemagglutinin (HA) gene circulating in Egypt. The molecular analysis revealed at least nine changes in amino acid residues in comparison with the reference Egyptian strain from the original introduction in 2011 (A/qu/Egypt/113413v/2011), with a similarity of 95%-96%. Amino acid residues 180 and 216 are the most important residues in terms of positive selection pressure. Phylogenetically, the new Egyptian H9N2 viruses in 2017-2020 belonged to a new subcluster related to the strains that had been circulating since 2015. Comparative analysis of the HA gene of LPAI H9N2 viruses in Egypt from 2011 to 2020 supports a continuous evolution through the years with persistent markers.
Collapse
Affiliation(s)
- Amany Adel
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt.
| | - Zienab Mosaad
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Karim Selim
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mohamed Samy
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Naglaa M Hagag
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Abdel Satar Arafa
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Wafaa M Hassan
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Momtaz A Shahien
- Reference Laboratory for Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
14
|
Hassan KE, King J, El-Kady M, Afifi M, Abozeid HH, Pohlmann A, Beer M, Harder T. Novel Reassortant Highly Pathogenic Avian Influenza A(H5N2) Virus in Broiler Chickens, Egypt. Emerg Infect Dis 2021; 26:129-133. [PMID: 31855539 PMCID: PMC6924912 DOI: 10.3201/eid2601.190570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We detected a novel reassortant highly pathogenic avian influenza A(H5N2) virus in 3 poultry farms in Egypt. The virus carried genome segments of a pigeon H9N2 influenza virus detected in 2014, a nucleoprotein segment of contemporary chicken H9N2 viruses from Egypt, and hemagglutinin derived from the 2.3.4.4b H5N8 virus clade.
Collapse
|
15
|
Mostafa A, Mahmoud SH, Shehata M, Müller C, Kandeil A, El-Shesheny R, Nooh HZ, Kayali G, Ali MA, Pleschka S. PA from a Recent H9N2 (G1-Like) Avian Influenza a Virus (AIV) Strain Carrying Lysine 367 Confers Altered Replication Efficiency and Pathogenicity to Contemporaneous H5N1 in Mammalian Systems. Viruses 2020; 12:v12091046. [PMID: 32962203 PMCID: PMC7551781 DOI: 10.3390/v12091046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Egypt is a hotspot for H5- and H9-subtype avian influenza A virus (AIV) infections and co-infections in poultry by both subtypes have been frequently reported. However, natural genetic reassortment of these subtypes has not been reported yet. Here, we evaluated the genetic compatibility and replication efficiency of reassortants between recent isolates of an Egyptian H5N1 and a H9N2 AIV (H5N1EGY and H9N2EGY). All internal viral proteins-encoding segments of the contemporaneous G1-like H9N2EGY, expressed individually and in combination in the genetic background of H5N1EGY, were genetically compatible with the other H5N1EGY segments. At 37 °C the replication efficiencies of H5N1EGY reassortants expressing the H9N2EGY polymerase subunits PB2 and PA (H5N1PB2-H9N2EGY, H5N1PA-H9N2EGY) were higher than the wild-type H5N1EGY in Madin-Darby canine kidney (MDCK-II) cells. This could not be correlated to viral polymerase activity as this was found to be improved for H5N1PB2-H9N2EGY, but reduced for H5N1PA-H9N2EGY. At 33 °C and 39 °C, H5N1PB2-H9N2EGY and H5N1PA-H9N2EGY replicated to higher levels than the wild-type H5N1EGY in human Calu-3 and A549 cell lines. Nevertheless, in BALB/c mice both reassortants caused reduced mortality compared to the wild-type H5N1EGY. Genetic analysis of the polymerase-encoding segments revealed that the PAH9N2EGY and PB2H9N2EGY encode for a distinct uncharacterized mammalian-like variation (367K) and a well-known mammalian signature (591K), respectively. Introducing the single substitution 367K into the PA of H5N1EGY enabled the mutant virus H5N1PA-R367K to replicate more efficiently at 37 °C in primary human bronchial epithelial (NHBE) cells and also in A549 and Calu-3 cells at 33 °C and 39 °C. Furthermore, H5N1PA-R367K caused higher mortality in BALB/c mice. These findings demonstrate that H5N1 (Clade 2.2.1.2) reassortants carrying internal proteins-encoding segments of G1-like H9N2 viruses can emerge and may gain improved replication fitness. Thereby such H5N1/H9N2 reassortants could augment the zoonotic potential of H5N1 viruses, especially by acquiring unique mammalian-like aa signatures.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35390 Giessen, Germany;
- Correspondence: (A.M); (M.A.A.); (S.P.)
