1
|
Zeng Z, Wang Z, Wang X, Yao L, Shang Y, Feng H, Wang H, Shao H, Luo Q, Wen G. Spray vaccination with a Newcastle disease virus (NDV)-vectored infectious laryngotracheitis (ILT) vaccine protects commercial chickens from ILT in the presence of maternally-derived antibodies. Avian Pathol 2024; 53:533-539. [PMID: 38836447 DOI: 10.1080/03079457.2024.2356676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-μm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.
Collapse
Affiliation(s)
- Zhe Zeng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Zichen Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Xin Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Lun Yao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Yu Shang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Helong Feng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Hongcai Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, People's Republic of China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Calzas C, Alkie TN, Suderman M, Embury-Hyatt C, Khatri V, Le Goffic R, Berhane Y, Bourgault S, Archambault D, Chevalier C. M2e nanovaccines supplemented with recombinant hemagglutinin protect chickens against heterologous HPAI H5N1 challenge. NPJ Vaccines 2024; 9:161. [PMID: 39237609 PMCID: PMC11377767 DOI: 10.1038/s41541-024-00944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Current poultry vaccines against influenza A viruses target the globular head region of the hemagglutinin (HA1), providing limited protection against antigenically divergent strains. Experimental subunit vaccines based on the conserved ectodomain of the matrix protein 2 (M2e) induce cross-reactive antibody responses, but fail to fully prevent virus shedding after low pathogenic avian influenza (LPAI) virus challenge, and are ineffective against highly pathogenic avian influenza (HPAI) viruses. This study assessed the benefits of combining nanoparticles bearing three tandem M2e repeats (NR-3M2e nanorings or NF-3M2e nanofilaments) with an HA1 subunit vaccine in protecting chickens against a heterologous HPAI H5N1 virus challenge. Chickens vaccinated with the combined formulations developed M2e and HA1-specific antibodies, were fully protected from clinical disease and mortality, and showed no histopathological lesions or virus shedding, unlike those given only HA1, NR-3M2e, or NF-3M2e. Thus, the combined vaccine formulations provided complete cross-protection against HPAI H5N1 virus, and prevented environmental virus shedding, crucial for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Cynthia Calzas
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Matthew Suderman
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Vinay Khatri
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ronan Le Goffic
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
3
|
Zhang X, Zhang F, Chen N, Cui X, Guo X, Sun Z, Guo P, Liao M, Li X. A Rationally Designed H5 Hemagglutinin Subunit Vaccine Provides Broad-Spectrum Protection against Various H5Nx Highly Pathogenic Avian Influenza Viruses in Chickens. Vaccines (Basel) 2024; 12:932. [PMID: 39204055 PMCID: PMC11359994 DOI: 10.3390/vaccines12080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
The evolution of the H5 highly pathogenic avian influenza (HPAI) viruses has led to the emergence of distinct groups with genetically similar clusters of hemagglutinin (HA) sequences. In this study, a consensus H5 HA sequence was cloned into the baculovirus expression system. The HA protein was expressed in baculovirus-infected insect cells and utilized as the antigen for the production of an oil emulsion-based H5 avian influenza vaccine (rBacH5Con5Mut). Twenty-one-day-old SPF chickens were immunized with this vaccine and then challenged at 21 days post-vaccination with clade 2.3.2.1, clade 2.3.4.4, and clade 7.2 of H5 HPAI viruses. The sera of vaccinated chickens exhibited high hemagglutination inhibition (HI) titers against the rBacH5 vaccine antigen, while lower HI titers were observed against the different challenge virus H5 hemagglutinins. Furthermore, the rBacH5Con5Mut vaccine provided 100% protection from mortality and clinical signs. Virus isolation results showed that oropharyngeal and cloacal shedding was prevented in 100% of the vaccinated chickens when challenged with clade 2.3.2.1 and clade 2.3.4.4 H5 viruses. When the rBacH5Con5Mut vaccine candidate was administrated at one day of age, 100% protection was demonstrated against the challenge of clade 2.3.4.4 virus at three weeks of age, indicating the potential of this vaccine for hatchery vaccination. Overall, A single immunization of rBacH5Con5Mut vaccine candidate with a consensus HA antigen can protect chickens against different clades of H5 HPAI viruses throughout the rearing period of broiler chickens without a boost, thus fulfilling the criteria for an efficacious broad-spectrum H5 avian influenza vaccine.
Collapse
Affiliation(s)
- Xuxiao Zhang
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Fushou Zhang
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Xiaoping Cui
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd, Duluth, GA 30096, USA;
| | - Xiaoqin Guo
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Zhi Sun
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Pengju Guo
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Zhongkai University of Agricultural and Engineering, Guangzhou 510550, China
| | - Xin Li
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| |
Collapse
|
4
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
5
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect 2023; 12:2155072. [PMID: 36458831 DOI: 10.1080/22221751.2022.2155072] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Avian influenza viruses continue to present challenges to animal and human health. Viruses bearing the hemagglutinin (HA) gene of the H5 subtype and H7 subtype have caused 2634 human cases around the world, including more than 1000 deaths. These viruses have caused numerous disease outbreaks in wild birds and domestic poultry, and are responsible for the loss of at least 422 million domestic birds since 2005. The H5 influenza viruses are spread by migratory wild birds and have caused three waves of influenza outbreaks across multiple continents, and the third wave that started in 2020 is ongoing. Many countries in Europe and North America control highly pathogenic avian influenza by culling alone, whereas some countries, including China, have adopted a "cull plus vaccination" strategy. As the largest poultry-producing country in the world, China lost relatively few poultry during the three waves of global H5 avian influenza outbreaks, and nearly eliminated the pervasive H7N9 viruses that emerged in 2013. In this review, we briefly summarize the damages the H5 and H7 influenza viruses have caused to the global poultry industry and public health, analyze the origin, evolution, and spread of the H5 viruses that caused the waves, and discuss how and why the vaccination strategy in China has been a success. Given that the H5N1 viruses are widely circulating in wild birds and causing problems in domestic poultry around the world, we recommend that any unnecessary obstacles to vaccination strategies should be removed immediately and forever.
Collapse
Affiliation(s)
- Jianzhong Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
7
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
8
|
Xu H, Zhu S, Govinden R, Chenia HY. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 2023; 15:1694. [PMID: 37632036 PMCID: PMC10459121 DOI: 10.3390/v15081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Hafizah Y. Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
9
|
Cheng M, Kanyema MM, Sun Y, Zhao W, Lu Y, Wang J, Li X, Shi C, Wang J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Zeng Y, Wang C, Cao X. African Swine Fever Virus L83L Negatively Regulates the cGAS-STING-Mediated IFN-I Pathway by Recruiting Tollip To Promote STING Autophagic Degradation. J Virol 2023; 97:e0192322. [PMID: 36779759 PMCID: PMC9973008 DOI: 10.1128/jvi.01923-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-β promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.
