1
|
Abstract
HIV can evolve remarkably quickly in response to antiretroviral therapies and the immune system. This evolution stymies treatment effectiveness and prevents the development of an HIV vaccine. Consequently, there has been a great interest in using population genetics to disentangle the forces that govern the HIV adaptive landscape (selection, drift, mutation, and recombination). Traditional population genetics approaches look at the current state of genetic variation and infer the processes that can generate it. However, because HIV evolves rapidly, we can also sample populations repeatedly over time and watch evolution in action. In this paper, we demonstrate how time series data can bound evolutionary parameters in a way that complements and informs traditional population genetic approaches. Specifically, we focus on our recent paper (Feder et al., 2016, eLife), in which we show that, as improved HIV drugs have led to fewer patients failing therapy due to resistance evolution, less genetic diversity has been maintained following the fixation of drug resistance mutations. Because soft sweeps of multiple drug resistance mutations spreading simultaneously have been previously documented in response to the less effective HIV therapies used early in the epidemic, we interpret the maintenance of post-sweep diversity in response to poor therapies as further evidence of soft sweeps and therefore a high population mutation rate (θ) in these intra-patient HIV populations. Because improved drugs resulted in rarer resistance evolution accompanied by lower post-sweep diversity, we suggest that both observations can be explained by decreased population mutation rates and a resultant transition to hard selective sweeps. A recent paper (Harris et al., 2018, PLOS Genetics) proposed an alternative interpretation: Diversity maintenance following drug resistance evolution in response to poor therapies may have been driven by recombination during slow, hard selective sweeps of single mutations. Then, if better drugs have led to faster hard selective sweeps of resistance, recombination will have less time to rescue diversity during the sweep, recapitulating the decrease in post-sweep diversity as drugs have improved. In this paper, we use time series data to show that drug resistance evolution during ineffective treatment is very fast, providing new evidence that soft sweeps drove early HIV treatment failure.
Collapse
Affiliation(s)
- Alison F. Feder
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
2
|
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, Tai KY, Jenike KM, Antar AAR, Liu PT, Ho YC, Raugi DN, Seydi M, Gottlieb GS, Okoye AA, Del Prete GQ, Picker LJ, Mankowski JL, Lifson JD, Siliciano JD, Laird GM, Barouch DH, Clements JE, Siliciano RF. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26:73-85.e4. [PMID: 31295427 DOI: 10.1016/j.chom.2019.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.
Collapse
Affiliation(s)
- Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine Y Tai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine M Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dana N Raugi
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Moussa Seydi
- Service de Maladies Infectieuses et Tropicales, CHNU-Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Greg M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Accelevir Diagnostics, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon. J Virol 2017; 91:JVI.00972-17. [PMID: 28794041 DOI: 10.1128/jvi.00972-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state.IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN). Although type I IFN induces an antiviral state in many cell types in vitro, HIV-1 can replicate in vivo via mechanisms that have remained unclear. In this study, we tested the hypothesis that CD169, a type I IFN-inducible HIV-1 attachment factor, offsets antiviral effects of type I IFN. Infection of HIV-1 was rescued in IFN-α-treated myeloid cells via upregulation of CD169 and a subsequent increase in CD169-dependent virus entry. Furthermore, extensive colocalization of viral Gag and CD169 was observed in lymph nodes of infected pigtailed macaques, suggesting productive infection of CD169+ cells in vivo Treatment of dendritic cell (DC)-T cell cocultures with IFN-α upregulated CD169 expression on DCs and rescued HIV-1 infection of CD4+ T cells in trans, suggesting that HIV-1 exploits CD169 to attenuate type I IFN-induced restrictions.
Collapse
|
4
|
Feder AF, Kline C, Polacino P, Cottrell M, Kashuba ADM, Keele BF, Hu SL, Petrov DA, Pennings PS, Ambrose Z. A spatio-temporal assessment of simian/human immunodeficiency virus (SHIV) evolution reveals a highly dynamic process within the host. PLoS Pathog 2017; 13:e1006358. [PMID: 28542550 PMCID: PMC5444849 DOI: 10.1371/journal.ppat.1006358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 12/25/2022] Open
Abstract
The process by which drug-resistant HIV-1 arises and spreads spatially within an infected individual is poorly understood. Studies have found variable results relating how HIV-1 in the blood differs from virus sampled in tissues, offering conflicting findings about whether HIV-1 throughout the body is homogeneously distributed. However, most of these studies sample only two compartments and few have data from multiple time points. To directly measure how drug resistance spreads within a host and to assess how spatial structure impacts its emergence, we examined serial sequences from four macaques infected with RT-SHIVmne027, a simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT), and treated with RT inhibitors. Both viral DNA and RNA (vDNA and vRNA) were isolated from the blood (including plasma and peripheral blood mononuclear cells), lymph nodes, gut, and vagina at a median of four time points and RT was characterized via single-genome sequencing. The resulting sequences reveal a dynamic system in which vRNA rapidly acquires drug resistance concomitantly across compartments through multiple independent mutations. Fast migration results in the same viral genotypes present across compartments, but not so fast as to equilibrate their frequencies immediately. The blood and lymph nodes were found to be compartmentalized rarely, while both the blood and lymph node were more frequently different from mucosal tissues. This study suggests that even oft-sampled blood does not fully capture the viral dynamics in other parts of the body, especially the gut where vRNA turnover was faster than the plasma and vDNA retained fewer wild-type viruses than other sampled compartments. Our findings of transient compartmentalization across multiple tissues may help explain the varied results of previous compartmentalization studies in HIV-1.
