1
|
Boon WX, Sia BZ, Ng CH. Prediction of the effects of the top 10 synonymous mutations from 26645 SARS-CoV-2 genomes of early pandemic phase. F1000Res 2024; 10:1053. [PMID: 39268187 PMCID: PMC11391198 DOI: 10.12688/f1000research.72896.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple works had been done to study nonsynonymous mutations, which change protein sequences. However, there is little study on the effects of SARS-CoV-2 synonymous mutations, which may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods A total of 26645 SARS-CoV-2 genomic sequences retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database were aligned using MAFFT. Then, the mutations and their respective frequency were identified. Multiple RNA secondary structures prediction tools, namely RNAfold, IPknot++ and MXfold2 were applied to predict the effect of the mutations on RNA secondary structure and their base pair probabilities was estimated using MutaRNA. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a. Of these top 10 highest frequency synonymous mutations, C913U, C3037U, U16176C and C18877U mutants show pronounced changes between wild type and mutant in all 3 RNA secondary structure prediction tools, suggesting these mutations may have some biological impact on viral fitness. These four mutations show changes in base pair probabilities. All mutations except U16176C change the codon to a more preferred codon, which may result in higher translation efficiency. Conclusion Synonymous mutations in SARS-CoV-2 genome may affect RNA secondary structure, changing base pair probabilities and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
Affiliation(s)
- Wan Xin Boon
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Boon Zhan Sia
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Chong Han Ng
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| |
Collapse
|
2
|
Arita M. An efficient trans complementation system for in vivo replication of defective poliovirus mutants. J Virol 2024; 98:e0052324. [PMID: 38837378 PMCID: PMC11265389 DOI: 10.1128/jvi.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
The picornavirus genome encodes a large, single polyprotein that is processed by viral proteases to form an active replication complex. The replication complex is formed with the viral genome, host proteins, and viral proteins that are produced/translated directly from each of the viral genomes (viral proteins provided in cis). Efficient complementation in vivo of replication complex formation by viral proteins provided in trans, thus exogenous or ectopically expressed viral proteins, remains to be demonstrated. Here, we report an efficient trans complementation system for the replication of defective poliovirus (PV) mutants by a viral polyprotein precursor in HEK293 cells. Viral 3AB in the polyprotein, but not 2BC, was processed exclusively in cis. Replication of a defective PV replicon mutant, with a disrupted cleavage site for viral 3Cpro protease between 3Cpro and 3Dpol (3C/D[A/G] mutant) could be rescued by a viral polyprotein provided in trans. Only a defect of 3Dpol activity of the replicon could be rescued in trans; inactivating mutations in 2CATPase/hel, 3B, and 3Cpro of the replicon completely abrogated the trans-rescued replication. An intact N-terminus of the 3Cpro domain of the 3CDpro provided in trans was essential for the trans-active function. By using this trans complementation system, a high-titer defective PV pseudovirus (PVpv) (>107 infectious units per mL) could be produced with the defective mutants, whose replication was completely dependent on trans complementation. This work reveals potential roles of exogenous viral proteins in PV replication and offers insights into protein/protein interaction during picornavirus infection. IMPORTANCE Viral polyprotein processing is an elaborately controlled step by viral proteases encoded in the polyprotein; fully processed proteins and processing intermediates need to be correctly produced for replication, which can be detrimentally affected even by a small modification of the polyprotein. Purified/isolated viral proteins can retain their enzymatic activities required for viral replication, such as protease, helicase, polymerase, etc. However, when these proteins of picornavirus are exogenously provided (provided in trans) to the viral replication complex with a defective viral genome, replication is generally not rescued/complemented, suggesting the importance of viral proteins endogenously provided (provided in cis) to the replication complex. In this study, I discovered that only the viral polymerase activity of poliovirus (PV) (the typical member of picornavirus family) could be efficiently rescued by exogenously expressed viral proteins. The current study reveals potential roles for exogenous viral proteins in viral replication and offers insights into interactions during picornavirus infection.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| |
Collapse
|
3
|
Brennan JW, Sun Y. Defective viral genomes: advances in understanding their generation, function, and impact on infection outcomes. mBio 2024; 15:e0069224. [PMID: 38567955 PMCID: PMC11077978 DOI: 10.1128/mbio.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.
Collapse
Affiliation(s)
- Justin W. Brennan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Sun
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Guo Q, Zhu S, Wang D, Li X, Zhu H, Song Y, Liu X, Xiao F, Zhao H, Lu H, Xiao J, Yu L, Wang W, He Y, Liu Y, Li J, Zhang Y, Xu W, Yan D. Genetic characterization and molecular evolution of type 3 vaccine-derived polioviruses from an immunodeficient patient in China. Virus Res 2023; 334:199177. [PMID: 37479187 PMCID: PMC10388201 DOI: 10.1016/j.virusres.2023.199177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
In 2013, a case of immunodeficiency vaccine-derived poliovirus (iVDPV) was identified in Jiangxi Province, China. In this study, we purified 14 type 3 original viral isolates from this case and characterized the molecular evolution of these iVDPVs for 298 days. Genetic variants were found in most of the original viral isolates, with complex genetic and evolutionary relationships among the variants. A phylogenetic tree constructed based on the P1 region showed that these iVDPVs were classified into lineage A and B. The dominant lineage B represents a major trend in virus evolution. The nucleotide substitution rate at the third codon position (3CP) estimated by the BEAST program was 1.76 × 10-2 substitutions/site/year (95% HPD: 1.23-2.39 × 10-2). The initial OPV dose was given dating back to March 2013, which was close to the time of the last OPV vaccination, suggesting that OPV infection may have originated with the last dose of vaccine. Recombinant analysis showed that these iVDPVs were inter-vaccine recombinants with two recombination patterns, S3/S2/S1 and S3/S2/S3/S2/S1. Whole genome sequence analysis revealed that key nucleotide sites (C472U, C2034U, U2493C) associated with the attenuated phenotype of Sabin 3 have been replaced. Temperature sensitivity test showed that all tested strains were temperature-sensitive, except for the variant Day11-5. Interestingly, we observed that the variant Day11-5 temperature resistance properties may be associated with the Lys to Met substitution at the VP2-162 site. Serological test and whole genome sequence analysis showed that the seropositivity rate remained high, and mutations in the antigenic sites did not significantly alter neutralization ability.
