1
|
Pitchai FNN, Tanner EJ, Khetan N, Vasen G, Levrel C, Kumar AJ, Pandey S, Ordonez T, Barnette P, Spencer D, Jung SY, Glazier J, Thompson C, Harvey-Vera A, Son HI, Strathdee SA, Holguin L, Urak R, Burnett J, Burgess W, Busman-Sahay K, Estes JD, Hessell A, Fennessey CM, Keele BF, Haigwood NL, Weinberger LS. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 2024; 385:eadn5866. [PMID: 39116226 PMCID: PMC11545966 DOI: 10.1126/science.adn5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Antiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R0] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log10 following a single intravenous injection. Animal lifespan was significantly extended, TIPs conditionally replicated and were continually detected for >6 months, and sequencing data showed no evidence of viral escape. A single TIP injection also suppressed virus replication in humanized mice and cells from persons living with HIV. These data provide proof of concept for a potential new class of single-administration antiviral therapies.
Collapse
Affiliation(s)
- Fathima N. Nagoor Pitchai
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Elizabeth J. Tanner
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Neha Khetan
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Gustavo Vasen
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Clara Levrel
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Arjun J. Kumar
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Absci Corporation, Vancouver, WA, USA
| | - Seung-Yong Jung
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Joshua Glazier
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Cassandra Thompson
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Harvey-Vera
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- US-Mexico Border Health Commission, Tijuana, Mexico
| | - Hye-In Son
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Steffanie A. Strathdee
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leo Holguin
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Urak
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William Burgess
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University, Melbourne, Australia
| | - Ann Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leor S. Weinberger
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Çelik N, Çelik O, Laloğlu E, Özkaya A. The CXCL9/10/11-CXCR3 axis as a predictor of COVID-19 progression: a prospective, case-control study. Rev Soc Bras Med Trop 2023; 56:e01282023. [PMID: 37493737 PMCID: PMC10367208 DOI: 10.1590/0037-8682-0128-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND This study examined the relationship between levels of the chemokines CXCL9, CXCL10, CXCL11, and CXCR3 and mortality in patients with COVID-19.. METHODS A total of 71 patients hospitalized with COVID-19 and 35 health workers with no symptoms and negative SARS-CoV-2 PCR results were included in the study. CXCL9, CXCL10, CXCL11, and CXCR3 levels were measured in blood samples using enzyme-linked immunosorbent assays. Participants were divided into three groups: healthy individuals, patients with mild to moderate pneumonia, and patients with severe pneumonia. Patients were also divided into sub-groups according to the outcome: dead and survived. RESULTS Serum CXCL9, CXCL10, CXCL11, and CXCR3 levels were significantly higher in patients with severe COVID-19 than in those with non-severe COVID-19; were higher in both patient groups than in the control group; and were higher in patients who died than in those who survived. Lymphocyte counts, and fibrinogen and PaO2/FiO2 levels were significantly lower in patients with severe COVID-19 than in those with moderate disease. Patients with COVID-19 also had elevated neutrophil/lymphocyte ratios, neutrophil counts, and lactate dehydrogenase, C-reactive protein, D-dimer, and ferritin levels. CONCLUSIONS This study confirmed that CXCL9, CXCL10, CXCL11, and CXCR3 levels are associated with disease severity in patients with COVID-19. These laboratory parameters can help to estimate disease severity and predict outcomes, and are useful in clinical decision-making.
Collapse
Affiliation(s)
- Neslihan Çelik
- Health Sciences University, Erzurum Regional Education and Research Hospital, Department of Infection Diseases and Clinical Microbiology, Erzurum, Turkey
| | - Onur Çelik
- Health Sciences University, Erzurum Regional Education and Research Hospital, Department of Chest Diseases, Erzurum, Turkey
| | - Esra Laloğlu
- Ataturk University School of Medicine, Department of Biochemistry, Erzurum, Turkey
| | - Alev Özkaya
- Health Sciences University, Erzurum Regional Education and Research Hospital, Department of Biochemistry, Erzurum, Turkey
| |
Collapse
|
3
|
Gustin A, Cromarty R, Schifanella L, Klatt NR. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women. Semin Immunol 2021; 51:101482. [PMID: 34120819 DOI: 10.1016/j.smim.2021.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Collapse
Affiliation(s)
- Andrew Gustin
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ross Cromarty
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA
| | - Nichole R Klatt
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
6
|
Yin X, Wang Z, Wu T, Ma M, Zhang Z, Chu Z, Hu Q, Ding H, Han X, Xu J, Shang H, Jiang Y. The combination of CXCL9, CXCL10 and CXCL11 levels during primary HIV infection predicts HIV disease progression. J Transl Med 2019; 17:417. [PMID: 31836011 PMCID: PMC6909626 DOI: 10.1186/s12967-019-02172-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chemokines are small chemotactic cytokines involved in inflammation, cell migration, and immune regulation in both physiological and pathological contexts. Here, we investigated the profile of chemokines during primary HIV infection (PHI). Methods Fifty-four participants with blood samples before and during HIV infection and clinical information available were selected from an HIV-negative man who have sex with men (MSM) prospective cohort. Thirty chemokines and 10 cytokines were measured pre- and post-HIV infection in the same individuals using a Bio-Plex Pro™ Human Chemokine Panel. Results Levels of 18 chemokines/cytokines changed significantly during PHI relative to pre-HIV infection levels; 14 were up-regulated and 4 down-regulated. Among them, CXCL9, CXCL10, and CXCL11 were the most prominently raised. Levels of CXCL9 and CXCL10 were much higher in the high-set point group (log viral load (lgVL) ≥ 4.5) than those in the low-set point group (lgVL < 4.5) and levels of CXCL9, CXCL10, and CXCL11 were higher in the low-CD4+ T-cell count group (CD4+ T-cell count ≥ 500). A formula to predict HIV disease progression using a combination panel comprising CXCL9, CXCL10, and CXCL11 was developed, where risk score = 0.007 × CXCL9 + 0.004 × CXCL10 − 0.033 × CXCL11 − 1.724, with risk score values higher than the cutoff threshold (0.5211) indicating more rapid HIV disease progression. Conclusions A panel of plasma CXCL9, CXCL10, and CXCL11 measured during primary HIV-1 infection could predict long-term HIV disease prognosis in an MSM group and has potential as a novel biomarker in the clinic.