Collapse
Affiliation(s)
- Alison F. Feder
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Mackenzie Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Angela D. M. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Pleuni S. Pennings
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
6
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
7
|
Kearney MF, Anderson EM, Coomer C, Smith L, Shao W, Johnson N, Kline C, Spindler J, Mellors JW, Coffin JM, Ambrose Z. Well-mixed plasma and tissue viral populations in RT-SHIV-infected macaques implies a lack of viral replication in the tissues during antiretroviral therapy. Retrovirology 2015; 12:93. [PMID: 26559632 PMCID: PMC4642622 DOI: 10.1186/s12977-015-0212-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Determining the anatomic compartments that contribute to plasma HIV-1 is critical to understanding the sources of residual viremia during combination antiretroviral therapy (ART). We analyzed viral DNA and RNA populations in the plasma and tissues from macaques infected with SIV containing HIV-1 RT (RT-SHIV) to identify possible sources of persistent viremia and to investigate the effect of ART on viral replication in tissues. Tissues were collected at necropsy from four pigtailed macaques infected for 30 weeks with a diverse population of RT-SHIV. Two animals (6760 and 8232) were untreated and two animals (8030 and 8272) were treated with efavirenz, tenofovir, and emtricitabine for 20 weeks. RESULTS A total of 1800 single-genome RT-SHIV pol and env DNA and RNA sequences were analyzed from the plasma, PBMCs, axillary and mesenteric lymph nodes, spleen, thymus, small intestine, bone marrow, lung, and brain. Analyses of intracellular DNA and RNA populations revealed that the majority of proviruses in tissues from untreated animal 8232 were not expressed, whereas a greater proportion of proviruses in tissues were expressed from 6760. Few intracellular RNA sequences were detected in treated animals and most contained inactivating mutations, such as frame shifts or large deletions. Phylogenetics showed that RT-SHIV DNA populations in tissues were not different from virus in contemporary plasma samples in the treated or untreated animals, demonstrating a lack of anatomic compartmentalization and suggesting that plasma viremia is derived from multiple tissue sources. No sequence divergence was detected in the plasma or between tissues in the treated animals after 20 weeks of ART indicating a lack of ongoing replication in tissues during treatment. CONCLUSIONS Virus populations in plasma and tissues did not differ significantly in either treated or untreated macaques, suggesting frequent exchange of virus or infected cells between tissues and plasma, consistent with non-compartmentalized and widely disseminated infection. There was no genetic evidence of ongoing replication in tissues during suppressive ART.
Collapse
Affiliation(s)
- Mary F Kearney
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Elizabeth M Anderson
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Charles Coomer
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Luke Smith
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Wei Shao
- Advanced Biomedical Computing Center, SAIC, Frederick, USA.
| | - Nicholas Johnson
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jonathan Spindler
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA.
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Low Frequency of Drug-Resistant Variants Selected by Long-Acting Rilpivirine in Macaques Infected with Simian Immunodeficiency Virus Containing HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2015; 59:7762-70. [PMID: 26438501 DOI: 10.1128/aac.01937-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA.
Collapse
|
9
|
Ambrose Z, Kline C, Polacino P, Hu SL. Dysregulation of multiple inflammatory molecules in lymph node and ileum of macaques during RT-SHIV infection with or without antiretroviral therapy. J Med Primatol 2014; 43:298-309. [PMID: 24784552 DOI: 10.1111/jmp.12126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pathogenic infection with human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) is characterized by a loss of CD4+ T cells and chronic lymphocyte activation even during suppressive antiretroviral therapy (ART). METHODS Using NanoString, expression of >100 molecules associated with inflammation or immune activation was evaluated in mesenteric lymph nodes and ileum of macaques infected with a pathogenic SIV/HIV virus, RT-SHIV, during viremia or during suppressive ART and compared to uninfected controls. RESULTS Of the 105 RNA species quantified in the tissues, expression of 33 genes was altered significantly in one or both tissues during viremia but returned to normal levels during ART. However, 29 additional genes were altered in expression levels in the tissues of both viremic and ART-suppressed macaques. CONCLUSIONS Identification of the mechanisms of chronic inflammation in specific cells and in different tissues may help determine whether early ART initiation or novel therapies can prevent it.
Collapse
Affiliation(s)
- Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
10
|
Peterson CW, Younan P, Polacino PS, Maurice NJ, Miller HW, Prlic M, Jerome KR, Woolfrey AE, Hu SL, Kiem HP. Robust suppression of env-SHIV viremia in Macaca nemestrina by 3-drug ART is independent of timing of initiation during chronic infection. J Med Primatol 2014; 42:237-46. [PMID: 24025078 DOI: 10.1111/jmp.12060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonhuman primates (NHPs) are an important model organism for studies of HIV pathogenesis and preclinical evaluation of anti-HIV therapies. The successful translation of NHP-derived data to clinically relevant anti-HIV studies will require better understanding of the viral strains and NHP species used and their responses to existing antiretroviral therapies (ART). METHODS Five pigtailed macaques (Macaca nemestrina) were productively infected with the SIV/HIV chimeric virus SHIV-1157 ipd3N4 following intravenous challenge. After 8 or 27 weeks, ART (PMPA, FTC, raltegravir) was initiated. Viral load, T-cell counts, and production of SHIV-specific antibodies were monitored throughout the course of infection and ART. RESULTS ART led to a rapid and sustained decrease in plasma viral load. Suppression of plasma viremia by ART was independent of the timing of initiation during chronic infection. CONCLUSIONS We present a new NHP model of HIV infection on antiretroviral therapy, which should prove applicable to multiple clinically relevant anti-HIV approaches.