Collapse
Affiliation(s)
- Qin Guo
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China; Da Zhou Vocational College of Chinese Medicine, Dazhou, China
| | - Shuangli Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongyan Wang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaolei Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Hui Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yang Song
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Xiaoqing Liu
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Fang Xiao
- Jiangxi Center for Disease Control and Prevention, Nanchang, China
| | - Hehe Zhao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Huanhuan Lu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jinbo Xiao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Liheng Yu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenhui Wang
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yun He
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Liu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Jichen Li
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Yong Zhang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Wenbo Xu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China
| | - Dongmei Yan
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosecurity, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention Beijing, China.
| |
Collapse
|
6
|
Aguilar Rangel M, Dolan PT, Taguwa S, Xiao Y, Andino R, Frydman J. High-resolution mapping reveals the mechanism and contribution of genome insertions and deletions to RNA virus evolution. Proc Natl Acad Sci U S A 2023; 120:e2304667120. [PMID: 37487061 PMCID: PMC10400975 DOI: 10.1073/pnas.2304667120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
RNA viruses rapidly adapt to selective conditions due to the high intrinsic mutation rates of their RNA-dependent RNA polymerases (RdRps). Insertions and deletions (indels) in viral genomes are major contributors to both deleterious mutational load and evolutionary novelty, but remain understudied. To characterize the mechanistic details of their formation and evolutionary dynamics during infection, we developed a hybrid experimental-bioinformatic approach. This approach, called MultiMatch, extracts insertions and deletions from ultradeep sequencing experiments, including those occurring at extremely low frequencies, allowing us to map their genomic distribution and quantify the rates at which they occur. Mapping indel mutations in adapting poliovirus and dengue virus populations, we determine the rates of indel generation and identify mechanistic and functional constraints shaping indel diversity. Using poliovirus RdRp variants of distinct fidelity and genome recombination rates, we demonstrate tradeoffs between fidelity and Indel generation. Additionally, we show that maintaining translation frame and viral RNA structures constrain the Indel landscape and that, due to these significant fitness effects, Indels exert a significant deleterious load on adapting viral populations. Conversely, we uncover positively selected Indels that modulate RNA structure, generate protein variants, and produce defective interfering genomes in viral populations. Together, our analyses establish the kinetic and mechanistic tradeoffs between misincorporation, recombination, and Indel rates and reveal functional principles defining the central role of Indels in virus evolution, emergence, and the regulation of viral infection.
Collapse
Affiliation(s)
| | - Patrick T. Dolan
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA94305
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Boerneke MA, Gokhale NS, Horner SM, Weeks KM. Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication. Proc Natl Acad Sci U S A 2023; 120:e2217053120. [PMID: 37011200 PMCID: PMC10104495 DOI: 10.1073/pnas.2217053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The genomes of RNA viruses encode the information required for replication in host cells both in their linear sequence and in complex higher-order structures. A subset of these RNA genome structures show clear sequence conservation, and have been extensively described for well-characterized viruses. However, the extent to which viral RNA genomes contain functional structural elements-unable to be detected by sequence alone-that nonetheless are critical to viral fitness is largely unknown. Here, we devise a structure-first experimental strategy and use it to identify 22 structure-similar motifs across the coding sequences of the RNA genomes for the four dengue virus serotypes. At least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent of RNA structure-mediated regulation within viral coding sequences. These viral RNA structures promote a compact global genome architecture, interact with proteins, and regulate the viral replication cycle. These motifs are also thus constrained at the levels of both RNA structure and protein sequence and are potential resistance-refractory targets for antivirals and live-attenuated vaccines. Structure-first identification of conserved RNA structure enables efficient discovery of pervasive RNA-mediated regulation in viral genomes and, likely, other cellular RNAs.
Collapse
Affiliation(s)
- Mark A. Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Nandan S. Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Stacy M. Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Medicine, Duke University Medical Center, Durham, NC27710
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| |
Collapse
|
8
|
Yang SL, Ponti RD, Wan Y, Huber RG. Computational and Experimental Approaches to Study the RNA Secondary Structures of RNA Viruses. Viruses 2022; 14:1795. [PMID: 36016417 PMCID: PMC9415818 DOI: 10.3390/v14081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-mapping approaches and their use in understanding structures within RNA virus genomes. In particular, we focus on the genome structures of the dengue, Zika, and SARS-CoV-2 viruses due to recent significant outbreaks of these viruses around the world.
Collapse
Affiliation(s)
- Siwy Ling Yang
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Riccardo Delli Ponti
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Yue Wan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| |
Collapse
|
9
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
11
|
Yokel RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1767. [PMID: 34957707 DOI: 10.1002/wnan.1767] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
This advanced review describes the anatomical and physiological barriers and mechanisms impacting nanomedicine translocation from the nasal cavity directly to the brain. There are significant physiological and anatomical differences in the nasal cavity, olfactory area, and airflow reaching the olfactory epithelium between humans and experimentally studied species that should be considered when extrapolating experimental results to humans. Mucus, transporters, and tight junction proteins present barriers to material translocation across the olfactory epithelium. Uptake of nanoparticles through the olfactory mucosa and translocation to the brain can be intracellular via cranial nerves (intraneuronal) or other cells of the olfactory epithelium, or extracellular along cranial nerve pathways (perineural) and surrounding blood vessels (perivascular, the glymphatic system). Transport rates vary greatly among the nose to brain pathways. Nanomedicine physicochemical properties (size, surface charge, surface coating, and particle stability) can affect uptake efficiency, which is usually less than 5%. Incorporation of therapeutic agents in nanoparticles has been shown to produce pharmacokinetic and pharmacodynamic benefits. Assessment of adverse effects has included olfactory mucosa toxicity, ciliotoxicity, and olfactory bulb and brain neurotoxicity. The results have generally suggested the investigated nanomedicines do not present significant toxicity. Research needs to advance the understanding of nanomedicine translocation and its drug cargo after intranasal administration is presented. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Martinez SS, Huang Y, Acuna L, Laverde E, Trujillo D, Barbieri MA, Tamargo J, Campa A, Baum MK. Role of Selenium in Viral Infections with a Major Focus on SARS-CoV-2. Int J Mol Sci 2021; 23:280. [PMID: 35008706 PMCID: PMC8745607 DOI: 10.3390/ijms23010280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections have afflicted human health and despite great advancements in scientific knowledge and technologies, continue to affect our society today. The current coronavirus (COVID-19) pandemic has put a spotlight on the need to review the evidence on the impact of nutritional strategies to maintain a healthy immune system, particularly in instances where there are limited therapeutic treatments. Selenium, an essential trace element in humans, has a long history of lowering the occurrence and severity of viral infections. Much of the benefits derived from selenium are due to its incorporation into selenocysteine, an important component of proteins known as selenoproteins. Viral infections are associated with an increase in reactive oxygen species and may result in oxidative stress. Studies suggest that selenium deficiency alters immune response and viral infection by increasing oxidative stress and the rate of mutations in the viral genome, leading to an increase in pathogenicity and damage to the host. This review examines viral infections, including the novel SARS-CoV-2, in the context of selenium, in order to inform potential nutritional strategies to maintain a healthy immune system.