Collapse
Affiliation(s)
- Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhuo Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tong Wu
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qinghai Hu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
7
|
Poultsidi A, Dimopoulos Y, He TF, Chavakis T, Saloustros E, Lee PP, Petrovas C. Lymph Node Cellular Dynamics in Cancer and HIV: What Can We Learn for the Follicular CD4 (Tfh) Cells? Front Immunol 2018; 9:2233. [PMID: 30319664 PMCID: PMC6170630 DOI: 10.3389/fimmu.2018.02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular helper CD4 T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the development of antigen-specific B cell responses within the germinal center. Throughout the past decade, numerous studies have revealed the important role of Tfh cells in Human Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing antibodies post-infection and post-vaccination. It has also been established that tumors influence various immune cell subsets not only in their proximity, but also in draining lymph nodes. The role of local or tumor associated lymph node Tfh cells in disease progression is emerging. Comparative studies of Tfh cells in chronic infections and cancer could therefore provide novel information with regards to their differentiation plasticity and to the mechanisms regulating their development.
Collapse
Affiliation(s)
- Antigoni Poultsidi
- Department of Surgery, Medical School, University of Thessaly, Larissa, Greece
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Emmanouil Saloustros
- Department of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
8
|
Estes JD, LeGrand R, Petrovas C. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections. Front Immunol 2018; 9:423. [PMID: 29552017 PMCID: PMC5840205 DOI: 10.3389/fimmu.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.
Collapse
Affiliation(s)
- Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
9
|
Wood LF, Wood MP, Fisher BS, Jaspan HB, Sodora DL. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure. Front Immunol 2018; 8:1857. [PMID: 29312338 PMCID: PMC5743911 DOI: 10.3389/fimmu.2017.01857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
Abstract
The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA) in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells) and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.
Collapse
Affiliation(s)
- Lianna Frances Wood
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Matthew P Wood
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Bridget S Fisher
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Heather B Jaspan
- Divisions of Paediatrics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Disease, Seattle Children's Research Institute, Seattle, WA, United States
| | - Donald L Sodora
- Center for Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
10
|
Sanfilippo C, Pinzone MR, Cambria D, Longo A, Palumbo M, Di Marco R, Condorelli F, Nunnari G, Malaguarnera L, Di Rosa M. OAS Gene Family Expression Is Associated with HIV-Related Neurocognitive Disorders. Mol Neurobiol 2017; 55:1905-1914. [PMID: 28236279 DOI: 10.1007/s12035-017-0460-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
HIV-associated neurocognitive disorders are common in HIV-infected individuals, even in the combination antiretroviral therapy (c-ART) era. Several mechanisms are involved in neuronal damage, including chronic inflammation immune activation. Mammalian 2'-5'-oligoadenylate synthetase (OAS) genes are produced in response to interferon (IFN), mainly by monocytes, and exert their antiviral functions by activation of RNase L that degrades viral and cellular RNAs. In this study, we aimed at exploring OAS gene family RNA expression in simian immunodeficiency virus encephalitis (SIVE), in HIV-associated neurocognitive disorders (HAND), and in HIV-associate dementia (HAD). We analyzed three microarray datasets obtained from the NCBI in order to assess the expression levels of OAS gene family network in brain biopsies of macaques with SIVE vs uninfected animals, as well as post-mortem brain of individuals with HAND (on or off ART) vs uninfected controls and three brain regions of HIV-infected individuals with both neurocognitive impairment (HAD) and encephalitis (HIVE). All OAS genes were upregulated both in SIVE and in HAND. OAS expression was significantly higher in high-viremic individuals; increased expression levels persisted in cART subjects when compared to healthy controls. OAS gene network analysis showed that several genes belonging to the type I IFN pathway, especially CXCL10 and IFIT3, were similarly upregulated in SIVE/HAND. Furthermore, we identified a significant upregulation of OAS gene family RNA expression in basal ganglia, white matter, and frontal cortex of HIV-1, HAD, and HAD/HIVE patients compared to healthy subjects. OAS gene family expression is increased in brain sections from individuals with HAND, HAD, and HIVE as well as macaques with SIVE. OAS family expression is likely to be induced by IFN as a consequence of viral replication in the CNS. Its long-term upregulation may contribute to the chronic inflammatory status and neurocognitive impairment we still observe in virologically suppressed individuals on c-ART.
Collapse
Affiliation(s)
- C Sanfilippo
- Section of Neurosciences, Department G.F. Ingrassia, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - M R Pinzone
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - D Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - A Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Palumbo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - R Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - F Condorelli
- Department of Pharmacological Sciences, Università del Piemonte Orientale, A. Avogadro, 28100, Novara, Italy
| | - G Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - L Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Liao Q, Wang J, Pei Z, Xu J, Zhang X. Identification of miRNA-mRNA crosstalk in CD4 + T cells during HIV-1 infection by integrating transcriptome analyses. J Transl Med 2017; 15:41. [PMID: 28222782 PMCID: PMC5319073 DOI: 10.1186/s12967-017-1130-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
Background HIV-1-infected long-term nonprogressors (LTNPs) are characterized by infection with HIV-1 more than 7–10 years, but keeping high CD4+ T cell counts and low viral load in the absence of antiretroviral treatment, while loss of CD4+ T cells and high viral load were observed in the most of HIV-1-infected individuals with chronic progressors (CPs) However, the mechanisms of different clinical outcomes in HIV-1 infection needs to be further resolved. Methods To identify microRNAs (miRNAs) and their target genes related to distinct clinical outcomes in HIV-1 infection, we performed the integrative transcriptome analyses in two series GSE24022 and GSE6740 by GEO2R, R, TargetScan, miRDB, and Cytoscape softwares. The functional pathways of these differentially expressed miRNAs (DEMs) targeting genes were further analyzed with DAVID. Results We identified that 7 and 19 DEMs in CD4+ T cells of LTNPs and CPs, respectively, compared with uninfected controls (UCs), but only miR-630 was higher in CPs than that in LTNPs. Further, 478 and 799 differentially expressed genes (DEGs) were identified in the group of LTNPs and CPs, respectively, compared with UCs. Compared to CPs, four hundred and twenty-four DEGs were identified in LTNPs. Functional pathway analyses revealed that a close connection with miRNA-mRNA in HIV-1 infection that DEGs were involved in response to virus and immune system process, and RIG-I-like receptor signaling pathway, whose DEMs or DEGs will be novel biomarkers for prediction of clinical outcomes and therapeutic targets for HIV-1. Conclusions Integrative transcriptome analyses showed that distinct transcriptional profiles in CD4+ T cells are associated with different clinical outcomes during HIV-1 infection, and we identified a circulating miR-630 with potential to predict disease progression, which is necessary to further confirm our findings in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qibin Liao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zenglin Pei
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 2016; 11:201-8. [PMID: 26845673 DOI: 10.1097/coh.0000000000000238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The review summarizes studies in natural hosts, with a particular focus on the control of immune activation and new insights into viral reservoirs. We discuss why these findings are relevant for HIV research today. RECENT FINDINGS AIDS resistance in natural hosts is characterized by a rapid control of inflammatory processes in response to simian immunodeficiency virus infection despite persistent viremia. Although CD4 T cells are dramatically depleted in the intestine in primary infection, interleukin 17-producing T helper cells (Th17) are preserved and natural hosts lack microbial translocation. Thus, viral replication in the gut is not sufficient to explain mucosal damage, but additional factors are necessary. Natural hosts also display a lower infection rate of stem-cell memory, central memory and follicular helper T cells. The follicles are characterized by a lack of viral trapping and the viral replication in secondary lymphoid organs is rapidly controlled. Hence, the healthy status of natural hosts is associated with preserved lymphoid environments. SUMMARY Understanding the underlying mechanisms of preservation of Th17 and of the low contribution of stem-cell memory, central memory and follicular helper T cells to viral reservoirs could benefit the search for preventive and curative approaches of HIV. Altogether, the complementarity of the model helps to identify strategies aiming at restoring full capacity of the immune system and decreasing the size of the viral reservoirs.
