1
|
Doratt BM, Malherbe DC, Messaoudi I. Transcriptional and functional remodeling of lung-resident T cells and macrophages by Simian varicella virus infection. Front Immunol 2024; 15:1408212. [PMID: 38887303 PMCID: PMC11180879 DOI: 10.3389/fimmu.2024.1408212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Varicella zoster virus (VZV) causes varicella and can reactivate as herpes zoster, and both diseases present a significant burden worldwide. However, the mechanisms by which VZV establishes latency in the sensory ganglia and disseminates to these sites remain unclear. Methods We combined a single-cell sequencing approach and a well-established rhesus macaque experimental model using Simian varicella virus (SVV), which recapitulates the VZV infection in humans, to define the acute immune response to SVV in the lung as well as compare the transcriptome of infected and bystander lung-resident T cells and macrophages. Results and discussion Our analysis showed a decrease in the frequency of alveolar macrophages concomitant with an increase in that of infiltrating macrophages expressing antiviral genes as well as proliferating T cells, effector CD8 T cells, and T cells expressing granzyme A (GZMA) shortly after infection. Moreover, infected T cells harbored higher numbers of viral transcripts compared to infected macrophages. Furthermore, genes associated with cellular metabolism (glycolysis and oxidative phosphorylation) showed differential expression in infected cells, suggesting adaptations to support viral replication. Overall, these data suggest that SVV infection remodels the transcriptome of bystander and infected lung-resident T cells and macrophages.
Collapse
Affiliation(s)
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single-cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. J Virol 2024; 98:e0019424. [PMID: 38567950 PMCID: PMC11092337 DOI: 10.1128/jvi.00194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | | | - Stacey Lapp
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Amanda Metz
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Michelle Lee
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Swati Sharma Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Rafick-Pierre Sékaly
- Emory Vaccine Center, Atlanta, Georgia, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576293. [PMID: 38293140 PMCID: PMC10827181 DOI: 10.1101/2024.01.19.576293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
|
4
|
Zhu Z, You R, Li H, Feng S, Ma H, Tuo C, Meng X, Feng S, Peng Y. Multi-omics data integration reveals the complexity and diversity of host factors associated with influenza virus infection. PeerJ 2023; 11:e16194. [PMID: 37842064 PMCID: PMC10569165 DOI: 10.7717/peerj.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Influenza viruses pose a significant and ongoing threat to human health. Many host factors have been identified to be associated with influenza virus infection. However, there is currently a lack of an integrated resource for these host factors. This study integrated human genes and proteins associated with influenza virus infections for 14 subtypes of influenza A viruses, as well as influenza B and C viruses, and built a database named H2Flu to store and organize these genes or proteins. The database includes 28,639 differentially expressed genes (DEGs), 1,850 differentially expressed proteins, and 442 proteins with differential posttranslational modifications after influenza virus infection, as well as 3,040 human proteins that interact with influenza virus proteins and 57 human susceptibility genes. Further analysis showed that the dynamic response of human cells to virus infection, cell type and strain specificity contribute significantly to the diversity of DEGs. Additionally, large heterogeneity was also observed in protein-protein interactions between humans and different types or subtypes of influenza viruses. Overall, the study deepens our understanding of the diversity and complexity of interactions between influenza viruses and humans, and provides a valuable resource for further studies on such interactions.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- College of Biology, Hunan University, Changsha, China
- School of Public Health, University of South China, Hengyang, China
| | - Ruina You
- College of Biology, Hunan University, Changsha, China
| | - Huiru Li
- College of Biology, Hunan University, Changsha, China
| | - Shuidong Feng
- School of Public Health, University of South China, Hengyang, China
| | - Huan Ma
- College of Biology, Hunan University, Changsha, China
| | - Chaohao Tuo
- College of Biology, Hunan University, Changsha, China
| | | | - Song Feng
- Xiangya Hospital, Central South University, Changsha, China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha, China
| |
Collapse
|
5
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Xu W, Zhang Z, Lai F, Yang J, Qin Q, Huang Y, Huang X. Transcriptome analysis reveals the host immune response upon LMBV infection in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108753. [PMID: 37080326 DOI: 10.1016/j.fsi.2023.108753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Largemouth bass (Micropterus salmoides) is one of the important economical freshwater aquaculture species in China. However, the outbreak of viral diseases always caused great economic losses in the largemouth bass aquaculture industry. Largemouth bass virus (LMBV), a double-stranded DNA (dsDNA) virus belonging to genus Ranavirus, family Iridoviridae causes high mortality in cultivated largemouth bass. However, host responses, especially the molecular events involved in LMBV infection still remained largely uncertain. Here, we established an in vivo model of LMBV infection, and systematically investigated the mRNA expression profiles of host genes in liver and spleen from infected largemouth bass using RNA sequencing (RNA-seq). Histopathological analysis indicated that necrotic cells and the formed necrotic focus were present in spleen, while numerous basophilic cells, hepatocytes volume shrinkage, nucleus pyknosis, and the disappeared boundary of hepatocytes were observed in the liver of infected largemouth bass. Transcriptomic analysis showed that transcription levels of 5128 genes (2804 up-regulated genes and 2324 down-regulated) in liver and 7008 genes (2603 up-regulated and 4405 down-regulated) in spleen were altered significantly. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that numerous co-regulated differentially expressed genes (DEGs) in liver and spleen were enriched in the pathways related to cell death and immune signaling, such as apoptosis, necroptosis, cytokine-cytokine receptor interaction and JAK-STAT signaling. Moreover, the DEGs specially regulated by LMBV infection in liver were significantly enriched in the KEGG pathways related to metabolism and cell death, while those in spleen were enriched in the immune related pathways. In addition, the expression changes of several randomly selected genes, such as SOCS1, IL-6, CXCL2, CASP8, CYC and TNF from qPCR were consistent with the transcriptomic data. Taken together, our findings will provide new insights into the fundamental patterns of molecular responses induced by LMBV in vivo, but also contribute greatly to understanding the host defense mechanisms against iridoviral pathogens.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zemiao Zhang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Fuxiang Lai