Collapse
Affiliation(s)
- Sabrina Sales Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (S.S.M.); (Y.H.); (J.T.); (A.C.)
| | - Yongjun Huang
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (S.S.M.); (Y.H.); (J.T.); (A.C.)
| | - Leonardo Acuna
- College of Arts, Sciences & Education, Florida International University, Miami, FL 33199, USA; (L.A.); (E.L.); (D.T.); (M.A.B.)
| | - Eduardo Laverde
- College of Arts, Sciences & Education, Florida International University, Miami, FL 33199, USA; (L.A.); (E.L.); (D.T.); (M.A.B.)
| | - David Trujillo
- College of Arts, Sciences & Education, Florida International University, Miami, FL 33199, USA; (L.A.); (E.L.); (D.T.); (M.A.B.)
| | - Manuel A. Barbieri
- College of Arts, Sciences & Education, Florida International University, Miami, FL 33199, USA; (L.A.); (E.L.); (D.T.); (M.A.B.)
| | - Javier Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (S.S.M.); (Y.H.); (J.T.); (A.C.)
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (S.S.M.); (Y.H.); (J.T.); (A.C.)
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA; (S.S.M.); (Y.H.); (J.T.); (A.C.)
| |
Collapse
|
13
|
Abstract
Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple studies had been done to identify and study nonsynonymous mutations, which change amino acid residues of SARS-CoV-2 proteins. On the other hand, there is little study on the effects of SARS-CoV-2 synonymous mutations. Although these mutations do not alter amino acids, some studies suggest that they may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods: A total of 30,229 SARS-CoV-2 genomic sequences were retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database and aligned using MAFFT. Then, the mutations and their respective frequency were identified. A prediction of RNA secondary structures and their base pair probabilities was performed to study the effect of synonymous mutations on RNA structure and stability. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results: A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a, followed by C313U and C9286U mutation in nsp1 and nsp4 of ORF1a, respectively. Conclusion: Among the synonymous mutations identified, C913U mutation in ORF1a and C26735U in membrane (M) protein may affect RNA secondary structure, reducing the stability of RNA folding and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
|
14
|
Gilmer O, Quignon E, Jousset AC, Paillart JC, Marquet R, Vivet-Boudou V. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond. Viruses 2021; 13:1894. [PMID: 34696322 PMCID: PMC8537439 DOI: 10.3390/v13101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
RNA molecules are key players in a variety of biological events, and this is particularly true for viral RNAs. To better understand the replication of those pathogens and try to block them, special attention has been paid to the structure of their RNAs. Methods to probe RNA structures have been developed since the 1960s; even if they have evolved over the years, they are still in use today and provide useful information on the folding of RNA molecules, including viral RNAs. The aim of this review is to offer a historical perspective on the structural probing methods used to decipher RNA structures before the development of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology and to show how they have influenced the current probing techniques. Actually, these technological breakthroughs, which involved advanced detection methods, were made possible thanks to the development of next-generation sequencing (NGS) but also to the previous works accumulated in the field of structural RNA biology. Finally, we will also discuss how high-throughput SHAPE (hSHAPE) paved the way for the development of sophisticated RNA structural techniques.
Collapse
Affiliation(s)
| | | | | | | | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France; (O.G.); (E.Q.); (A.-C.J.); (J.-C.P.)
| |
Collapse
|
15
|
Lasecka-Dykes L, Tulloch F, Simmonds P, Luke GA, Ribeca P, Gold S, Knowles NJ, Wright CF, Wadsworth J, Azhar M, King DP, Tuthill TJ, Jackson T, Ryan MD. Mutagenesis Mapping of RNA Structures within the Foot-and-Mouth Disease Virus Genome Reveals Functional Elements Localized in the Polymerase (3D pol)-Encoding Region. mSphere 2021; 6:e0001521. [PMID: 34259558 PMCID: PMC8386395 DOI: 10.1128/msphere.00015-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
RNA structures can form functional elements that play crucial roles in the replication of positive-sense RNA viruses. While RNA structures in the untranslated regions (UTRs) of several picornaviruses have been functionally characterized, the roles of putative RNA structures predicted for protein coding sequences (or open reading frames [ORFs]) remain largely undefined. Here, we have undertaken a bioinformatic analysis of the foot-and-mouth disease virus (FMDV) genome to predict 53 conserved RNA structures within the ORF. Forty-six of these structures were located in the regions encoding the nonstructural proteins (nsps). To investigate whether structures located in the regions encoding the nsps are required for FMDV replication, we used a mutagenesis method, CDLR mapping, where sequential coding segments were shuffled to minimize RNA secondary structures while preserving protein coding, native dinucleotide frequencies, and codon usage. To examine the impact of these changes on replicative fitness, mutated sequences were inserted into an FMDV subgenomic replicon. We found that three of the RNA structures, all at the 3' termini of the FMDV ORF, were critical for replicon replication. In contrast, disruption of the other 43 conserved RNA structures that lie within the regions encoding the nsps had no effect on replicon replication, suggesting that these structures are not required for initiating translation or replication of viral RNA. Conserved RNA structures that are not essential for virus replication could provide ideal targets for the rational attenuation of a wide range of FMDV strains. IMPORTANCE Some RNA structures formed by the genomes of RNA viruses are critical for viral replication. Our study shows that of 46 conserved RNA structures located within the regions of the foot-and-mouth disease virus (FMDV) genome that encode the nonstructural proteins, only three are essential for replication of an FMDV subgenomic replicon. Replicon replication is dependent on RNA translation and synthesis; thus, our results suggest that the three RNA structures are critical for either initiation of viral RNA translation and/or viral RNA synthesis. Although further studies are required to identify whether the remaining 43 RNA structures have other roles in virus replication, they may provide targets for the rational large-scale attenuation of a wide range of FMDV strains. FMDV causes a highly contagious disease, posing a constant threat to global livestock industries. Such weakened FMDV strains could be investigated as live-attenuated vaccines or could enhance biosecurity of conventional inactivated vaccine production.