Collapse
|
13
|
Platten M, Jung N, Trapp S, Flossdorf P, Meyer-Olson D, Schulze zur Wiesch J, Stephan C, Mauss S, Weiss V, von Bergwelt-Baildon M, Rockstroh J, Fätkenheuer G, Lehmann C. Cytokine and Chemokine Signature in Elite Versus Viremic Controllers Infected with HIV. AIDS Res Hum Retroviruses 2016; 32:579-87. [PMID: 26751176 DOI: 10.1089/aid.2015.0226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV long-term nonprogressors (LTNPs) maintaining high CD4(+) T-cell counts without antiretroviral therapy (ART) are divided into elite controllers (ECs) with undetectable and viremic controllers (VCs) with low viral loads. Little is known about the long-term changes of T-cell subsets and inflammation patterns in ECs versus VCs. The aim of the study was to explore the long-term evolution of CD4(+) T-cell levels in LTNPs and to analyze cytokine profiles in ECs versus VCs. Nineteen ECs and 15 VCs were enrolled from the natural virus controller cohort (NaViC). T-cell counts were monitored over years, the mean annual change was calculated, and plasma concentrations of 25 cytokines were evaluated using a multiplex bead array. While absolute numbers of T cells did not differ between ECs and VCs over time, we observed a significant decrease of CD4(+) T-cell percentages in VCs, but not in ECs (median [interquartile range]: ECs: 37% [28-41] vs. VCs: 29% [25-34]; p = .02). ECs had lower levels of macrophage inflammatory protein-1β (MIP-1β, p = .003), interferon γ-induced protein-10 (IP-10, p = .03), and monokine induced by interferon-γ (MIG, p = .02). CD4(+) T-cell percentages inversely correlated with MIP 1-β (r = -0.42, p = .017) and IP-10 (r = -0.77, p < .0001). A subtle decline of CD4(+) T-cell percentages could be observed in VCs, but not in ECs, which was associated with higher plasma levels of proinflammatory cytokines. Hence, even low levels of HIV replication might go along with a progressive decline in CD4(+) T-cell counts in LTNPs.
Collapse
Affiliation(s)
- Martin Platten
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Norma Jung
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Susanna Trapp
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Pia Flossdorf
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Dirk Meyer-Olson
- Department of Internal Medicine and Rheumatology, m&i Specialty Hospital Bad Pyrmont, Bad Pyrmont, Germany
| | - Julian Schulze zur Wiesch
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Infectious Disease Unit, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Mauss
- Center for HIV and Hepatogastroenterology, Dusseldorf, Germany
| | - Verena Weiss
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | | | - Jürgen Rockstroh
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Department of Medicine, University Medical Center, Bonn, Germany
| | - Gerd Fätkenheuer
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Clara Lehmann
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | | |
Collapse
|
14
|
Zhang LT, Tian RR, Zheng HY, Pan GQ, Tuo XY, Xia HJ, Xia XS, Pang W, Zheng YT. Translocation of microbes and changes of immunocytes in the gut of rapid- and slow-progressor Chinese rhesus macaques infected with SIVmac239. Immunology 2016; 147:443-52. [PMID: 26725773 DOI: 10.1111/imm.12574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022] Open
Abstract
Human/simian immunodeficiency virus (HIV/SIV) infection can cause severe depletion of CD4(+) T cells in both plasma and mucosa; it also results in damage to the gut mucosa barrier, which makes the condition more conducive to microbial translocation. In this study, we used SIV-infected Chinese rhesus macaques to quantify the extent of microbial translocation and the function of immune cells in the entire gastrointestinal tract and to compare their differences between rapid and slow progressors. The results showed that in the slow progressors, microbial products translocated considerably and deeply into the lamina propria of the gut; the tissue macrophages had no significant differences compared with the rapid progressors, but there was a slightly higher percentage of mucosal CD8(+) T cells and a large amount of extracellular microbial products in the lamina propria of the intestinal mucosa of the slow progressors. The data suggested that although microbial translocation increased markedly, the mucosal macrophages and CD8(+) T cells were insufficient to clear the infiltrated microbes in the slow progressors. Also, therapies aimed at suppressing the translocation of microbial products in the mucosa could help to delay the progression of SIV disease.
Collapse
Affiliation(s)
- Lin-Tao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Guo-Qing Pan
- The Pathology Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Yu Tuo
- The Pathology Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hou-Jun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Shan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
15
|
Abstract
Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8(+) T cell functions, and specialization of CD4(+) T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications.