Collapse
|
11
|
Wang W, Yao N, Cong Z, Jiang H, Qin C, Wei Q. Prophylactic and therapeutic effect of AZT/3TC in RT-SHIV infected Chinese-origin rhesus macaques. AIDS Res Ther 2014; 11:12. [PMID: 24594071 PMCID: PMC4016570 DOI: 10.1186/1742-6405-11-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/26/2014] [Indexed: 11/13/2022] Open
Abstract
Background The precise efficacy of nucleoside analogue reverse-transcriptase inhibitors (NRTIs) in preventing and inhibiting virus replication remains unknown in RT-SHIV infected Chinese-origin rhesus macaques (Ch RM). Findings Ch RM were inoculated intravenously with 200 TCID50 RT-SHIV and treated by gavage with NRTIs (20 mg AZT and 10 mg 3TC twice per day) for four consecutive weeks beginning at one hour, on day 217 or 297 post inoculation, respectively. Treatment with AZT/3TC inhibited transiently RT-SHIV replication during chronic infection, but did not significantly affect peripheral blood CD4+ T cells in macaques. Treatment with AZT/3TC at 1 hour post infection prevented RT-SHIV infection in two out of four animals during the 120-day observation period. Conclusions Therefore, the Ch RM model with RT-SHIV infection can be used to evaluate the efficacy of new NRTIs.
Collapse
|
12
|
Hsu M, Keele BF, Aravantinou M, Krawczyk N, Seidor S, Abraham CJ, Zhang S, Rodriguez A, Kizima L, Derby N, Jean-Pierre N, Mizenina O, Gettie A, Grasperge B, Blanchard J, Piatak MJ, Lifson JD, Fernández-Romero JA, Zydowsky TM, Robbiani M. Exposure to MIV-150 from a high-dose intravaginal ring results in limited emergence of drug resistance mutations in SHIV-RT infected rhesus macaques. PLoS One 2014; 9:e89300. [PMID: 24586674 PMCID: PMC3937329 DOI: 10.1371/journal.pone.0089300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.
Collapse
Affiliation(s)
- Mayla Hsu
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Noa Krawczyk
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Samantha Seidor
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ciby J. Abraham
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ninochka Jean-Pierre
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Michael J. Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory, Frederick, Maryland, United States of America
| | - José A. Fernández-Romero
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Thomas M. Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
13
|
Deere JD, Kauffman RC, Cannavo E, Higgins J, Villalobos A, Adamson L, Schinazi RF, Luciw PA, North TW. Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART. PLoS One 2014; 9:e87914. [PMID: 24505331 PMCID: PMC3914874 DOI: 10.1371/journal.pone.0087914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/01/2014] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
14
|
Wadford DA, Kauffman RC, Deere JD, Aoki ST, Stanton RA, Higgins J, Van Rompay KKA, Villalobos A, Nettles JH, Schinazi RF, Pedersen NC, North TW. Variation of human immunodeficiency virus type-1 reverse transcriptase within the simian immunodeficiency virus genome of RT-SHIV. PLoS One 2014; 9:e86997. [PMID: 24498008 PMCID: PMC3909041 DOI: 10.1371/journal.pone.0086997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022] Open
Abstract
RT-SHIV is a chimera of simian immunodeficiency virus (SIV) containing the reverse transcriptase (RT)-encoding region of human immunodeficiency virus type 1 (HIV-1) within the backbone of SIVmac239. It has been used in a non-human primate model for studies of non-nucleoside RT inhibitors (NNRTI) and highly active antiretroviral therapy (HAART). We and others have identified several mutations that arise in the "foreign" HIV-1 RT of RT-SHIV during in vivo replication. In this study we catalogued amino acid substitutions in the HIV-1 RT and in regions of the SIV backbone with which RT interacts that emerged 30 weeks post-infection from seven RT-SHIV-infected rhesus macaques. The virus set points varied from relatively high virus load, moderate virus load, to undetectable virus load. The G196R substitution in RT was detected from 6 of 7 animals at week 4 post-infection and remained in virus from 4 of 6 animals at week 30. Virus from four high virus load animals showed several common mutations within RT, including L74V or V75L, G196R, L214F, and K275R. The foreign RT from high virus load isolates exhibited as much variation as that of the highly variable envelope surface glycoprotein, and 10-fold higher than that of the native RT of SIVmac239. Isolates from moderate virus load animals showed much less variation in the foreign RT than the high virus load isolates. No variation was found in SIVmac239 genes known to interact with RT. Our results demonstrate substantial adaptation of the foreign HIV-1 RT in RT-SHIV-infected macaques, which most likely reflects selective pressure upon the foreign RT to attain optimal activity within the context of the chimeric RT-SHIV and the rhesus macaque host.
Collapse
Affiliation(s)
- Debra A. Wadford
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Scott T. Aoki
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Richard A. Stanton
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - James H. Nettles
- Children's Center for Drug Discovery (CDD), Departments of Pediatrics and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raymond F. Schinazi
- Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Boltz VF, Bao Y, Lockman S, Halvas EK, Kearney MF, McIntyre JA, Schooley RT, Hughes MD, Coffin JM, Mellors JW. Low-frequency nevirapine (NVP)-resistant HIV-1 variants are not associated with failure of antiretroviral therapy in women without prior exposure to single-dose NVP. J Infect Dis 2014; 209:703-10. [PMID: 24443547 DOI: 10.1093/infdis/jit635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Low-frequency nevirapine (NVP)-resistant variants have been associated with virologic failure (VF) of initial NVP-based combination antiretroviral therapy (cART) in women with prior exposure to single-dose NVP (sdNVP). We investigated whether a similar association exists in women without prior sdNVP exposure. METHODS Pre-cART plasma was analyzed by allele-specific polymerase chain reaction to quantify NVP-resistant mutants in human immunodeficiency virus-infected African women without prior sdNVP who were starting first-line NVP-based cART in the OCTANE/A5208 trial 2. Associations between NVP-resistant mutants and VF or death were determined and compared with published results from women participating in the OCTANE/A5208 trial 1 who had taken sdNVP and initiated NVP-based cART. RESULTS Pre-cART NVP-resistant variants were detected in 18% (39/219) of women without prior sdNVP exposure, compared to 45% (51/114) with prior sdNVP exposure (P < .001). Among women without prior sdNVP exposure, 8 of 39 (21%) with NVP-resistant variants experienced VF or death vs 31 of 180 (17%) without such variants (P = .65); this compares with 21 of 51 (41%) vs 9 of 63 (14%) among women with prior exposure (P = .001). CONCLUSIONS The risk of VF on NVP-based cART from NVP-resistant variants differs between sdNVP-exposed and -unexposed women. This difference may be driven by drug-resistance mutations emerging after sdNVP exposure that are linked on the same viral genome. CLINICAL TRIALS REGISTRATION NCT00089505.