Collapse
Affiliation(s)
| | - Fiona Tulloch
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Garry A. Luke
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Paolo Ribeca
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | | | | | - Mehreen Azhar
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Donald P. King
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Martin D. Ryan
- Biomedical Sciences Research Complex (BSRC), School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
16
|
New RNA Structural Elements Identified in the Coding Region of the Coxsackie B3 Virus Genome. Viruses 2020; 12:v12111232. [PMID: 33143071 PMCID: PMC7692623 DOI: 10.3390/v12111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Here we present a set of new structural elements formed within the open reading frame of the virus, which are highly probable, evolutionarily conserved and may interact with host proteins. This work focused on the coding regions of the CVB3 genome (particularly the V4-, V1-, 2C-, and 3D-coding regions), which, with the exception of the cis-acting replication element (CRE), have not yet been subjected to experimental analysis of their structures. The SHAPE technique, chemical modification with DMS and RNA cleavage with Pb2+, were performed in order to characterize the RNA structure. The experimental results were used to improve the computer prediction of the structural models, whereas a phylogenetic analysis was performed to check universality of the newly identified structural elements for twenty CVB3 genomes and 11 other enteroviruses. Some of the RNA motifs turned out to be conserved among different enteroviruses. We also observed that the 3'-terminal region of the genome tends to dimerize in a magnesium concentration-dependent manner. RNA affinity chromatography was used to confirm RNA-protein interactions hypothesized by database searches, leading to the discovery of several interactions, which may be important for virus propagation.
Collapse
|
17
|
Korotkova EA, Prostova MA, Gmyl AP, Kozlovskaya LI, Eremeeva TP, Baikova OY, Krasota AY, Morozova NS, Ivanova OE. Case of Poliomyelitis Caused by Significantly Diverged Derivative of the Poliovirus Type 3 Vaccine Sabin Strain Circulating in the Orphanage. Viruses 2020; 12:E970. [PMID: 32883046 PMCID: PMC7552002 DOI: 10.3390/v12090970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
Abstract
Significantly divergent polioviruses (VDPV) derived from the oral poliovirus vaccine (OPV) from Sabin strains, like wild polioviruses, are capable of prolonged transmission and neuropathology. This is mainly shown for VDPV type 2. Here we describe a molecular-epidemiological investigation of a case of VDPV type 3 circulation leading to paralytic poliomyelitis in a child in an orphanage, where OPV has not been used. Samples of feces and blood serum from the patient and 52 contacts from the same orphanage were collected twice and investigated. The complete genome sequencing was performed for five polioviruses isolated from the patient and three contact children. The level of divergence of the genomes of the isolates corresponded to approximately 9-10 months of evolution. The presence of 61 common substitutions in all isolates indicated a common intermediate progenitor. The possibility of VDPV3 transmission from the excretor to susceptible recipients (unvaccinated against polio or vaccinated with inactivated poliovirus vaccine, IPV) with subsequent circulation in a closed children's group was demonstrated. The study of the blood sera of orphanage residents at least twice vaccinated with IPV revealed the absence of neutralizing antibodies against at least two poliovirus serotypes in almost 20% of children. Therefore, a complete rejection of OPV vaccination can lead to a critical decrease in collective immunity level. The development of new poliovirus vaccines that create mucosal immunity for the adequate replacement of OPV from Sabin strains is necessary.
Collapse
Affiliation(s)
- Ekaterina A. Korotkova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Maria A. Prostova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
| | - Anatoly P. Gmyl
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
- Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Liubov I. Kozlovskaya
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
- Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Tatiana P. Eremeeva
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
| | - Olga Y. Baikova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
| | - Alexandr Y. Krasota
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia;
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
| | - Nadezhda S. Morozova
- Federal Centre of Hygiene and Epidemiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 117105 Moscow, Russia;
| | - Olga E. Ivanova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Centre for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (M.A.P.); (L.I.K.); (T.P.E.); (O.Y.B.)
- Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Beckham SA, Matak MY, Belousoff MJ, Venugopal H, Shah N, Vankadari N, Elmlund H, Nguyen JHC, Semler BL, Wilce MCJ, Wilce JA. Structure of the PCBP2/stem-loop IV complex underlying translation initiation mediated by the poliovirus type I IRES. Nucleic Acids Res 2020; 48:8006-8021. [PMID: 32556302 PMCID: PMC7641305 DOI: 10.1093/nar/gkaa519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 02/02/2023] Open
Abstract
The poliovirus type I IRES is able to recruit ribosomal machinery only in the presence of host factor PCBP2 that binds to stem-loop IV of the IRES. When PCBP2 is cleaved in its linker region by viral proteinase 3CD, translation initiation ceases allowing the next stage of replication to commence. Here, we investigate the interaction of PCBP2 with the apical region of stem-loop IV (SLIVm) of poliovirus RNA in its full-length and truncated form. CryoEM structure reconstruction of the full-length PCBP2 in complex with SLIVm solved to 6.1 Å resolution reveals a compact globular complex of PCBP2 interacting with the cruciform RNA via KH domains and featuring a prominent GNRA tetraloop. SEC-SAXS, SHAPE and hydroxyl-radical cleavage establish that PCBP2 stabilizes the SLIVm structure, but upon cleavage in the linker domain the complex becomes more flexible and base accessible. Limited proteolysis and REMSA demonstrate the accessibility of the linker region in the PCBP2/SLIVm complex and consequent loss of affinity of PCBP2 for the SLIVm upon cleavage. Together this study sheds light on the structural features of the PCBP2/SLIV complex vital for ribosomal docking, and the way in which this key functional interaction is regulated following translation of the poliovirus genome.