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jiahui Yang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Kia V, Eshaghi-Gorji R, Mansour RN, Hassannia H, Hasanzadeh E, Gheibi M, Mellati A, Enderami SE. Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment. Curr Stem Cell Res Ther 2023; 18:35-53. [PMID: 35473518 DOI: 10.2174/1574888x17666220426115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
In December 2019, a betacoronavirus was isolated from pneumonia cases in China and rapidly turned into a pandemic of COVID-19. The virus is an enveloped positive-sense ssRNA and causes a severe respiratory syndrome along with a cytokine storm, which is the main cause of most complications. Therefore, treatments that can effectively control the inflammatory reactions are necessary. Mesenchymal Stromal Cells and their EVs are well-known for their immunomodulatory effects, inflammation reduction, and regenerative potentials. These effects are exerted through paracrine secretion of various factors. Their EVs also transport various molecules such as microRNAs to other cells and affect recipient cells' behavior. Scores of research and clinical trials have indicated the therapeutic potential of EVs in various diseases. EVs also seem to be a promising approach for severe COVID-19 treatment. EVs have also been used to develop vaccines since EVs are biocompatible nanoparticles that can be easily isolated and engineered. In this review, we have focused on the use of Mesenchymal Stromal Cells and their EVs for the treatment of COVID-19, their therapeutic capabilities, and vaccine development.
Collapse
Affiliation(s)
- Vahid Kia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobina Gheibi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Huang H, Fang Y, Jiang M, Zhang Y, Biermann J, Melms JC, Danielsson JA, Yang Y, Qiang L, Liu J, Zhou Y, Wang M, Hu Z, Wang TC, Saqi A, Sun J, Matsumoto I, Cardoso WV, Emala CW, Zhu J, Izar B, Mou H, Que J. Contribution of Trp63CreERT2-labeled cells to alveolar regeneration is independent of tuft cells. eLife 2022; 11:e78217. [PMID: 36129169 PMCID: PMC9553211 DOI: 10.7554/elife.78217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infection often causes severe damage to the lungs, leading to the appearance of ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far, the roles of these ectopic epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor functions have been suggested in other organs, pulmonary tuft cells don't proliferate or give rise to other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2-labeled ectopic EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated post-viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases the contribution of Trp63CreERT2-labeled cells to the alveolar epithelium. Although Trpm5 is known to regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration through a mechanism independent of tuft cells.
Collapse
Affiliation(s)
- Huachao Huang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Ming Jiang
- Institute of Genetics, the Children's Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jana Biermann
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jennifer A Danielsson
- Department of Anesthesiology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Li Qiang
- Department of Pathology & Cell Biology, Columbia University Medical CenterNew YorkUnited States
| | - Jia Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and TechnologyWuhanChina
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of SciencesWuhanChina
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Anjali Saqi
- Department of Pathology & Cell Biology, Columbia University Medical CenterNew YorkUnited States
| | - Jie Sun
- Carter Immunology Center, the University of VirginiaCharlottesvilleUnited States
| | | | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Charles W Emala
- Department of Anesthesiology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Zhu
- Department of Pathology, Ohio State University College of MedicineColumbusUnited States
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Columbia Center for Translational Immunology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| |
Collapse
|
9
|
Guo X, Wang W, Zheng Q, Qin Q, Huang Y, Huang X. Comparative transcriptomic analysis reveals different host cell responses to Singapore grouper iridovirus and red-spotted grouper nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:136-147. [PMID: 35921938 DOI: 10.1016/j.fsi.2022.07.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) are important pathogens that cause high mortality and heavy economic losses in grouper aquaculture. Interestingly, SGIV infection in grouper cells induces paraptosis-like cell death, while RGNNV infection induces autophagy and necrosis characterized morphologically by vacuolation of lysosome. Here, a comparative transcriptomic analysis was carried out to identify the different molecular events during SGIV and RGNNV infection in grouper spleen (EAGS) cells. The functional enrichment analysis of DEGs suggested that several signaling pathways were involved in CPE progression and host immune response against SGIV or RGNNV. Most of DEGs featured in the KEGG "lysosome pathway" were up-regulated in RGNNV-infected cells, indicating that RGNNV induced lysosomal vacuolization and autophagy might be due to the disturbance of lysosomal function. More than 100 DEGs in cytoskeleton pathway and mitogen-activated protein kinase (MAPK) signal pathway were identified during SGIV infection, providing additional evidence for the roles of cytoskeleton remodeling in cell rounding during CPE progression and MAPK signaling in SGIV induced cell death. Of note, consistent with changes at the transcriptional levels, the post-translational modifications of MAPK signaling-related proteins were also detected during RGNNV infection, and the inhibitors of extracellular signal-regulated kinase (ERK) and p38 MAPK significantly suppressed viral replication and virus induced vacuoles formation. Moreover, the majority of DEGs in interferon and inflammation signaling were obviously up-regulated during RGNNV infection, but down-regulated during SGIV infection, suggesting that SGIV and RGNNV differently manipulated host immune response in vitro. In addition, purine and pyrimidine metabolism pathways were also differently regulated in SGIV and RGNNV-infection cells. Taken together, our data will provide new insights into understanding the potential mechanisms underlying different host cell responses against fish DNA and RNA virus.
