1
|
Wu X, Goebbels M, Debski-Antoniak O, Marougka K, Chao L, Smits T, Wennekes T, van Kuppeveld FJM, de Vries E, de Haan CAM. Unraveling dynamics of paramyxovirus-receptor interactions using nanoparticles displaying hemagglutinin-neuraminidase. PLoS Pathog 2024; 20:e1012371. [PMID: 39052678 PMCID: PMC11302929 DOI: 10.1371/journal.ppat.1012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/06/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Sialoglycan-binding enveloped viruses often possess receptor-destroying activity to avoid being immobilized by non-functional decoy receptors. Sialic acid (Sia)-binding paramyxoviruses contain a hemagglutinin-neuraminidase (HN) protein that possesses both Sia-binding and -cleavage activities. The multivalent, dynamic receptor interactions of paramyxovirus particles provide virion motility and are a key determinant of host tropism. However, such multivalent interactions have not been exhaustively analyzed, because such studies are complicated by the low affinity of the individual interactions and the requirement of high titer virus stocks. Moreover, the dynamics of multivalent particle-receptor interactions are difficult to predict from Michaelis-Menten enzyme kinetics. Therefore, we here developed Ni-NTA nanoparticles that multivalently display recombinant soluble HN tetramers via their His tags (HN-NPs). Applying this HN-NP platform to Newcastle disease virus (NDV), we investigated using biolayer interferometry (BLI) the role of important HN residues in receptor-interactions and analyzed long-range effects between the catalytic site and the second Sia binding site (2SBS). The HN-NP system was also applicable to other paramyxoviruses. Comparative analysis of HN-NPs revealed and confirmed differences in dynamic receptor-interactions between type 1 human and murine parainfluenza viruses as well as of lab-adapted and clinical isolates of human parainfluenza virus type 3, which are likely to contribute to differences in tropism of these viruses. We propose this novel platform to be applicable to elucidate the dynamics of multivalent-receptor interactions important for host tropism and pathogenesis, particularly for difficult to grow sialoglycan-binding (paramyxo)viruses.
Collapse
Affiliation(s)
- Xuesheng Wu
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Maite Goebbels
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Oliver Debski-Antoniak
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Katherine Marougka
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lemeng Chao
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Tony Smits
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Pascha MN, Ballegeer M, Roelofs MC, Meuris L, Albulescu IC, van Kuppeveld FJM, Hurdiss DL, Bosch BJ, Zeev-Ben-Mordehai T, Saelens X, de Haan CAM. Nanoparticle display of neuraminidase elicits enhanced antibody responses and protection against influenza A virus challenge. NPJ Vaccines 2024; 9:97. [PMID: 38821988 PMCID: PMC11143307 DOI: 10.1038/s41541-024-00891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Current Influenza virus vaccines primarily induce antibody responses against variable epitopes in hemagglutinin (HA), necessitating frequent updates. However, antibodies against neuraminidase (NA) can also confer protection against influenza, making NA an attractive target for the development of novel vaccines. In this study, we aimed to enhance the immunogenicity of recombinant NA antigens by presenting them multivalently on a nanoparticle carrier. Soluble tetrameric NA antigens of the N1 and N2 subtypes, confirmed to be correctly folded by cryo-electron microscopy structural analysis, were conjugated to Mi3 self-assembling protein nanoparticles using the SpyTag-SpyCatcher system. Immunization of mice with NA-Mi3 nanoparticles induced higher titers of NA-binding and -inhibiting antibodies and improved protection against a lethal challenge compared to unconjugated NA. Additionally, we explored the co-presentation of N1 and N2 antigens on the same Mi3 particles to create a mosaic vaccine candidate. These mosaic nanoparticles elicited antibody titers that were similar or superior to the homotypic nanoparticles and effectively protected against H1N1 and H3N2 challenge viruses. The NA-Mi3 nanoparticles represent a promising vaccine candidate that could complement HA-directed approaches for enhanced potency and broadened protection against influenza A virus.
Collapse
Affiliation(s)
- M N Pascha
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Ballegeer
- VIB Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - M C Roelofs
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - L Meuris
- VIB Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - I C Albulescu
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F J M van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D L Hurdiss
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - B J Bosch
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - T Zeev-Ben-Mordehai
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - X Saelens
- VIB Center for Medical Biotechnology, VIB, 9052, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium.
| | - C A M de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Kang H, Malik T, Daniels R. Isolation by multistep chromatography improves the consistency of secreted recombinant influenza neuraminidase antigens. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123975. [PMID: 38141291 DOI: 10.1016/j.jchromb.2023.123975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Recombinant protein-based approaches are ideally suited for producing vaccine antigens that are not overly abundant in viruses, such as influenza neuraminidase (NA). However, obtaining sufficient quantities of recombinant viral surface antigens remains challenging, often resulting in the use of chimeric proteins with affinity tags that can invariably impact the antigen's properties. Here, we developed multistep chromatography approaches for purifying secreted recombinant NA (rNA) antigens that are derived from recent H1N1 and H3N2 viruses and produced using insect cells. Analytical analyses showed that these isolation procedures yielded homogenous tetrameric rNA preparations with consistent specific activities that were not possible from a common immobilized metal affinity chromatography purification procedure. The use of classical chromatography improved the rNA tetramer homogeneity by removing the requirement of the N-terminal poly-histidine affinity tag that was shown to promote higher order rNA oligomer formation. In addition, these procedures reduced the specific activity variation by eliminating the exposure to Ni2+ ions and imidazole, with the latter showing pH and NA subtype dependent effects. Together, these results demonstrate that purification by multistep chromatography improves the homogeneity of secreted rNAs and eliminates the need for affinity tag-based approaches that can potentially alter the properties of these recombinant antigens.
