1
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
2
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
3
|
Cavallone D, Ornos EDB, Ricco G, Oliveri F, Coco B, Colombatto P, De Rosa L, Dalmacio LMM, Bonino F, Brunetto MR. The Circulating miRNA Profile of Chronic Hepatitis D and B Patients Is Comparable but Differs from That of Individuals with HBeAg-Negative HBV Infection. Viruses 2023; 15:2257. [PMID: 38005933 PMCID: PMC10675264 DOI: 10.3390/v15112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
miRNAs circulating in whole serum and HBsAg-particles are differentially expressed in chronic hepatitis B (CHB) and HBeAg-negative-HBV infection (ENI); their profiles are unknown in chronic hepatitis D (CHD). Serum- and HBsAg-associated miRNAs were analyzed in 75 subjects of 3 well-characterized groups (CHB 25, CHD 25, ENI 25) using next-generation sequencing (NGS). Overall miRNA profiles were consonant in serum and HBsAg-particles but significantly different according to the presence of hepatitis independently of Hepatitis D Virus (HDV)-co-infection. Stringent (Bonferroni Correction < 0.001) differential expression analysis showed 39 miRNAs upregulated in CHB vs. ENI and 31 of them also in CHD vs. ENI. miRNA profiles were coincident in CHB and CHD with only miR-200a-3p upregulated in CHB. Three miRNAs (miR-625-3p, miR-142-5p, and miR-223-3p) involved in immune response were upregulated in ENI. All 3 hepatocellular miRNAs of MiR-B-Index (miR-122-5p, miR-99a-5p, miR-192-5p) were overexpressed in both CHB and CHD patients. In conclusion, CHD and CHB patients showed highly similar serum miRNA profiling that was significantly different from that of individuals with HBeAg-negative infection and without liver disease.
Collapse
Affiliation(s)
- Daniela Cavallone
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy
| | - Eric David B. Ornos
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
- Department of Medical Microbiology, College of Medicine, University of the Philippines Manila, Pedro Gil Street, Ermita, Manila 1000, Philippines
- Fondazione Italiana Fegato (FIF), 34149 Trieste, Italy
| | - Gabriele Ricco
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
| | - Filippo Oliveri
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
| | - Barbara Coco
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
| | - Piero Colombatto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
| | - Laura De Rosa
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
- Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Pedro Gil Street, Ermita, Manila 1000, Philippines;
| | - Ferruccio Bonino
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy
| | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy; (D.C.); (E.D.B.O.); (G.R.); (F.O.); (B.C.); (P.C.); (F.B.)
- Institute of Biostructure and Bioimaging, National Research Council, Via De Amicis 95, 80145 Naples, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Abdul Majeed N, Zehnder B, Koh C, Heller T, Urban S. Hepatitis delta: Epidemiology to recent advances in therapeutic agents. Hepatology 2023; 78:1306-1321. [PMID: 36738087 DOI: 10.1097/hep.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Hepatitis D virus (HDV) was first described in 1977 and is dependent on the presence of hepatitis B surface antigen (HBsAg) for its entry into cells and on the human host for replication. Due to the envelopment with the hepatitis B virus (HBV) envelope, early phases of HDV entry resemble HBV infection. Unlike HBV, HDV activates innate immune responses. The global prevalence of HDV is estimated to be about 5% of HBsAg positive individuals. However, recent studies have described a wide range of prevalence between 12 to 72 million individuals. Infection can occur as super-infection or co-infection. The diagnosis of active HDV infection involves screening with anti HDV antibodies followed by quantitative PCR testing for HDV RNA in those who are HBsAg positive. The diagnostic studies have evolved over the years improving the validity and reliability of the tests performed. HDV infection is considered the most severe form of viral hepatitis and the HDV genotype may influence the disease course. There are eight major HDV genotypes with prevalence varying by geographic region. HDV treatment has been challenging as HDV strongly depends on the host cell for replication and provides few, if any viral targets. Better understanding of HDV virology has led to the development of several therapeutic agents currently being studied in different phase II and III clinical trials. There is increasing promise of effective therapies that will ameliorate the course of this devastating disease.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
5
|
Majeed NA, Hitawala AA, Heller T, Koh C. Diagnosis of HDV: From virology to non-invasive markers of fibrosis. Liver Int 2023; 43 Suppl 1:31-46. [PMID: 36621853 PMCID: PMC10329733 DOI: 10.1111/liv.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Hepatitis D viral infection in humans is a disease that requires the establishment of hepatitis B, relying on hepatitis B surface Ag and host cellular machinery to replicate and propagate the infection. Since its discovery in 1977, substantial progress has been made to better understand the hepatitis D viral life cycle, pathogenesis and modes of transmission along with expanding on clinical knowledge related to prevention, diagnosis, monitoring and treatment. The availability of serologic diagnostic assays for hepatitis D infection has evolved over time with current widespread availability, improved detection and standardized reporting. With human migration, the epidemiology of hepatitis D infection has changed over time. Thus, the ability to use diagnostic assays remains essential to monitor the global impact of hepatitis D infection. Separately, while liver biopsy remains the gold standard for the staging of this rapidly progressive and severe form of chronic viral hepatitis, there is an unmet need for clinical monitoring of chronic hepatitis D infection for management of progressive disease. Thus, exploration of the utility of non-invasive fibrosis markers in hepatitis D is ongoing. In this review, we discuss the virology, the evolution of diagnostics and the development of non-invasive markers for the detection and monitoring of fibrosis in patients with hepatitis D infection.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Asif Ali Hitawala