Collapse
Affiliation(s)
- Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Li YE, Ajoolabady A, Dhanasekaran M, Ren J. Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacol Res 2022; 182:106334. [PMID: 35779816 PMCID: PMC9242686 DOI: 10.1016/j.phrs.2022.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) infection evokes severe proinflammatory storm and pulmonary infection with the number of confirmed cases (more than 200 million) and mortality (5 million) continue to surge globally. A number of vaccines (e.g., Moderna, Pfizer, Johnson/Janssen and AstraZeneca vaccines) have been developed over the past two years to restrain the rapid spread of COVID-19. However, without much of effective drug therapies, COVID-19 continues to cause multiple irreversible organ injuries and is drawing intensive attention for cell therapy in the management of organ damage in this devastating COVID-19 pandemic. For example, mesenchymal stem cells (MSCs) have exhibited promising results in COVID-19 patients. Preclinical and clinical findings have favored the utility of stem cells in the management of COVID-19-induced adverse outcomes via inhibition of cytokine storm and hyperinflammatory syndrome with coinstantaneous tissue regeneration capacity. In this review, we will discuss the existing data with regards to application of stem cells for COVID-19.
Collapse
Affiliation(s)
- Yiran E Li
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Debnath N, Kumar A, Yadav AK. Probiotics as a biotherapeutics for the management and prevention of respiratory tract diseases. Microbiol Immunol 2022; 66:277-291. [DOI: 10.1111/1348-0421.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology Central University of Jammu Samba 181143 Jammu and Kashmir (UT) India
| | - Ashwani Kumar
- Department of Nutrition Biology Central University of Haryana, Mahendergarh Jant‐Pali 123031 Haryana India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology Central University of Jammu Samba 181143 Jammu and Kashmir (UT) India
| |
Collapse
|
12
|
Before the "cytokine storm": Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev 2022; 63:108-118. [PMID: 35039221 PMCID: PMC8741331 DOI: 10.1016/j.cytogfr.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the “cytokine storm” which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Collapse
|
13
|
Sanie-Jahromi F, NejatyJahromy Y, Jahromi RR. A Review on the Role of Stem Cells against SARS-CoV-2 in Children and Pregnant Women. Int J Mol Sci 2021; 22:11787. [PMID: 34769218 PMCID: PMC8584228 DOI: 10.3390/ijms222111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Since the COVID-19 outbreak was acknowledged by the WHO on 30 January 2020, much research has been conducted to unveil various features of the responsible SARS-CoV-2 virus. Different rates of contagion in adults, children, and pregnant women may guide us to understand the underlying infection conditions of COVID-19. In this study, we first provide a review of recent reports of COVID-19 clinical outcomes in children and pregnant women. We then suggest a mechanism that explains the curious case of COVID-19 in children/pregnant women. The unique stem cell molecular signature, as well as the very low expression of angiotensin-converting enzyme 2 and the lower ACE/ACE2 ratio in stem cells of children/pregnant women compared to adults might be the cause of milder symptoms of COVID-19 in them. This study provides the main molecular keys on how stem cells can function properly and exert their immunomodulatory and regenerative effects in COVID-19-infected children/pregnant women, while failing to replicate their role in adults. This can lay the groundwork for both predicting the pattern of spread and severity of the symptoms in a population and designing novel stem cell-based treatment and prevention strategies for COVID-19.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz 7134997446, Iran;
| | - Yaser NejatyJahromy
- Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53012 Bonn, Germany
| | - Rahim Raoofi Jahromi
- Department of Infectious Disease, Peymanieh Hospital, Jahrom University of Medical Science, Jahrom 7414846199, Iran
| |
Collapse
|
14
|
Puri A, Bajpai S, Meredith S, Aravind L, Krause PJ, Kumar S. Babesia microti: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Front Microbiol 2021; 12:697669. [PMID: 34539601 PMCID: PMC8446681 DOI: 10.3389/fmicb.2021.697669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, CT, United States
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
15
|
Rasmi Y, Babaei G, Nisar MF, Noreen H, Gholizadeh-Ghaleh Aziz S. Revealed pathophysiological mechanisms of crosslinking interaction of affected vital organs in COVID-19. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:1005-1021. [PMID: 34539310 PMCID: PMC8432959 DOI: 10.1007/s00580-021-03269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is one of the main serious challenges of human societies, which emerged in December 2019 from China and quickly extends to all parts of the world. The virus was previously believed to only affect the lungs and respiratory system, but subsequent research has revealed that it affects a variety of organs. For this reason, this disease is known as a multiorgan disease. Current article aimed to highlight latest information and updates about molecular studies regarding pathogenesis of SARS-CoV-2 in kidney, liver, and cardiovascular and respiratory systems, as well as the mechanisms of interaction of these organs with each other to cause clinical manifestations in patients.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia Medical Sciences University (UMSU), Urmia, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia Medical Sciences University (UMSU), Urmia, Iran
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100 Pakistan
| | - Hina Noreen
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100 Pakistan
| | | |
Collapse
|
16
|
Multilevel systems biology analysis of lung transcriptomics data identifies key miRNAs and potential miRNA target genes for SARS-CoV-2 infection. Comput Biol Med 2021; 135:104570. [PMID: 34157472 PMCID: PMC8197616 DOI: 10.1016/j.compbiomed.2021.104570] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