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35390 Giessen, Germany;
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hanaa Z. Nooh
- Anatomy and Embryology Department, Faculty of Medicine, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA;
- Human Link, Baabda 1109, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 12622 Giza, Egypt; (S.H.M.); (M.S.); (A.K.); (R.E.-S.)
- Correspondence: (A.M); (M.A.A.); (S.P.)
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35390 Giessen, Germany;
- Correspondence: (A.M); (M.A.A.); (S.P.)
| |
Collapse
|
16
|
Henritzi D, Petric PP, Lewis NS, Graaf A, Pessia A, Starick E, Breithaupt A, Strebelow G, Luttermann C, Parker LMK, Schröder C, Hammerschmidt B, Herrler G, Beilage EG, Stadlbauer D, Simon V, Krammer F, Wacheck S, Pesch S, Schwemmle M, Beer M, Harder TC. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020; 28:614-627.e6. [PMID: 32721380 DOI: 10.1016/j.chom.2020.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Swine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism. Several viral isolates were resistant to the human antiviral MxA protein, a prerequisite for zoonotic transmission and stable introduction into human populations. A pronounced antigenic variation was noted in swIAV, and several H1pdm lineages antigenically distinct from current seasonal human H1pdm co-circulate in swine. Thus, European swine populations represent reservoirs for emerging IAV strains with zoonotic and, possibly, pre-pandemic potential.
Collapse
Affiliation(s)
- Dinah Henritzi
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Philipp Peter Petric
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicola Sarah Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK; OIE/FAO International Reference Laboratory for avian influenza, swine influenza and Newcastle Disease, Animal and Plant Health Agency (APHA) - Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Pessia
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Günter Strebelow
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Larissa Mareike Kristin Parker
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Georg Herrler
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - Elisabeth Große Beilage
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Büscheler Str. 9, 49456 Bakum, Germany
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silke Wacheck
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Stefan Pesch
- Ceva Santé Animale (former IDT Biologika GmbH), 06861 Dessau-Rosslau, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Timm Clemens Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
18
|
Hassan KE, Saad N, Abozeid HH, Shany S, El-Kady MF, Arafa A, El-Sawah AAA, Pfaff F, Hafez HM, Beer M, Harder T. Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. INFECTION GENETICS AND EVOLUTION 2020; 84:104375. [PMID: 32454245 DOI: 10.1016/j.meegid.2020.104375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/03/2023]
Abstract
Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany; Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noha Saad
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Hassanein H Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 12618, Dokki, Giza, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Riems, Germany.
| |
Collapse
|
19
|
Novel HPAIV H5N8 Reassortant (Clade 2.3.4.4b) Detected in Germany. Viruses 2020; 12:v12030281. [PMID: 32143363 PMCID: PMC7150876 DOI: 10.3390/v12030281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 01/15/2023] Open
Abstract
A novel H5N8 highly pathogenic avian influenza virus (HPAIV) was detected in a greater white-fronted goose in January 2020 in Brandenburg, Germany, and, in February 2020, in domestic chickens belonging to a smallholding in Baden-Wuerttemberg, Germany. Full-genome sequencing was conducted on the MinION platform, enabling further phylogenetic analyses. The virus of clade 2.3.4.4b holds six segments from a Eurasian/Asian/African HPAIV H5N8 reassortant and two segments from low pathogenic avian influenza H3N8 subtype viruses recently detected in wild birds in Central Russia. These new entries continue to show the reassortment potential of the clade 2.3.4.4 H5Nx viruses, underlining the necessity for full-genome sequencing and continuous surveillance.
Collapse
|
20
|
Hassan KE, El-Kady MF, El-Sawah AAA, Luttermann C, Parvin R, Shany S, Beer M, Harder T. Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transbound Emerg Dis 2019; 68:21-36. [PMID: 31297991 DOI: 10.1111/tbed.13281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
For several years, poultry production in Egypt has been suffering from co-circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1-B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017-2018. Real-time RT-PCR (RT-qPCR) substantiated the co-presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1-positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8-positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2-positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co-circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT-qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.