Collapse
Affiliation(s)
- Elina I Zuniga
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Monica Macal
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Gavin M Lewis
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - James A Harker
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Tian RR, Zhang MX, Zhang LT, Zhang XL, Zheng HY, Zhu L, Pang W, Zhang GH, Zheng YT. High immune activation and abnormal expression of cytokines contribute to death of SHIV89.6-infected Chinese rhesus macaques. Arch Virol 2015; 160:1953-66. [DOI: 10.1007/s00705-015-2455-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022]
|
17
|
Nissen SK, Højen JF, Andersen KLD, Kofod-Olsen E, Berg RK, Paludan SR, Østergaard L, Jakobsen MR, Tolstrup M, Mogensen TH. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol 2014; 177:295-309. [PMID: 24593816 DOI: 10.1111/cei.12317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2014] [Indexed: 02/03/2023] Open
Abstract
The innate immune system has been recognized to play a role in the pathogenesis of HIV infection, both by stimulating protective activities and through a contribution to chronic immune activation, the development of immunodeficiency and progression to AIDS. A role for DNA sensors in HIV recognition has been suggested recently, and the aim of the present study was to describe the influence of HIV infection on expression and function of intracellular DNA sensing. Here we demonstrate impaired expression of interferon-stimulated genes in responses to DNA in peripheral blood monuclear cells from HIV-positive individuals, irrespective of whether patients receive anti-retroviral treatment. Furthermore, we show that expression levels of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic guanosine monophosphate-adenosine monophosphate synthase were increased in treatment-naive patients, and for IFI16 expression was correlated with high viral load and low CD4 cell count. Finally, our data demonstrate a correlation between IFI16 and CD38 expression, a marker of immune activation, in CD4(+) central and effector memory T cells, which may indicate that IFI16-mediated DNA sensing and signalling contributes to chronic immune activation. Altogether, the present study demonstrates abnormal expression and function of cytosolic DNA sensors in HIV patients, which may have implications for control of opportunistic infections, chronic immune activation and T cell death.
Collapse
Affiliation(s)
- S K Nissen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jacquelin B, Petitjean G, Kunkel D, Liovat AS, Jochems SP, Rogers KA, Ploquin MJ, Madec Y, Barré-Sinoussi F, Dereuddre-Bosquet N, Lebon P, Le Grand R, Villinger F, Müller-Trutwin M. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog 2014; 10:e1004241. [PMID: 24991927 PMCID: PMC4081777 DOI: 10.1371/journal.ppat.1004241] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products. Chronic inflammation is considered as directly involved in AIDS pathogenesis. The role of IFN-α as a driving force of chronic inflammation is under debate. Natural hosts of SIV, such as African green monkeys (AGMs), avoid chronic inflammation. We show for the first time that NK cells are strongly activated during acute SIVagm infection. This further demonstrates that AGMs mount a strong early innate immune response. Myeloid and plasmacytoid dendritic cells (mDCs and pDCs) homed to lymph nodes; however mDCs showed a stronger maturation profile than pDCs. Monitoring of cytokine profiles in plasma suggests that the control of inflammation in AGMs is starting earlier than previously considered, weeks before the end of the acute infection. We tested whether the capacity to control inflammation depends on the levels of IFN-α produced. When treated with high doses of IFN-α during acute SIVagm infection, AGMs did not show increase of immune activation or signs of disease progression. Our study provides evidence that the control of inflammation in SIVagm infection is not the consequence of weaker IFN-α levels. These data indicate that the sustained interferon-stimulated gene induction and chronic inflammation in HIV/SIVmac infections is driven by factors other than IFN-α.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Gaël Petitjean
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Désirée Kunkel
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Anne-Sophie Liovat
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Simon P. Jochems
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Kenneth A. Rogers
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mickaël J. Ploquin
- Institut Pasteur, Regulation of Retroviral Infection Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | | | | | - Pierre Lebon
- Saint-Vincent de Paul Hospital & Paris Descartes University, Paris, France
| | - Roger Le Grand
- CEA, Division of Immuno-Virology, DSV, iMETI, Fontenay-aux-Roses, France
| | - François Villinger
- Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | |
Collapse
|
19
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
20
|
Lehmann C, Jung N, Förster K, Koch N, Leifeld L, Fischer J, Mauss S, Drebber U, Steffen HM, Romerio F, Fätkenheuer G, Hartmann P. Longitudinal analysis of distribution and function of plasmacytoid dendritic cells in peripheral blood and gut mucosa of HIV infected patients. J Infect Dis 2013; 209:940-9. [PMID: 24259523 DOI: 10.1093/infdis/jit612] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aberrant activation of plasmacytoid dendritic cells (pDCs) with excessive production of interferon alpha (IFNα) represents one of the hallmarks of immune activation during chronic phase of human immunodeficiency virus (HIV) infection. A number of studies have shown that disruption of mucosal integrity in the gut is a cause of persistent immune activation. However, little is known about the role that pDCs play in this process, and our current understanding comes from the simian immunodeficiency virus macaque model. Thus, in the present study we sought to investigate the frequency and function of pDCs in peripheral blood and gut samples from HIV-infected individuals before and 6 months after initiation of antiretroviral therapy (ART). We show that circulating pDCs were depleted in ART-naive HIV+ patients, and upregulated the gut-homing receptor CD103 compared with uninfected controls. By converse, pDCs accumulated in the terminal ileum of ART-naive HIV individuals compared with controls. Baseline levels of IFNα production and markers of immune activation in gut samples of ART-naive HIV subjects were elevated. All these parameters declined after 6 months of ART. Our results suggest that in chronic HIV infection, pDCs migrate from peripheral blood to the gut-associated lymphatic tissue, where they may contribute to immune activation.
Collapse
|
21
|
Dynamics of cytokine/chemokine responses in intestinal CD4+ and CD8+ T Cells during Acute Simian Immunodeficiency Virus Infection. J Virol 2013; 87:11916-23. [PMID: 23966391 DOI: 10.1128/jvi.01750-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of intestinal CD4(+) T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8(+) T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4(+) and CD8(+) T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.