Background The spread of a novel severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has affected both the public health and the global economy. The current study was aimed at analysing the genetic sequence of this highly contagious corona virus from an evolutionary perspective, comparing the genetic variation features of different geographic strains, and identifying the key miRNAs as well as their gene targets from the transcriptome data of infected lung tissues. Methods A multilevel robust computational analysis was undertaken for viral genetic sequence alignment, phylogram construction, genome-wide transcriptome data interpretation of virus-infected lung tissues, miRNA mapping, and functional biology networking. Results Our findings show both genetic similarities as well as notable differences in the S protein length among SARS-CoV-1, SARS-CoV-2 and MERS viruses. All SARS-CoV-2 strains showed a high genetic similarity with the parent Wuhan strain, but Saudi Arabian, South African, USA, Russia and New Zealand strains carry 3 additional genetic variations like P333L (RNA -dependant RNA polymerase), D614G (spike), and P4715L (ORF1ab). The infected lung tissues demonstrated the upregulation of 282 (56.51%) antiviral defensive response pathway genes and downregulation of 217 (43.48%) genes involved in autophagy and lung repair pathways. By miRNA mapping, 4 key miRNAs (hsa-miR-342-5p, hsa-miR-432-5p, hsa-miR-98-5p and hsa-miR-17-5p), targeting multiple host genes (MYC, IL6, ICAM1 and VEGFA) as well as SARS-CoV2 gene (ORF1ab) were identified. Conclusion Systems biology methods offer a new perspective in understanding the molecular basis for the faster spread of SARS-CoV-2 infection. The antiviral miRNAs identified in this study may aid in the ongoing search for novel personalized therapeutic avenues for COVID patients.
Collapse
|
17
|
Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226:108712. [PMID: 33684527 PMCID: PMC7935675 DOI: 10.1016/j.clim.2021.108712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
In the past year, an emerging disease called Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been discovered in Wuhan, China, which has become a worrying pandemic and has challenged the world health system and economy. SARS-CoV-2 enters the host cell through a specific receptor (Angiotensin-converting enzyme 2) expressed on epithelial cells of various tissues. The virus, by inducing cell apoptosis and production of pro-inflammatory cytokines, generates as cytokine storm, which is the major cause of mortality in the patients. This type of response, along with responses by other immune cell, such as alveolar macrophages and neutrophils causes extensive damage to infected tissue. Newly, a novel cell-based therapy by Mesenchymal stem cell (MSC) as well as by their exosomes has been developed for treatment of COVID-19 that yielded promising outcomes. In this review study, we discuss the characteristics and benefits of MSCs therapy as well as MSC-secreted exosome therapy in treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Meruyert Dauletova
- Department of Propaedeutics and Internal Medicine, Akhmet Yassawi Internationl Kazakh-Turkish University, Turkistan, Kazakhstan
| | - Hafsan Hafsan
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, South Sulawesi, Indonesia
| | - Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Raghav A, Khan ZA, Upadhayay VK, Tripathi P, Gautam KA, Mishra BK, Ahmad J, Jeong GB. Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells 2021; 10:587. [PMID: 33799966 PMCID: PMC8001291 DOI: 10.3390/cells10030587] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome-CoV-2 (SARS-CoV-2) is responsible for COVID-19 infection. The COVID-19 pandemic represents one of the worst global threats in the 21st century since World War II. This pandemic has led to a worldwide economic recession and crisis due to lockdown. Biomedical researchers, pharmaceutical companies, and premier institutes throughout the world are claiming that new clinical trials are in progress. During the severe phase of this disease, mechanical ventilators are used to assist in the management of outcomes; however, their use can lead to the development of pneumonia. In this context, mesenchymal stem cell (MSC)-derived exosomes can serve as an immunomodulation treatment for COVID-19 patients. Exosomes possess anti-inflammatory, pro-angiogenic, and immunomodulatory properties that can be explored in an effort to improve the outcomes of SARS-CoV-2-infected patients. Currently, only one ongoing clinical trial (NCT04276987) is specifically exploring the use of MSC-derived exosomes as a therapy to treat SARS-CoV-2-associated pneumonia. The purpose of this review is to provide insights of using exosomes derived from mesenchymal stem cells in management of the co-morbidities associated with SARS-CoV-2-infected persons in direction of improving their health outcome. There is limited knowledge of using exosomes in SARS-CoV-2; the clinicians and researchers should exploit exosomes as therapeutic regime.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Zeeshan Ahmad Khan
- Department of Bioengineering, Korea University of Technology and Education, Cheonan-si 31253, Korea;
| | | | - Prashant Tripathi
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Kirti Amresh Gautam
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Brijesh Kumar Mishra
- Department of Endocrinology, UCMS, GTB Hospital, Dilshad Garden, Delhi 110095, India;
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Korea
| |
Collapse
|
19
|
Chugh RM, Bhanja P, Norris A, Saha S. Experimental Models to Study COVID-19 Effect in Stem Cells. Cells 2021; 10:E91. [PMID: 33430424 PMCID: PMC7827246 DOI: 10.3390/cells10010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
| | - Andrew Norris
- BCN Bio Sciences, Pasadena, CA 91107, USA;