Collapse
Affiliation(s)
- Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tahir Malik
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
4
|
Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M. Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation. Front Microbiol 2023; 14:1309156. [PMID: 38169695 PMCID: PMC10758481 DOI: 10.3389/fmicb.2023.1309156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The N1 neuraminidases (NAs) of avian and pandemic human influenza viruses contain tyrosine and asparagine, respectively, at position 347 on the rim of the catalytic site; the biological significance of this difference is not clear. Here, we used molecular dynamics simulation to model the effects of amino acid 347 on N1 NA interactions with sialyllacto-N-tetraoses 6'SLN-LC and 3'SLN-LC, which represent NA substrates in humans and birds, respectively. Our analysis predicted that Y347 plays an important role in the NA preference for the avian-type substrates. The Y347N substitution facilitates hydrolysis of human-type substrates by resolving steric conflicts of the Neu5Ac2-6Gal moiety with the bulky side chain of Y347, decreasing the free energy of substrate binding, and increasing the solvation of the Neu5Ac2-6Gal bond. Y347 was conserved in all N1 NA sequences of avian influenza viruses in the GISAID EpiFlu database with two exceptions. First, the Y347F substitution was present in the NA of a specific H6N1 poultry virus lineage and was associated with the substitutions G228S and/or E190V/L in the receptor-binding site (RBS) of the hemagglutinin (HA). Second, the highly pathogenic avian H5N1 viruses of the Gs/Gd lineage contained sporadic variants with the NA substitutions Y347H/D, which were frequently associated with substitutions in the HA RBS. The Y347N substitution occurred following the introductions of avian precursors into humans and pigs with N/D347 conserved during virus circulation in these hosts. Comparative evolutionary analysis of site 347 revealed episodic positive selection across the entire tree and negative selection within most host-specific groups of viruses, suggesting that substitutions at NA position 347 occurred during host switches and remained under pervasive purifying selection thereafter. Our results elucidate the role of amino acid 347 in NA recognition of sialoglycan substrates and emphasize the significance of substitutions at position 347 as a marker of host range and adaptive evolution of influenza viruses.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche ‘G. Ronzoni’, Milan, Italy
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
5
|
Wallace LE, de Vries E, van Kuppeveld FJM, de Haan CAM. Neuraminidase-dependent entry of influenza A virus is determined by hemagglutinin receptor-binding specificity. J Virol 2023; 97:e0060223. [PMID: 37754760 PMCID: PMC10617504 DOI: 10.1128/jvi.00602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.
Collapse
Affiliation(s)
- Louisa E. Wallace
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wu X, Goebbels M, Chao L, Wennekes T, van Kuppeveld FJM, de Vries E, de Haan CAM. Kinetic analysis of paramyxovirus-sialoglycan receptor interactions reveals virion motility. PLoS Pathog 2023; 19:e1011273. [PMID: 36972304 PMCID: PMC10079232 DOI: 10.1371/journal.ppat.1011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Many viruses initiate infection by binding to sialoglycan receptors at the cell surface. Binding to such receptors comes at a cost, however, as the sheer abundance of sialoglycans e.g. in mucus, may immobilize virions to non-functional decoy receptors. As a solution, sialoglycan-binding as well as sialoglycan-cleavage activities are often present in these viruses, which for paramyxoviruses are combined in the hemagglutinin-neuraminidase (HN) protein. The dynamic interactions of sialoglycan-binding paramyxoviruses with their receptors are thought to be key determinants of species tropism, replication and pathogenesis. Here we used biolayer interferometry to perform kinetic analyses of receptor interactions of animal and human paramyxoviruses (Newcastle disease virus, Sendai virus, and human parainfluenza virus 3). We show that these viruses display strikingly different receptor interaction dynamics, which correlated with their receptor-binding and -cleavage activities and the presence of a second sialic acid binding site. Virion binding was followed by sialidase-driven release, during which virions cleaved sialoglycans until a virus-specific density was reached, which was largely independent of virion concentration. Sialidase-driven virion release was furthermore shown to be a cooperative process and to be affected by pH. We propose that paramyxoviruses display sialidase-driven virion motility on a receptor-coated surface, until a threshold receptor density is reached at which virions start to dissociate. Similar motility has previously been observed for influenza viruses and is likely to also apply to sialoglycan-interacting embecoviruses. Analysis of the balance between receptor-binding and -cleavage increases our understanding of host species tropism determinants and zoonotic potential of viruses.
Collapse
Affiliation(s)
- Xuesheng Wu
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Maite Goebbels
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lemeng Chao
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Klenow L, Elfageih R, Gao J, Wan H, Withers SG, de Gier JW, Daniels R. Influenza virus and pneumococcal neuraminidases enhance catalysis by similar yet distinct sialic acid-binding strategies. J Biol Chem 2023; 299:102891. [PMID: 36634846 PMCID: PMC9929470 DOI: 10.1016/j.jbc.2023.102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.