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Hoblos R, Kefalakes H. Immunology of hepatitis D virus infection: General concepts and present evidence. Liver Int 2023; 43 Suppl 1:47-59. [PMID: 36074070 DOI: 10.1111/liv.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/13/2023]
Abstract
Infection with the hepatitis D virus induces the most severe form of chronic viral hepatitis, affecting over 12 million people worldwide. Chronic HDV infection leads to rapid development of liver cirrhosis and hepatocellular carcinoma in ~70% of patients within 15 years of infection. Recent evidence suggests that an interplay of different components of the immune system are contributing to viral control and may even be implicated in liver disease pathogenesis. This review will describe general concepts of antiviral immune response and elicit the present evidence concerning the interplay of the hepatitis D virus with the immune system.
Collapse
Affiliation(s)
- Reem Hoblos
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Stephenson-Tsoris S, Liang TJ. Hepatitis Delta Virus-Host Protein Interactions: From Entry to Egress. Viruses 2023; 15:1530. [PMID: 37515216 PMCID: PMC10383234 DOI: 10.3390/v15071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known human virus and causes the most severe form of human viral hepatitis, yet it is still not fully understood how the virus replicates and how it interacts with many host proteins during replication. This review aims to provide a systematic review of all the host factors currently known to interact with HDV and their mechanistic involvement in all steps of the HDV replication cycle. Finally, we discuss implications for therapeutic development based on our current knowledge of HDV-host protein interactions.
Collapse
Affiliation(s)
- Susannah Stephenson-Tsoris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
9
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
10
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
11
|
Kim GW, Moon JS, Gudima SO, Siddiqui A. N 6-Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1. J Virol 2022; 96:e0112422. [PMID: 36102650 PMCID: PMC9555152 DOI: 10.1128/jvi.01124-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a defective satellite virus that uses hepatitis B virus (HBV) envelope proteins to form its virions and infect hepatocytes via the HBV receptors. Concomitant HDV/HBV infection continues to be a major health problem, with at least 25 million people chronically infected worldwide. N6-methyladenine (m6A) modification of cellular and viral RNAs is the most prevalent internal modification that occurs cotranscriptionally, and this modification regulates various biological processes. We have previously described a wider range of functional roles of m6A methylation of HBV RNAs, including its imminent regulatory role in the encapsidation of pregenomic RNA. In this study, we present evidence that m6A methylation also plays an important role in the HDV life cycle. Using the methylated RNA immunoprecipitation (MeRIP) assay, we identified that the intracellular HDV genome and antigenome are m6A methylated in HDV- and HBV-coinfected primary human hepatocytes and HepG2 cell expressing sodium taurocholate cotransporting polypeptide (NTCP), while the extracellular HDV genome is not m6A methylated. We observed that HDV genome and delta antigen levels are significantly decreased in the absence of METTL3/14, while the extracellular HDV genome levels are increased by depletion of METTL3/14. Importantly, YTHDF1, an m6A reader protein, interacts with the m6A-methylated HDV genome and inhibits the interaction between the HDV genome and antigens. Thus, m6A of the HDV genome negatively regulates virion production by inhibiting the interaction of the HDV genome with delta antigens through the recruitment of YTHDF1. This is the first study that provides insight into the functional roles of m6A in the HDV life cycle. IMPORTANCE The functional roles of N6-methyladenine (m6A) modifications in the HBV life cycle have been recently highlighted. Here, we investigated the functional role of m6A modification in the HDV life cycle. HDV is a subviral agent of HBV, as it uses HBV envelope proteins to form its virions. We found that m6A methylation also occurs in the intracellular HDV genome and antigenome but not in the extracellular HDV genome. The m6A modification of the HDV genome recruits m6A reader protein (YTHDF1) onto the viral genome. The association of YTHDF1 with the HDV genome abrogates the interaction of delta antigens with the HDV genome and inhibits virion assembly. This study describes the unique effects of m6A on regulation of the HDV life cycle.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology and Molecular Biology, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jae-Su Moon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
13
|
Lange M, Zaret D, Kushner T. Hepatitis Delta: Current Knowledge and Future Directions. Gastroenterol Hepatol (N Y) 2022; 18:508-520. [PMID: 36397990 PMCID: PMC9666792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatitis delta virus (HDV) infection is caused by a unique circular RNA virus that relies on both the hepatitis B virus (HBV) antigen and human host polymerases for its transmission and replication. HDV infection can be acquired simultaneously with HBV as a coinfection or as a superinfection in patients already chronically infected with HBV. Chronic HDV is the most severe and progressive form of viral hepatitis-induced liver disease, accounting for significant morbidity and mortality worldwide. Despite the severity of disease and poor clinical outcomes, there are few therapeutic options for the treatment of HDV infection. This article discusses the epidemiology of HDV globally and in the United States, the diagnosis and clinical course of HDV infection, and the current and future therapeutic options for the management of HDV infection.