Collapse
|
22
|
Sundaravaradan V, Saleem R, Micci L, Gasper MA, Ortiz AM, Else J, Silvestri G, Paiardini M, Aitchison JD, Sodora DL. Multifunctional double-negative T cells in sooty mangabeys mediate T-helper functions irrespective of SIV infection. PLoS Pathog 2013; 9:e1003441. [PMID: 23825945 PMCID: PMC3694849 DOI: 10.1371/journal.ppat.1003441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/06/2013] [Indexed: 12/03/2022] Open
Abstract
Studying SIV infection of natural host monkey species, such as sooty mangabeys, has provided insights into the immune changes associated with these nonprogressive infections. Mangabeys maintain immune health despite high viremia or the dramatic CD4 T cell depletion that can occur following multitropic SIV infection. Here we evaluate double-negative (DN)(CD3+CD4−CD8−) T cells that are resistant to SIV infection due to a lack of CD4 surface expression, for their potential to fulfill a role as helper T cells. We first determined that DN T cells are polyclonal and predominantly exhibit an effector memory phenotype (CD95+CD62L−). Microarray analysis of TCR (anti-CD3/CD28) stimulated DN T cells indicated that these cells are multifunctional and upregulate genes with marked similarity to CD4 T cells, such as immune genes associated with Th1 (IFNγ), Th2 (IL4, IL5, IL13, CD40L), Th17 (IL17, IL22) and TFH (IL21, ICOS, IL6) function, chemokines such as CXCL9 and CXCL10 and transcription factors known to be actively regulated in CD4 T cells. Multifunctional T-helper cell responses were maintained in DN T cells from uninfected and SIV infected mangabeys and persisted in mangabeys exhibiting SIV mediated CD4 loss. Interestingly, TCR stimulation of DN T cells from SIV infected mangabeys results in a decreased upregulation of IFNγ and increased IL5 and IL13 expression compared to uninfected mangabeys. Evaluation of proliferative capacity of DN T cells in vivo (BrDU labeling) indicated that these cells maintain their ability to proliferate despite SIV infection, and express the homeostatic cytokine receptors CD25 (IL2 receptor) and CD127 (IL7 receptor). This study identifies the potential for a CD4-negative T cell subset that is refractory to SIV infection to perform T-helper functions in mangabeys and suggests that immune therapeutics designed to increase DN T cell function during HIV infection may have beneficial effects for the host immune system. SIV infection of sooty mangabeys is generally characterized by maintained CD4 T cell levels and a lack of disease progression despite active virus replication. We have previously shown however, that dramatic loss of CD4 T cells can occur during SIV infection of mangabeys. This study investigates the potential for double negative (DN) T cells (which lack CD4 and CD8, and are refractory to SIV/HIV infection) to perform helper T cell functions. In our study, sooty mangabey DN T cells exhibited a memory phenotype and a diverse repertoire in their T cell receptors. Once stimulated, the DN T cells expressed multiple cytokines, indicating that they have the potential to function as helper T cells (a function normally undertaken by CD4+ T cells). In SIV infected mangabeys, DN T cells continue to function, proliferate in vivo, and maintain expression of homeostatic cytokine receptors on their surface. It is therefore likely that DN T cells have the potential to compensate for the loss of CD4 T cells during SIV infection. These studies indicate that increasing DN T cell levels and/or function during pathogenic HIV infection may provide one tangible component of a functional cure, and inhibit progression to clinical disease and AIDS
Collapse
Affiliation(s)
| | - Ramsey Saleem
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Luca Micci
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melanie A. Gasper
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alexandra M. Ortiz
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James Else
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - John D. Aitchison
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Donald L. Sodora
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Tabb B, Morcock DR, Trubey CM, Quiñones OA, Hao XP, Smedley J, Macallister R, Piatak M, Harris LD, Paiardini M, Silvestri G, Brenchley JM, Alvord WG, Lifson JD, Estes JD. Reduced inflammation and lymphoid tissue immunopathology in rhesus macaques receiving anti-tumor necrosis factor treatment during primary simian immunodeficiency virus infection. J Infect Dis 2013; 207:880-92. [PMID: 23087435 PMCID: PMC3571439 DOI: 10.1093/infdis/jis643] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/10/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections induce robust, generalized inflammatory responses that begin during acute infection and lead to pathological systemic immune activation, fibrotic damage of lymphoid tissues, and CD4⁺ T-cell loss, pathogenic processes that contribute to disease progression. METHODS To better understand the contribution of tumor necrosis factor (TNF), a key regulator of acute inflammation, to lentiviral pathogenesis, rhesus macaques newly infected with SIVmac239 were treated for 12 weeks in a pilot study with adalimumab (Humira), a human anti-TNF monoclonal antibody. RESULTS Adalimumab did not affect plasma SIV RNA levels or measures of T-cell immune activation (CD38 or Ki67) in peripheral blood or lymph node T cells. However, compared with untreated rhesus macaques, adalimumab-treated rhesus macaques showed attenuated expression of proinflammatory genes, decreased infiltration of polymorphonuclear cells into the T-cell zone of lymphoid tissues, and weaker antiinflammatory regulatory responses to SIV infection (ie, fewer presumed alternatively activated [ie, CD163⁺] macrophages, interleukin 10-producing cells, and transforming growth factor β-producing cells), along with reduced lymphoid tissue fibrosis and better preservation of CD4⁺ T cells. CONCLUSIONS While HIV/SIV replication drives pathogenesis, these data emphasize the contribution of the inflammatory response to lentiviral infection to overall pathogenesis, and they suggest that early modulation of the inflammatory response may help attenuate disease progression.
Collapse
Affiliation(s)
| | | | | | - Octavio A. Quiñones
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, SAIC-Frederick, Maryland
| | - Xing Pei Hao
- Statistical Consulting, Data Management Services
| | | | | | | | - Levelle D. Harris
- Immunopathogenesis Unit, Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jason M. Brenchley
- Immunopathogenesis Unit, Lab of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - W. Gregory Alvord
- Laboratory Animal Science Program, Frederick National Laboratory for Cancer Research, SAIC-Frederick, Maryland
| | | | | |
Collapse
|
24
|
Impact of mucosal inflammation on oral simian immunodeficiency virus transmission. J Virol 2012; 87:1750-8. [PMID: 23175379 DOI: 10.1128/jvi.02079-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal tissues are the primary route of transmission for most respiratory and sexually transmitted diseases, including human immunodeficiency virus (HIV). There is epidemiological evidence that genital mucosal inflammation leads to enhanced HIV type 1 (HIV-1) transmission. The objective of this study was to assess the influence of periodontal inflammation on oral HIV transmission using a nonhuman primate model of teeth ligature-induced periodontitis. Simian immunodeficiency virus (SIV) was nontraumatically applied to the gingiva after moderate gingivitis was identified through clinical and immunologic analyses (presence of inflammatory cytokines). Overall oral SIV infection rates were similar in the gingivitis-induced and control groups (5 infections following 12 SIV administrations for each), although more macaques were infected with multiple viral variants in the gingivitis group. SIV infection also affected the levels of antiviral and inflammatory cytokines in the gingival crevicular fluid, and a synergistic effect was observed, with alpha interferon and interferon-inducible protein 10 undergoing significant elevations following SIV infection in macaques with gingivitis compared to controls. These increases in antiviral and inflammatory immune modulators in the SIV-infected gingivitis macaques could also be observed in blood plasma, although the effects at both compartments were generally restricted to the acute phase of the infection. In conclusion, while moderate gingivitis was not associated with increased susceptibility to oral SIV infection, it resulted in elevated levels of cytokines in the oral mucosa and plasma of the SIV-infected macaques. These findings suggest a synergy between mucosal inflammation and SIV infection, creating an immune milieu that impacts the early stages of the SIV infection with potential implications for long-term pathogenesis.