Collapse
Affiliation(s)
- Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
8
|
Chen TH, Chen CC, Wu SC. Neuraminidase (NA) 370-Loop Mutations of the 2009 Pandemic H1N1 Viruses Affect NA Enzyme Activity, Hemagglutination Titer, Mouse Virulence, and Inactivated-Virus Immunogenicity. Viruses 2022; 14:v14061304. [PMID: 35746775 PMCID: PMC9230709 DOI: 10.3390/v14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Hemagglutinin (HA) and neuraminidase (NA) are the two major envelope proteins of influenza viruses. The spatial organization of HA and NA on the virus surface needs to be optimized to promote viral fitness, host specificity, transmissibility, infectivity, and virulence. We previously demonstrated that the recombinant NA protein of the 2009 pandemic H1N1 (pH1N1) with the I365T/S366N mutation in the NA 370-loop elicited higher NA-inhibition antibody titers against the homologous pH1N1 virus and three heterologous H5N1, H3N2, and H7N9 viruses in mice. In this study, we used PR8-based reverse genetics (RG) by replacing the HA and NA genes of A/Texas/05/2009 pH1N1 virus to obtain the wild-type pH1N1 and three NA 370-loop mutant viruses of pH1N1 (I365T/S366N), RG pH1N1 (I365E/S366D), and RG pH1N1 (I365T/S366A). Our results revealed that the viral NA enzyme activity increased for the RG pH1N1(I365T/S366N) and RG pH1N1 (I365E/S366D) viruses but reduced for the RG pH1N1 (I365T/S366A) virus. The increased or decreased NA enzyme activity was found to correlate with the increase or decrease in HA titers of these NA 370-loop mutant viruses. All of these three NA 370-loop mutant RG pH1N1 viruses were less virulent than the wild-type RG pH1N1 virus in mice. Immunizations with the inactivated viruses carrying the three NA 370-loop mutations and the wild-type RG pH1N1 virus were found to elicit approximately the same titers of NA-inhibition antibodies against H1N1 and H5N1 viruses. These results may provide information for developing NA-based influenza virus vaccines.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30071, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Adimmune Corporation, Taichung 42723, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Wei X, Du W, Duca M, Yu G, de Vries E, de Haan CAM, Pieters RJ. Preventing Influenza A Virus Infection by Mixed Inhibition of Neuraminidase and Hemagglutinin by Divalent Inhibitors. J Med Chem 2022; 65:7312-7323. [PMID: 35549211 PMCID: PMC9150099 DOI: 10.1021/acs.jmedchem.2c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Divalent inhibitors
of the neuraminidase enzyme (NA) of the Influenza
A virus were synthesized with vastly different spacers. The spacers
varied from 14 to 56 atoms and were relatively rigid by way of the
building blocks and their connection by CuAAC. As the ligand for these
constructs, a Δ4-β-d-glucoronide was
used, which can be prepared form N-acetyl glucosamine.
This ligand showed good NA inhibitory potency but with room for improvement
by multivalency enhancement. The synthesized compounds showed modest
potency enhancement in NA activity assays but a sizeable potency increase
in a 4-day cytopathic effect assay. The demonstration that the compounds
can also inhibit hemagglutinin in addition to NA may be the cause
of the enhancement.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| |
Collapse
|
10
|
Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, Kephart S, Yap C, Gillespie RA, Creanga A, Olshefsky A, Stephens T, Pettie D, Murphy M, Sydeman C, Ahlrichs M, Chan S, Borst AJ, Park YJ, Lee KK, Graham BS, Veesler D, King NP, Kanekiyo M. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun 2022; 13:1825. [PMID: 35383176 PMCID: PMC8983682 DOI: 10.1038/s41467-022-29416-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza virus neuraminidase (NA) is a major antiviral drug target and has recently reemerged as a key target of antibody-mediated protective immunity. Here we show that recombinant NAs across non-bat subtypes adopt various tetrameric conformations, including an "open" state that may help explain poorly understood variations in NA stability across viral strains and subtypes. We use homology-directed protein design to uncover the structural principles underlying these distinct tetrameric conformations and stabilize multiple recombinant NAs in the "closed" state, yielding two near-atomic resolution structures of NA by cryo-EM. In addition to enhancing thermal stability, conformational stabilization improves affinity to protective antibodies elicited by viral infection, including antibodies targeting a quaternary epitope and the broadly conserved catalytic site. Stabilized NAs can also be integrated into viruses without affecting fitness. Our findings provide a deeper understanding of NA structure, stability, and antigenicity, and establish design strategies for reinforcing the conformational integrity of recombinant NA proteins.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
- Icosavax Inc., Seattle, WA, 98102, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oliver J Acton
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Sally Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey Olshefsky
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Andrew J Borst
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Pre-existing antibodies directed against a tetramerizing domain enhance the immune response against artificially stabilized soluble tetrameric influenza neuraminidase. NPJ Vaccines 2022; 7:11. [PMID: 35087067 PMCID: PMC8795415 DOI: 10.1038/s41541-022-00435-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
The neuraminidase (NA) is an abundant antigen at the surface of influenza virions. Recent studies have highlighted the immune-protective potential of NA against influenza and defined anti-NA antibodies as an independent correlate of protection. Even though NA head domain changes at a slightly slower pace than hemagglutinin (HA), NA is still subject to antigenic drift, and therefore an NA-based influenza vaccine antigen may have to be updated regularly and thus repeatedly administered. NA is a tetrameric type II membrane protein, which readily dissociates into dimers and monomers when expressed in a soluble form. By using a tetramerizing zipper, such as the tetrabrachion (TB) from Staphylothermus marinus, it is possible to stabilize soluble NA in its active tetrameric conformation, an imperative for the optimal induction of protective NA inhibitory antibodies. The impact of repetitive immunizations with TB-stabilized antigens on the immunogenicity of soluble TB-stabilized NA is unknown. We demonstrate that TB is immunogenic in mice. Interestingly, preexisting anti-TB antibodies enhance the anti-NA antibody response induced by immunization with TB-stabilized NA. This immune-enhancing effect was transferable by serum and operated independently of activating Fcγ receptors. We also demonstrate that priming with TB-stabilized NA antigens, enhances the NA inhibitory antibody responses against a heterosubtypic TB-stabilized NA. These findings have implications for the clinical development of oligomeric vaccine antigens that are stabilized by a heterologous oligomerizing domain.