- David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.M.C.); (P.B.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Asghar M, Din M, Waris A, Yasin MT, Zohra T, Zia M. COVID-19 and the 1918 influenza pandemics: a concise overview and lessons from the past. OPEN HEALTH 2021; 2:40-49. [DOI: 10.1515/openhe-2021-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was first reported in December, 2019, in Wuhan, China. Even the public health sector experts could not anticipate that the virus would spread rapidly to create the worst worldwide crisis in more than a century. The World Health Organization (WHO) declared COVID-19 a public health emergency on January 30, 2020, but it was not until March 11, 2020 that the WHO declared it a global pandemic. The epidemiology of SARS-CoV-2 is different from the SARS coronavirus outbreak in 2002 and the Middle East Respiratory Syndrome (MERS) in 2012; therefore, neither SARS nor MERS could be used as a suitable model for foreseeing the future of the current pandemic. The influenza pandemic of 1918 could be referred to in order to understand and control the COVID-19 pandemic. Although influenza and the SARS-CoV-2 are from different families of viruses, they are similar in that both silently attacked the world and the societal and political responses to both pandemics have been very much alike. Previously, the 1918 influenza pandemic and unpredictability of the second wave caused distress among people as the first wave of that outbreak (so-called Spanish flu) proved to be relatively mild compared to a much worse second wave, followed by smaller waves. As of April, 2021, the second wave of COVID-19 has occurred around the globe, and future waves may also be expected, if the total population of the world is not vaccinated. This article aims to highlight the key similarities and differences in both pandemics. Similarly, lessons from the previous pan-demics and various possibilities for the future course of COVID-19 are also highlighted.
Collapse
Affiliation(s)
- Madiha Asghar
- Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Misbahud Din
- Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Abdul Waris
- Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | | | - Tanzeel Zohra
- Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Zia
- Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
21
|
Oladejo BO, Adeboboye CF, Adebolu TT. Understanding the genetic determinant of severity in viral diseases: a case of SARS-Cov-2 infection. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:77. [PMID: 38624552 PMCID: PMC7773422 DOI: 10.1186/s43042-020-00122-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Numerous research studies have identified specific human gene variants that affect enhanced susceptibility to viral infections. More recently is the current pandemic where the SARS-CoV-2 infection has shown a high degree of person-to-person clinical variability. A wide range of disease severity occurs in the patients' experiences, from asymptomatic cases, mild infections to serious life threatening conditions requiring admission into the intensive care unit (ICU). Main body of the abstract Although, it is generally reported that age and co-morbidities contribute significantly to the variations in the clinical outcome of the scourge of COVID-19, a hypothetical question of the possibility of genetic involvement in the susceptibility and severity of the disease arose when some unique severe outcomes were seen among young patients with no co-morbidity. The role human genetics play in clinical response to the viral infections is scarcely understood; however, several ongoing researches all around the world are currently focusing on possible genetic factors. This review reports the possible genetic factors that have been widely studied in defining the severity of viral infections using SARS-CoV-2 as a case study. These involve the possible involvements of ACE2, HLA, and TLR genes such as TLR7 and TLR3 in the presentation of a more severe condition. Short conclusion Understanding these variations could help to inform efforts to identify people at increased risk of infection outbreaks through genetic diagnosis of infections by locating disease genes or mutations that predispose patients to severe infection. This will also suggest specific targets for therapy and prophylaxis.
Collapse
|
22
|
Host factors involved in influenza virus infection. Emerg Top Life Sci 2020; 4:389-398. [PMID: 33210707 DOI: 10.1042/etls20200232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Influenza virus causes an acute febrile respiratory disease in humans that is commonly known as 'flu'. Influenza virus has been around for centuries and is one of the most successful, and consequently most studied human viruses. This has generated tremendous amount of data and information, thus it is pertinent to summarise these for, particularly interdisciplinary readers. Viruses are acellular organisms and exist at the interface of living and non-living. Due to this unique characteristic, viruses require another organism, i.e. host to survive. Viruses multiply inside the host cell and are obligate intracellular pathogens, because their relationship with the host is almost always harmful to host. In mammalian cells, the life cycle of a virus, including influenza is divided into five main steps: attachment, entry, synthesis, assembly and release. To complete these steps, some viruses, e.g. influenza utilise all three parts - plasma membrane, cytoplasm and nucleus, of the cell; whereas others, e.g. SARS-CoV-2 utilise only plasma membrane and cytoplasm. Hence, viruses interact with numerous host factors to complete their life cycle, and these interactions are either exploitative or antagonistic in nature. The host factors involved in the life cycle of a virus could be divided in two broad categories - proviral and antiviral. This perspective has endeavoured to assimilate the information about the host factors which promote and suppress influenza virus infection. Furthermore, an insight into host factors that play a dual role during infection or contribute to influenza virus-host adaptation and disease severity has also been provided.