Collapse
|
25
|
Liovat AS, Rey-Cuillé MA, Lécuroux C, Jacquelin B, Girault I, Petitjean G, Zitoun Y, Venet A, Barré-Sinoussi F, Lebon P, Meyer L, Sinet M, Müller-Trutwin M. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection. PLoS One 2012; 7:e46143. [PMID: 23056251 PMCID: PMC3462744 DOI: 10.1371/journal.pone.0046143] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
T cell activation levels, viral load and CD4(+) T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection) and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4(+) T cell counts at set-point and capable to predict 30% of the CD4(+) T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4(+) T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4(+) T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4(+) T cell counts or viremia levels.
Collapse
Affiliation(s)
- Anne-Sophie Liovat
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
- Université Paris Diderot, Paris, France
| | - Marie-Anne Rey-Cuillé
- Institut Pasteur, Unité de Recherche et d'Expertise Epidémiologie des Maladies Emergentes, Paris, France
| | - Camille Lécuroux
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Isabelle Girault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Gaël Petitjean
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Yasmine Zitoun
- INSERM U1018, Service d’Epidémiologie et de Santé Publique, AP-HP, Université Paris-Sud, Le Kremlin-Bicêtre, France
- AP-HP, Laboratoire de Virologie, CHU Necker-Enfants Malades, Paris, France
| | - Alain Venet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | - Pierre Lebon
- Hôpital Cochin-Saint-Vincent de Paul & Université Paris Descartes, Laboratoire de Virologie, Paris, France
| | - Laurence Meyer
- INSERM U1018, Service d’Epidémiologie et de Santé Publique, AP-HP, Université Paris-Sud, Le Kremlin-Bicêtre, France
- AP-HP, Laboratoire de Virologie, CHU Necker-Enfants Malades, Paris, France
| | - Martine Sinet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | |
Collapse
|
26
|
Keating SM, Jacobs ES, Norris PJ. Soluble mediators of inflammation in HIV and their implications for therapeutics and vaccine development. Cytokine Growth Factor Rev 2012; 23:193-206. [PMID: 22743035 PMCID: PMC3418433 DOI: 10.1016/j.cytogfr.2012.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
From early in the HIV epidemic it was appreciated that many inflammatory markers such as neopterin and TNF-α were elevated in patients with AIDS. With the advent of modern technology able to measure a broad array of cytokines, we now know that from the earliest points of infection HIV induces a cytokine storm. This review will focus on how cytokines are disturbed in HIV infection and will explore potential therapeutic uses of cytokines. These factors can be used directly as therapy during HIV infection, either to suppress viral replication or prevent deleterious immune effects of infection, such as CD4+ T cell depletion. Cytokines also show great promise as adjuvants in the development of HIV vaccines, which would be critical for the eventual control of the epidemic.
Collapse
Affiliation(s)
- Sheila M Keating
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA.
| | | | | |
Collapse
|
27
|
Jiao Y, Zhang T, Wang R, Zhang H, Huang X, Yin J, Zhang L, Xu X, Wu H. Plasma IP-10 Is Associated with Rapid Disease Progression in Early HIV-1 Infection. Viral Immunol 2012; 25:333-7. [PMID: 22788418 DOI: 10.1089/vim.2012.0011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Yanmei Jiao
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Jiming Yin
- Beijing Institute of Liver Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Liguo Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Xu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You-An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Simian immunodeficiency virus-induced alterations in monocyte production of tumor necrosis factor alpha contribute to reduced immune activation in sooty mangabeys. J Virol 2012; 86:7605-15. [PMID: 22553338 DOI: 10.1128/jvi.06813-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by persistent viral replication in the context of CD4(+) T cell depletion and elevated immune activation associated with disease progression. In contrast, simian immunodeficiency virus (SIV) infection of African-origin sooty mangabeys (SM) generally does not result in simian AIDS despite high viral loads and therefore affords a unique model in which to study the immunologic contributions to a nonpathogenic lentiviral disease outcome. A key feature of these natural SIV infections is the maintenance of low levels of immune activation during chronic infection. Our goal was to delineate the contribution of monocytes to maintaining low levels of immune activation in SIV-infected SM. Utilizing an ex vivo whole-blood assay, proinflammatory cytokine production was quantified in monocytes in response to multiple Toll-like receptor (TLR) ligands and a specific, significant reduction in the tumor necrosis factor alpha (TNF-α) response to lipopolysaccharide (LPS) was observed in SIV-infected SM. In contrast, monocytes from hosts of pathogenic infections (HIV-infected humans and SIV-infected Asian macaques) maintained a robust TNF-α response. In SIV-infected SM, monocyte TNF-α responses to low levels of LPS could be augmented by the presence of plasma from uninfected control animals. The impact of LPS-induced TNF-α production on immune activation was demonstrated in vitro, as TNF-α blocking antibodies inhibited downstream CD8(+) T cell activation in a dose-dependent manner. These data demonstrate an association between nonpathogenic SIV infection of SM and a reduced monocyte TNF-α response to LPS, and they identify a role for monocytes in contributing to the suppressed chronic immune activation observed in these natural hosts.
Collapse
|
29
|
A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol 2012; 5:277-87. [PMID: 22318497 DOI: 10.1038/mi.2012.7] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predominance of HIV-1 sexual transmission requires a greater understanding of the interaction between HIV-1 and the mucosal immune system. The study of HIV-1-exposed seronegative (HESN) individuals serves as a model to identify the correlates of protection and to aid in microbicide development. A total of 22 cytokines/chemokines were analyzed at the systemic and mucosal compartments in 57 HESN, 51 HIV-1-negative, and 67 HIV-1-infected commercial sex workers from Nairobi, Kenya. HESN individuals had significantly lower expression of monokine induced by interferon-γ (MIG), interferon-γ-induced protein 10 (IP-10), and interleukin-1α (IL-1α) in their genital mucosa compared with controls. HESN cytokine expression also distinctly correlates with mucosal antiproteases, suggesting that HESN individuals have a unique pattern of mucosal chemokine/cytokine expression, which may result in reduced trafficking at the mucosa. These data support the immune quiescence model of protection, whereby lower T-cell activation/recruitment at the mucosal compartment reduces HIV-1 target cell numbers and is an important component of natural protection from HIV-1.