Collapse
Affiliation(s)
- Simone A Beckham
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Mehdi Y Matak
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Matthew J Belousoff
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Hariprasad Venugopal
- The Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Victoria 3800, Australia
| | - Neelam Shah
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Naveen Vankadari
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Hans Elmlund
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Joseph H C Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
19
|
Elsedawy NB, Nace RA, Russell SJ, Schulze AJ. Oncolytic Activity of Targeted Picornaviruses Formulated as Synthetic Infectious RNA. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:484-495. [PMID: 32529026 PMCID: PMC7276391 DOI: 10.1016/j.omto.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Infectious nucleic acid has been proposed as a superior formulation for oncolytic virus therapy. Oncolytic picornaviruses can be formulated as infectious RNA (iRNA), and their unwanted tropisms eliminated by microRNA (miRNA) detargeting. However, genomic insertion of miRNA target sequences into coxsackievirus A21 (CVA21) iRNA compromised its specific infectivity, negating further development as a novel oncolytic virus formulation. To address this limitation, we substituted a muscle-specific miRNA response element for the spacer region downstream of the internal ribosomal entry site in the 5′ non-coding region of CVA21 iRNA, thereby preserving genome length while avoiding the disruption of known surrounding RNA structural elements. This new iRNA (R-CVA21) retained high specific infectivity, rapidly generating replicating miRNA-detargeted viruses following transfection in H1-HeLa cells. Further, in contrast with alternatively configured iRNAs that were tested in parallel, intratumoral administration of R-CVA21 generated a spreading oncolytic infection that was curative in treated animals without associated myotoxicity. Moreover, R-CVA21 also exhibited superior miRNA response element stability in vivo. This novel formulation is a promising agent for clinical translation.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Rebecca A Nace
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Stephen J Russell
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Autumn J Schulze
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| |
Collapse
|
20
|
Mahmud B, Horn CM, Tapprich WE. Structure of the 5' Untranslated Region of Enteroviral Genomic RNA. J Virol 2019; 93:e01288-19. [PMID: 31534036 PMCID: PMC6854513 DOI: 10.1128/jvi.01288-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Enteroviral RNA genomes share a long, highly structured 5' untranslated region (5' UTR) containing a type I internal ribosome entry site (IRES). The 5' UTR is composed of stably folded RNA domains connected by unstructured RNA regions. Proper folding and functioning of the 5' UTR underlies the efficiency of viral replication and also determines viral virulence. We have characterized the structure of 5' UTR genomic RNA from coxsackievirus B3 using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) and base-specific chemical probes in solution. Our results revealed novel structural features, including realignment of major domains, newly identified long-range interactions, and an intrinsically disordered connecting region. Together, these newly identified features contribute to a model for enteroviral 5' UTRs with type I IRES elements that links structure to function during the hierarchical processes directed by genomic RNA during viral infection.IMPORTANCE Enterovirus infections are responsible for human diseases, including myocarditis, pancreatitis, acute flaccid paralysis, and poliomyelitis. The virulence of these viruses depends on efficient recognition of the RNA genome by a large family of host proteins and protein synthesis factors, which in turn relies on the three-dimensional folding of the first 750 nucleotides of the molecule. Structural information about this region of the genome, called the 5' untranslated region (5' UTR), is needed to assist in the process of vaccine and antiviral development. This work presents a model for the structure of the enteroviral 5' UTR. The model includes an RNA element called an intrinsically disordered RNA region (IDRR). Intrinsically disordered proteins (IDPs) are well known, but correlates in RNA have not been proposed. The proposed IDRR is a 20-nucleotide region, long known for its functional importance, where structural flexibility helps explain recognition by factors controlling multiple functional states.
Collapse
Affiliation(s)
- Bejan Mahmud
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Christopher M Horn
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - William E Tapprich
- Biology Department, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
21
|
Abstract
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Jeffrey E Ehrhardt
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| |
Collapse
|
22
|
Busan S, Weidmann CA, Sengupta A, Weeks KM. Guidelines for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies. Biochemistry 2019; 58:2655-2664. [PMID: 31117385 DOI: 10.1021/acs.biochem.8b01218] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemical probing is an important tool for characterizing the complex folded structures of RNA molecules, many of which play key cellular roles. Electrophilic SHAPE reagents create adducts at the 2'-hydroxyl position on the RNA backbone of flexible ribonucleotides with relatively little dependence on nucleotide identity. Strategies for adduct detection such as mutational profiling (MaP) allow accurate, automated calculation of relative adduct frequencies for each nucleotide in a given RNA or group of RNAs. A number of alternative reagents and adduct detection strategies have been proposed, especially for use in living cells. Here we evaluate five SHAPE reagents: three previously well-validated reagents 1M7 (1-methyl-7-nitroisatoic anhydride), 1M6 (1-methyl-6-nitroisatoic anhydride), and NMIA ( N-methylisatoic anhydride), one more recently proposed NAI (2-methylnicotinic acid imidazolide), and one novel reagent 5NIA (5-nitroisatoic anhydride). We clarify the importance of carefully designed software in reading out SHAPE experiments using massively parallel sequencing approaches. We examine SHAPE modification in living cells in diverse cell lines, compare MaP and reverse transcription-truncation as SHAPE adduct detection strategies, make recommendations for SHAPE reagent choice, and outline areas for future development.