Collapse
Affiliation(s)
- Marcia Lange
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dina Zaret
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tatyana Kushner
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Asif B, Koh C. Hepatitis D virus (HDV): investigational therapeutic agents in clinical trials. Expert Opin Investig Drugs 2022; 31:905-920. [PMID: 34482769 PMCID: PMC11391510 DOI: 10.1080/13543784.2021.1977795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic Hepatitis D virus (HDV) infection is a global disease leading to rapidly progressive liver disease with increased liver-related mortality and hepatocellular carcinoma. Therapies are minimally effective; however, an increased understanding of the HDV lifecycle has provided new potential drug targets. Thus, there is a growing number of investigational therapeutics under exploration for HDV with the potential for successful viral eradication. AREAS COVERED This review discusses the clinical impact of HDV infection and offers an in-depth look at the HDV life cycle. The authors examine current and new drug targets and the investigational therapies in clinical trials. The search strategy was based on PubMed database and clinicaltrials.gov which highlight the most up-to-date aspects of investigational therapies for chronic HDV infection.
Collapse
Affiliation(s)
- Bilal Asif
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
15
|
A Review of HDV Infection. Viruses 2022; 14:v14081749. [PMID: 36016371 PMCID: PMC9414459 DOI: 10.3390/v14081749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023] Open
Abstract
Hepatitis D is the most severe viral hepatitis. Hepatitis D virus (HDV) has a very small RNA genome with unique biological properties. It requires for infection the presence of hepatitis B virus (HBV) and is transmitted parenterally, mainly by superinfection of HBsAg carriers who then develop chronic hepatitis D. HDV has been brought under control in high-income countries by the implementation of HBV vaccination, and the clinical pattern has changed to a chronic hepatitis D seen in ageing patients with advanced fibrotic disease; the disease remains a major health concern in developing countries of Africa and Asia. Every HBsAg-positive subject should be tested for HDV serum markers by reflex testing, independently of clinical status. Vaccination against HBV provides the best prophylaxis against hepatitis D. The only therapy available so far has been the poorly performing Interferon alfa; however, several new and promising therapeutic approaches are under study.
Collapse
|
16
|
Bahoussi AN, Wang PH, Guo YY, Rabbani N, Wu C, Xing L. Global Distribution and Natural Recombination of Hepatitis D Virus: Implication of Kyrgyzstan Emerging HDVs in the Clinical Outcomes. Viruses 2022; 14:v14071467. [PMID: 35891448 PMCID: PMC9323457 DOI: 10.3390/v14071467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Discrepancies in human hepatitis delta virus (HDV) genotypes impact the virus’ biological behavior, clinical manifestation, and treatment response. Herein, this report aims to explore the role of recombination in the worldwide genotypic distribution and genetic diversity of HDV. Three-hundred-forty-eight human HDV full-length genomic sequences of ~1678 nt in length, isolated in twenty-eight countries worldwide between 1986 and 2018, were analysed. Similarity analysis and recombination mapping were performed, and forty-eight recombination events were identified, twenty-nine of which were isolated from Kyrgyzstan and determined to be involved in the diversity and extension of HDV sub-genotypes. HDV recombination occurred only between the genetically close genotypes (genotype 5 and genotype 2) or mainly within genotype 1, suggesting the complex replicative molecular mechanisms of HDV-RNA. The global distribution and classification of HDV genotypes have been updated, indicating that HDV recombination is one of the driving forces behind the biodiversity and the evolution of human HDV genomes. The outcome analysis suggests that the expansion of HDV sub-genotypes and the complex recombination networks might be related to the genomic character of Kyrgyzstan circulating strains and extensive mobility within countries and across borders. These findings will be of great importance in formulating more effective public health HDV surveillance strategies and guiding future molecular and epidemiological research to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Nighat Rabbani
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (A.N.B.); (P.-H.W.); (Y.-Y.G.); (N.R.); (C.W.)