Collapse
|
30
|
Durudas A, Chen HL, Gasper MA, Sundaravaradan V, Milush JM, Silvestri G, Johnson W, Giavedoni LD, Sodora DL. Differential innate immune responses to low or high dose oral SIV challenge in Rhesus macaques. Curr HIV Res 2012; 9:276-88. [PMID: 21861823 DOI: 10.2174/157016211797635928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/10/2011] [Accepted: 08/13/2011] [Indexed: 11/22/2022]
Abstract
Mucosal transmission of HIV predominately occurs during sexual intercourse or breast-feeding and generally results in a successful infection from just one or few founder virions. Here we assessed the impact of viral inoculum size on both viral and immune events within two groups of Rhesus macaques that were non-traumatically, orally inoculated with either multiple low (1000 to 4000 TCID(50)) or high (100,000 TCID(50)) doses of SIV. In agreement with previous studies, more diverse SIV variants were observed in macaques following infection with high dose oral SIV compared to a low dose challenge. In peripheral blood cells, the immune gene transcript levels of CXCL9, IFNγ, TNFα and IL10 remained similar to uninfected macaques. In contrast, OAS and CXCL10 were upregulated following SIV infection in both the high and low dosed macaques, with a more rapid kinetics (detectable by 7 days) following the high SIV dose challenge. In peripheral lymph nodes, an increase in CXCL10 was observed irrespective of viral dose while CXCL9 and OAS were differentially regulated in the two SIV dosed groups. Magnetic bead sorting of CD3+, CD14+ and CD3- /CD14- cells from peripheral blood identified the increase in OAS expression primarily within CD14+ monocytes, whereas the CXCL10 expression was primarily in CD3+ T cells. These findings provide insights into the impact of SIV challenge dose on viral and innate immune factors, which has the potential to inform future SIV/HIV vaccine efficacy trials in which vaccinated hosts have the potential to be infected with a range of viral challenge doses.
Collapse
Affiliation(s)
- Andre Durudas
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
32
|
A peripheral monocyte interferon phenotype in HIV infection correlates with a decrease in magnetic resonance spectroscopy metabolite concentrations. AIDS 2011; 25:1721-6. [PMID: 21750421 DOI: 10.1097/qad.0b013e328349f022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE In spite of effective antiretroviral therapy (ART), cognition is impaired in upwards of 35% of the HIV-infected population. We investigated a possible link between peripheral immune activation and brain metabolite concentrations. DESIGN AND METHODS Thirty-five HIV-seropositive (HIV+) and eight HIV-seronegative adults were recruited to this cross-sectional study. All HIV-positive patients were on ART or a treatment interruption. Participants were evaluated for monocyte gene expression, cognitive status, and brain metabolite concentrations using 4-Tesla short echo-time proton magnetic resonance spectroscopy. Absolute concentrations of brain metabolites in the frontal white matter (FWM), anterior cingulate cortex (ACC), and basal ganglia were derived and related to monocyte gene expression and global deficit scores. RESULTS Analysis of monocyte gene arrays revealed an interferon (IFN)-α-induced activation phenotype. Fourteen genes having the greatest fold increase in response to HIV were IFN genes. Monocyte activation as measured by gene expression profiles strongly correlated with lower N-acetylaspartate (NAA) in FWM. The IFN response gene Interferon-gamma inducible protein-10 (IP-10) was activated in monocytes from HIV individuals and strongly correlated with plasma protein levels. Plasma IP-10 correlated significantly and inversely with ACC NAA, which was lower in HIV-positive patients with mild compared to no cognitive impairment. CONCLUSION Chronic peripheral immune activation driven by a type 1 IFN correlates with neuronal injury in FWM and ACC and cognitive dysfunction. Easily measured IFN-induced blood markers may be clinically significant in following early neural cell damage.
Collapse
|
33
|
Laforge M, Campillo-Gimenez L, Monceaux V, Cumont MC, Hurtrel B, Corbeil J, Zaunders J, Elbim C, Estaquier J. HIV/SIV infection primes monocytes and dendritic cells for apoptosis. PLoS Pathog 2011; 7:e1002087. [PMID: 21731488 PMCID: PMC3121878 DOI: 10.1371/journal.ppat.1002087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/13/2011] [Indexed: 12/13/2022] Open
Abstract
Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection. Antigen-presenting cells (APCs) are critical for both innate and adaptive immunity. They have a profound impact on the hosts' ability to combat microbes. Dysfunction and premature death by apoptosis of APCs may contribute to an abnormal immune response unable to clear pathogens. Circulating blood monocytes exhibit developmental plasticity, with the capability of differentiating into either macrophages or dendritic cells (DCs), and they represent important cellular targets for HIV-1. We report that HIV infection renders monocytes/macrophages and DCs in vitro more prone to undergo apoptosis and this heightened susceptibility is associated with changes in the expression of anti- and pro-apoptotic molecules. Our results show that during the acute phase of SIV-infection of rhesus macaques, monocytes and DCs are more prone to die by apoptosis. They express lower levels of Mcl-1 and FLIP proteins, two anti-apoptotic molecules, but higher expression of the active form of Bax and Bak, the gatekeepers of the mitochondria, major sensor of the apoptotic machinery. Because the early events are important in the pathogenesis of this disease, early death of APCs should play a major role leading to the defective immune response. Strategies aimed at preventing death of APCs could be beneficial in helping the immune response to fight HIV-1.