Collapse
Affiliation(s)
- Steven Busan
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Chase A Weidmann
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Arnab Sengupta
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| | - Kevin M Weeks
- Department of Chemistry , University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States
| |
Collapse
|
23
|
Mochizuki T, Ohara R, Roossinck MJ. Large-Scale Synonymous Substitutions in Cucumber Mosaic Virus RNA 3 Facilitate Amino Acid Mutations in the Coat Protein. J Virol 2018; 92:e01007-18. [PMID: 30185595 PMCID: PMC6206472 DOI: 10.1128/jvi.01007-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/29/2018] [Indexed: 01/28/2023] Open
Abstract
The effect of large-scale synonymous substitutions in a small icosahedral, single-stranded RNA viral genome on virulence, viral titer, and protein evolution were analyzed. The coat protein (CP) gene of the Fny stain of cucumber mosaic virus (CMV) was modified. We created four CP mutants in which all the codons of nine amino acids in the 5' or 3' half of the CP gene were replaced by either the most frequently or the least frequently used synonymous codons in monocot plants. When the dicot host (Nicotiana benthamiana) was inoculated with these four CP mutants, viral RNA titers in uninoculated symptomatic leaves decreased, while all mutants eventually showed mosaic symptoms similar to those for the wild type. The codon adaptation index of these four CP mutants against dicot genes was similar to those of the wild-type CP gene, indicating that the reduction of viral RNA titer was due to deleterious changes of the secondary structure of RNAs 3 and 4. When two 5' mutants were serially passaged in N. benthamiana, viral RNA titers were rapidly restored but competitive fitness remained decreased. Although no nucleic acid changes were observed in the passaged wild-type CMV, one to three amino acid changes were observed in the synonymously mutated CP of each passaged virus, which were involved in recovery of viral RNA titer of 5' mutants. Thus, we demonstrated that deleterious effects of the large-scale synonymous substitutions in the RNA viral genome facilitated the rapid amino acid mutation(s) in the CP to restore the viral RNA titer.IMPORTANCE Recently, it has been known that synonymous substitutions in RNA virus genes affect viral pathogenicity and competitive fitness by alteration of global or local RNA secondary structure of the viral genome. We confirmed that large-scale synonymous substitutions in the CP gene of CMV resulted in decreased viral RNA titer. Importantly, when viral evolution was stimulated by serial-passage inoculation, viral RNA titer was rapidly restored, concurrent with a few amino acid changes in the CP. This novel finding indicates that the deleterious effects of large-scale nucleic acid mutations on viral RNA secondary structure are readily tolerated by structural changes in the CP, demonstrating a novel part of the adaptive evolution of an RNA viral genome. In addition, our experimental system for serial inoculation of large-scale synonymous mutants could uncover a role for new amino acid residues in the viral protein that have not been observed in the wild-type virus strains.
Collapse
Affiliation(s)
- Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rie Ohara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
24
|
Pervasive tertiary structure in the dengue virus RNA genome. Proc Natl Acad Sci U S A 2018; 115:11513-11518. [PMID: 30341219 DOI: 10.1073/pnas.1716689115] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.
Collapse
|
25
|
Pathogenicity and cross-reactive immune responses of a historical and a contemporary Senecavirus A strains in pigs. Virology 2018; 522:147-157. [DOI: 10.1016/j.virol.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
|
26
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
27
|
Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29193740 DOI: 10.1002/wrna.1458] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
To ensure efficient propagation, viruses need to rapidly produce viral proteins after cell entrance. Since viral genomes do not encode any components of the protein biosynthesis machinery, viral proteins must be produced by the host cell. To hi-jack the host cellular translation, viruses use a great variety of distinct strategies. Many single-stranded positive-sensed RNA viruses contain so-called internal ribosome entry sites (IRESs). IRESs are structural RNA motifs that have evolved to specific folds that recruit the host ribosomes on the viral coding sequences in order to synthesize viral proteins. In host canonical translation, recruitment of the translation machinery components is essentially guided by the 5' cap (m7 G) of mRNA. In contrast, IRESs are able to promote efficient ribosome assembly internally and in cap-independent manner. IRESs have been categorized into four classes, based on their length, nucleotide sequence, secondary and tertiary structures, as well as their mode of action. Classes I and II require the assistance of cellular auxiliary factors, the eukaryotic intiation factors (eIF), for efficient ribosome assembly. Class III IRESs require only a subset of eIFs whereas Class IV, which are the more compact, can promote translation without any eIFs. Extensive functional and structural investigations of IRESs over the past decades have allowed a better understanding of their mode of action for viral translation. Because viral translation has a pivotal role in the infectious program, IRESs are therefore attractive targets for therapeutic purposes. WIREs RNA 2018, 9:e1458. doi: 10.1002/wrna.1458 This article is categorized under: Translation > Ribosome Structure/Function Translation > Translation Mechanisms RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Justine Mailliot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Illkirch-Graffenstaden, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, "Architecture et Réactivité de l'ARN" CNRS UPR9002, Université De Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Song Y, Gorbatsevych O, Liu Y, Mugavero J, Shen SH, Ward CB, Asare E, Jiang P, Paul AV, Mueller S, Wimmer E. Limits of variation, specific infectivity, and genome packaging of massively recoded poliovirus genomes. Proc Natl Acad Sci U S A 2017; 114:E8731-E8740. [PMID: 28973853 PMCID: PMC5642728 DOI: 10.1073/pnas.1714385114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.
Collapse
Affiliation(s)
- Yutong Song
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794;
| | - Oleksandr Gorbatsevych
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Ying Liu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Pathology and Laboratory Medicine, Staten Island University Hospital, Staten Island, NY 10305
| | - JoAnn Mugavero
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Sam H Shen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Charles B Ward
- Google, Inc., Mountain View, CA 94043
- Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794
| | - Emmanuel Asare
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794
- Codagenix Inc., Stony Brook, NY 11794
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794;
| |
Collapse
|
30
|
Xiao Y, Dolan PT, Goldstein EF, Li M, Farkov M, Brodsky L, Andino R. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses. Nat Commun 2017; 8:375. [PMID: 28851882 PMCID: PMC5575128 DOI: 10.1038/s41467-017-00354-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/15/2017] [Indexed: 01/01/2023] Open
Abstract
RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection. RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.