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- Correspondence: ; Tel.: +86-351-701-025
| |
Collapse
|
17
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Abstract
Hepatitis D virus (HDV) infection causes the most severe form of viral hepatitis with rapid progression to cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although discovered > 40 years ago, little attention has been paid to this pathogen from both scientific and public communities. However, effectively combating hepatitis D requires advanced scientific knowledge and joint efforts from multi-stakeholders. In this review, we emphasized the recent advances in HDV virology, epidemiology, clinical feature, treatment, and prevention. We not only highlighted the remaining challenges but also the opportunities that can move the field forward.
Collapse
|
19
|
Elazar M, Glenn JS. Combination of Novel Therapies for HDV. Viruses 2022; 14:v14020268. [PMID: 35215860 PMCID: PMC8877160 DOI: 10.3390/v14020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.
Collapse
Affiliation(s)
- Menashe Elazar
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine-Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Palo Alto Veterans Administration, Palo Alto, CA 94305, USA
- Correspondence:
| |
Collapse
|
20
|
Zhang YZ, Zeb A, Cheng LF. Exploring the molecular mechanism of hepatitis virus inducing hepatocellular carcinoma by microarray data and immune infiltrates analysis. Front Immunol 2022; 13:1032819. [PMID: 36439183 PMCID: PMC9697180 DOI: 10.3389/fimmu.2022.1032819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The number of new cases of hepatocellular carcinoma (HCC) worldwide reached 910,000, ranking the sixth, 80% HCC is associated with viruses, so exploring the molecular mechanism of viral carcinogenicity is imperative. The study showed that both HBV and HCV associated HCC and non-viral HCC have the same molecular phenotype (low gene expression and inhibition of immune pathways), but in the tumor immune micro-environment, there is excessive M2-type macrophage polarization in virus-associated hepatocellular carcinoma. To address this phenomenon, the data sets were analyzed and identified five hub genes (POLR2A, POLR2B, RPL5, RPS6, RPL23A) involved in viral gene expression and associated with PI3K-Akt-mTOR pathway activation by six algorithms. In addition, numerous studies have reported that M2-type macrophages participate in the hepatic fibro-pathological process of the development of HCC and are regulated by the PI3K-Akt-mTOR pathway. On this basis, the study showed that hepatitis virus causes abnormal expression of hub genes, leading to the activation of the pathway, which in turn promote the differentiation of M2-type macrophages and eventually promote the formation of liver fibrosis, leading to the occurrence of HCC. In addition, these hub genes are regulated by transcription factors and m6A enzyme, and have good prognosis and diagnostic value. With regard to drug reuse, the results suggest that patients with virus-related HCC for whom Cytidine triphosphate disodium salt and Guanosine-5'-Triphosphate are used as supplementary therapy, and may have a better prognosis. In conclusion, the study has identified novel molecules that are carcinogenic to hepatitis viruses and are expected to serve as molecular markers and targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Amir Zeb
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Akhlaghpour H. An RNA-Based Theory of Natural Universal Computation. J Theor Biol 2021; 537:110984. [PMID: 34979104 DOI: 10.1016/j.jtbi.2021.110984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Life is confronted with computation problems in a variety of domains including animal behavior, single-cell behavior, and embryonic development. Yet we currently do not know of a naturally existing biological system that is capable of universal computation, i.e., Turing-equivalent in scope. Generic finite-dimensional dynamical systems (which encompass most models of neural networks, intracellular signaling cascades, and gene regulatory networks) fall short of universal computation, but are assumed to be capable of explaining cognition and development. I present a class of models that bridge two concepts from distant fields: combinatory logic (or, equivalently, lambda calculus) and RNA molecular biology. A set of basic RNA editing rules can make it possible to compute any computable function with identical algorithmic complexity to that of Turing machines. The models do not assume extraordinarily complex molecular machinery or any processes that radically differ from what we already know to occur in cells. Distinct independent enzymes can mediate each of the rules and RNA molecules solve the problem of parenthesis matching through their secondary structure. In the most plausible of these models all of the editing rules can be implemented with merely cleavage and ligation operations at fixed positions relative to predefined motifs. This demonstrates that universal computation is well within the reach of molecular biology. It is therefore reasonable to assume that life has evolved - or possibly began with - a universal computer that yet remains to be discovered. The variety of seemingly unrelated computational problems across many scales can potentially be solved using the same RNA-based computation system. Experimental validation of this theory may immensely impact our understanding of memory, cognition, development, disease, evolution, and the early stages of life.
Collapse
Affiliation(s)
- Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
22
|
Hepatitis delta virus genome RNA synthesis initiates at position 1646 with a non-templated guanosine. J Virol 2021; 96:e0201721. [PMID: 34878890 DOI: 10.1128/jvi.02017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5' end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5' end of the genome RNA. The 5' end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5' end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.
Collapse
|
23
|
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol 2021; 12:652962. [PMID: 34234753 PMCID: PMC8256844 DOI: 10.3389/fmicb.2021.652962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.