Collapse
|
12
|
Design of the Recombinant Influenza Neuraminidase Antigen Is Crucial for Its Biochemical Properties and Protective Efficacy. J Virol 2021; 95:e0116021. [PMID: 34613807 DOI: 10.1128/jvi.01160-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Supplementing influenza vaccines with recombinant neuraminidase (rNA) antigens remains a promising approach for improving suboptimal vaccine efficacy. However, correlations among rNA designs, properties, and protection have not been systematically investigated. Here, we performed a comparative analysis of several rNAs produced by the baculovirus/insect cell system. The rNAs were designed with different tetramerization motifs and NA domains from a recent H1N1 vaccine strain (A/Brisbane/02/2018) and compared for enzymatic properties, antigenicity, stability, and protection in mice. We found that the enzymatic properties differ between rNAs containing the NA head domain versus the full ectodomain, the formation of higher-order rNA oligomers is tetramerization domain dependent, whereas the protective efficacy is more contingent on the combination of the tetramerization and NA domains. Following single-dose immunizations, an rNA possessing the full ectodomain and the tetramerization motif from the human vasodilator-stimulated phosphoprotein provided much better protection than an rNA with ∼10-fold more enzymatically active molecules that is comprised of the head domain and the same tetramerization motif. In contrast, these two rNA designs provided comparable protection when the tetramerization motif from the tetrabrachion protein was used instead. These findings demonstrate that individual rNAs should be thoroughly evaluated for vaccine development, as the heterologous domain combination can result in rNAs with similar key attributes that vastly differ in protection. IMPORTANCE For several decades, it has been proposed that influenza vaccines could be supplemented with recombinant neuraminidase (rNA) to improve efficacy. However, some key questions for manufacturing stable and immunogenic rNAs remain to be answered. We show here that the tetramerization motifs and NA domains included in the rNA construct design can have a profound impact on the biochemical, immunogenic, and protective properties. We also show that the single-dose immunization regimen is more informative for assessing the rNA immune response and protective efficacy, which is surprisingly more dependent on the specific combination of NA and tetramerization domains than common attributes for evaluating NA. Our findings may help to optimize the design of rNAs that can be used to improve or develop influenza vaccines.
Collapse
|
13
|
Creytens S, Pascha MN, Ballegeer M, Saelens X, de Haan CAM. Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Front Immunol 2021; 12:786617. [PMID: 34868073 PMCID: PMC8635103 DOI: 10.3389/fimmu.2021.786617] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- Catalytic Domain/genetics
- Catalytic Domain/immunology
- Cross Protection
- Evolution, Molecular
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Alphainfluenzavirus/enzymology
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/immunology
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/immunology
- Mutation
- Nanoparticles
- Neuraminidase/administration & dosage
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neuraminidase/ultrastructure
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/ultrastructure
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Sarah Creytens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mirte N. Pascha
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marlies Ballegeer
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J Virol 2021; 95:e0118021. [PMID: 34379511 DOI: 10.1128/jvi.01180-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the availability of vaccines that efficiently reduce the severity of clinical symptoms, influenza viruses still cause substantial morbidity and mortality worldwide. In this regard, nasal influenza vaccines-because they induce virus-specific IgA-may be more effective than traditional parenteral formulations in preventing infection of the upper respiratory tract. In addition, the neuraminidase (NA) of influenza virus has shown promise as a vaccine antigen to confer broad cross-protection, in contrast to hemagglutinin (HA), the target of most current vaccines, which undergoes frequent antigenic changes leading to vaccine ineffectiveness against mismatched heterologous strains. However, the usefulness of NA as an antigen for nasal vaccines is unclear. Here, we compared NA and HA as antigens for nasal vaccines in mice. Intranasal immunization with recombinant NA (rNA) plus adjuvant protected mice against not only homologous but also heterologous virus challenge in the upper respiratory tract, whereas intranasal immunization with rHA failed to protect against heterologous challenge. In addition, intranasal immunization with rNA, but not rHA, conferred cross-protection even in the absence of adjuvant in virus infection-experienced mice; this strong cross-protection was due to the broader binding capacity of NA-specific antibodies to heterologous virus. Furthermore, the NA-specific IgA in the upper respiratory tract that was induced through rNA intranasal immunization recognized more epitopes than did the NA-specific IgG and IgA in plasma, again increasing cross-protection. Together, our findings suggest the potential of NA as an antigen for nasal vaccines to provide broad cross-protection against both homologous and heterologous influenza viruses. IMPORTANCE Because mismatch between vaccine strains and epidemic strains cannot always be avoided, the development of influenza vaccines that induce broad cross-protection against antigenically mismatched heterologous strains is needed. Although the importance of NA-specific antibodies to cross-protection in humans and experimental animals is becoming clear, the potential of NA as an antigen for providing cross-protection through nasal vaccines is unknown. We show here that intranasal immunization with NA confers broad cross-protection in the upper respiratory tract, where virus transmission is initiated, by inducing NA-specific IgA that recognizes a wide range of epitopes. These data shed new light on NA-based nasal vaccines as powerful anti-influenza tools that confer broad cross-protection.
Collapse
|
15
|
Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. mBio 2021; 12:mBio.00287-21. [PMID: 33975931 PMCID: PMC8262965 DOI: 10.1128/mbio.00287-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.