Collapse
Affiliation(s)
- Kareem E Hassan
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Magdy F El-Kady
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Azza A A El-Sawah
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Rokshana Parvin
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Salama Shany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| |
Collapse
|
21
|
Samir A, Adel A, Arafa A, Sultan H, Hussein Ahmed HA. Molecular pathogenic and host range determinants of reassortant Egyptian low pathogenic avian influenza H9N2 viruses from backyard chicken. Int J Vet Sci Med 2019; 7:10-19. [PMID: 31620483 PMCID: PMC6776986 DOI: 10.1080/23144599.2019.1637046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/19/2023] Open
Abstract
Since the introduction of H9N2 low pathogenic avian influenza virus in Egypt, it became an endemic disease causing considerable economic losses in different poultry sectors especially in the presence of other secondary bacterial and viral infections. The H9N2 viruses in Egypt are in continuous evolution that needs deep analysis for their evolution pattern based on the genetic constitutions of the pathogenic determinant genes (HA, PB2, PB1, PA, and NS). In this work, samples were collected from the backyard chickens from 3 Egyptian governorates. Five selected viruses were sequenced and analyzed for the hemagglutinin gene which showed genetic relatedness to the Asian G1 lineage group B, similar to the circulating H9N2 viruses in Egypt since 2013. The sequence for PB2, PB1, PA, HA and NS genes of the selected five viruses indicate a natural re-assortment event with recent Eurasian subtypes and similar to Egyptian H9N2 virus isolated from pigeon in Egypt during 2014. The Egyptian viruses of our study possess amino acids signatures including S42, V127, L550, L672 and V504 in the internal genes NS1, PA, and PB2, of respectively of an impact on virus transmission and replication. This work indicates that the H9N2 is in continuous evolution with alarming to the reassortment occurrence.
Collapse
Affiliation(s)
- Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdelsatar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Hesham Sultan
- Avian and Rabbit Diseases Dept., Faculty of Veterinary Medicine, University of Sadat, City Sadat, Minoufiya, Egypt
| | | |
Collapse
|
22
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|
23
|
Shehata AA, Sedeik ME, Elbestawy AR, Zain El-Abideen MA, Ibrahim HH, Kilany WH, Ali A. Co-infections, genetic, and antigenic relatedness of avian influenza H5N8 and H5N1 viruses in domestic and wild birds in Egypt. Poult Sci 2019; 98:2371-2379. [PMID: 30668795 PMCID: PMC7107238 DOI: 10.3382/ps/pez011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/04/2019] [Indexed: 12/28/2022] Open
Abstract
A total of 50 poultry farms of commercial broilers (N = 39) and commercial layers (N = 11) suffered from respiratory problems and mortality during the period from January 2016 to December 2017 were investigated. Also, samples were collected from quail (N = 4), Bluebird (Sialis, N = 1), and Greenfinch (Chloris chloris, N = 1) for analysis. Respiratory viral pathogens were screened by PCR and positive samples were subjected to virus isolation and genetic identification. Antigenic relatedness of isolated avian influenza (AI) H5 subtype was evaluated using cross-hemagglutination inhibition. Results revealed that the incidence of single virus infections in commercial broilers was 64.1% (25/39), with the highest incidence for ND (33.3%) and H9N2 (20.5%), followed by H5N1 (7.7%) and H5N8 (2.7). Meanwhile, H9N2/ND mixed infection was the most observed case (7.7%). Other mixed infections H5N1/ND, H5N1/H9N2/ND, H5N1/H9N2/ND/IB, H9N2/IB, and H9N2/ILT were also observed (2.6% each). In commercial layers, H5N1 and ILT were the only detected single infections (18.1% each). Mixed H9N2/ND was the most predominant infection in layers (27.3%). Other mixed infections of H9N2/IB, H5N1/H5N8/H9N2, and H9N2/ND/IB were observed in 3 separate farms (9.1% each). The H5N8 virus was detected in one quail farm and 2 out of 3 wild bird's samples. Partial HA gene sequence analysis showed the clustering of the selected AI H5N8 within the 2.3.4.4 clade, while H5N1 clustered with the clade 2.2.1.2. Interestingly, the H5N8 isolated from chickens possessed 6 amino acids substitutions at HA1 compared to those isolated from wild birds with low antigenic relatedness to AI H5N1 clades 2.2.1 or 2.2.1.2. In conclusion, mixed viral infections were observed in both broiler and layer chickens in Egypt. The detected triple H5N1, H9N2, and H5N8 influenza co-infection raises the concern of potential AI epidemic strain emergence. The low genetic and antigenic relatedness between AI H5N1 and H5N8 viruses suggest the need for modification of vaccination strategies of avian influenza in Egypt along with strict biosecurity measures.