Collapse
Affiliation(s)
- Valerie F Boltz
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, Piatak M, Mellors JW, Lifson JD, Ambrose Z. Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model. PLoS One 2013; 8:e84275. [PMID: 24367650 PMCID: PMC3867492 DOI: 10.1371/journal.pone.0084275] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023] Open
Abstract
Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood.
Collapse
Affiliation(s)
- Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jean Ndjomou
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tamera Franks
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Rectal pre-exposure prophylaxis (PrEP). Antiviral Res 2013; 100 Suppl:S17-24. [PMID: 24188705 DOI: 10.1016/j.antiviral.2013.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 01/19/2023]
Abstract
Rectal pre-exposure prophylaxis (PrEP) will be a critical component of HIV prevention products due to the prevalence of unprotected receptive anal intercourse among men who have sex with men and heterosexual couples. Given the biological considerations of this compartment and the complexity of HIV infection, design of a successful rectal microbicide product faces a number of challenges. Important information is being compiled to begin to address deficits in knowledge toward design of rectal PrEP products for men and women. Aspects of formulation development and preclinical and clinical evaluation of rectal products studied to date are summarized in this review. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research.
Collapse
|
18
|
Abstract
Lentiviruses are characterized by their ability to infect resting cells, such as CD4 T cells, macrophages and dendritic cells (DC). Cells of myeloid lineage, which herein we include including monocytes, macrophages, and dendritic cells, play a pivotal role in HIV infection by not only promoting transmission and spread but also serving as viral reservoirs. However, the recent discovery of the HIV restriction factor SAMHD1 within myeloid cells has again led us to question the role of this lineage both in HIV transmission and pathogenesis. Herein we will summarize what the potential role of myeloid cells in HIV pathogenesis is and how recent observations have or haven't reshaped this view. Finally we highlight the idea that cells of myeloid lineage are quality rather than quantity HIV substrates. Thus, whilst is may indeed be difficult for a lentivirus like HIV to infect a resting cell like a macrophage and/or Dendritic cell, there are significant benefits in doing so, even at low frequency.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Kensington, NSW, 2010, Australia
| | | | | |
Collapse
|
19
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
20
|
Misra A, Thippeshappa R, Kimata JT. Macaques as model hosts for studies of HIV-1 infection. Front Microbiol 2013; 4:176. [PMID: 23825473 PMCID: PMC3695370 DOI: 10.3389/fmicb.2013.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that the host range of primate lentiviruses is in part determined by their ability to counteract innate restriction factors that are effectors of the type 1 interferon (IFN-1) response. For human immunodeficiency virus type 1 (HIV-1), in vitro experiments have shown that its tropism may be narrow and limited to humans and chimpanzees because its replication in other non-human primate species is hindered by factors such as TRIM5α (tripartite motif 5 alpha), APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3), and tetherin. Based on these data, it has been hypothesized that primate lentiviruses will infect and replicate in a new species if they are able to counteract and evade suppression by the IFN-1 response. Several studies have tested whether engineering HIV-1 recombinants with minimal amounts of simian immunodeficiency virus sequences would enable replication in CD4+ T cells of non-natural hosts such as Asian macaques and proposed that infection of these macaque species could be used to study transmission and pathogenesis. Indeed, infection of macaques with these viruses revealed that Vif-mediated counteraction of APOBEC3G function is central to cross-species tropism but that other IFN-induced factors may also play important roles in controlling replication. Further studies of these macaque models of infection with HIV-1 derivatives could provide valuable insights into the interaction of lentiviruses and the innate immune response and how lentiviruses adapt and cause disease.
Collapse
Affiliation(s)
- Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
21
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
22
|
Affiliation(s)
- Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
23
|
Ultrasensitive allele-specific PCR reveals rare preexisting drug-resistant variants and a large replicating virus population in macaques infected with a simian immunodeficiency virus containing human immunodeficiency virus reverse transcriptase. J Virol 2012; 86:12525-30. [PMID: 22933296 DOI: 10.1128/jvi.01963-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that most drug-resistant mutants, resulting from a single-nucleotide change, exist at low frequency in human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) populations in vivo prior to the initiation of antiretroviral therapy (ART). To test this hypothesis and to investigate the emergence of resistant mutants with drug selection, we developed a new ultrasensitive allele-specific PCR (UsASP) assay, which can detect drug resistance mutations at a frequency of ≥0.001% of the virus population. We applied this assay to plasma samples obtained from macaques infected with an SIV variant containing HIV-1 reverse transcriptase (RT) (RT-simian-human immunodeficiency [SHIV](mne)), before and after they were exposed to a short course of efavirenz (EFV) monotherapy. We detected RT inhibitor (RTI) resistance mutations K65R and M184I but not K103N in 2 of 2 RT-SHIV-infected macaques prior to EFV exposure. After three doses over 4 days of EFV monotherapy, 103N mutations (AAC and AAT) rapidly emerged and increased in the population to levels of ∼20%, indicating that they were present prior to EFV exposure. The rapid increase of 103N mutations from <0.001% to 20% of the viral population indicates that the replicating virus population size in RT-SHIV-infected macaques must be 10(6) or more infected cells per replication cycle.