Collapse
Affiliation(s)
- Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Patrick Timothy Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA.,Department of Biology, Stanford University, Stanford, CA, 94158, USA
| | - Elizabeth Faul Goldstein
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Min Li
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA
| | - Mikhail Farkov
- Tauber Bioinformatics Research Center and Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center and Department of Evolutionary & Environmental Biology, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
31
|
Stern A, Yeh MT, Zinger T, Smith M, Wright C, Ling G, Nielsen R, Macadam A, Andino R. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 2017; 169:35-46.e19. [PMID: 28340348 DOI: 10.1016/j.cell.2017.03.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/03/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tal Zinger
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Matt Smith
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guy Ling
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rasmus Nielsen
- Department of Integrative Biology; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Macadam
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Soemedi R, Cygan KJ, Rhine CL, Glidden DT, Taggart AJ, Lin CL, Fredericks AM, Fairbrother WG. The effects of structure on pre-mRNA processing and stability. Methods 2017; 125:36-44. [PMID: 28595983 DOI: 10.1016/j.ymeth.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA molecules can form a variety of structures, and both secondary and tertiary structures have important effects on processing, function and stability of these molecules. The prediction of RNA secondary structure is a challenging problem and various algorithms that use minimum free energy, maximum expected accuracy and comparative evolutionary based methods have been developed to predict secondary structures. However, these tools are not perfect, and this remains an active area of research. The secondary structure of pre-mRNA molecules can have an enhancing or inhibitory effect on pre-mRNA splicing. An example of enhancing structure can be found in a novel class of introns in zebrafish. About 10% of zebrafish genes contain a structured intron that forms a bridging hairpin that enforces correct splice site pairing. Negative examples of splicing include local structures around splice sites that decrease splicing efficiency and potentially cause mis-splicing leading to disease. Splicing mutations are a frequent cause of hereditary disease. The transcripts of disease genes are significantly more structured around the splice sites, and point mutations that increase the local structure often cause splicing disruptions. Post-splicing, RNA secondary structure can also affect the stability of the spliced intron and regulatory RNA interference pathway intermediates, such as pre-microRNAs. Additionally, RNA secondary structure has important roles in the innate immune defense against viruses. Finally, tertiary structure can also play a large role in pre-mRNA splicing. One example is the G-quadruplex structure, which, similar to secondary structure, can either enhance or inhibit splicing through mechanisms such as creating or obscuring RNA binding protein sites.
Collapse
Affiliation(s)
- Rachel Soemedi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Kamil J Cygan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Christy L Rhine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - David T Glidden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| | - Allison J Taggart
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - Alger M Fredericks
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Guo J, Han J, Lin J, Finer J, Dorrance A, Qu F. Functionally interchangeable cis-acting RNA elements in both genome segments of a picorna-like plant virus. Sci Rep 2017; 7:1017. [PMID: 28432346 PMCID: PMC5430698 DOI: 10.1038/s41598-017-01243-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Cis-acting RNA structures in the genomes of RNA viruses play critical roles in viral infection, yet their importance in the bipartite genomes of the picorna-like, plant-infecting comoviruses has not been carefully investigated. We previously characterized SLC, a stem-loop structure in the 5' untranslated region (UTR) of the bean pod mottle comovirus (BPMV) RNA2, and found it to be essential for RNA2 accumulation in infected cells. Here we report the identification of SL1, a similar cis-acting element in the other BPMV genome segment - RNA1. SL1 encompasses a portion of RNA1 5' UTR but extends into the coding sequence for nine nucleotides, thus was missed in the previous study. While the stems of SL1 and SLC share little sequence similarity, their end loops are of the same size and identical for 11 of 15 nucleotides. Importantly, SL1 and SLC are functionally interchangeable, and separate exchanges of the stem and loop portions were likewise well tolerated. By contrast, the conserved loop sequence tolerated minimal perturbations. Finally, stem-loop structures with similar configurations were identified in two other comoviruses. Therefore, SL1 and SLC are likely essential comoviral RNA structures that play a conserved function in viral infection cycles.
Collapse
Affiliation(s)
- Jiangbo Guo
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.,School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou, China
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Junyan Lin
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.,Joint Genome Institute, Department of Energy, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - John Finer
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Anne Dorrance
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
34
|
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 2017; 234:4-20. [PMID: 28163093 PMCID: PMC5476519 DOI: 10.1016/j.virusres.2017.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.
Collapse
Affiliation(s)
- Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
35
|
Regulation Mechanisms of Viral IRES-Driven Translation. Trends Microbiol 2017; 25:546-561. [PMID: 28242053 DOI: 10.1016/j.tim.2017.01.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry sites (IRESs) can be found in the mRNA of many viruses as well as in cellular genes involved in the stress response, cell cycle, and apoptosis. IRES-mediated translation can occur when dominant cap-dependent translation is inhibited, and viruses can take advantage of this to subvert host translation machinery. In this review, we focus on the four major types of IRES identified in RNA viruses, and outline their distinct structural properties and requirements of translational factors. We further discuss auxiliary host factors known as IRES trans-acting factors (ITAFs), which are involved in the modulation of optimal IRES activity. Currently known strategies employed by viruses to harness ITAFs and regulate IRES activity are also highlighted.
Collapse
|
36
|
Kempf BJ, Peersen OB, Barton DJ. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance. J Virol 2016; 90:8410-21. [PMID: 27412593 PMCID: PMC5021434 DOI: 10.1128/jvi.00078-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/29/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase mutation that disables recombination renders the virus more susceptible to the antiviral drug ribavirin, suggesting that recombination contributes to ribavirin resistance. Elucidating the molecular mechanisms of RNA replication and recombination may help mankind achieve and maintain poliovirus eradication.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
37
|
Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. J Virol 2016; 90:6864-6883. [PMID: 27194768 PMCID: PMC4944275 DOI: 10.1128/jvi.00469-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.