Collapse
|
16
|
Ghanbarpour A, Santos EM, Pinger C, Assar Z, Hossaini Nasr S, Vasileiou C, Spence D, Borhan B, Geiger JH. Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering. Chembiochem 2020; 21:3192-3196. [PMID: 32608180 PMCID: PMC8220890 DOI: 10.1002/cbic.202000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/29/2020] [Indexed: 11/07/2022]
Abstract
Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Yale University Medical School, Department of Cell Biology, 333 S. Cedar Street, New Haven, CT 06510, USA
| | - Elizabeth M Santos
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
- Dow Performance Silicones, 2200W Salzburg Road, Midland, MI 48686, USA
| | - Cody Pinger
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Zahra Assar
- Cayman Chemical, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Seyedmehdi Hossaini Nasr
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Chrysoula Vasileiou
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Dana Spence
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48823, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - James H Geiger
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Du W, Wolfert MA, Peeters B, van Kuppeveld FJM, Boons GJ, de Vries E, de Haan CAM. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathog 2020; 16:e1008816. [PMID: 32853241 PMCID: PMC7480853 DOI: 10.1371/journal.ppat.1008816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics. Most pandemics occurred upon adaptation of avian IAVs to humans. This adaptation includes a hallmark receptor-binding specificity switch of hemagglutinin (HA) from avian-type α2,3- to human-type α2,6-linked sialic acids. Complementary changes of the receptor-destroying neuraminidase (NA) are considered to restore the precarious, but poorly described, HA-NA-receptor balance required for virus fitness. In comparison to the detailed functional description of adaptive mutations in HA, little is known about the functional consequences of mutations in NA in relation to their effect on the HA-NA balance and host tropism. An understudied feature of NA is the presence of a second sialic acid-binding site (2SBS) in avian IAVs and absence of a 2SBS in human IAVs, which affects NA catalytic activity. Here we demonstrate that mutation of the 2SBS of avian IAV H5N1 disturbs the HA-NA balance. Passaging of a 2SBS-negative H5N1 virus on MDCK cells selected for progeny with a restored HA-NA balance. These viruses obtained mutations in NA that restored a functional 2SBS and/or in HA that reduced binding of avian-type receptors. Importantly, a particular HA mutation also resulted in increased binding of human-type receptors. Phylogenetic analyses of avian IAVs show that also in the field, mutations in the 2SBS precede mutations in HA that reduce binding of avian-type receptors and increase binding of human-type receptors. Thus, 2SBS mutations in NA can drive acquisition of mutations in HA that not only restore the HA-NA balance, but may also confer increased zoonotic potential.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margreet A. Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Ben Peeters
- Wageningen Bioveterinary Research, Department of Virology, Lelystad, the Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Broszeit F, Tzarum N, Zhu X, Nemanichvili N, Eggink D, Leenders T, Li Z, Liu L, Wolfert MA, Papanikolaou A, Martínez-Romero C, Gagarinov IA, Yu W, García-Sastre A, Wennekes T, Okamatsu M, Verheije MH, Wilson IA, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Rep 2020; 27:3284-3294.e6. [PMID: 31189111 PMCID: PMC6750725 DOI: 10.1016/j.celrep.2019.05.048] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/05/2019] [Accepted: 05/15/2019] [Indexed: 12/05/2022] Open
Abstract
A species barrier for the influenza A virus is the differential expression of sialic acid, which can either be α2,3-linked for avians or α2,6-linked for human viruses. The influenza A virus hosts also express other species-specific sialic acid derivatives. One major modification at C-5 is N-glycolyl (NeuGc), instead of N-acetyl (NeuAc). N-glycolyl is mammalian specific and expressed in pigs and horses, but not in humans, ferrets, seals, or dogs. Hemagglutinin (HA) adaptation to either N-acetyl or N-glycolyl is analyzed on a sialoside microarray containing both α2,3- and α2,6-linkage modifications on biologically relevant N-glycans. Binding studies reveal that avian, human, and equine HAs bind either N-glycolyl or N-acetyl. Structural data on N-glycolyl binding HA proteins of both H5 and H7 origin describe this specificity. Neuraminidases can cleave N-glycolyl efficiently, and tissue-binding studies reveal strict species specificity. The exclusive manner in which influenza A viruses differentiate between N-glycolyl and N-acetyl is indicative of selection. Broszeit and colleagues demonstrate that influenza A viruses recognize either N-acetyl or N-glycolyl neuraminic acid, and they explain these specificities using X-ray structures. NeuGc-binding viruses are perfectly viable, and neuraminidases can cleave NeuGc-containing receptor structures. There is an apparent selection now for NeuAc, as no known NeuGc-binding virus currently circulates.
Collapse
Affiliation(s)
- Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikoloz Nemanichvili
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Dirk Eggink
- Department of Experimental Virology, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Tim Leenders
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Zeshi Li
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Andreas Papanikolaou
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan A Gagarinov
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tom Wennekes
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Monique H Verheije
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
19
|
Lipničanová S, Chmelová D, Godány A, Ondrejovič M, Miertuš S. Purification of viral neuraminidase from inclusion bodies produced by recombinant Escherichia coli. J Biotechnol 2020; 316:27-34. [DOI: 10.1016/j.jbiotec.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
|
20
|
Wang H, Dou D, Östbye H, Revol R, Daniels R. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Nat Microbiol 2019; 4:2565-2577. [PMID: 31451775 DOI: 10.1038/s41564-019-0537-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
Influenza neuraminidase (NA) is a sialidase that contributes to viral mobility by removing the extracellular receptors for the haemagglutinin (HA) glycoprotein. However, it remains unclear why influenza NAs evolved to function as Ca2+-dependent tetramers that display variable stability. Here, we show that the Ca2+ ion located at the centre of the NA tetramer is a major stability determinant, as this Ca2+ ion is required for catalysis and its binding affinity varies between NAs. By examining NAs from 2009 pandemic-like H1N1 viruses, we traced the affinity variation to local substitutions that cause residues in the central Ca2+-binding pocket to reposition. A temporal analysis revealed that these local substitutions predictably alter the stability of the 2009 pandemic-like NAs and contribute to the tendency for the stability to vary up and down over time. In addition to the changes in stability, the structural plasticity of NA was also shown to support the formation of heterotetramers, which creates a mechanism for NA to obtain hybrid properties and propagate suboptimal mutants. Together, these results demonstrate how the structural restrictions for activity provide influenza NA with several mechanisms for adaptation and diversification.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. .,Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
21
|
Moreno-Pescador G, Florentsen CD, Østbye H, Sønder SL, Boye TL, Veje EL, Sonne AK, Semsey S, Nylandsted J, Daniels R, Bendix PM. Curvature- and Phase-Induced Protein Sorting Quantified in Transfected Cell-Derived Giant Vesicles. ACS NANO 2019; 13:6689-6701. [PMID: 31199124 DOI: 10.1021/acsnano.9b01052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eukaryotic cells possess a dynamic network of membranes that vary in lipid composition. To perform numerous biological functions, cells modulate their shape and the lateral organization of proteins associated with membranes. The modulation is generally facilitated by physical cues that recruit proteins to specific regions of the membrane. Analyzing these cues is difficult due to the complexity of the membrane conformations that exist in cells. Here, we examine how different types of membrane proteins respond to changes in curvature and to lipid phases found in the plasma membrane. By using giant plasma membrane vesicles derived from transfected cells, the proteins were positioned in the correct orientation and the analysis was performed in plasma membranes with a biological composition. Nanoscale membrane curvatures were generated by extracting nanotubes from these vesicles with an optical trap. The viral membrane protein neuraminidase was not sensitive to curvature, but it did exhibit strong partitioning (coefficient of K = 0.16) disordered membrane regions. In contrast, the membrane repair protein annexin 5 showed a preference for nanotubes with a density up to 10-15 times higher than that on the more flat vesicle membrane. The investigation of nanoscale effects in isolated plasma membranes provides a quantitative platform for studying peripheral and integral membrane proteins in their natural environment.