Collapse
Affiliation(s)
- Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Makoye Mhozya Kanyema
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wenhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, People’s Republic of China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, People’s Republic of China
| |
Collapse
|
10
|
Characterization of a Recombinant Thermostable Newcastle Disease Virus (NDV) Expressing Glycoprotein gB of Infectious Laryngotracheitis Virus (ILTV) Protects Chickens against ILTV Challenge. Viruses 2023; 15:v15020500. [PMID: 36851714 PMCID: PMC9959528 DOI: 10.3390/v15020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Infectious laryngotracheitis (ILT) and Newcastle disease (ND) are two important avian diseases that have caused huge economic losses to the poultry industry worldwide. Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated a thermostable recombinant NDV (rNDV) expressing the glycoprotein gB (gB) of infectious laryngotracheitis virus (ITLV) based on the full-length cDNA clone of the thermostable TS09-C strain. This thermostable rNDV, named rTS-gB, displayed similar thermostability, growth kinetics, and pathogenicity compared with the parental TS09-C virus. The immunization data showed that rTS-gB induced effective ILTV- and NDV-specific antibody responses and conferred immunization protection against ILTV challenge in chickens. The efficacy of rTS-gB in alleviating clinical signs was similar to that of the commercial attenuated ILTV K317 strain. Furthermore, rTS-gB could significantly reduce viral shedding in cloacal and tracheal samples. Our study suggested that the rNDV strain rTS-gB is a thermostable, safe, and highly efficient vaccine candidate against ILT and ND.
Collapse
|
11
|
Wang H, Nan F, Zeng Z, Zhang X, Ke D, Zhang S, Zhou X, Niu D, Fan T, Jiang S, Zhang X, Wang Y, Wang B, Zhang W. Tumor cell vaccine combined with Newcastle disease virus promote immunotherapy of lung cancer. J Med Virol 2023; 95:e28554. [PMID: 36738232 DOI: 10.1002/jmv.28554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Lung cancer is a fatal disease with the highest worldwide morbidity and mortality rates. Despite recent advances in targeted therapy and immune checkpoint inhibitors for cancer, their efficacy remained limited. Therefore, we designed a Newcastle disease virus (NDV)-modified tumor whole-cell vaccine as a therapeutic vaccine and identified its antigen presentation level to develop effective immunotherapy. Then, we calculated the therapeutic and immune-stimulating effects of NDV-modified lung cancer cell vaccine and intratumoral NDV injection combination on tumor-bearing mice. The results showed that the immunogenic cell death (ICD) expression in NDV-modified lung cancer cell vaccine stimulates dendritic cell maturation and T cell activation in vivo and in vitro. Moreover, NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could significantly inhibit tumor growth and enhance the differentiation of Th1 cells and Inflammatory cell infiltration in vivo, leading to an excellent immunotherapeutic effect. Therefore, our results revealed that NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could promote antigen presentation and induce a strong antitumor immune response, which provided a promising combined therapy strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Fulong Nan
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhou Zeng
- Dazhou Integrated Traditional Chinese and Western Medicine Hospital, Dazhou, Sichuan, China
| | - Xueming Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Dingxin Ke
- Research, Institute of Biopharmaceutical, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuyun Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiaoqiong Zhou
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Delei Niu
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Tianyu Fan
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Shasha Jiang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianjuan Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wanming Zhang
- Department of Special Medicine, Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Avidov R, Lublin A, Sudharsan Varma V, Saadi I, Yoselewitz I, Chen Y, Laor Y. Utilization of polyethylene sleeves with forced aeration for composting of broiler carcasses on mass depopulation events: Laboratory-scale simulations and sensitivity analyses. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:107-117. [PMID: 36368260 DOI: 10.1016/j.wasman.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Composting poultry carcasses and the infected litter is considered feasible during mass depopulation events in response to disease outbreaks. We demonstrate the effect of temperature (40, 50, 60 °C) and aerobic/anaerobic conditions on the degradation of broiler carcasses and broiler litter (BL) and the elimination of pre-inoculated Avian flu and Newcastle viruses and SalmonellaInfantis (3.3 × 105.6 EID50, 7 × 106.0 EID50 and 2 × 107 CFU g-dry matter (DM)-1, respectively). Six broiler carcasses and BL were inoculated and treated with a water-based foam, simulating a common culling method. After 30 days of composting, both viruses were eliminated under all conditions, whileSalmonellapersisted at 40 °C under aerobic and anaerobic conditions (7.4 × 105and 4.4 × 103CFU g-DM-1, respectively). Mass losses were 42-44, 24-26, and 18-22% (aerobic) and 18-27, 21-23, and 0-7% (anaerobic) at 40, 50, and 60 °C, respectively. In the end, the associated odors were not typical of carcasses (aerobic), or they were strong and offensive (anaerobic). Considering the observed mass losses and biomass water holding capacity, we present a sensitivity analysis of the water balance expected in composting sleeves if they are utilized on mass depopulation events. Composting of the carcasses and the BL in enclosed sleeves with forced aeration, following culling by means of water-based foam will generate excess water, depending on sleeve volumes, aeration conditions, and co-addition of absorbing materials like sawdust. No excessive moisture is expected if dry culling methods are used.
Collapse
Affiliation(s)
- Ran Avidov
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7612001, Israel
| | - Avishai Lublin
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Vempalli Sudharsan Varma
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel
| | - Ibrahim Saadi
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel
| | - Israel Yoselewitz
- Agricultural Extension Service of Israel (Shaham), Ministry of Agriculture, Israel
| | - Yona Chen
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7612001, Israel
| | - Yael Laor
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) - Volcani Institute, Newe Ya'ar Research Center, Ramat Yishai 30095, Israel.
| |
Collapse
|
13
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
14
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
15
|
Yang W, Dai J, Liu J, Guo M, Liu X, Hu S, Gu M, Hu J, Hu Z, Gao R, Liu K, Chen Y, Liu X, Wang X. Intranasal Immunization with a Recombinant Avian Paramyxovirus Serotypes 2 Vector-Based Vaccine Induces Protection against H9N2 Avian Influenza in Chicken. Viruses 2022; 14:v14050918. [PMID: 35632659 PMCID: PMC9144924 DOI: 10.3390/v14050918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Commercial inactivated vaccines against H9N2 avian influenza (AI) have been developed in China since 1990s and show excellent immunogenicity with strong HI antibodies. However, currently approved vaccines cannot meet the clinical demand for a live-vectored vaccine. Newcastle disease virus (NDV) vectored vaccines have shown effective protection in chickens against H9N2 virus. However, preexisting NDV antibodies may affect protective efficacy of the vaccine in the field. Here, we explored avian paramyxovirus serotype 2 (APMV-2) as a vector for developing an H9N2 vaccine via intranasal delivery. APMV-2 belongs to the same genus as NDV, distantly related to NDV in the phylogenetic tree, based on the sequences of Fusion (F) and hemagglutinin-neuraminidase (HN) gene, and has low cross-reactivity with anti-NDV antisera. We incorporated hemagglutinin (HA) of H9N2 into the junction of P and M gene in the APMV-2 genome by being flanked with the gene start, gene end, and UTR of each gene of APMV-2-T4 to generate seven recombinant APMV-2 viruses rAPMV-2/HAs, rAPMV-2-NPUTR-HA, rAPMV-2-PUTR-HA, rAPMV-2-FUTR-HA, rAPMV-2-HNUTR-HA, rAPMV-2-LUTR-HA, and rAPMV-2-MUTR-HA, expressing HA. The rAPMV-2/HAs displayed similar pathogenicity compared with the parental APMV-2-T4 virus and expressed HA protein in infected CEF cells. The NP-UTR facilitated the expression and secretion of HA protein in cells infected with rAPMV-2-NPUTR-HA. Animal studies demonstrated that immunization with rAPMV-2-NPUTR-HA elicited effective H9N2-specific antibody (6.14 ± 1.2 log2) responses and conferred complete immune protection to prevent viral shedding in the oropharyngeal and cloacal swabs from chickens challenged with H9N2 virus. This study suggests that our recombinant APMV-2 virus is safe and immunogenic and can be a useful tool in the combat of H9N2 outbreaks in chicken.