Collapse
|
38
|
Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5' and 3' Noncoding Regions of Genomic RNAs. Viruses 2016; 8:v8020039. [PMID: 26861382 PMCID: PMC4776194 DOI: 10.3390/v8020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 12/30/2022] Open
Abstract
Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3' or 5' noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.
Collapse
|
39
|
Nicholson BL, White KA. Exploring the architecture of viral RNA genomes. Curr Opin Virol 2015; 12:66-74. [PMID: 25884487 DOI: 10.1016/j.coviro.2015.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
The genomes of RNA viruses contain local structural elements and long-range interactions that control various steps in virus replication. While many individual RNA elements have been characterized, it remains less clear how the structure and activity of such elements are integrated and regulated within the complex context of complete viral genomes. Recent technical advances, particularly the development of high-throughput solution structure mapping methods, have made secondary structural analysis of entire viral RNA genomes feasible. As a consequence, whole-genome structural models have been deduced for a number of plus-strand RNA viruses and retroviruses and these structures have provided intriguing functional and evolutionary insights into global genome architecture.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
40
|
Sealfon RS, Lin MF, Jungreis I, Wolf MY, Kellis M, Sabeti PC. FRESCo: finding regions of excess synonymous constraint in diverse viruses. Genome Biol 2015; 16:38. [PMID: 25853568 PMCID: PMC4376164 DOI: 10.1186/s13059-015-0603-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Background The increasing availability of sequence data for many viruses provides power to detect regions under unusual evolutionary constraint at a high resolution. One approach leverages the synonymous substitution rate as a signature to pinpoint genic regions encoding overlapping or embedded functional elements. Protein-coding regions in viral genomes often contain overlapping RNA structural elements, reading frames, regulatory elements, microRNAs, and packaging signals. Synonymous substitutions in these regions would be selectively disfavored and thus these regions are characterized by excess synonymous constraint. Codon choice can also modulate transcriptional efficiency, translational accuracy, and protein folding. Results We developed a phylogenetic codon model-based framework, FRESCo, designed to find regions of excess synonymous constraint in short, deep alignments, such as individual viral genes across many sequenced isolates. We demonstrated the high specificity of our approach on simulated data and applied our framework to the protein-coding regions of approximately 30 distinct species of viruses with diverse genome architectures. Conclusions FRESCo recovers known multifunctional regions in well-characterized viruses such as hepatitis B virus, poliovirus, and West Nile virus, often at a single-codon resolution, and predicts many novel functional elements overlapping viral genes, including in Lassa and Ebola viruses. In a number of viruses, the synonymously constrained regions that we identified also display conserved, stable predicted RNA structures, including putative novel elements in multiple viral species. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0603-7) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Tuplin A. Diverse roles and interactions of RNA structures during the replication of positive-stranded RNA viruses of humans and animals. J Gen Virol 2015; 96:1497-503. [PMID: 25626680 DOI: 10.1099/vir.0.000066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Positive-stranded RNA viruses include important human, animal and plant pathogens. Their genomes are able to fold into complex structures stabilized by base pairing between individual nucleotides, many of which are highly conserved and have essential functions during virus replication. With new studies and technological advances the diversity of roles, mechanisms and interactions in which such structured viral RNA functions is becoming increasingly clear. It is also evident that many RNA structures do not function as discrete elements but through mechanisms involving multiple, long-range and often dynamic RNARNA interactions. Through a range of examples and recent advances, this review illustrates the diverse roles and mechanisms of structured viral RNA during the replication of positive-stranded RNA viruses infecting humans and animals.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
42
|
Firth AE. Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses. Nucleic Acids Res 2014; 42:12425-39. [PMID: 25326325 PMCID: PMC4227794 DOI: 10.1093/nar/gku981] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/20/2014] [Accepted: 10/04/2014] [Indexed: 12/29/2022] Open
Abstract
Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. RNA viruses have compact multifunctional genomes that frequently contain overlapping genes and non-coding functional elements embedded within protein-coding sequences. Overlapping features often escape detection because it can be difficult to disentangle the multiple roles of the constituent nucleotides via mutational analyses, while high-throughput experimental techniques are often unable to distinguish functional elements from incidental features. However, RNA viruses evolve very rapidly so that, even within a single species, substitutions rapidly accumulate at neutral or near-neutral sites providing great potential for comparative genomics to distinguish the signature of purifying selection. Computationally identified features can then be efficiently targeted for experimental analysis. Here we analyze alignments of protein-coding virus sequences to identify regions where there is a statistically significant reduction in the degree of variability at synonymous sites, a characteristic signature of overlapping functional elements. Having previously tested this technique by experimental verification of discoveries in selected viruses, we now analyze sequence alignments for ∼700 RNA virus species to identify hundreds of such regions, many of which have not been previously described.
Collapse
Affiliation(s)
- Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
43
|
Schroeder SJ. Probing viral genomic structure: alternative viewpoints and alternative structures for satellite tobacco mosaic virus RNA. Biochemistry 2014; 53:6728-37. [PMID: 25320869 DOI: 10.1021/bi501051k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral RNA structure prediction is a valuable tool for development of drugs against viral disease. This work discusses different approaches to predicting encapsidated viral RNA and highlights satellite tobacco mosaic virus (STMV) RNA as a model system with excellent crystallography data. Fundamentally important issues for debate include thermodynamic versus kinetic control of virus assembly and the possible consequences of quasi-species in the primary structure on RNA secondary structure prediction of a single structure or an ensemble of structures. Multiple computational tools and chemical reagents are now available for improved viral RNA structure prediction. Two different predicted structures for encapsidated STMV RNA result from differences in three main areas: a different approach and philosophy to studying encapsidated viral RNA, an emphasis on different RNA motifs, and technical differences in computational methods and chemical reagents. The experiments with traditional chemical probing and SHAPE reagents are compared in terms of chemistry, results, and interpretation for STMV RNA as well as other RNA protein assemblies, such as the 5'UTR of HIV and the ribosome. This discussion of the challenges of viral RNA structure prediction will lead to new experiments and improved future predictions for viral RNA.
Collapse
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|