Collapse
Affiliation(s)
| | | | - Henrik Østbye
- Department of Biochemistry and Biophysics , Stockholm University , 10691 Stockholm , Sweden
| | - Stine L Sønder
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
| | - Theresa L Boye
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
| | - Emilie L Veje
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Alexander K Sonne
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Szabolcs Semsey
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease , Danish Cancer Society Research Center , Strandboulevarden 49 , DK-2100 Copenhagen , Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences , University of Copenhagen , DK-2200 Copenhagen N , Denmark
| | - Robert Daniels
- Department of Biochemistry and Biophysics , Stockholm University , 10691 Stockholm , Sweden
| | - Poul Martin Bendix
- Niels Bohr Institute , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
22
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongbo Guo
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Nijman
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jennifer Doedt
- Institute of Virology, Philipps University, Marburg, Germany
| | - Erhard van der Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | | | - Erik de Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Marburg, Germany
- * E-mail: (MM); (CAMdH)
| | - Cornelis A. M. de Haan
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: (MM); (CAMdH)
| |
Collapse
|
23
|
Streltsov VA, Schmidt PM, McKimm-Breschkin JL. Structure of an Influenza A virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallogr F Struct Biol Commun 2019; 75:89-97. [PMID: 30713159 PMCID: PMC6360442 DOI: 10.1107/s2053230x18017892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
The influenza neuraminidase (NA) is a homotetramer with head, stalk, transmembrane and cytoplasmic regions. The structure of the NA head with a stalk has never been determined. The NA head from an N9 subtype influenza A virus, A/tern/Australia/G70C/1975 (H1N9), was expressed with an artificial stalk derived from the tetrabrachion (TB) tetramerization domain from Staphylothermus marinus. The NA was successfully crystallized both with and without the TB stalk, and the structures were determined to 2.6 and 2.3 Å resolution, respectively. Comparisons of the two NAs with the native N9 NA structure from egg-grown virus showed that the artificial TB stalk maintained the native NA head structure, supporting previous biological observations.
Collapse
Affiliation(s)
- Victor A. Streltsov
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Peter M. Schmidt
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- R&D, CSL Behring GmbH, Emil-von-Behring Strasse 76, 35041 Marburg, Germany
| | - Jennifer L. McKimm-Breschkin
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
24
|
Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. J Virol 2018; 92:JVI.01243-18. [PMID: 30089692 DOI: 10.1128/jvi.01243-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) protein plays an essential role in the release of virus particles from cells and decoy receptors. The NA enzymatic activity presumably needs to match the activity of the IAV hemagglutinin (HA) attachment protein and the host sialic acid (SIA) receptor repertoire. We analyzed the enzymatic activities of N1 NA proteins derived from avian (H5N1) and human (H1N1) IAVs and analyzed the role of the second SIA-binding site, located adjacent to the conserved catalytic site, therein. SIA contact residues in the second SIA-binding site of NA are highly conserved in avian, but not human, IAVs. All N1 proteins preferred cleaving α2,3- over α2,6-linked SIAs even when their corresponding HA proteins displayed a strict preference for α2,6-linked SIAs, indicating that the specificity of the NA protein does not need to fully match that of the corresponding HA protein. NA activity was affected by substitutions in the second SIA-binding site that are observed in avian and human IAVs, at least when multivalent rather than monovalent substrates were used. These mutations included both SIA contact residues and residues that do not directly interact with SIA in all three loops of the second SIA-binding site. Substrate binding via the second SIA-binding site enhanced the catalytic activity of N1. Mutation of the second SIA-binding site was also shown to affect virus replication in vitro Our results indicate an important role for the N1 second SIA-binding site in binding to and cleavage of multivalent substrates.IMPORTANCE Avian and human influenza A viruses (IAVs) preferentially bind α2,3- and α2,6-linked sialic acids (SIAs), respectively. A functional balance between the hemagglutinin (HA) attachment and neuraminidase (NA) proteins is thought to be important for host tropism. What this balance entails at the molecular level is, however, not well understood. We now show that N1 proteins of both avian and human viruses prefer cleaving avian- over human-type receptors although human viruses were relatively better in cleavage of the human-type receptors. In addition, we show that substitutions at different positions in the second SIA-binding site found in NA proteins of human IAVs have a profound effect on binding and cleavage of multivalent, but not monovalent, receptors and affect virus replication. Our results indicate that the HA-NA balance can be tuned via modification of substrate binding via this site and suggest an important role of the second SIA-binding site in host tropism.