Collapse
Affiliation(s)
- Wenhao Yang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jing Dai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Jingjing Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Mengjiao Guo
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Zenglei Hu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225000, China; (W.Y.); (J.D.); (J.L.); (M.G.); (X.L.); (S.H.); (M.G.); (J.H.); (R.G.); (Y.C.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China; (Z.H.); (K.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
16
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
17
|
Lee J, Kim DH, Noh J, Youk S, Jeong JH, Lee JB, Park SY, Choi IS, Lee SW, Song CS. Live Recombinant NDV-Vectored H5 Vaccine Protects Chickens and Domestic Ducks From Lethal Infection of the Highly Pathogenic H5N6 Avian Influenza Virus. Front Vet Sci 2022; 8:773715. [PMID: 35187138 PMCID: PMC8850738 DOI: 10.3389/fvets.2021.773715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
The H5 subtype highly pathogenic avian influenza virus (HPAIV) has been introduced to South Korea every 2 or 3 years via wild migratory waterfowls, causing devastating damages to the poultry industry. Although most damages and economic losses by HPAIV are focused on chicken layers, domestic ducks are known to play a major role in the farm-to-farm transmission. However, most HPAIV vaccine studies on poultry have been performed with oil-emulsion inactivated vaccines. In this study, we developed a live recombinant Newcastle disease virus (NDV)-vectored vaccine against H5 HPAIV (rK148/ES2-HA) using a previously established NDV vaccine strain (K148/08) isolated from a wild mallard duck. The efficacy of the vaccine when administered via the oculonasal route or as a spray was evaluated against lethal H5 HPAIV infection in domestic ducks and chickens. Oculonasal inoculation of the rK148/ES2-HA in chickens and ducks elicited antibody titers against HPAIV as early as 1 or 2 week after the single dose of vaccination, whereas spray vaccination in ducks elicited antibodies against HPAIV after the booster vaccination. The chickens and ducks vaccinated with rK148/ES2-HA showed high survival rates and low viral shedding after H5N6 HPAIV challenge. Collectively, vaccination with rK148/ES2-HA prevented lethal infection and decreased viral shedding in both chickens and ducks. The vaccine developed in this study could be useful in suppressing the viral shedding in H5 HPAIV outbreaks, with the ease of vaccine application and fast onset of immunity.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Deok-hwan Kim
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Sungsu Youk
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jei-hyun Jeong
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Joong-bok Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Seung-Yong Park
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - In-soo Choi
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sang-Won Lee
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Chang-seon Song
- Department of Avian Disease, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- KCAV Co., Ltd., Seoul, South Korea
- *Correspondence: Chang-seon Song
| |
Collapse
|
18
|
Nath B, Morla S, Kumar S. Reverse Genetics and Its Usage in the Development of Vaccine Against Poultry Diseases. Methods Mol Biol 2022; 2411:77-92. [PMID: 34816399 DOI: 10.1007/978-1-0716-1888-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vaccines are the most effective and economic way of combating poultry viruses. However, the use of traditional live-attenuated poultry vaccines has problems such as antigenic differences with the currently circulating strains of viruses and the risk of reversion to virulence. In veterinary medicine, reverse genetics is applied to solve these problems by developing genotype-matched vaccines, better attenuated and effective live vaccines, broad-spectrum vaccine vectors, bivalent vaccines, and genetically tagged recombinant vaccines that facilitate the serological differentiation of vaccinated animals from infected animals. In this chapter, we discuss reverse genetics as a tool for the development of recombinant vaccines against economically devastating poultry viruses.
Collapse
Affiliation(s)
- Barnali Nath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
19
|
Yang F, Liu P, Li X, Liu R, Gao L, Cui H, Zhang Y, Liu C, Qi X, Pan Q, Liu A, Wang X, Gao Y, Li K. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Front Microbiol 2021; 12:813010. [PMID: 35003046 PMCID: PMC8727602 DOI: 10.3389/fmicb.2021.813010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Duck enteritis virus (DEV) and duck hepatitis A virus (DHAV) are prevalent duck pathogens, causing significant economic losses in the duck industry annually. Using a fosmid-based rescue system, we generated two DEV recombinants, rDEV-UL26/27-P13C and rDEV-US7/8-P13C, in which the P1 and 3C genes from DHAV type 3 (DHAV-3) were inserted into the DEV genome between genes UL26 and UL27 or genes US7 and US8. We inserted a self-cleaving 2A-element between P1 and 3C, allowing the production of both proteins from a single open reading frame. P1 and 3C were simultaneously expressed in infected chicken embryo fibroblasts, with no difference in growth kinetics between cells infected with the recombinant viruses and those infected with the parent DEV. Both recombinant viruses induced neutralizing antibodies against DHAV-3 and DEV in ducks. A single dose of the recombinant viruses induced solid protection against lethal DEV challenge and completely prevented DHAV-3 infection as early as 7 days post-vaccination. These recombinant P1- and 3C-expressing DEVs provide potential bivalent vaccines against DEV and DHAV-3 infection in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
20
|
A recombinant Newcastle disease virus expressing MMP8 promotes oncolytic efficacy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
22
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
23
|
Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. iScience 2021; 24:102941. [PMID: 34368648 PMCID: PMC8332743 DOI: 10.1016/j.isci.2021.102941] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic. Vaccine induces high levels of neutralizing Abs and T-cell-mediated immunity Vaccine ameliorates lung inflammation and pathology in hamster induced by SARS-CoV-2 The SARS-CoV-2 remains undetectable in lungs and nasal turbinates of vaccinated hamster Two doses of intranasal vaccine show complete protection against SARS-CoV-2 challenge
Collapse
|
24
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
25
|
Nan FL, Zhang H, Nan WL, Xie CZ, Ha Z, Chen X, Xu XH, Qian J, Qiu XS, Ge JY, Bu ZG, Zhang Y, Lu HJ, Jin NY. Lentogenic NDV V protein inhibits IFN responses and represses cell apoptosis. Vet Microbiol 2021; 261:109181. [PMID: 34399297 DOI: 10.1016/j.vetmic.2021.109181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/01/2021] [Indexed: 01/13/2023]
Abstract
The V protein of Newcastle disease virus (NDV) has been shown to inhibit the secretion of interferon (IFN) during infection, which is responsible for the promotion of NDV pathogenicity. However, the ability of the V protein to suppress host innate immunity is not well understood. In this study, we explored the function of V protein and its relationship with virulence by generating V protein-inserted recombinant (r) NDVs. Using rNDVs as a model, we examined the efficiency of infection, IFN responses, and apoptosis of host cells during infection. We found that viral propagation occurred smoothly when V protein from lentogenic NDV is inserted instead of the V protein from the velogenic strain. The infection of lentogenic V protein-inserted rNDV induced less expression of IFNs and downstream antiviral proteins via efficient degradation of p-STAT1 and MDA5. Moreover, velogenic V protein triggered a higher apoptosis rate during infection thereby restricting the replication of NDV. Conversely, lentogenic V protein inhibits IFN responses efficiently and induces less apoptosis compared to the velogenic strain. Our findings provide a novel understanding of the role of V protein in NDV pathogenicity.