Collapse
Affiliation(s)
| | | | - Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | - Bruno Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | - Jacques Corbeil
- Université Laval, Centre de Recherche en Infectiologie, Québec, Canada
| | - John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, Australia
| | - Carole Elbim
- INSERM U955, Faculté Créteil Henri Mondor, Créteil, France
- Université Paris Descartes, UMR S 872, Paris, France
| | - Jérôme Estaquier
- INSERM U955, Faculté Créteil Henri Mondor, Créteil, France
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
- Université Laval, Centre de Recherche en Infectiologie, Québec, Canada
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
- * E-mail:
| |
Collapse
|
34
|
Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, Sandler NG, Roque A, Liebner J, Battegay M, Bernasconi E, Descombes P, Erkizia I, Fellay J, Hirschel B, Miró JM, Palou E, Hoffmann M, Massanella M, Blanco J, Woods M, Günthard HF, de Bakker P, Douek DC, Silvestri G, Martinez-Picado J, Telenti A. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest 2011; 121:2391-400. [PMID: 21555857 DOI: 10.1172/jci45235] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/30/2011] [Indexed: 01/14/2023] Open
Abstract
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4⁺ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1-induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4⁺ and CD8⁺ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4⁺ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Collapse
Affiliation(s)
- Margalida Rotger
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kraft-Terry SD, Engebretsen IL, Bastola DK, Fox HS, Ciborowski P, Gendelman HE. Pulsed stable isotope labeling of amino acids in cell culture uncovers the dynamic interactions between HIV-1 and the monocyte-derived macrophage. J Proteome Res 2011; 10:2852-62. [PMID: 21500866 PMCID: PMC3108467 DOI: 10.1021/pr200124j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Dynamic interactions between human immunodeficiency virus-1 (HIV-1) and the macrophage govern the tempo of viral dissemination and replication in its human host. HIV-1 affects macrophage phenotype, and the macrophage, in turn, can modulate the viral life cycle. While these processes are linked to host–cell function and survival, the precise intracellular pathways involved are incompletely understood. To elucidate such dynamic virus–cell events, we employed pulsed stable isotope labeling of amino acids in cell culture. Alterations in de novo protein synthesis of HIV-1 infected human monocyte-derived macrophages (MDM) were examined after 3, 5, and 7 days of viral infection. Synthesis rates of cellular metabolic, regulatory, and DNA packaging activities were decreased, whereas, those affecting antigen presentation (major histocompatibility complex I and II) and interferon-induced antiviral activities were increased. Interestingly, enrichment of proteins linked to chromatin assembly or disassembly, DNA packaging, and nucleosome assembly were identified that paralleled virus-induced cytopathology and replication. We conclude that HIV-1 regulates a range of host MDM proteins that affect its survival and abilities to contain infection. Pulsed stable isotope labeling of amino acids in cell culture enables studies of alterations in human monocyte-derived macrophages (MDM) following human immunodeficiency virus type one (HIV-1) infection. De novo synthesis of HIV-1 infected MDM proteins examined 3−7 days after infection demonstrated alterations in protein synthesis kinetics linked to interferon-induced antiviral activities, DNA packaging, transcriptional regulation, and antigen presentation. These paralleled increases in viral production and cytopathicity.
Collapse
Affiliation(s)
- Stephanie D Kraft-Terry
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chatterjee N, Callen S, Seigel GM, Buch SJ. HIV-1 Tat-mediated neurotoxicity in retinal cells. J Neuroimmune Pharmacol 2011; 6:399-408. [PMID: 21274647 DOI: 10.1007/s11481-011-9257-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/11/2011] [Indexed: 11/25/2022]
Abstract
The current study was aimed at investigating the effect of HIV-1 protein Tat on the retinal neurosensory cell line R28. Exposure of Tat resulted in induction of pro-inflammatory mediators such as CXCL10 and TNF-α in addition to the activation marker GFAP in these cells. Conditioned media from Tat-treated R28 cells was able to induce monocyte migration, an effect that was blocked by CXCR3 antagonist. Complementary studies in the HIV-1 Tat-transgenic mice, showed a complete absence of the nuclear layer and the outer photoreceptor segments of the retina with a concomitant increase in glial activation. These findings lend support to the observation in post-HAART era of increased incidence of immune response-mediated retinal degeneration. These findings have direct relevance to diseases such as immune response uveitis and patients recovering from CMV retinitis.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 41 College Road, Chennai 600006, India.
| | | | | | | |
Collapse
|
37
|
Borrow P, Shattock RJ, Vyakarnam A. Innate immunity against HIV: a priority target for HIV prevention research. Retrovirology 2010; 7:84. [PMID: 20937128 PMCID: PMC2964587 DOI: 10.1186/1742-4690-7-84] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/11/2010] [Indexed: 12/21/2022] Open
Abstract
This review summarizes recent advances and current gaps in understanding of innate immunity to human immunodeficiency virus (HIV) infection, and identifies key scientific priorities to enable application of this knowledge to the development of novel prevention strategies (vaccines and microbicides). It builds on productive discussion and new data arising out of a workshop on innate immunity against HIV held at the European Commission in Brussels, together with recent observations from the literature. Increasing evidence suggests that innate responses are key determinants of the outcome of HIV infection, influencing critical events in the earliest stages of infection including the efficiency of mucosal HIV transmission, establishment of initial foci of infection and local virus replication/spread as well as virus dissemination, the ensuing acute burst of viral replication, and the persisting viral load established. They also impact on the subsequent level of ongoing viral replication and rate of disease progression. Modulation of innate immunity thus has the potential to constitute a powerful effector strategy to complement traditional approaches to HIV prophylaxis and therapy. Importantly, there is increasing evidence to suggest that many arms of the innate response play both protective and pathogenic roles in HIV infection. Consequently, understanding the contributions made by components of the host innate response to HIV acquisition/spread versus control is a critical pre-requisite for the employment of innate immunity in vaccine or microbicide design, so that appropriate responses can be targeted for up- or down-modulation. There is also an important need to understand the mechanisms via which innate responses are triggered and mediate their activity, and to define the structure-function relationships of individual innate factors, so that they can be selectively exploited or inhibited. Finally, strategies for achieving modulation of innate functions need to be developed and subjected to rigorous testing to ensure that they achieve the desired level of protection without stimulation of immunopathological effects. Priority areas are identified where there are opportunities to accelerate the translation of recent gains in understanding of innate immunity into the design of improved or novel vaccine and microbicide strategies against HIV infection.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, The Jenner Institute, Compton, Newbury, Berkshire, UK.
| | | | | | | |
Collapse
|
38
|
Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 2010; 107:16934-9. [PMID: 20837531 DOI: 10.1073/pnas.1002894107] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4(+) T cells. We now show that HIV-1 latency can be established in resting CD4(+) T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4(+) T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4(+) T cells during normal chemokine-directed recirculation of CD4(+) T cells between blood and tissue.
Collapse
|
39
|
Mogensen TH, Melchjorsen J, Larsen CS, Paludan SR. Innate immune recognition and activation during HIV infection. Retrovirology 2010; 7:54. [PMID: 20569472 PMCID: PMC2904714 DOI: 10.1186/1742-4690-7-54] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/22/2010] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, DK-8200, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
40
|
Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol 2009; 84:1838-46. [PMID: 19939930 DOI: 10.1128/jvi.01496-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Divergent Toll-like receptor 7 (TLR7) and TLR9 signaling has been proposed to distinguish pathogenic from nonpathogenic simian immunodeficiency virus infection in primate models. We demonstrate here that increased expression of type I interferon in pathogenic rhesus macaques compared to nonpathogenic African green monkeys was associated with the recruitment of plasmacytoid dendritic cells in the lymph nodes and the presence of an inflammatory environment early after infection, instead of a difference in the TLR7/9 response.
Collapse
|