Collapse
|
25
|
Guo H, Rabouw H, Slomp A, Dai M, van der Vegt F, van Lent JWM, McBride R, Paulson JC, de Groot RJ, van Kuppeveld FJM, de Vries E, de Haan CAM. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog 2018; 14:e1007233. [PMID: 30102740 PMCID: PMC6107293 DOI: 10.1371/journal.ppat.1007233] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/23/2018] [Accepted: 07/19/2018] [Indexed: 01/02/2023] Open
Abstract
Interactions of influenza A virus (IAV) with sialic acid (SIA) receptors determine viral fitness and host tropism. Binding to mucus decoy receptors and receptors on epithelial host cells is determined by a receptor-binding hemagglutinin (HA), a receptor-destroying neuraminidase (NA) and a complex in vivo receptor-repertoire. The crucial but poorly understood dynamics of these multivalent virus-receptor interactions cannot be properly analyzed using equilibrium binding models and endpoint binding assays. In this study, the use of biolayer interferometric analysis revealed the virtually irreversible nature of IAV binding to surfaces coated with synthetic sialosides or engineered sialoglycoproteins in the absence of NA activity. In addition to HA, NA was shown to be able to contribute to the initial binding rate while catalytically active. Virus-receptor binding in turn contributed to receptor cleavage by NA. Multiple low-affinity HA-SIA interactions resulted in overall extremely high avidity but also permitted a dynamic binding mode, in which NA activity was driving rolling of virus particles over the receptor-surface. Virus dissociation only took place after receptor density of the complete receptor-surface was sufficiently decreased due to NA activity of rolling IAV particles. The results indicate that in vivo IAV particles, after landing on the mucus layer, reside continuously in a receptor-bound state while rolling through the mucus layer and over epithelial cell surfaces driven by the HA-NA-receptor balance. Quantitative BLI analysis enabled functional examination of this balance which governs this dynamic and motile interaction that is expected to be crucial for penetration of the mucus layer and subsequent infection of cells by IAV but likely also by other enveloped viruses carrying a receptor-destroying enzyme in addition to a receptor-binding protein. Influenza A virus (IAV) tropism is largely determined by the interaction of virus particles with the sialic acid receptor repertoire of the host. IAVs encounter a diverse range of sialic acid receptors that can function as decoys (e.g. in the mucus that covers epithelial cells) or as entry receptors. We studied the dynamics of IAV-receptor interactions in real-time using biolayer interferometry (BLI) in combination with synthetic glycans and recombinant sialoglycoproteins mimicking in vivo receptors. Thereby we could show that IAVs do not continuously associate and dissociate with receptor-coated surfaces but actually were rolling over the surface with which they remained permanently associated until the receptors were sufficiently cleared. This required the concerted action of the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) on the receptor surface. We could quantify the precise HA-NA-receptor balance that determined the speed of rolling and eventual elution from the surface by BLI and propose a model in which IAV is permanently, but dynamically, associated with receptors on mucus or host cells in vivo.
Collapse
Affiliation(s)
- Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Huib Rabouw
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anne Slomp
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meiling Dai
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Floor van der Vegt
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, PB Wageningen, the Netherlands
| | - Ryan McBride
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
| | - James C. Paulson
- Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, Scripps Research Institute, La Jolla, California, United States of America
| | - Raoul J. de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail: (EDV); (CAMDH)
| | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail: (EDV); (CAMDH)
| |
Collapse
|
26
|
Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model of Influenza. J Virol 2018; 92:JVI.01584-17. [PMID: 29167342 DOI: 10.1128/jvi.01584-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence to suggest that antibodies directed toward influenza A virus (IAV) neuraminidase (NA) are an important correlate of protection against influenza in humans. Moreover, the potential of NA-specific antibodies to provide broader protection than conventional hemagglutinin (HA) antibodies has been recognized. Here, we describe the isolation of two monoclonal antibodies, N1-7D3 and N1-C4, directed toward the N1 NA. N1-7D3 binds to a conserved linear epitope in the membrane-distal, carboxy-terminal part of the NA and reacted with the NA of seasonal H1N1 isolates ranging from 1977 to 2007 and the 2009 H1N1pdm virus, as well as A/Vietnam/1194/04 (H5N1). However, N1-7D3 lacked NA inhibition (NI) activity and the ability to protect BALB/c mice against a lethal challenge with a range of H1N1 viruses. Conversely, N1-C4 bound to a conformational epitope that is conserved between two influenza virus subtypes, 2009 H1N1pdm and H5N1 IAV, and displayed potent in vitro antiviral activity mediating both NI and plaque size reduction. Moreover, N1-C4 could provide heterosubtypic protection in BALB/c mice against a lethal challenge with 2009 H1N1pdm or H5N1 virus. Glutamic acid residue 311 in the NA was found to be critical for the NA binding and antiviral activity of monoclonal antibody N1-C4. Our data provide further evidence for cross-protective epitopes within the N1 subtype and highlight the potential of NA as an important target for vaccine and therapeutic approaches.IMPORTANCE Influenza remains a worldwide burden on public health. As such, the development of novel vaccines and therapeutics against influenza virus is crucial. Human challenge studies have recently highlighted the importance of antibodies directed toward the viral neuraminidase (NA) as an important correlate of reduced influenza-associated disease severity. Furthermore, there is evidence that anti-NA antibodies can provide broader protection than antibodies toward the viral hemagglutinin. Here, we describe the isolation and detailed characterization of two N1 NA-specific monoclonal antibodies. One of these monoclonal antibodies broadly binds N1-type NAs, and the second displays NA inhibition and in vitro and in vivo antiviral activity against 2009 H1N1pdm and H5N1 influenza viruses. These two new anti-NA antibodies contribute to our understanding of the antigenic properties and protective potential of the influenza virus NA antigen.