Collapse
Affiliation(s)
- Fu Long Nan
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, 130062, China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Wen Long Nan
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Chang Zhan Xie
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Xing Chen
- Changchun Institute of Biological Products Co., Ltd. Changchun, 130012, China
| | - Xiao Hong Xu
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xu Sheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jin Ying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Zhi Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, 130062, China.
| | - Hui Jun Lu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Ning Yi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, 130062, China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, China.
| |
Collapse
|
26
|
The Expression of Hemagglutinin by a Recombinant Newcastle Disease Virus Causes Structural Changes and Alters Innate Immune Sensing. Vaccines (Basel) 2021; 9:vaccines9070758. [PMID: 34358174 PMCID: PMC8310309 DOI: 10.3390/vaccines9070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant Newcastle disease viruses (rNDV) have been used as bivalent vectors for vaccination against multiple economically important avian pathogens. NDV-vectored vaccines expressing the immunogenic H5 hemagglutinin (rNDV-H5) are considered attractive candidates to protect poultry from both highly pathogenic avian influenza (HPAI) and Newcastle disease (ND). However, the impact of the insertion of a recombinant protein, such as H5, on the biological characteristics of the parental NDV strain has been little investigated to date. The present study compared a rNDV-H5 vaccine and its parental NDV LaSota strain in terms of their structural and functional characteristics, as well as their recognition by the innate immune sensors. Structural analysis of the rNDV-H5 demonstrated a decreased number of fusion (F) and a higher number of hemagglutinin-neuraminidase (HN) glycoproteins compared to NDV LaSota. These structural differences were accompanied by increased hemagglutinating and neuraminidase activities of rNDV-H5. During in vitro rNDV-H5 infection, increased mRNA expression of TLR3, TLR7, MDA5, and LGP2 was observed, suggesting that the recombinant virus is recognized differently by sensors of innate immunity when compared with the parental NDV LaSota. Given the growing interest in using NDV as a vector against human and animal diseases, these data highlight the importance of thoroughly understanding the recombinant vaccines’ structural organization, functional characteristics, and elicited immune responses.
Collapse
|
27
|
Nan FL, Zheng W, Nan WL, Yu T, Xie CZ, Zhang H, Xu XH, Li CH, Ha Z, Zhang JY, Zhuang XY, Han JC, Wang W, Qian J, Zhao GY, Li ZX, Ge JY, Bu ZG, Zhang Y, Lu HJ, Jin NY. Newcastle Disease Virus Inhibits the Proliferation of T Cells Induced by Dendritic Cells In Vitro and In Vivo. Front Immunol 2021; 11:619829. [PMID: 33708193 PMCID: PMC7942023 DOI: 10.3389/fimmu.2020.619829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Newcastle disease virus (NDV) infects poultry and antagonizes host immunity via several mechanisms. Dendritic cells (DCs) are characterized as specialized antigen presenting cells, bridging innate and adaptive immunity and regulating host resistance to viral invasion. However, there is little specific knowledge of the role of DCs in NDV infection. In this study, the representative NDV lentogenic strain LaSota was used to explore whether murine bone marrow derived DCs mature following infection. We examined surface molecule expression and cytokine release from DCs as well as proliferation and activation of T cells in vivo and in vitro in the context of NDV. The results demonstrated that infection with lentogenic strain LaSota induced a phenotypic maturation of immature DCs (imDCs), which actually led to curtailed T cell responses. Upon infection, the phenotypic maturation of DCs was reflected by markedly enhanced MHC and costimulatory molecule expression and secretion of proinflammatory cytokines. Nevertheless, NDV-infected DCs produced the anti-inflammatory cytokine IL-10 and attenuated T cell proliferation, inducing Th2-biased responses. Therefore, our study reveals a novel understanding that DCs are phenotypically mature but dysfunctional in priming T cell responses during NDV infection.
Collapse
Affiliation(s)
- Fu Long Nan
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Wei Zheng
- The 964Hospital of the PLA Joint Logistics, Changchun, China
| | - Wen Long Nan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Tong Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Agricultural College, Yanbian University, Yanji, China
| | - Chang Zhan Xie
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xiao Hong Xu
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Cheng Hui Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Yong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Xin Yu Zhuang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ji Cheng Han
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China.,Academician Workstation, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guan Yu Zhao
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Zhuo Xin Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Jin Ying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ying Zhang
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China
| | - Hui Jun Lu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Ning Yi Jin
- College of Veterinary Medicine, College of Animal Science, Jilin University, Changchun, China.,Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
28
|
Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, Wang W, Han L, Chen Z, Wang Z, Zhang B, Chen H, Lei CQ, Zhu Q. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog 2021; 17:e1009300. [PMID: 33577621 PMCID: PMC7880438 DOI: 10.1371/journal.ppat.1009300] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) has evolved various strategies to counteract the innate immune response using different viral proteins. However, the mechanism is not fully elucidated. In this study, we identified the PB1 protein of H7N9 virus as a new negative regulator of virus- or poly(I:C)-stimulated IFN induction and specifically interacted with and destabilized MAVS. A subsequent study revealed that PB1 promoted E3 ligase RNF5 to catalyze K27-linked polyubiquitination of MAVS at Lys362 and Lys461. Moreover, we found that PB1 preferentially associated with a selective autophagic receptor neighbor of BRCA1 (NBR1) that recognizes ubiquitinated MAVS and delivers it to autophagosomes for degradation. The degradation cascade mediated by PB1 facilitates H7N9 virus infection by blocking the RIG-I-MAVS-mediated innate signaling pathway. Taken together, these data uncover a negative regulatory mechanism involving the PB1-RNF5-MAVS-NBR1 axis and provide insights into an evasion strategy employed by influenza virus that involves selective autophagy and innate signaling pathways. In 2013, H7N9 influenza viruses appeared in China and other countries resulting in 1, 567 human infections and 615 deaths. Understanding the cross-talk between virus and host is vital for the development of effective vaccines and therapeutics. Here, we identified the PB1 protein of H7N9 virus as a novel negative regulator that enhances the degradation of MAVS, an essential adaptor protein in the innate signaling pathway. Mechanistically, PB1 promoted the E3 ligase RNF5-mediated ubiquitination of MAVS and recruited the selective autophagic receptor NBR1 to associate with and deliver the ubiquitinated MAVS to the autophagosomes for degradation. Thus, the PB1-RNF5-MAVS-NBR1 axis inhibited innate immune antiviral response and facilitated virus replication by mediating MAVS degradation in an autophagosome-dependent manner. Our findings reveal a novel mechanism by which influenza virus negatively regulates the innate immune response.