Collapse
Affiliation(s)
- Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Marilou H Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Zhang Z, Urban S. New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies. J Hepatol 2021; 74:686-699. [PMID: 33276031 DOI: 10.1016/j.jhep.2020.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis D (CHD), a global health problem, manifests as the most severe form of viral hepatitis. The causative agent, HDV, is the smallest known human virus; it replicates its circular single-stranded RNA genome in the nucleus of hepatocytes. HDV requires HBV-encoded envelope proteins for dissemination and de novo cell entry. However, HDV can also spread through cell division. Following entry into hepatocytes, replicative intermediates of HDV RNA are sensed by the pattern recognition receptor MDA5 (melanoma differentiation antigen 5) resulting in interferon (IFN)-β/λ induction. This IFN response strongly suppresses cell division-mediated spread of HDV genomes, however, it only marginally affects HDV RNA replication in already infected, resting hepatocytes. Monotherapy with IFN-α/λ shows efficacy but rarely results in HDV clearance. Recent molecular insights into key determinants of HDV persistence and the accelerated development of specifically acting antivirals that interfere with the replication cycle have revealed promising new therapeutic perspectives. In this review, we briefly summarise our knowledge on replication/persistence of HDV, the newly discovered HDV-like agents, and the interplay of HDV with the IFN response and its consequences for persistence. Finally, we discuss the possible role of IFNs in combination with upcoming therapies aimed at HDV cure.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
25
|
Sagnelli C, Sagnelli E, Russo A, Pisaturo M, Occhiello L, Coppola N. HBV/HDV Co-Infection: Epidemiological and Clinical Changes, Recent Knowledge and Future Challenges. Life (Basel) 2021; 11:life11020169. [PMID: 33671730 PMCID: PMC7926847 DOI: 10.3390/life11020169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Several investigations have been published on Hepatitis Delta Virus (HDV) infection in recent years, from which we have drawn the salient data to provide readers with useful information to improve their knowledge on the subject. HDV genotypes 5–8 have been recently imported to Western countries from central Africa, whose clinical relevance deserves further investigation. Ongoing HDV replication has been identified as an independent predictor of progression to cirrhosis and HCC for patients with HDV chronic hepatitis (HDV-CH). Long-term treatments of HDV-CH with standard or pegylated interferon alfa (peg-IFN-α) have all been unsatisfactory, leading to a sustained virological response (SVR) only in 20–30% of patients treated, faced with a poor tolerability and frequent serious adverse reactions; the addition of HBV nucleo(s)tide analogues to peg-IFN- α did not improve the rate of SVR. The improved knowledge of the HDV life cycle has allowed the development of direct acting agents towards key-points of the HDV life cycle, namely bulevirtide, lonafarnib and nucleic acid polymers. Preliminary data have shown that these drugs are more effective than interferon-based therapies, but adverse reactions are also common, which however seem toned down in combination therapy with other antivirals.
Collapse
|
26
|
Ferrante ND, Lo Re V. Epidemiology, Natural History, and Treatment of Hepatitis Delta Virus Infection in HIV/Hepatitis B Virus Coinfection. Curr HIV/AIDS Rep 2020; 17:405-414. [PMID: 32607773 DOI: 10.1007/s11904-020-00508-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Limited data exist on the prevalence, determinants, and outcomes of hepatitis delta virus (HDV) infection among HIV/hepatitis B virus (HBV)-coinfected persons. This review provides current evidence on the epidemiology, natural history, and treatment of HDV infection in patients with HIV/HBV coinfection and highlights future research needs. RECENT FINDINGS Cross-sectional studies in Europe, Africa, South America, and Asia show that the prevalence of HDV among HIV/HBV-coinfected patients ranges from 1.2 to 25%. No studies have evaluated the prevalence of HDV infection among HIV/HBV-coinfected patients in the USA. HDV infection increases the risk of hepatic decompensation and hepatocellular carcinoma among HIV/HBV-coinfected patients. HDV treatment remains limited to pegylated interferon-alpha, which results in sustained virologic response in fewer than 25%. Data on the epidemiology, natural history, and treatment of HDV among HIV/HBV-coinfected persons remain limited. More research is needed to address these knowledge gaps in order to better manage HDV coinfection in HIV/HBV-coinfected patients.
Collapse
Affiliation(s)
- Nicole D Ferrante
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, 836 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA
| | - Vincent Lo Re
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, 836 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA.