Collapse
|
24
|
A quantitative measurement of antiviral activity of anti-human immunodeficiency virus type 1 drugs against simian immunodeficiency virus infection: dose-response curve slope strongly influences class-specific inhibitory potential. J Virol 2012; 86:11368-72. [PMID: 22875968 DOI: 10.1128/jvi.01563-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful information for regimen selection in treating SIV-infected animals in models of therapy and virus eradication.
Collapse
|
25
|
Virological and molecular characterization of a simian human immunodeficiency virus (SHIV) encoding the envelope and reverse transcriptase genes from HIV-1. Virology 2012; 432:173-83. [PMID: 22769870 DOI: 10.1016/j.virol.2012.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/04/2012] [Accepted: 05/31/2012] [Indexed: 11/24/2022]
Abstract
Simian-human immunodeficiency virus encoding both reverse transcriptase (RT) and envelope genes of HIV-1 (RT Env SHIV) is important for evaluating biomedical prevention modalities for HIV/AIDS. We describe virological characterization of a clade B RT Env SHIV following infection of macaques via multiple routes. In vivo passage of the RT Env SHIV through Indian rhesus macaque enhanced infectivity. Expanded virus had minimal envelope heterogeneity and was inhibited by NNRTIs and CCR5 antagonists. Infection of macaques with RT Env SHIV via mucosal or intravenous routes resulted in stable infection accompanied by peak plasma viremia of approximately 5×10(6) copies/ml that was controlled beyond set point. Molecular homogeneity of the virus was maintained following in vivo passage. Inhibition of RT Env SHIV by RT and entry inhibitors and ease of in vivo transmission make it a useful model for testing the efficacy of combinations of entry and RT inhibitors in nonhuman primates.
Collapse
|
26
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
27
|
Hilldorfer BB, Cillo AR, Besson GJ, Bedison MA, Mellors JW. New tools for quantifying HIV-1 reservoirs: plasma RNA single copy assays and beyond. Curr HIV/AIDS Rep 2012; 9:91-100. [PMID: 22215419 PMCID: PMC3693463 DOI: 10.1007/s11904-011-0104-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quantification of plasma HIV-1 RNA below the limit of FDA-approved assays by a single copy quantitative PCR assays (SCA) has provided significant insights into HIV-1 persistence despite potent antiretroviral therapy as well as a means to assess the impact of therapeutic strategies, such as treatment intensification, on residual viremia. In this review, we discuss insights gained from plasma HIV-1 RNA SCA and highlight the need for additional assays to characterize better the cellular and tissue reservoirs of HIV-1. Accurate, reproducible, and sensitive assays to quantify HIV-1 reservoirs, before and after therapeutic interventions, are essential tools in the quest for a cure of HIV-1 infection.
Collapse
Affiliation(s)
- Benedict B Hilldorfer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review will focus on recent developments in several nonhuman primate models of AIDS. These models are being used to address viral latency and persistence during antiretroviral therapy in studies that are not feasible in humans. RECENT FINDINGS Further characterization of the various macaque models of AIDS has demonstrated that several aspects of viral persistence during antiretroviral therapy model HIV-1 infection in humans, including viral decay kinetics. Widespread distribution of viral RNA and viral DNA has been detected in many tissue organs. In addition, the brain has been identified as a site of persistent viral DNA. SUMMARY The macaque models of AIDS are well suited for addressing viral persistence during antiretroviral therapy, including viral latency, residual replication, and tissue organ distribution.
Collapse
|
29
|
Kearney M, Spindler J, Shao W, Maldarelli F, Palmer S, Hu SL, Lifson JD, KewalRamani VN, Mellors JW, Coffin JM, Ambrose Z. Genetic diversity of simian immunodeficiency virus encoding HIV-1 reverse transcriptase persists in macaques despite antiretroviral therapy. J Virol 2011; 85:1067-76. [PMID: 21084490 PMCID: PMC3019993 DOI: 10.1128/jvi.01701-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/02/2010] [Indexed: 11/20/2022] Open
Abstract
The impact of antiretroviral therapy (ART) on the genetics of simian immunodeficiency virus (SIV) or human immunodeficiency virus (HIV) populations has been incompletely characterized. We analyzed SIV genetic variation before, during, and after ART in a macaque model. Six pigtail macaques were infected with an SIV/HIV chimeric virus, RT-SHIV(mne), in which SIV reverse transcriptase (RT) was replaced by HIV-1 RT. Three animals received a short course of efavirenz (EFV) monotherapy before combination ART was started. All macaques received 20 weeks of tenofovir, emtricitabine, and EFV. Plasma virus populations were analyzed by single-genome sequencing. Population diversity was measured by average pairwise difference, and changes in viral genetics were assessed by phylogenetic and panmixia analyses. After 20 weeks of ART, viral diversity was not different from pretherapy viral diversity despite more than 10,000-fold declines in viremia, indicating that, within this range, there is no relationship between diversity and plasma viremia. In two animals with consistent SIV RNA suppression to <15 copies/ml during ART, there was no evidence of viral evolution. In contrast, in the four macaques with viremias >15 copies/ml during therapy, there was divergence between pre- and during-ART virus populations. Drug resistance mutations emerged in two of these four animals, resulting in virologic failure in the animal with the highest level of pretherapy viremia. Taken together, these findings indicate that viral diversity does not decrease with suppressive ART, that ongoing replication occurs with viremias >15 copies/ml, and that in this macaque model of ART drug resistance likely emerges as a result of incomplete suppression and preexisting drug resistance mutations.