Collapse
Affiliation(s)
- Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanli Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuegang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wanbing Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoshan Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bo Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (C-QL); (QZ)
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (C-QL); (QZ)
| |
Collapse
|
29
|
Murr M, Grund C, Breithaupt A, Mettenleiter TC, Römer-Oberdörfer A. Protection of Chickens with Maternal Immunity Against Avian Influenza Virus (AIV) by Vaccination with a Novel Recombinant Newcastle Disease Virus Vector. Avian Dis 2020; 64:427-436. [PMID: 33347549 DOI: 10.1637/aviandiseases-d-20-00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 11/05/2022]
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) hemagglutinin of subtype H5 protect specific pathogen-free chickens from Newcastle disease and avian influenza. However, maternal AIV antibodies (AIV-MDA+) are known to interfere with active immunization by influencing vaccine virus replication and gene expression, resulting in inefficient protection. To overcome this disadvantage, we inserted a transgene encoding a truncated soluble hemagglutinin (HA) in addition to the gene encoding membrane-bound HA from highly pathogenic avian influenza virus (HPAIV) H5N1 into lentogenic NDV Clone 30 genome (rNDVsolH5_H5) to overexpress H5 antigen. Vaccination of 3-wk-old AIV-MDA+ chickens with rNDVsolH5_H5 and subsequent challenge infection with HPAIV H5N1 3 wk later resulted in 100% protection. Vaccination of younger chickens with higher AIV-MDA levels 1 and 2 wk after hatch resulted in protection rates of 40% and 85%, respectively. However, all vaccinated chickens showed strongly reduced shedding of challenge virus compared with age-matched, nonvaccinated control chickens. All control chickens succumbed to the HPAIV infection with a grading in disease progression between the three groups, indicating the influence of AIV-MDAs even at a low level. Furthermore, the shedding and serologic data gathered after immunization indicate sufficient replication of the vaccine virus, which leads to the assumption that lower protection rates in younger AIV-MDA+ chickens are caused by an H5 antigen-specific block and not by the interference of the AIV-MDA and the vaccine virus itself. In summary, solid protective efficacy and reduced virus transmission were achieved in 3-wk-old AIV-MDA+ chickens, which is relevant especially in regions endemically infected with HPAIV H5N1.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
30
|
Zhao Y, Han Z, Zhang X, Zhang X, Sun J, Ma D, Liu S. Construction and immune protection evaluation of recombinant virus expressing Newcastle disease virus F protein by the largest intergenic region of fowlpox virus NX10. Virus Genes 2020; 56:734-748. [PMID: 33009986 DOI: 10.1007/s11262-020-01799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/26/2020] [Indexed: 01/27/2023]
Abstract
Fowlpox virus (FPV) is used as a vaccine vector to prevent diseases in poultry and mammals. The insertion site is considered as one of the main factors influencing foreign gene expression. Therefore, the identification of insertion sites that can stably and efficiently express foreign genes is crucial for the construction of recombinant vaccines. In this study, we found that the insertion of foreign genes into ORF054 and the ORF161/ORF162 intergenic region of the FPV genome did not affect replication, and that the foreign genes inserted into the intergenic region were more efficiently expressed than when they were inserted into a gene. Based on these results, the recombinant virus rFPVNX10-NDV F-E was constructed and immune protection against virulent FPV and Newcastle disease virus (NDV) was evaluated. Tests for anti-FPV antibodies in the vaccinated chickens were positive within 14 days post-vaccination. After challenge with FPV102, no clinical signs of FP were observed in vaccinated chickens, as compared to that in the control group (unvaccinated), which showed 100% morbidity. Low levels of NDV-specific neutralizing antibodies were detected in vaccinated chickens before challenge. After challenge with NDV ck/CH/LHLJ/01/06, all control chickens died within 4 days post-challenge, whereas 5/15 vaccinated chickens died between 4 and 12 days post-challenge. Vaccination provided an immune protection rate of 66.7%, whereas the control group showed 100% mortality. These results indicate that the ORF161/ORF162 intergenic region of FPVNX10 can be used as a recombination site for foreign gene expression in vivo and in vitro.
Collapse
Affiliation(s)
- Yan Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xiaocai Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Xuemei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
31
|
A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8:vaccines8030472. [PMID: 32846910 PMCID: PMC7565466 DOI: 10.3390/vaccines8030472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/30/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.
Collapse
|
32
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
33
|
Li X, Zhang L, Liu Y, Ma L, Zhang N, Xia C. Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem 2020; 295:5292-5306. [PMID: 32152225 PMCID: PMC7170506 DOI: 10.1074/jbc.ra120.012713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell-mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I-β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV-PA123-130 We determined the structure of the BF2*1501-PA123-130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123-130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123-130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV-PA123-130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123-130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100094, People's Republic of China.
| |
Collapse
|
34
|
Murr M, Karger A, Steglich C, Mettenleiter TC, Römer-Oberdörfer A. Coexpression of soluble and membrane-bound avian influenza virus H5 by recombinant Newcastle disease virus leads to an increase in antigen levels. J Gen Virol 2020; 101:473-483. [PMID: 32209169 DOI: 10.1099/jgv.0.001405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) haemagglutinin (HA) of subtype H5 simultaneously protect chickens from Newcastle disease (ND) as well as avian influenza (AI). The expressed, membrane-bound surface protein HA is incorporated into virions while soluble HA has been described as a potent antigen. We tested whether co-expression of both HA variants from the same NDV vector increased the overall level of HA, which could be important for optimal immunogenicity. Recombinant NDVsolH5_H5 co-expressed membrane-bound H5 of highly pathogenic (HP) AIV H5N1, detectable in infected cells, and soluble H5, which was secreted into the supernatant. This virus was compared to recombinant NDV that express either membrane-bound (rNDVH5) or soluble H5 (rNDVsolH5). Replication in embryonated chicken eggs (ECEs) and in cell culture, as well as pathogenicity in ECEs, was not influenced by the second heterologous transcriptional unit. However, the co-expression of soluble H5 with membrane-bound H5 increased total protein level about 5.25-fold as detected by MS quantification. Hence, this virus is very interesting as a vaccine virus in chickens against HPAIV infections in situations in which previous H5-expressing NDVs have reached their limit, such as in the face of pre-existing AIV maternal immunity.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Constanze Steglich
- Present address: Ceva Riems GmbH, An der Wiek 7, 17493 Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
35
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Zhang H, Nan F, Li Z, Zhao G, Xie C, Ha Z, Zhang J, Han J, Xiao P, Zhuang X, Wang W, Ge J, Tian M, Lu H, Bu Z, Jin N. Construction and immunological evaluation of recombinant Newcastle disease virus vaccines expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP3/GP5 proteins in pigs. Vet Microbiol 2019; 239:108490. [PMID: 31767075 DOI: 10.1016/j.vetmic.2019.108490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/27/2019] [Indexed: 11/29/2022]
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Fulong Nan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuoxin Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guanyu Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changzhan Xie
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuo Ha
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinyong Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jicheng Han
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Medical College, Yanbian University, Yanji, China
| | - Pengpeng Xiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Institute of Virology, Wenzhou University, Wenzhou, China
| | - Xinyu Zhuang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Wei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jinying Ge
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China
| | - Huijun Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China.