Collapse
|
23
|
Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health 2020; 13:1619-1629. [PMID: 32718895 PMCID: PMC7359800 DOI: 10.1016/j.jiph.2020.07.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system protects against viruses and diseases and produces antibodies to kill pathogens. This review presents a brief overview of the immune system regarding its protection of the human body from COVID-19; illustrates the process of the immune system, how it works, and its mechanism to fight virus; and presents information on the most recent COVID-19 treatments and experimental data. Various types of potential challenges for the immunes system are also discussed. At the end of the article, foods to consume and avoid are suggested, and physical exercise is encouraged. This article can be used worldwide as a state of the art in this critical moment for promising alternative solutions related to surviving the coronavirus.
Collapse
Affiliation(s)
- Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1707, Bangladesh.
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh.
| | - Mohammod Abul Kashem
- Department of Computer Science and Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1707,Bangladesh.
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Gazipur 1707, Bangladesh.
| | - Ashraful Alam
- University of South Asia, House 76 & 78, Rd No.14, Dhaka 1212, Bangladesh.
| |
Collapse
|
24
|
Bhatia R, Ganti SS, Narang RK, Rawal RK. Strategies and Challenges to Develop Therapeutic Candidates against COVID-19 Pandemic. Open Virol J 2020. [DOI: 10.2174/1874357902014010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, Kaufman DA. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler Thromb Vasc Biol 2020; 40:2586-2597. [PMID: 32960072 PMCID: PMC7571846 DOI: 10.1161/atvbaha.120.314515] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 emerged as a serious human pathogen in late 2019, causing the disease coronavirus disease 2019 (COVID-19). The most common clinical presentation of severe COVID-19 is acute respiratory failure consistent with the acute respiratory distress syndrome. Airway, lung parenchymal, pulmonary vascular, and respiratory neuromuscular disorders all feature in COVID-19. This article reviews what is known about the effects of severe acute respiratory syndrome coronavirus-2 infection on different parts of the respiratory system, clues to understanding the underlying biology of respiratory disease, and highlights current and future translation and clinical research questions.
Collapse
Affiliation(s)
- Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - Annemijn H Jonkman
- Keenan Centre for Biomedical Research, Critical Care Department, St. Michael's Hospital, Toronto, Canada (A.H.J.).,Department of Intensive Care Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands (A.H.J.)
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - John S Munger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| | - David A Kaufman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU School of Medicine (S.B.B., M.C.K., J.S.M., D.A.K.)
| |
Collapse
|
26
|
Nicolas De Lamballerie C, Pizzorno A, Dubois J, Padey B, Julien T, Traversier A, Carbonneau J, Orcel E, Lina B, Hamelin ME, Roche M, Textoris J, Boivin G, Legras-Lachuer C, Terrier O, Rosa-Calatrava M. Human Respiratory Syncytial Virus-Induced Immune Signature of Infection Revealed by Transcriptome Analysis of Clinical Pediatric Nasopharyngeal Swab Samples. J Infect Dis 2020; 223:1052-1061. [PMID: 32726438 DOI: 10.1093/infdis/jiaa468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/24/2020] [Indexed: 11/12/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) constitutes one the main causes of respiratory infection in neonates and infants worldwide. Transcriptome analysis of clinical samples using high-throughput technologies remains an important tool to better understand virus-host complex interactions in the real-life setting but also to identify new diagnosis/prognosis markers or therapeutics targets. A major challenge when exploiting clinical samples such as nasal swabs, washes, or bronchoalveolar lavages is the poor quantity and integrity of nucleic acids. In this study, we applied a tailored transcriptomics workflow to exploit nasal wash samples from children who tested positive for HRSV. Our analysis revealed a characteristic immune signature as a direct reflection of HRSV pathogenesis and highlighted putative biomarkers of interest such as IP-10, TMEM190, MCEMP1, and TIMM23.
Collapse
Affiliation(s)
- Claire Nicolas De Lamballerie
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,Viroscan3D SAS, Lyon, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Dubois
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Thomas Julien
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélien Traversier
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Julie Carbonneau
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | | | - Bruno Lina
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Marie-Eve Hamelin
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | | | - Julien Textoris
- Pathophysiology of Injury-Induced Immunosuppression, Hospices Civils de Lyon, bioMérieux, Université Claude Bernard Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Guy Boivin
- Research Center in Infectious Diseases, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, Quebec, Canada
| | - Catherine Legras-Lachuer
- Viroscan3D SAS, Lyon, France.,Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France.,VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Saha A, Saha B. Novel coronavirus SARS-CoV-2 (Covid-19) dynamics inside the human body. Rev Med Virol 2020; 30:e2140. [PMID: 32686248 PMCID: PMC7404608 DOI: 10.1002/rmv.2140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
Abstract
A knowledge‐based cybernetic framework model representing the dynamics of SARS‐CoV‐2 inside the human body has been studied analytically and in silico to explore the pathophysiologic regulations. The following modeling methodology was developed as a platform to introduce a predictive tool supporting a therapeutic approach to Covid‐19 disease. A time‐dependent nonlinear system of ordinary differential equations model was constructed involving type‐I cells, type‐II cells, SARS‐CoV‐2 virus, inflammatory mediators, interleukins along with host pulmonary gas exchange rate, thermostat control, and mean pressure difference. This formalism introduced about 17 unknown parameters. Estimating these unknown parameters requires a mathematical association with the in vivo sparse data and the dynamic sensitivities of the model. The cybernetic model can simulate a dynamic response to the reduced pulmonary alveolar gas exchange rate, thermostat control, and mean pressure difference under a very critical condition based on equilibrium (steady state) values of the inflammatory mediators and system parameters. In silico analysis of the current cybernetical approach with system dynamical modeling can provide an intellectual framework to help experimentalists identify more active therapeutic approaches.