Collapse
Affiliation(s)
- Mary Kearney
- HIV Drug Resistance Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Deere JD, Higgins J, Cannavo E, Villalobos A, Adamson L, Fromentin E, Schinazi RF, Luciw PA, North TW. Viral decay kinetics in the highly active antiretroviral therapy-treated rhesus macaque model of AIDS. PLoS One 2010; 5:e11640. [PMID: 20668516 PMCID: PMC2909142 DOI: 10.1371/journal.pone.0011640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
To prevent progression to AIDS, persons infected with human immunodeficiency virus type 1 (HIV-1) must remain on highly active antiretroviral therapy (HAART) indefinitely since this modality does not eradicate the virus. The mechanisms involved in viral persistence during HAART are poorly understood, but an animal model of HAART could help elucidate these mechanisms and enable studies of HIV-1 eradication strategies. Due to the specificity of non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) for HIV-1, we have used RT-SHIV, a chimeric virus of simian immunodeficiency virus with RT from HIV-1. This virus is susceptible to NNRTIs and causes an AIDS-like disease in rhesus macaques. In this study, two groups of HAART-treated, RT-SHIV-infected macaques were analyzed to determine viral decay kinetics. In the first group, viral loads were monitored with a standard TaqMan RT-PCR assay with a limit of detection of 50 viral RNA copies per mL. Upon initiation of HAART, viremia decayed in a bi-phasic manner with half-lives of 1.7 and 8.5 days, respectively. A third phase was observed with little further decay. In the second group, the macaques were followed longitudinally with a more sensitive assay utilizing ultracentrifugation to concentrate virus from plasma. Bi-phasic decay of viral RNA was also observed in these animals with half-lives of 1.8 and 5.8 days. Viral loads in these animals during a third phase ranged from 2-58 RNA copies/mL, with little decay over time. The viral decay kinetics observed in these macaques are similar to those reported for HIV-1 infected humans. These results demonstrate that low-level viremia persists in RT-SHIV-infected macaques despite a HAART regimen commonly used in humans.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Emilie Fromentin
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Caron M, Besson G, Etenna SLD, Mintsa-Ndong A, Mourtas S, Radaelli A, Morghen CDG, Loddo R, La Colla P, Antimisiaris SG, Kazanji M. Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus macaques with RT-SHIV. Virology 2010; 405:225-33. [PMID: 20591460 DOI: 10.1016/j.virol.2010.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/06/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
Abstract
In the absence of an effective vaccine against HIV, it is urgent to develop an effective alternative such as a microbicide. Single and repeated applications of MC1220 microbicide were evaluated in macaques. First, animals were given a single application of 0.5% or 1.5% MC1220-containing liposomal gel. A second group were treated with 0.5% MC1220 once a day for 4 days. The control groups were treated by liposomal gel alone. Thirty minutes after the last application, animals were challenged with RT-SHIV. In the first protocol, 2 of 4 animals treated by 0.5% of the MC1220 and 2 of 5 treated by 1.5% were protected. In the second protocol, 3 of 5 treated animals were protected and 5 of 5 controls were infected. The RNA viral load at necropsy was significantly lower (p=0.05) in treated-infected animals than in controls. In both protocols, the number of CD4+ T cells was lower at viremia peak in infected than in protected animals.
Collapse
Affiliation(s)
- Mélanie Caron
- Unité de Retrovirologie, Centre International de Recherches Médicales de Franceville, Franceville, BP 769, Gabon
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Jiang Y, Tian B, Agy MB, Saifuddin M, Tsai CC. Macaca fascicularis are highly susceptible to an RT-SHIV following intravaginal inoculation: a new model for microbicide evaluation. J Med Primatol 2010; 38 Suppl 1:39-46. [PMID: 19863677 DOI: 10.1111/j.1600-0684.2009.00374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is a major target for antiretroviral strategy to block or curtail HIV infection. A suitable RT-SHIV/macaque model is urgently needed for the evaluation of HIV/AIDS therapies and microbicides specifically targeting HIV-1 RT. METHODS Fifteen cynomolgus macaques (Macaca fascicularis) were divided into three groups (n = 5) and intravaginally inoculated with 4800, 1200, or 300 TCID(50) of RT-SHIVtc. Systemic infections of RT-SHIVtc exposed macaques were determined by both virological and immunologic parameters during 24 weeks post-challenge. RESULTS Within 2 weeks post-inoculation, 13 of 15 macaques became infected as confirmed by virus isolation, plasma viral RNA, proviral DNA, declined CD4(+)T cell counts in peripheral blood and seroconversion. CONCLUSIONS Results serve to validate the infectivity and pathogenicity of RT-SHIVtc following vaginal exposure in M. fascicularis. This RT-SHIVtc/macaque model could be suitable for the pre-clinical evaluation of non-nucleoside RT inhibitor-based anti-HIV microbicides.
Collapse
Affiliation(s)
- Y Jiang
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195-7330, USA
| | | | | | | | | |
Collapse
|
34
|
Viral sanctuaries during highly active antiretroviral therapy in a nonhuman primate model for AIDS. J Virol 2009; 84:2913-22. [PMID: 20032180 DOI: 10.1128/jvi.02356-09] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) enables long-term suppression of plasma HIV-1 loads in infected persons, but low-level virus persists and rebounds following cessation of therapy. During HAART, this virus resides in latently infected cells, such as resting CD4(+) T cells, and in other cell types that may support residual virus replication. Therapeutic eradication will require elimination of virus from all reservoirs. We report here a comprehensive analysis of these reservoirs in fluids, cells, and tissues in a rhesus macaque model that mimics HAART in HIV-infected humans. This nonhuman primate model uses RT-SHIV, a chimera of simian immunodeficiency virus containing the HIV-1 reverse transcriptase (RT). Methods were developed for extraction, preamplification, and real-time PCR analyses of viral DNA (vDNA) and viral RNA (vRNA) in tissues from RT-SHIV-infected macaques. These methods were used to identify viral reservoirs in RT-SHIV-infected macaques treated with a potent HAART regimen consisting of efavirenz, emtricitabine, and tenofovir. Plasma virus loads at necropsy ranged from 11 to 28 copies of vRNA per ml. Viral RNA and DNA were detected during HAART, in tissues from numerous anatomical locations. Additional analysis provided evidence for full-length viral RNA in tissues of animals with virus suppressed by HAART. The highest levels of vDNA and vRNA in HAART-treated macaques were in lymphoid tissues, particularly the spleen, lymph nodes, and gastrointestinal tract tissues. This study is the first comprehensive analysis of the tissue and organ distribution of a primate AIDS virus during HAART. These data demonstrate widespread persistence of residual virus in tissues during HAART.