| | - Zhigao Bu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
37
|
|
38
|
Ding L, Chen P, Bao X, Li A, Jiang Y, Hu Y, Ge J, Zhao Y, Wang B, Liu J, Chen H. Recombinant duck enteritis viruses expressing the Newcastle disease virus (NDV) F gene protects chickens from lethal NDV challenge. Vet Microbiol 2019; 232:146-150. [PMID: 31030839 DOI: 10.1016/j.vetmic.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Newcastle disease virus (NDV) is a major threat to poultry worldwide. Virulent Newcastle disease virus infection can cause 100% morbidity and mortality in chickens. Vaccination is the most effective way to prevent and control NDV outbreaks in poultry. Previously, we demonstrated that a duck enteritis virus (DEV) vaccine strain is a promising vector to generate recombinant vaccines in chickens. Here, we constructed two recombinant DEVs expressing the F protein (rDEV-F) or HN protein (rDEV-HN) of NDV. We then evaluated the protective efficacy of these recombinant DEVs in specific-pathogen-free chickens. rDEV-F induced 100% protection of chickens from lethal NDV challenge after a single dose of 104 TCID50, whereas rDEV-HN did not induce effective protection. rDEV-F may therefore serve as a promising vaccine candidate for chickens. This is the first report of a DEV-vectored vaccine providing robust protection against lethal NDV infection in chickens.
Collapse
Affiliation(s)
- Leilei Ding
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Xingzhi Bao
- Shapotou Center for Animal Disease Control and Prevention, NingXia, ZhongWei, Shapotou 755000, People's Republic of China
| | - Aixin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Yubo Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
39
|
Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019; 11:v11030300. [PMID: 30917500 PMCID: PMC6466292 DOI: 10.3390/v11030300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) and Newcastle disease are economically important avian diseases worldwide. Effective vaccination is critical to control these diseases in poultry. Live attenuated Newcastle disease virus (NDV) vectored vaccines have been developed for bivalent vaccination against HPAI viruses and NDV. These vaccines have been generated by inserting the hemagglutinin (HA) gene of avian influenza virus into NDV genomes. In laboratory settings, several experimental NDV-vectored vaccines have protected specific pathogen-free chickens from mortality, clinical signs, and virus shedding against H5 and H7 HPAI viruses and NDV challenges. NDV-vectored H5 vaccines have been licensed for poultry vaccination in China and Mexico. Recently, an antigenically chimeric NDV vector has been generated to overcome pre-existing immunity to NDV in poultry and to provide early protection of poultry in the field. Prime immunization of one-day-old poults with a chimeric NDV vector followed by boosting with a conventional NDV vector has shown to protect broiler chickens against H5 HPAI viruses and a highly virulent NDV. This novel vaccination approach can provide efficient control of HPAI viruses in the field and facilitate poultry vaccination.
Collapse
|
40
|
Liu L, Wang T, Wang M, Tong Q, Sun Y, Pu J, Sun H, Liu J. Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza. Virology 2019; 529:7-15. [PMID: 30641481 DOI: 10.1016/j.virol.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
H9N2 avian influenza viruses (AIVs) were prevailing in chickens, causing great economic losses and public health threats. In this study, turkey herpesviruses (HVT) was cloned as an infectious bacterial artificial chromosomes (BAC). Recombinant HVT (rHVT-H9) containing hemagglutinin (HA) gene from H9N2 virus were constructed via galactokinase (galK) selection and clustered regularly interspaced short palindromic repeats/associated 9 (CRISPR/Cas9) gene editing system. The recombinant rHVT-H9 showed no difference with parent HVT in plague morphology and virus replication kinetics. H9 protein expression of rHVT-H9 could be detected by western blot and indirect immunofluorescence assay (IFA) in vitro and in vivo. Immunization with rHVT-H9 could induce robust humoral and cellular immunity in chickens. In the challenge study, no chicken shed H9N2 virus from oropharynx and cloaca, and no H9N2 virus was found in viscera in vaccination groups. The result suggests that rHVT-H9 provides effective protection against H9N2 AIV in chickens.
Collapse
Affiliation(s)
- Litao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tong Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Profile of Dr. Hualan Chen. SCIENCE CHINA. LIFE SCIENCES 2018; 61:1463-1464. [PMID: 30499049 DOI: 10.1007/s11427-018-9436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
42
|
Cho Y, Lamichhane B, Nagy A, Chowdhury IR, Samal SK, Kim SH. Co-expression of the Hemagglutinin and Neuraminidase by Heterologous Newcastle Disease Virus Vectors Protected Chickens against H5 Clade 2.3.4.4 HPAI Viruses. Sci Rep 2018; 8:16854. [PMID: 30443041 PMCID: PMC6237909 DOI: 10.1038/s41598-018-35337-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Avian influenza remains an important zoonotic disease with a significant global impact. The spread of H5 highly pathogenic avian influenza (HPAI) viruses (clade 2.3.4.4) by migratory birds has caused outbreaks in wide geographic regions (Asia, Europe, and North America) with great economic losses during 2014-2015. Efficient vaccines and vaccination approaches are needed to enhance protective immunity against HPAI viruses. Although several vaccination strategies have been developed, none has been satisfactory. Our strategy has been to use avirulent vaccine strain of Newcastle disease virus (NDV) as a vaccine vector for HPAI viruses. For poultry vaccination, we previously generated a new platform of chimeric NDV vector to overcome preexisting maternal antibodies to NDV in poultry. In this study, we have generated vaccine candidates targeting H5 clade 2.3.4.4 HPAI viruses by using our chimeric NDV and conventional NDV strain LaSota vectors for a heterologous prime-boost immunization approach. Co-expression of the HA and NA proteins by our vaccine vectors induced enhanced HPAI virus specific immune responses in specific-pathogen free and broiler chickens prior to challenge. Further, these vaccine candidates efficiently protected broiler chickens from mortality, clinical signs, and shedding of homologous and heterologous H5 HPAI viruses and highly virulent NDV, thus providing a dual vaccination approach in the field.