Collapse
|
27
|
Dong W, Bhide Y, Sicca F, Meijerhof T, Guilfoyle K, Engelhardt OG, Boon L, de Haan CAM, Carnell G, Temperton N, de Vries-Idema J, Kelvin D, Huckriede A. Cross-Protective Immune Responses Induced by Sequential Influenza Virus Infection and by Sequential Vaccination With Inactivated Influenza Vaccines. Front Immunol 2018; 9:2312. [PMID: 30356772 PMCID: PMC6189474 DOI: 10.3389/fimmu.2018.02312] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Sequential infection with antigenically distinct influenza viruses induces cross-protective immune responses against heterologous virus strains in animal models. Here we investigated whether sequential immunization with antigenically distinct influenza vaccines can also provide cross-protection. To this end, we compared immune responses and protective potential against challenge with A(H1N1)pdm09 in mice infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these viruses. Sequential infection provided solid cross-protection against A(H1N1)pdm09 infection while sequential vaccination with WIV, though not capable of preventing weight loss upon infection completely, protected the mice from reaching the humane endpoint. In contrast, sequential SU vaccination did not prevent rapid and extensive weight loss. Protection correlated with levels of cross-reactive but non-neutralizing antibodies of the IgG2a subclass, general increase of memory T cells and induction of influenza-specific CD4+ and CD8+ T cells. Adoptive serum transfer experiments revealed that despite lacking neutralizing activity, serum antibodies induced by sequential infection protected mice from weight loss and vigorous virus growth in the lungs upon A(H1N1)pdm09 virus challenge. Antibodies induced by WIV vaccination alleviated symptoms but could not control virus growth in the lung. Depletion of T cells prior to challenge revealed that CD8+ T cells, but not CD4+ T cells, contributed to cross-protection. These results imply that sequential immunization with WIV but not SU derived from antigenically distinct viruses could alleviate the severity of infection caused by a pandemic and may improve protection to unpredictable seasonal infection.
Collapse
Affiliation(s)
- Wei Dong
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Yoshita Bhide
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Federica Sicca
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kate Guilfoyle
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Othmar G. Engelhardt
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | | | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - David Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Anke Huckriede
| |
Collapse
|
28
|
Genomic signature analysis of the recently emerged highly pathogenic A(H5N8) avian influenza virus: implying an evolutionary trend for bird-to-human transmission. Microbes Infect 2017; 19:597-604. [PMID: 28889970 DOI: 10.1016/j.micinf.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022]
Abstract
In early 2014, a novel subclade (2.3.4.4) of the highly pathogenic avian influenza (HPAI) A(H5N8) virus caused the first outbreak in domestic ducks and migratory birds in South Korea. Since then, it has spread to 44 countries and regions. To date, no human infections with A(H5N8) virus have been reported, but the possibility cannot be excluded. By analyzing the genomic signatures of A(H5N8) strains, we found that among the 47 species-associated signature positions, three positions exhibited human-like signatures (HLS), including PA-404S, PB2-613I and PB2-702R and that mutation trend of host signatures of avian A(H5N8) is different before and after 2014. About 82% of A(H5N8) isolates collected after January of 2014 carried the 3 HLS (PA-404S/PB2-613I/PB2-702R) in combination, while none of isolates collected before 2014 had this combination. Furthermore, the HA protein had S137A and S227R substitutions in the receptor-binding site and A160T in the glycosylation site, potentially increasing viral ability to bind human-type receptors. Based on these findings, the newly emerged HPAI A(H5N8) isolates show an evolutionary trend toward gaining more HLS and, along with it, the potential for bird-to-human transmissibility. Therefore, more extensive surveillance of this rapidly spreading HPAI A(H5N8) and preparedness against its potential pandemic are urgently needed.
Collapse
|
29
|
Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. J Virol 2017; 91:JVI.00049-17. [PMID: 28202753 DOI: 10.1128/jvi.00049-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
The emergence of the novel influenza A virus (IAV) H7N9 since 2013 has caused concerns about the ability of the virus to spread between humans. Analysis of the receptor-binding properties of the H7 protein of a human isolate revealed modestly increased binding to α2,6 sialosides and reduced, but still dominant, binding to α2,3-linked sialic acids (SIAs) compared to a closely related avian H7N9 virus from 2008. Here, we show that the corresponding N9 neuraminidases (NAs) display equal enzymatic activities on a soluble monovalent substrate and similar substrate specificities on a glycan array. In contrast, solid-phase activity and binding assays demonstrated reduced specific activity and decreased binding of the novel N9 protein. Mutational analysis showed that these differences resulted from substitution T401A in the 2nd SIA-binding site, indicating that substrate binding via this site enhances NA catalytic activity. Substitution T401A in the novel N9 protein appears to functionally mimic the substitutions that are found in the 2nd SIA-binding site of NA proteins of avian-derived IAVs that became human pandemic viruses. Our phylogenetic analyses show that substitution T401A occurred prior to substitutions in hemagglutinin (HA), causing the altered receptor-binding properties mentioned above. Hence, in contrast to the widespread assumption that such changes in NA are obtained only after acquisition of functional changes in HA, our data indicate that mutations in the 2nd SIA-binding site may have enabled and even driven the acquisition of altered HA receptor-binding properties and may have contributed to the spread of the novel H7N9 viruses.IMPORTANCE Novel H7N9 IAVs continue to cause human infections and pose an ongoing public health threat. Here, we show that their N9 proteins display reduced binding to and lower enzymatic activity against multivalent substrates, resulting from mutation of the 2nd sialic acid-binding site. This mutation preceded and may have driven the selection of substitutions in H7 that modify H7 receptor-binding properties. Of note, all animal IAVs that managed to cross the host species barrier and became human viruses carry mutated 2nd sialic acid-binding sites. Screening of animal IAVs to monitor their potential to cross the host species barrier should therefore focus not only on the HA protein, but also on the functional properties of NA.
Collapse
|