Collapse
|
35
|
Boltz VF, Maldarelli F, Martinson N, Morris L, McIntyre JA, Gray G, Hopley MJ, Kimura T, Mayers DL, Robinson P, Mellors JW, Coffin JM, Palmer SE. Optimization of allele-specific PCR using patient-specific HIV consensus sequences for primer design. J Virol Methods 2009; 164:122-6. [PMID: 19948190 DOI: 10.1016/j.jviromet.2009.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 11/17/2009] [Accepted: 11/23/2009] [Indexed: 11/18/2022]
Abstract
Allele-specific PCR based on subtype consensus sequences is a powerful technique for detecting low frequency drug resistant mutants in HIV-1 infected patients. However, this approach can be limited by genetic variation in the region complementary to the primers, leading to variability in allele detection. The goals of this study were to quantify this effect and then to improve assay performance.
Collapse
Affiliation(s)
- Valerie F Boltz
- HIV Drug Resistance Program, NCI, NIH, Frederick, MD, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang Y, Tian B, Saifuddin M, Agy MB, Emau P, Cairns JS, Tsai CC. RT-SHIV, an infectious CCR5-tropic chimeric virus suitable for evaluating HIV reverse transcriptase inhibitors in macaque models. AIDS Res Ther 2009; 6:23. [PMID: 19891783 PMCID: PMC2780452 DOI: 10.1186/1742-6405-6-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 11/05/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important category of drugs for both chemotherapy and prevention of human immunodeficiency virus type 1 (HIV-1) infection. However, current non-human primate (NHP) models utilizing simian immunodeficiency virus (SIV) or commonly used chimeric SHIV (SIV expressing HIV-1 envelope) are inadequate due to the insensitivity to NNRTIs. To develop a NHP model for evaluation of NNRTI compounds, we characterized a RT-SHIV virus that was assembled by replacing the SIV mac239 reverse transcriptase (RT) with that of HIV-1HXB2. Since RT-SHIV exhibited in vitro characteristics of high infectivity, CCR5-usage, and sensitivity to HIV-1 specific NNRTIs, this virus was thought to be suitable for mucosal transmission and then was used to carry out a vaginal transmission study in pigtail macaques (Macaca nemestrina). RESULTS RT-SHIV exhibited in vitro characteristics of an infectious CCR5-tropic chimeric virus. This virus was not only highly sensitive to HIV-1 RT specific NNRTIs; its replication was also inhibited by a variety of NRTIs and protease inhibitors. For in vivo vaginal transmission studies, macaques were either pretreated with a single dose of DMPA (depot medroxyprogesterone acetate) or left untreated before intravaginal inoculation with 500 or 1,000 TCID50 of RT-SHIV. All macaques became systemically infected by 2 or 3 weeks post-inoculation exhibiting persistent high viremia, marked CD4+T cell depletion, and antiviral antibody response. DMPA-pretreated macaques showed a higher mean plasma viral load after the acute infection stage, highly variable antiviral antibody response, and a higher incidence of AIDS-like disease as compared with macaques without DMPA pretreatment. CONCLUSION This chimeric RT-SHIV has exhibited productive replication in both macaque and human PBMCs, predominantly CCR5-coreceptor usage for viral entry, and sensitivity to NNRTIs as well as other anti-HIV compounds. This study demonstrates rapid systemic infection in macaques following intravaginal exposure to RT-SHIV. This RT-SHIV/macaque model could be useful for evaluation of NNRTI-based therapies, microbicides, or other preventive strategies.
Collapse
|
37
|
Shao W, Kearney M, Maldarelli F, Mellors JW, Stephens RM, Lifson JD, KewalRamani VN, Ambrose Z, Coffin JM, Palmer SE. RT-SHIV subpopulation dynamics in infected macaques during anti-HIV therapy. Retrovirology 2009; 6:101. [PMID: 19889213 PMCID: PMC2776578 DOI: 10.1186/1742-4690-6-101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 11/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3 pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-1 (RT-SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the beginning of infection to the end of the treatment. RESULTS A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9 variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys, the inoculated wild-type virus was rapidly replaced by new wild type variants. By week 13, the original dominant subpopulation in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-type subpopulations until a minor subpopulation carrying linked drug resistance mutations (K103N/M184I) emerged. We observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation. CONCLUSION This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or absence of at least some known drug resistant mutations may not greatly affect virus replication capacity in vivo. Additionally, the emergence and prevalence of V75L indicates that this mutation may provide the virus a selective advantage, perhaps escaping the host immure system surveillance. Our new method to quantitatively analyze viral population dynamics enabled us to observe the relative competitiveness and adaption of different viral variants and provided a valuable tool for studying HIV subpopulation emergence, persistence, and decline during ART.