Collapse
Affiliation(s)
- Asit Saha
- The Lambda Academy of Science, Success, Western Australia, Australia
| | - Barsha Saha
- The Lambda Academy of Science, Success, Western Australia, Australia
| |
Collapse
|
28
|
Stairiker CJ, van Meurs M, Leon LG, Brouwers-Haspels AA, Rijsbergen L, Mueller YM, Katsikis PD. Heatr9 is an infection responsive gene that affects cytokine production in alveolar epithelial cells. PLoS One 2020; 15:e0236195. [PMID: 32678841 PMCID: PMC7367486 DOI: 10.1371/journal.pone.0236195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
During infection, viruses enter susceptible host cells in order to replicate their components for production of new virions. In the process of infection, the gene expression of infected cells undergoes changes because of the production of viral components and due to the host response from detection of viral products. In the advent of RNA sequencing, the discovery of new genes and their functions in the host response generates new avenues for interventions in the host-pathogen interaction. We have identified a novel gene, Heatr9, as a virus and cytokine inducible viral responsive gene. We confirm Heatr9’s expression in vitro and in vivo during virus infection and correlate it with viral burden. Heatr9 is induced by influenza virus and RSV. Heatr9 knockdown during viral infection was shown to affect chemokine expression. Our studies identify Heatr9 as a novel inflammatory and virus infection induced gene that can regulate the induction of specific cytokines.
Collapse
Affiliation(s)
- Christopher J. Stairiker
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leticia G. Leon
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A. A. Brouwers-Haspels
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laurine Rijsbergen
- Department of Virology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
30
|
Mason RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L115-L120. [PMID: 32493030 PMCID: PMC7347958 DOI: 10.1152/ajplung.00126.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
COVID-19 can be divided into three clinical stages, and one can speculate that these stages correlate with where the infection resides. For the asymptomatic phase, the infection mostly resides in the nose, where it elicits a minimal innate immune response. For the mildly symptomatic phase, the infection is mostly in the pseudostratified epithelium of the larger airways and is accompanied by a more vigorous innate immune response. In the conducting airways, the epithelium can recover from the infection, because the keratin 5 basal cells are spared and they are the progenitor cells for the bronchial epithelium. There may be more severe disease in the bronchioles, where the club cells are likely infected. The devastating third phase is in the gas exchange units of the lung, where ACE2-expressing alveolar type II cells and perhaps type I cells are infected. The loss of type II cells results in respiratory insufficiency due to the loss of pulmonary surfactant, alveolar flooding, and possible loss of normal repair, since type II cells are the progenitors of type I cells. The loss of type I and type II cells will also block normal active resorption of alveolar fluid. Subsequent endothelial damage leads to transudation of plasma proteins, formation of hyaline membranes, and an inflammatory exudate, characteristic of ARDS. Repair might be normal, but if the type II cells are severely damaged alternative pathways for epithelial repair may be activated, which would result in some residual lung disease.
Collapse
|
31
|
Bedford JG, Infusini G, Dagley LF, Villalon-Letelier F, Zheng MZM, Bennett-Wood V, Reading PC, Wakim LM. Airway Exosomes Released During Influenza Virus Infection Serve as a Key Component of the Antiviral Innate Immune Response. Front Immunol 2020; 11:887. [PMID: 32477358 PMCID: PMC7236881 DOI: 10.3389/fimmu.2020.00887] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by cells that have an important biological function in intercellular communication by transferring biologically active proteins, lipids, and RNAs to neighboring or distant cells. While a role for exosomes in antimicrobial defense has recently emerged, currently very little is known regarding the nature and functional relevance of exosomes generated in vivo, particularly during an active viral infection. Here, we characterized exosomes released into the airways during influenza virus infection. We show that these vesicles dynamically change in protein composition over the course of infection, increasing expression of host proteins with known anti-influenza activity, and viral proteins with the potential to trigger host immune responses. We show that exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigen that can be utilized by antigen presenting cells to drive the induction of a cellular immune response. Moreover, we show that attachment factors for influenza virus, namely α2,3 and α2,6-linked sialic acids, are present on the surface of airway exosomes and these vesicles have the ability to neutralize influenza virus, thereby preventing the virus from binding and entering target cells. These data reveal a novel role for airway exosomes in the antiviral innate immune defense against influenza virus infection.
Collapse
Affiliation(s)
- James G Bedford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Giuseppe Infusini
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura F Dagley
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ming Z M Zheng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020; 55:13993003.00607-2020. [PMID: 32269085 PMCID: PMC7144260 DOI: 10.1183/13993003.00607-2020] [Citation(s) in RCA: 499] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
COVID-19 is a major health concern and can be devastating, especially for the elderly. COVID-19 is the disease caused by SARS-CoV2 the virus. Although much is known about the mortality of the clinical disease, much less is known about its pathobiology. Although details of the cellular responses to this virus are not known, a probable course of events can be postulated based on past studies with SARS-CoV. A cellular biology perspective is useful for framing research questions and explaining the clinical course by focusing on the areas of the respiratory tract that are involved. Based on the cells that are likely infected, COVID-19 can be divided into three phases that correspond to different clinical stages of the disease [1]. COVID-19 can be understood by the region of the lung that is infected. Mild disease will be confined to the conducting airways and severe disease will involve the gas exchange portion of the lung.