Collapse
Affiliation(s)
- Yeonwoo Cho
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Barisha Lamichhane
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Abdou Nagy
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Ishita Roy Chowdhury
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Siba K Samal
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shin-Hee Kim
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
43
|
Shao Y, Sun J, Han Z, Liu S. Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge. Vaccine 2018; 36:7975-7986. [PMID: 30448332 DOI: 10.1016/j.vaccine.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023]
Abstract
In this study, we isolated and identified an infectious laryngotracheitis virus (ILTV) that was naturally avirulent in specific pathogen-free (SPF) chickens, with the aim of developing a more efficacious vaccine against ILTV and Newcastle disease virus (NDV). We constructed a US9-deleted ILTV mutant based on this avirulent ILTV, and then constructed a recombinant ILTV (designated ILTV-ΔUS9-F) expressing the fusion protein (F) of the genotype VII NDV based on the US9-deleted ILTV mutant. Expression of the F protein in ILTV-ΔUS9-F-infected cells was confirmed by indirect immunofluorescence assay and western blotting. The inserted F gene was stably expressed in ILTV-ΔUS9-F. The growth kinetics of ILTV-ΔUS9-F were comparable to those of the wild-type ILTV strain. Vaccination of SPF chickens with ILTV-ΔUS9-F produced no clinical signs but did induce low levels of NDV-specific enzyme-linked immunosorbent assay and neutralizing antibodies. A single vaccination with 104 plaque-forming units (PFU) of ILTV-ΔUS9-F provided good protection against both genotype VII and IX NDVs based on clinical signs, similar to the protection provided by the commercial live La Sota vaccine. Notably, ILTV-ΔUS9-F limited the replication and shedding of genotype VII NDV from oropharyngeal swabs more efficiently than the La Sota vaccine. In addition, vaccination with lower doses (103 and 102 PFU) of ILTV-ΔUS9-F also provided sufficient clinical protection. These results indicated that ILTV-ΔUS9-F may be a bivalent vaccine candidate against both ILTV and NDV.
Collapse
Affiliation(s)
- Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, People's Republic of China.
| |
Collapse
|
44
|
Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1465-1473. [DOI: 10.1007/s11427-018-9420-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
|
45
|
The 135 Gene of Goatpox Virus Encodes an Inhibitor of NF-κB and Apoptosis and May Serve as an Improved Insertion Site To Generate Vectored Live Vaccine. J Virol 2018; 92:JVI.00190-18. [PMID: 29950422 DOI: 10.1128/jvi.00190-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022] Open
Abstract
Goatpox virus (GTPV) is an important member of the Capripoxvirus genus of the Poxviridae Capripoxviruses have large and complex DNA genomes encoding many unknown proteins that may contribute to virulence. We identified that the 135 open reading frame of GTPV is an early gene that encodes an ∼18-kDa protein that is nonessential for viral replication in cells. This protein functioned as an inhibitor of NF-κB activation and apoptosis and is similar to the N1L protein of vaccinia virus. In the natural host, sheep, deletion of the 135 gene from the GTPV live vaccine strain AV41 resulted in less attenuation than that induced by deletion of the tk gene, a well-defined nonessential gene in the poxvirus genome. Using the 135 gene as the insertion site, a recombinant AV41 strain expressing hemagglutinin of peste des petits ruminants virus (PPRV) was generated and elicited stronger neutralization antibody responses than those obtained using the traditional tk gene as the insertion site. These results suggest that the 135 gene of GTPV encodes an immunomodulatory protein to suppress host innate immunity and may serve as an optimized insertion site to generate capripoxvirus-vectored live dual vaccines.IMPORTANCE Capripoxviruses are etiological agents of important diseases in sheep, goats, and cattle. There are rare reports about viral protein function related to capripoxviruses. In the present study, we found that the 135 protein of GTPV plays an important role in inhibition of innate immunity and apoptosis in host cells. Use of the 135 gene as the insertion site to generate a vectored vaccine resulted in stronger adaptive immune responses than those obtained using the tk locus as the insertion site. As capripoxviruses are promising virus-vectored vaccines against many important diseases in small ruminants and cattle, the 135 gene may serve as an improved insertion site to generate recombinant capripoxvirus-vectored live dual vaccines.
Collapse
|
46
|
A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity. J Virol 2018; 92:JVI.00149-18. [PMID: 29563291 DOI: 10.1128/jvi.00149-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023] Open
Abstract
Nonstructural protein 1 (NS1) of influenza A virus regulates innate immune responses via various mechanisms. We previously showed that a naturally occurring deletion (the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus impairs the inhibition of type I interferon (IFN) in chicken fibroblasts and attenuates virulence in chickens. Here we found that the virus bearing this deletion in its NS1 effector domain showed diminished inhibition of IFN-related cytokine expression and attenuated virulence in mice. We further showed that deletion of the EALQR motif disrupted NS1 dimerization, impairing double-stranded RNA (dsRNA) sequestration and competitive binding with RIG-I. In addition, the EALQR-deleted NS1 protein could not bind to TRIM25, unlike full-length NS1, and was less able to block TRIM25 oligomerization and self-ubiquitination, further impairing the inhibition of TRIM25-mediated RIG-I ubiquitination compared to that with full-length NS1. Our data demonstrate that the EALQR deletion prevents NS1 from blocking RIG-I-mediated IFN induction via a novel mechanism to attenuate viral replication and virulence in mammalian cells and animals.IMPORTANCE H5 highly pathogenic avian influenza viruses have infected more than 800 individuals across 16 countries, with an overall case fatality rate of 53%. Among viral proteins, nonstructural protein 1 (NS1) of influenza virus is considered a key determinant for type I interferon (IFN) antagonism, pathogenicity, and host range. However, precisely how NS1 modulates virus-host interaction, facilitating virus survival, is not fully understood. Here we report that a naturally occurring deletion (of the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus disrupted NS1 dimerization, which diminished the blockade of IFN induction via the RIG-I signaling pathway, thereby impairing virus replication and virulence in the host. Our study demonstrates that the EALQR motif of NS1 regulates virus fitness to attain a virus-host compromise state in animals and identifies this critical motif as a potential target for the future development of small molecular drugs and attenuated vaccines.
Collapse
|
47
|
Chi X, Bi S, Xu W, Zhang Y, Liang S, Hu S. Oral administration of tea saponins to relive oxidative stress and immune suppression in chickens. Poult Sci 2018. [PMID: 28633386 PMCID: PMC7107189 DOI: 10.3382/ps/pex127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study was designed to evaluate the effects of tea saponins on oxidative stress induced by cyclophosphamide in chickens. One hundred twenty chickens were randomly divided into 5 groups. Groups 3 to 4 received intramuscular injection of cyclophosphamide to induce oxidative stress and immunosuppression. After that, groups 2 and 4 were orally administered tea saponins in drinking water for 7 d. Then, groups 1 to 4 were immunized with a live, bivalent vaccine of Newcastle disease virus and infectious bronchitis virus. Blood samples were collected for analysis of oxidative parameters and specific antibody titers, and splenocytes were prepared for lymphocyte proliferative assay. The results showed that administration of tea saponins significantly increased total antioxidant capacity, total superoxide dismutase, catalase, glutathione peroxidase, glutathione, ascorbic acid, and α-tocopherol, and decreased malondialdehyde and protein carbonyl. Enhanced immune responses, such as lymphocyte proliferation induced by concanavalin A and lipopolysaccharides, and serum Newcastle disease virus- and infectious bronchitis virus-specific antibodies were also observed in chickens injected with or without cyclophosphamide. In addition, no side effects were found in chickens throughout the study. Therefore, tea saponins may be a potential agent to improve imunosuppression induced by oxidative stress in chickens.