Collapse
Affiliation(s)
- Wei Shao
- Advanced Biomedical Computing Center, SAIC Frederick, Inc, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Van Rompay KKA. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 2009; 85:159-75. [PMID: 19622373 DOI: 10.1016/j.antiviral.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Animal models of HIV infection have played an important role in the development of antiretroviral drugs. Although each animal model has its limitations and never completely mimics HIV infection of humans, a carefully designed study allows experimental approaches that are not feasible in humans, but that can help to better understand disease pathogenesis and to provide proof-of-concept of novel intervention strategies. While rodent and feline models are useful for initial screening, further testing is best done in non-human primate models, such as simian immunodeficiency virus (SIV) infection of macaques, because they share more similarities with HIV infection of humans. In the early years of the HIV pandemic, non-human primate models played a relatively minor role in the antiretroviral drug development process. Since then, a better understanding of the disease and the development of better drugs and assays to monitor antiviral efficacy have increased the usefulness of the animal models. In particular, non-human primate models have provided proof-of-concept for (i) the benefits of chemoprophylaxis and early treatment, (ii) the preclinical efficacy of novel drugs such as tenofovir, (iii) the virulence and clinical significance of drug-resistant viral mutants, and (iv) the role of antiviral immune responses during drug therapy. Ongoing comparison of results obtained in animal models with those observed in human studies will further validate and improve these animal models so they can continue to help advance our scientific knowledge and to guide clinical trials. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
39
|
A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 2009; 83:9247-57. [PMID: 19570871 DOI: 10.1128/jvi.00840-09] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART), a combination of three or more antiretroviral drugs, suppresses viremia below the clinical limit of detection (50 HIV-1 RNA copies/ml), but latently infected resting CD4(+) T cells serve as lifelong reservoirs, and low-level viremia can be detected with special assays. Recent studies have provided evidence for additional reservoirs that contribute to residual viremia but are not present in circulating cells. Identification of all the sources of residual viremia in humans may be difficult. These discoveries highlight the need for a tractable model system to identify additional viral reservoirs that could represent barriers to eradication. In this study, simian immunodeficiency virus (SIV)-infected pig-tailed macaques (Macaca nemestrina) were treated with four antiretroviral drugs to develop an animal model for viral suppression during effective HAART. Treatment led to a biphasic decay in viremia and a significant rise in levels of circulating CD4(+) T cells. At terminal infection time points, the frequency of circulating resting CD4(+) T cells harboring replication-competent virus was reduced to a low steady-state level similar to that observed for HIV-infected patients on HAART. The frequencies of resting CD4(+) T cells harboring replication-competent virus in the pooled head lymph nodes, gut lymph nodes, spleen, and peripheral blood were reduced relative to those for untreated SIV-infected animals. These observations closely parallel findings for HIV-infected humans on suppressive HAART and demonstrate the value of this animal model to identify and characterize viral reservoirs persisting in the setting of suppressive antiretroviral drugs.
Collapse
|
40
|
Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2-/-{gamma}c-/- mouse. J Virol 2009; 83:8254-8. [PMID: 19494021 DOI: 10.1128/jvi.00580-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A small animal model that reproduces human immunodeficiency virus type 1 (HIV-1) pathogenesis may allow modeling of new therapeutic strategies in ways not approachable in mononuclear cell culture. We find that, as in humans, combination antiretroviral therapy (ART) in humanized (hu-) Rag2(-/-)gamma(c)(-/-) mice allows suppression of viremia below the limits of detection and recovery of CD4(+) cells, while interruption of ART results in viral rebound and renewed loss of CD4(+) T cells. Failure of ART in infected mice is associated with the appearance of drug resistance mutations. The hu-Rag2(-/-)gamma(c)(-/-) mouse may therefore facilitate testing of novel approaches to HIV replication and persistence.
Collapse
|
41
|
Abstract
The lack of a primate model that utilizes HIV-1 as the challenge virus is an impediment to AIDS research; existing models generally employ simian viruses that are divergent from HIV-1, reducing their usefulness in preclinical investigations. Based on an understanding of species-specific variation in primate TRIM5 and APOBEC3 antiretroviral genes, we constructed simian-tropic (st)HIV-1 strains that differ from HIV-1 only in the vif gene. We demonstrate that such minimally modified stHIV-1 strains are capable of high levels of replication in vitro in pig-tailed macaque (Macaca nemestrina) lymphocytes. Importantly, infection of pig-tailed macaques with stHIV-1 results in acute viremia, approaching the levels observed in HIV-1-infected humans, and an ensuing persistent infection for several months. stHIV-1 replication was controlled thereafter, at least in part, by CD8+ T cells. We demonstrate the potential utility of this HIV-1-based animal model in a chemoprophylaxis experiment, by showing that a commonly used HIV-1 therapeutic regimen can provide apparently sterilizing protection from infection following a rigorous high-dose stHIV-1 challenge.
Collapse
|
42
|
Pal R, Nuttall J, Galmin L, Weiss D, Chung HK, Romano J. Characterization of vaginal transmission of a simian human immunodeficiency virus (SHIV) encoding the reverse transcriptase gene from HIV-1 in Chinese rhesus macaques. Virology 2009; 386:102-8. [PMID: 19195672 DOI: 10.1016/j.virol.2009.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/21/2008] [Accepted: 01/02/2009] [Indexed: 11/27/2022]
Abstract
Replication competent recombinant simian-human immunodeficiency virus encoding the reverse transcriptase gene (RT SHIV) from HIV-1 was characterized for vaginal transmission in rhesus macaques. RT SHIV was shown to transmit efficiently via the vaginal route in macaques with detectable plasma viremia persisting for a year in some animals. Analyses of virus load in tissues of infected animals revealed accumulation of viral RNA in lymph nodes and spleen with levels correlating with plasma viremia. RT-SHIV was inhibited by dapivirine, nevirapine, efavirenz and tenofovir in vitro, although the effect was less pronounced with tenofovir. Virus isolated from infected animals at early and later time points had limited changes in RT sequences and exhibited similar sensitivity to RT inhibitors as the challenge virus. The vaginal transmission of RT SHIV demonstrated here suggests this virus may possibly be used in the nonhuman primate model for limited evaluation of RT inhibitors applied vaginally.
Collapse
Affiliation(s)
- Ranajit Pal
- Advanced BioScience Laboratories Inc., Kensington, MD 20895, USA.
| | | | | | | | | | | |
Collapse
|