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Zhang Z, Urban S. Interplay between Hepatitis D Virus and the Interferon Response. Viruses 2020; 12:v12111334. [PMID: 33233762 PMCID: PMC7699955 DOI: 10.3390/v12111334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures. Finally, we discuss crosstalk with HBV.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564-902
| |
Collapse
|
28
|
Lucifora J, Michelet M, Salvetti A, Durantel D. Fast Differentiation of HepaRG Cells Allowing Hepatitis B and Delta Virus Infections. Cells 2020; 9:cells9102288. [PMID: 33066405 PMCID: PMC7602217 DOI: 10.3390/cells9102288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
HepaRG cells are liver bipotent progenitors acquiring hepatocytes features when differentiated in the presence of dimethylsulfoxide (DMSO). Differentiated HepaRG (dHepaRG) are considered the best surrogate model to primary human hepatocytes (PHH) and are susceptible to several hepatotropic viruses, including Hepatitis B Virus (HBV) and Hepatitis Delta Virus (HDV) infection. Despite these advantages, HepaRG cells are not widely used for the study of these two viruses because of their long differentiation process and their rather low and variable infection rates. Here, we tested the use of a cocktail of five chemicals (5C) combined or not with DMSO to accelerate the cells’ differentiation process. We found that NTCP-mediated HDV entry and replication are similar in HepaRG cells cultivated for only 1 week with 5C and DMSO or differentiated with the regular 4-week protocol. However, even though the NTCP-mediated HBV entry process seemed similar, cccDNA and subsequent HBV replication markers were lower in HepaRG cells cultivated for 1 week with 5C and DMSO compared to the regular differentiation protocol. In conclusion, we set up a new procedure allowing fast differentiation and efficient HDV-infection of HepaRG cells and identified differential culture conditions that may allow to decipher the mechanism behind the establishment of the HBV minichromosome.
Collapse
|
29
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
30
|
Evidence Supporting That RNA Polymerase II Catalyzes De Novo Transcription Using Potato Spindle Tuber Viroid Circular RNA Templates. Viruses 2020; 12:v12040371. [PMID: 32230827 PMCID: PMC7232335 DOI: 10.3390/v12040371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription is a fundamental process that mediates the interplay between genetic information and phenotype. Emerging evidence indicates that RNA polymerase II (Pol II) can catalyze transcription using both DNA and RNA templates. It is well established that Pol II initiates de novo transcription on DNA templates. However, it is unclear whether Pol II performs de novo transcription or relies on primers for initiation (primed transcription) on RNA templates. Using potato spindle tuber viroid (PSTVd) as a model, we presented evidence showing that circular PSTVd templates are critical for the synthesis of longer-than-unit-length (-)-strand products, which supports the de novo transcription based on the asymmetric rolling circle model of PSTVd replication. We further showed that the crucial factor for primed transcription, transcription factor IIS (TFIIS), is dispensable for PSTVd replication in cells. Together, our data support the de novo transcription on PSTVd RNA templates catalyzed by Pol II. This result has significant implications in understanding the mechanism and machinery underlying Pol II-catalyzed transcription using other RNA templates.
Collapse
|
31
|
Abstract
Satellite viruses, most commonly found in plants, rely on helper viruses to complete their replication cycle. The only known example of a human satellite virus is the hepatitis D virus (HDV), and it is generally thought to require hepatitis B virus (HBV) to form infectious particles. Until 2018, HDV was the sole representative of the genus Deltavirus and was thought to have evolved in humans, the only known HDV host. The subsequent identification of HDV-like agents in birds, snakes, fish, amphibians, and invertebrates indicated that the evolutionary history of deltaviruses is likely much longer than previously hypothesized. Interestingly, none of the HDV-like agents were found in coinfection with an HBV-like agent, suggesting that these viruses use different helper virus(es). Here we show, using snake deltavirus (SDeV), that HBV and hepadnaviruses represent only one example of helper viruses for deltaviruses. We cloned the SDeV genome into a mammalian expression plasmid, and by transfection could initiate SDeV replication in cultured snake and mammalian cell lines. By superinfecting persistently SDeV-infected cells with reptarenaviruses and hartmaniviruses, or by transfecting their surface proteins, we could induce production of infectious SDeV particles. Our findings indicate that deltaviruses can likely use a multitude of helper viruses or even viral glycoproteins to form infectious particles. This suggests that persistent infections, such as those caused by arenaviruses and orthohantaviruses used in this study, and recurrent infections would be beneficial for the spread of deltaviruses. It seems plausible that further human or animal disease associations with deltavirus infections will be identified in the future.IMPORTANCE Deltaviruses need a coinfecting enveloped virus to produce infectious particles necessary for transmission to a new host. Hepatitis D virus (HDV), the only known deltavirus until 2018, has been found only in humans, and its coinfection with hepatitis B virus (HBV) is linked with fulminant hepatitis. The recent discovery of deltaviruses without a coinfecting HBV-like agent in several different taxa suggested that deltaviruses could employ coinfection by other enveloped viruses to complete their life cycle. In this report, we show that snake deltavirus (SDeV) efficiently utilizes coinfecting reptarena- and hartmaniviruses to form infectious particles. Furthermore, we demonstrate that cells expressing the envelope proteins of arenaviruses and orthohantaviruses produce infectious SDeV particles. As the envelope proteins are responsible for binding and infecting new host cells, our findings indicate that deltaviruses are likely not restricted in their tissue tropism, implying that they could be linked to animal or human diseases other than hepatitis.