Collapse
Affiliation(s)
- X Chi
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - S Bi
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - W Xu
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Y Zhang
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - S Liang
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - S Hu
- Department of Veterinary Medicine, College of Animal Sci., Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| |
Collapse
|
48
|
Yu GM, Zu SL, Zhou WW, Wang XJ, Shuai L, Wang XL, Ge JY, Bu ZG. Chimeric rabies glycoprotein with a transmembrane domain and cytoplasmic tail from Newcastle disease virus fusion protein incorporates into the Newcastle disease virion at reduced levels. J Vet Sci 2018; 18:351-359. [PMID: 27515260 PMCID: PMC5583423 DOI: 10.4142/jvs.2017.18.s1.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 11/20/2022] Open
Abstract
Rabies remains an important worldwide health problem. Newcastle disease virus (NDV) was developed as a vaccine vector in animals by using a reverse genetics approach. Previously, our group generated a recombinant NDV (LaSota strain) expressing the complete rabies virus G protein (RVG), named rL-RVG. In this study, we constructed the variant rL-RVGTM, which expresses a chimeric rabies virus G protein (RVGTM) containing the ectodomain of RVG and the transmembrane domain (TM) and a cytoplasmic tail (CT) from the NDV fusion glycoprotein to study the function of RVG's TM and CT. The RVGTM did not detectably incorporate into NDV virions, though it was abundantly expressed at the surface of infected BHK-21 cells. Both rL-RVG and rL-RVGTM induced similar levels of NDV virus-neutralizing antibody (VNA) after initial and secondary vaccination in mice, whereas rabies VNA induction by rL-RVGTM was markedly lower than that induced by rL-RVG. Though rL-RVG could spread from cell to cell like that in rabies virus, rL-RVGTM lost this ability and spread in a manner similar to the parental NDV. Our data suggest that the TM and CT of RVG are essential for its incorporation into NDV virions and for spreading of the recombinant virus from the initially infected cells to surrounding cells.
Collapse
Affiliation(s)
- Gui Mei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shu Long Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wei Wei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xi Jun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Shuai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xue Lian Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin Ying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi Gao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
49
|
Eldemery F, Li Y, Yu Q, van Santen VL, Toro H. Infectious Bronchitis Virus S2 of 4/91 Expressed from Recombinant Virus Does Not Protect Against Ark-Type Challenge. Avian Dis 2018; 61:397-401. [PMID: 28957002 DOI: 10.1637/11632-032017-resnoter] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously demonstrated that chickens primed with a recombinant Newcastle disease virus LaSota (rLS) expressing the S2 gene of infectious bronchitis virus (IBV) and boosted with an attenuated IBV Massachusetts (Mass)-type vaccine were protected against IBV Arkansas (Ark)-type virulent challenge. A possible basis for the reported ability of IBV 4/91 (serotype 793/B) vaccine to protect against divergent IBV strains (e.g., QX, Q1, and D1466) in a prime-boost approach with an IBV Mass vaccine is that an immune response against the S2 protein of IBV 4/91 is cross-protective. Therefore, we evaluated the protective capabilities of the S2 protein of IBV 4/91 expressed from rLS. The level of S2 amino acid sequence identity between 4/91 and the Ark challenge strain used in this study (90.7%) is within the range of S2 amino acid sequence identities between 4/91 and Q1 (91%-94%) and QX (89%-94%) strains. Chickens primed with attenuated Mass IBV at 1 day of age and boosted with rLS/IBV.S2-4/91 at 14 days of age were challenged with a virulent Ark IBV strain at 28 days of age. Protection (reduction of clinical signs and viral loads) assessed 5 days postchallenge showed nonsignificant differences between chickens primed with Mass vaccine and boosted with rLS/IBV.S2-4/91 and chickens vaccinated with Mass only. Thus, the observed level of protection is attributable only to the effect of the Mass vaccine, indicating that the S2 of IBV 4/91 does not induce broad cross-protective immunity.
Collapse
Affiliation(s)
- Fatma Eldemery
- A Department of Pathobiology, College of Veterinary Medicine, Auburn University, 264 Greene Hall, Auburn, AL 36849.,B Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt 35516
| | - Yufeng Li
- C United States Department of Agriculture, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| | - Qingzhong Yu
- C United States Department of Agriculture, Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605
| | - Vicky L van Santen
- A Department of Pathobiology, College of Veterinary Medicine, Auburn University, 264 Greene Hall, Auburn, AL 36849
| | - Haroldo Toro
- A Department of Pathobiology, College of Veterinary Medicine, Auburn University, 264 Greene Hall, Auburn, AL 36849
| |
Collapse
|
50
|
Tsunekuni R, Hikono H, Tanikawa T, Kurata R, Nakaya T, Saito T. Recombinant Avian Paramyxovirus Serotypes 2, 6, and 10 as Vaccine Vectors for Highly Pathogenic Avian Influenza in Chickens with Antibodies Against Newcastle Disease Virus. Avian Dis 2018; 61:296-306. [PMID: 28957006 DOI: 10.1637/11512-100616-regr1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recombinant Newcastle disease virus (rNDV) expressing the hemagglutinin of highly pathogenic avian influenza virus (HPAIV HA) induces protective immunity against HPAIV in chickens. However, the efficacy of rNDV vectors is hampered when chickens are pre-immune to NDV, and most commercial chickens are routinely vaccinated against NDV. We recently showed that avian paramyxovirus serotypes 2, 6, and 10 (APMV-2, APMV-6, and APMV-10), which belong to the same genus as NDV, have low cross-reactivity with anti-NDV antisera. Here, we used reverse genetics to generate recombinant APMV-2, APMV-6, and APMV-10 (rAPMV-2/HA, rAPMV-6/HA, and rAPMV-10/HA) that expressed an HA protein derived of subtype H5N1 HPAIV, A/chicken/Yamaguchi/7/2004. Chickens pre-immunized against NDV (age, 7 wk) were vaccinated with rAPMV/HAs; 14 days after vaccination, chickens were challenged with a lethal dose of HPAIV. Immunization of chickens pre-immunized against NDV with rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA protected 50%, 50%, and 25%, respectively, in groups of chickens given an rAPMV/HA with 106 median embryo infectious dose (EID50) or 50%, 50%, and 90%, respectively, in those with 107 EID50; in contrast, rNDV/HA protected none of the chicken vaccinated with 106 EID50 and induced only partial protection even with 107 EID50. Therefore, the presence of anti-NDV antibodies did not hamper the efficacy of rAPMV-2/HA, rAPMV-6/HA, or rAPMV-10/HA. These results suggest that rAPMV-2, rAPMV-6, and rAPMV-10 are potential vaccine vectors, especially for commercial chickens, which are routinely vaccinated against NDV.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Hirokazu Hikono
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Taichiro Tanikawa
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Riho Kurata
- B National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| | - Takaaki Nakaya
- C Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiko Saito
- A Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0854, Japan
| |
Collapse
|