1
|
White E, Papagno L, Samri A, Sugata K, Hejblum B, Henry AR, Rogan DC, Darko S, Recordon-Pinson P, Dudoit Y, Llewellyn-Lacey S, Chakrabarti LA, Buseyne F, Migueles SA, Price DA, Andreola MA, Satou Y, Thiebaut R, Katlama C, Autran B, Douek DC, Appay V. Clonal succession after prolonged antiretroviral therapy rejuvenates CD8 + T cell responses against HIV-1. Nat Immunol 2024; 25:1555-1564. [PMID: 39179934 DOI: 10.1038/s41590-024-01931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.
Collapse
Affiliation(s)
- Eoghann White
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Laura Papagno
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
| | - Assia Samri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Boris Hejblum
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Recordon-Pinson
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yasmine Dudoit
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Lisa A Chakrabarti
- CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Florence Buseyne
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marie-Aline Andreola
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rodolphe Thiebaut
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Christine Katlama
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Autran
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
| |
Collapse
|
2
|
Migueles SA, Nettere DM, Gavil NV, Wang LT, Toulmin SA, Kelly EP, Ward AJ, Lin S, Thompson SA, Peterson BA, Abdeen CS, Sclafani CR, Pryal PF, Leach BG, Ludwig AK, Rogan DC, Przygonska PA, Cattani A, Imamichi H, Sachs A, Cafri G, Huang NN, Patamawenu A, Liang CJ, Hallahan CW, Kambach DM, Han EX, Coupet T, Chen J, Moir SL, Chun TW, Coates EE, Ledgerwood J, Schmidt J, Taillandier-Coindard M, Michaux J, Pak H, Bassani-Sternberg M, Frahm N, McElrath MJ, Connors M. HIV vaccines induce CD8 + T cells with low antigen receptor sensitivity. Science 2023; 382:1270-1276. [PMID: 38096385 DOI: 10.1126/science.adg0514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.
Collapse
Affiliation(s)
- Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Nettere
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Noah V Gavil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence T Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sushila A Toulmin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth P Kelly
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Addison J Ward
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siying Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Thompson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bennett A Peterson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassidy S Abdeen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carina R Sclafani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick F Pryal
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin G Leach
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Ludwig
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paulina A Przygonska
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cattani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abraham Sachs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ning-Na Huang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andy Patamawenu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire W Hallahan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Susan L Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
4
|
Dragoni F, Kwaa AK, Traut CC, Veenhuis RT, Woldemeskel BA, Camilo-Contreras A, Raymond HE, Dykema AG, Scully EP, Rosecrans AM, Smith KN, Bushman FD, Simonetti FR, Blankson JN. Proviral location affects cognate peptide-induced virus production and immune recognition of HIV-1-infected T cell clones. J Clin Invest 2023; 133:e171097. [PMID: 37698927 PMCID: PMC10617777 DOI: 10.1172/jci171097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.
Collapse
Affiliation(s)
| | | | | | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology, and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Hayley E. Raymond
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arbor G. Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kellie N. Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Joel N. Blankson
- Department of Medicine
- Department of Molecular and Comparative Pathobiology, and
| |
Collapse
|
5
|
Yuan Z, Huang Y, Sadikot RT. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Promotes HIV-1 Replication through Modulating microRNAs in Macrophages. J Virol 2023; 97:e0005323. [PMID: 37255470 PMCID: PMC10308927 DOI: 10.1128/jvi.00053-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.
Collapse
Affiliation(s)
- Zhihong Yuan
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yunlong Huang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Ménoret A, Agliano F, Karginov TA, Karlinsey KS, Zhou B, Vella AT. Antigen-specific downregulation of miR-150 in CD4 T cells promotes cell survival. Front Immunol 2023; 14:1102403. [PMID: 36817480 PMCID: PMC9936563 DOI: 10.3389/fimmu.2023.1102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
MicroRNA-150 (miR-150) has been shown to play a general role in the immune system, but very little is known about its role on CD4+ T cell responses. During T cell responses against superantigen Staphylococcal Enterotoxin A, miR-150 expression was down-regulated in antigen-specific CD4+ T cells but up-regulated in CD8+ T cells. CD4+ and CD8+ T cell clonal expansion was greater in miR-150-KO mice than in WT mice, but miR-150 selectively repressed IL-2 production in CD4+ T cells. Transcriptome analysis of CD4+ T cells demonstrated that apoptosis and mTOR pathways were highly enriched in the absence of miR-150. Mechanistic studies confirmed that miR-150 promoted apoptosis specifically in antigen-specific CD4+ T cells, but not in bystander CD4+ nor in CD8+ T cells. Furthermore, inhibition of mTOR-linked mitochondrial superoxidedismutase-2 increased apoptosis in miR-150-/- antigen-specific CD4+ T. Thus, miR-150 impacts CD4+ T cell helper activity by attenuating IL-2 production along with clonal expansion, and suppresses superoxidedismutase to promote apoptosis.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, Farmington, CT, United States
| | | | | | | | | | - Anthony T. Vella
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
7
|
Ghafouri-Fard S, Mahmud Hussen B, Abak A, Taheri M, Abdulmajid Ayatollahi S. Emerging role of non-coding RNAs in the course of HIV infection. Int Immunopharmacol 2021; 103:108460. [PMID: 34942460 DOI: 10.1016/j.intimp.2021.108460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/05/2022]
Abstract
Recent studies have shown that non-coding region of the human genome can exert important regulatory roles on critical biological functions, including response to viral infections, among them is human immunodeficiency virus (HIV). HIV/AIDS is characterized by a gradual diminution of CD4 + T cells resulting in progressive deterioration of host immune responses and eventually high vulnerability to opportunistic infections and cancer. T cells functions have been shown to be delicately regulated by an active functional network of non-coding RNAs. Several lncRNAs such as MALAT1, NEAT1, GAS5, LOC102549805, NKILA, BACE1-AS, LINC00313, RP11-539L10.2, PVT1, LINC00173, NRON and AK130181 have been found to affect response of immune system to HIV or its pathological consequences. Moreover, numerous miRNAs such as hsa-miR-191-5p, miR-155, miR-103, miR-107, miR-150, miR-144, miR-125b, miR-146a, miR-146b-5p and miR-15a are involved in this process. In the current manuscript, we explain the role of lncRNAs and miRNAs in the regulation of response to HIV infection, apoptosis and activity of T cells, reactivation or latency of this virus and even pathological manifestations such as Tat-mediated induction of astrocytic amyloidosis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Collins DR, Urbach JM, Racenet ZJ, Arshad U, Power KA, Newman RM, Mylvaganam GH, Ly NL, Lian X, Rull A, Rassadkina Y, Yanez AG, Peluso MJ, Deeks SG, Vidal F, Lichterfeld M, Yu XG, Gaiha GD, Allen TM, Walker BD. Functional impairment of HIV-specific CD8 + T cells precedes aborted spontaneous control of viremia. Immunity 2021; 54:2372-2384.e7. [PMID: 34496223 PMCID: PMC8516715 DOI: 10.1016/j.immuni.2021.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Karen A Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anna Rull
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Yelizaveta Rassadkina
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Francesc Vidal
- Joan XXIII University Hospital, Pere Virgili Institute (IISPV), Rovira i Virgili University, Tarragona, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|