Collapse
Affiliation(s)
- Awad A Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed R Elbestawy
- Poultry Diseases Department, Faculty of Veterinary medicine, Damanhur University, Behaira, Egypt
| | - Mohamed A Zain El-Abideen
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Hytham H Ibrahim
- Poultry Diseases Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Walid H Kilany
- Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Dokki, Giza, Egypt
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
24
|
Genetic Compatibility of Reassortants between Avian H5N1 and H9N2 Influenza Viruses with Higher Pathogenicity in Mammals. J Virol 2019; 93:JVI.01969-18. [PMID: 30463961 PMCID: PMC6363993 DOI: 10.1128/jvi.01969-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk. The cocirculation of H5N1 and H9N2 avian influenza viruses in birds in Egypt provides reassortment opportunities between these two viruses. However, little is known about the emergence potential of reassortants derived from Egyptian H5N1 and H9N2 viruses and about the biological properties of such reassortants. To evaluate the potential public health risk of reassortants of these viruses, we used reverse genetics to generate the 63 possible reassortants derived from contemporary Egyptian H5N1 and H9N2 viruses, containing the H5N1 surface gene segments and combinations of the H5N1 and H9N2 internal gene segments, and analyzed their genetic compatibility, replication ability, and virulence in mice. Genes in the reassortants showed remarkably high compatibility. The replication of most reassortants was higher than the parental H5N1 virus in human cells. Six reassortants were thought to emerge in birds under neutral or positive selective pressure, and four of them had higher pathogenicity in vivo than the parental H5N1 and H9N2 viruses. Our results indicated that H5N1-H9N2 reassortants could be transmitted efficiently to mammals with significant public health risk if they emerge in Egypt, although the viruses might not emerge frequently in birds. IMPORTANCE Close interaction between avian influenza (AI) viruses and humans in Egypt appears to have resulted in many of the worldwide cases of human infections by both H5N1 and H9N2 AI viruses. Egypt is regarded as a hot spot of AI virus evolution. Although no natural reassortant of H5N1 and H9N2 AI viruses has been reported so far, their cocirculation in Egypt may allow emergence of reassortants that may present a significant public health risk. Using reverse genetics, we report here the first comprehensive data showing that H5N1-N9N2 reassortants have fairly high genetic compatibility and possibly higher pathogenicity in mammals, including humans, than the parental viruses. Our results provide insight into the emergence potential of avian H5N1-H9N2 reassortants that may pose a high public health risk.
Collapse
|
25
|
Rodriguez L, Nogales A, Iqbal M, Perez DR, Martinez-Sobrido L. Identification of Amino Acid Residues Responsible for Inhibition of Host Gene Expression by Influenza A H9N2 NS1 Targeting of CPSF30. Front Microbiol 2018; 9:2546. [PMID: 30405591 PMCID: PMC6207622 DOI: 10.3389/fmicb.2018.02546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 02/02/2023] Open
Abstract
H9N2 influenza A viruses (IAV) are considered low pathogenic avian influenza viruses (LPAIV). These viruses are endemic in poultry in many countries in Asia, the Middle East and parts of Africa. Several cases of H9N2-associated infections in humans as well as in pigs have led the World Health Organization (WHO) to include these viruses among those with pandemic potential. To date, the processes and mechanisms associated with H9N2 IAV adaptation to mammals are poorly understood. The non-structural protein 1 (NS1) from IAV is a virulence factor that counteracts the innate immune responses. Here, we evaluated the ability of the NS1 protein from A/quail/Hong Kong/G1/97 (HK/97) H9N2 to inhibit host immune responses. We found that HK/97 NS1 protein counteracted interferon (IFN) responses but was not able to inhibit host gene expression in human or avian cells. In contrast, the NS1 protein from earlier H9N2 IAV strains, including the first H9N2 A/turkey/Wisconsin/1/1966 (WI/66), were able to inhibit both IFN and host gene expression. Using chimeric constructs between WI/66 and HK/97 NS1 proteins, we identified the region and amino acid residues involved in inhibition of host gene expression. Amino acid substitutions L103F, I106M, P114S, G125D and N139D in HK/97 NS1 resulted in binding to the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30) and, in consequence, inhibition of host gene expression. Notably, changes in the same amino acid residues resulted in the lack of inhibition of host gene expression by WI/66 NS1. Importantly, our results identified a new combination of amino acids required for NS1 binding to CPSF30 and inhibition of host gene expression. These results also confirm previous studies demonstrating strain specific differences in the ability of NS1 proteins to inhibit host gene expression.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Woking, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
26
|
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.
Collapse
|