Collapse
|
32
|
Targeting the Host for New Therapeutic Perspectives in Hepatitis D. J Clin Med 2020; 9:jcm9010222. [PMID: 31947588 PMCID: PMC7019876 DOI: 10.3390/jcm9010222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis D virus (HDV) is a small satellite virus of hepatitis B virus (HBV) requiring HBV infection to complete its life cycle. It has been recently estimated that 13% of chronic HBV infected patients (60 million) are co-infected with HDV. Chronic hepatitis D is the most severe form of viral hepatitis with the highest risk to develop cirrhosis and liver cancer. Current treatment is based on pegylated-interferon-alpha which rarely controls HDV infection and is complicated by serious side effects. The development of novel antiviral strategies based on host targeting agents has shown promising results in phase I/II clinical trials. This review summarizes HDV molecular virology and physiopathology as well as new therapeutic approaches targeting HDV host factors.
Collapse
|
33
|
Abstract
Chronic hepatitis D (CHD) results from an infection with the hepatitis B virus and hepatitis D virus (HDV). CHD is the most severe form of human viral hepatitis. Current treatment options consist of interferon alfa, which is effective only in a minority of patients. Study of HDV molecular virology has resulted in new approaches entering clinical trials, with phase-3 studies the most advanced. These include the entry inhibitor bulevirtide, the nucleic acid polymer REP 2139-Ca, the farnesyltransferase inhibitor lonafarnib, and pegylated interferon lambda. This article summarizes the available data on these emerging therapeutics.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ben L. Da
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Da BL, Heller T, Koh C. Hepatitis D infection: from initial discovery to current investigational therapies. Gastroenterol Rep (Oxf) 2019; 7:231-245. [PMID: 32477569 DOI: 10.1093/gastro/goz023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D is the most severe form of viral hepatitis associated with a more rapid progression to cirrhosis and an increased risk of hepatocellular carcinoma and mortality compared with hepatitis B mono-infection. Although once thought of as a disappearing disease, hepatitis D is now becoming recognized as a serious worldwide issue due to improvement in diagnostic testing and immigration from endemic countries. Despite these concerns, there is currently only one accepted medical therapy (pegylated-interferon-α) for the treatment of hepatitis D with less than desirable efficacy and significant side effects. Due to these reasons, many patients never undergo treatment. However, increasing knowledge about the virus and its life cycle has led to the clinical development of multiple promising new therapies that hope to alter the natural history of this disease and improve patient outcome. In this article, we will review the literature from discovery to the current investigational therapies.
Collapse
Affiliation(s)
- Ben L Da
- Digestive Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Godoy C, Tabernero D, Sopena S, Gregori J, Cortese MF, González C, Casillas R, Yll M, Rando A, López-Martínez R, Quer J, González-Aseguinolaza G, Esteban R, Riveiro-Barciela M, Buti M, Rodríguez-Frías F. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J Gastroenterol 2019; 25:1566-1579. [PMID: 30983817 PMCID: PMC6452231 DOI: 10.3748/wjg.v25.i13.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) seems to strongly suppress hepatitis B virus (HBV) replication, although little is known about the mechanism of this interaction. Both these viruses show a dynamic distribution of mutants, resulting in viral quasispecies. Next-generation sequencing is a viable approach for analyzing the composition of these mutant spectra. As the regulatory hepatitis B X protein (HBx) is essential for HBV replication, determination of HBV X gene (HBX) quasispecies complexity in HBV/HDV infection compared to HBV mono-infection may provide information on the interactions between these two viruses.
AIM To compare HBV quasispecies complexity in the HBX 5’ region between chronic hepatitis delta (CHD) and chronic HBV mono-infected patients.
METHODS Twenty-four untreated patients were included: 7/24 (29.2%) with HBeAg-negative chronic HBV infection (CI, previously termed inactive carriers), 8/24 (33.3%) with HBeAg-negative chronic hepatitis B (CHB) and 9/24 (37.5%) with CHD. A serum sample from each patient was first tested for HBV DNA levels. The HBX 5’ region [nucleotides (nt) 1255-1611] was then PCR-amplified for subsequent next-generation sequencing (MiSeq, Illumina, United States). HBV quasispecies complexity in the region analyzed was evaluated using incidence-based indices (number of haplotypes and number of mutations), abundance-based indices (Hill numbers of order 1 and 2), and functional indices (mutation frequency and nucleotide diversity). We also evaluated the pattern of nucleotide changes to investigate which of them could be the cause of the quasispecies complexity.