Collapse
Affiliation(s)
- Robert J Mason
- National Jewish Health, Dept of Medicine, Denver, CO, USA
| |
Collapse
|
33
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
34
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Metabolomic Analysis of Influenza A Virus A/WSN/1933 (H1N1) Infected A549 Cells during First Cycle of Viral Replication. Viruses 2019; 11:v11111007. [PMID: 31683654 PMCID: PMC6893833 DOI: 10.3390/v11111007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) has developed strategies to utilize host metabolites which, after identification and isolation, can be used to discover the value of immunometabolism. During this study, to mimic the metabolic processes of influenza virus infection in human cells, we infect A549 cells with H1N1 (WSN) influenza virus and explore the metabolites with altered levels during the first cycle of influenza virus infection using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometer (UHPLC-Q-TOF MS) technology. We annotate the metabolites using MetaboAnalyst and the Kyoto Encyclopedia of Genes and Genomes pathway analyses, which reveal that IAV regulates the abundance of the metabolic products of host cells during early infection to provide the energy and metabolites required to efficiently complete its own life cycle. These metabolites are correlated with the tricarboxylic acid (TCA) cycle and mainly are involved in purine, lipid, and glutathione metabolisms. Concurrently, the metabolites interact with signal receptors in A549 cells to participate in cellular energy metabolism signaling pathways. Metabonomic analyses have revealed that, in the first cycle, the virus not only hijacks cell metabolism for its own replication, but also affects innate immunity, indicating a need for further study of the complex relationship between IAV and host cells.
Collapse
|
36
|
Kumova OK, Fike AJ, Thayer JL, Nguyen LT, Mell JC, Pascasio J, Stairiker C, Leon LG, Katsikis PD, Carey AJ. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 2019; 15:e1008072. [PMID: 31603951 PMCID: PMC6808501 DOI: 10.1371/journal.ppat.1008072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/23/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Adam J. Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Jillian L. Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Linda T. Nguyen
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joshua Chang Mell
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Christopher Stairiker
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leticia G. Leon
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Characterization of cellular transcriptomic signatures induced by different respiratory viruses in human reconstituted airway epithelia. Sci Rep 2019; 9:11493. [PMID: 31391513 PMCID: PMC6685967 DOI: 10.1038/s41598-019-48013-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022] Open
Abstract
Acute respiratory infections, a large part being of viral origin, constitute a major public health issue. To propose alternative and/or new therapeutic approaches, it is necessary to increase our knowledge about the interactions between respiratory viruses and their primary cellular targets using the most biologically relevant experimental models. In this study, we used RNAseq to characterize and compare the transcriptomic signature of infection induced by different major respiratory viruses (Influenza viruses, hRSV and hMPV) in a model of reconstituted human airway epithelia. Our results confirm the importance of several cellular pathways commonly or specifically induced by these respiratory viruses, such as the innate immune response or antiviral defense. A very interesting common feature revealed by the global virogenomic signature shared between hRSV, hMPV and influenza viruses is the global downregulation of cilium-related gene expression, in good agreement with experimental evaluation of mucociliary clearance. Beyond providing new information about respiratory virus/host interactions, our study also underlines the interest of using biologically relevant experimental models to study human respiratory viruses.
Collapse
|
38
|
Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. J Virol 2019; 93:JVI.01986-18. [PMID: 30626665 DOI: 10.1128/jvi.01986-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Airway epithelial cells and macrophages differ markedly in their responses to influenza A virus (IAV) infection. To investigate transcriptional responses underlying these differences, purified subsets of type II airway epithelial cells (ATII) and alveolar macrophages (AM) recovered from the lungs of mock- or IAV-infected mice at 9 h postinfection were subjected to RNA sequencing. This time point was chosen to allow for characterization of cell types first infected with the virus inoculum, prior to multicycle virus replication and the infiltration of inflammatory cells into the airways. In the absence of infection, AM predominantly expressed genes related to immunity, whereas ATII expressed genes consistent with their physiological roles in the lung. Following IAV infection, AM almost exclusively activated cell-intrinsic antiviral pathways that were dependent on interferon (IFN) regulatory factor 3/7 (IRF3/7) and/or type I IFN signaling. In contrast, IAV-infected ATII activated a broader range of physiological responses, including cell-intrinsic antiviral pathways, which were both independent of and dependent on IRF3/7 and/or type I IFN. These data suggest that transcriptional profiles hardwired during development are a major determinant underlying the different responses of ATII and AM to IAV infection.IMPORTANCE Airway epithelial cells (AEC) and airway macrophages (AM) represent major targets of influenza A virus (IAV) infection in the lung, yet the two cell types respond very differently to IAV infection. We have used RNA sequencing to define the host transcriptional responses in each cell type under steady-state conditions as well as following IAV infection. To do this, different cell subsets isolated from the lungs of mock- and IAV-infected mice were subjected to RNA sequencing. Under steady-state conditions, AM and AEC express distinct transcriptional activities, consistent with distinct physiological roles in the airways. Not surprisingly, these cells also exhibited major differences in transcriptional responses following IAV infection. These studies shed light on how the different transcriptional architectures of airway cells from two different lineages drive transcriptional responses to IAV infection.
Collapse
|