RESULTS CHB patients showed higher median HBV-DNA levels [5.4 logIU/mL, interquartile range (IQR) 3.5-7.9] than CHD (3.4 logIU/mL, IQR 3-7.6) (P = n.s.) or CI (3.2 logIU/mL, IQR 2.3-3.5) (P < 0.01) patients. The incidence and abundance indices indicated that HBV quasispecies complexity was significantly greater in CI than CHB. A similar trend was observed in CHD patients, although only Hill numbers of order 2 showed statistically significant differences (CHB 2.81, IQR 1.11-4.57 vs CHD 8.87, 6.56-11.18, P = 0.038). There were no significant differences in the functional indices, but CI and CHD patients also showed a trend towards greater complexity than CHB. No differences were found for any HBV quasispecies complexity indices between CHD and CI patients. G-to-A and C-to-T nucleotide changes, characteristic of APOBEC3G, were higher in CHD and CI than in CHB in genotype A haplotypes, but not in genotype D. The proportion of nt G-to-A vs A-to-G changes and C-to-T vs T-to-C changes in genotype A and D haplotypes in CHD patients showed no significant differences. In CHB and CI the results of these comparisons were dependent on HBV genotype.
CONCLUSION The lower-replication CHD and CI groups show a trend to higher quasispecies complexity than the higher-replication CHB group. The mechanisms associated with this greater complexity require elucidation.
Collapse
Affiliation(s)
- Cristina Godoy
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sara Sopena
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Roche Diagnostics SL, Sant Cugat del Vallès 08174, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Carolina González
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Marçal Yll
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Ariadna Rando
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosa López-Martínez
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | - Rafael Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
36
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
37
|
Koh C, Heller T, Glenn JS. Pathogenesis of and New Therapies for Hepatitis D. Gastroenterology 2019; 156:461-476.e1. [PMID: 30342879 PMCID: PMC6340762 DOI: 10.1053/j.gastro.2018.09.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis delta virus (HDV) infection of humans was first reported in 1977, and now it is now estimated that 15-20 million people are infected worldwide. Infection with HDV can be an acute or chronic process that occurs only in patients with an hepatitis B virus infection. Chronic HDV infection commonly results in the most rapidly progressive form of viral hepatitis; it is the chronic viral infection that is most likely to lead to cirrhosis, and it is associated with an increased risk of hepatocellular carcinoma. HDV infection is the only chronic human hepatitis virus infection without a therapy approved by the US Food and Drug Administration. Peginterferon alfa is the only recommended therapy, but it produces unsatisfactory results. We review therapeutic agents in development, designed to disrupt the HDV life cycle, that might benefit patients with this devastating disease.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
38
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Alfaiate D, Levrero M, Dény P. [Hepatitis delta virus replication and the role of the small hepatitis delta protein S-HDAg]. Med Sci (Paris) 2018; 34:833-841. [PMID: 30451678 DOI: 10.1051/medsci/2018209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is a mammalian defective virus. Its genome is a small single-stranded circular RNA of approximately 1,680 nucleotides. To spread, HDV relies on hepatitis B virus envelope proteins that are needed for viral particle assembly and egress. Severe clinical features of HBV-HDV infection include acute fulminant hepatitis and chronic liver fibrosis leading to cirrhosis and hepatocellular carcinoma. One uniqueness of HDV relies on its genome similarity to viroids, small plant infectious uncoated RNAs. Devoid of viral replicase activity, HDV has to use host DNA-dependant RNA Pol II to replicate its genomic RNA. Thus, one can ask how does this replication occur? We describe first here the major steps of the viral RNA transcription and replication and then we detail the role of the Small HD protein in these processes, especially with regard to the Pol II recruitment.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de virologie moléculaire, Inserm UMR S_1134, Institut National de Transfusion Sanguine, Paris, France
| | - Dulce Alfaiate
- Département de pathologie et immunologie, université de Genève, Suisse
| | - Massimo Levrero
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Service d'hépato-gastroentérologie, Hôpital de la Croix Rousse, université Lyon-I, France
| | - Paul Dény
- Inserm, U1052 - UMR CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon, France - Laboratoire de microbiologie clinique, groupe des Hôpitaux universitaires de Paris-Seine Saint Denis, UFR santé médecine, biologie humaine, université Paris 13, Bobigny, France
| |
Collapse
|
39
|
Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Viruses 2018; 10:v10090503. [PMID: 30227597 PMCID: PMC6164485 DOI: 10.3390/v10090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.
Collapse
|
40
|
Suárez-Amarán L, Usai C, Di Scala M, Godoy C, Ni Y, Hommel M, Palomo L, Segura V, Olagüe C, Vales A, Ruiz-Ripa A, Buti M, Salido E, Prieto J, Urban S, Rodríguez-Frias F, Aldabe R, González-Aseguinolaza G. A new HDV mouse model identifies mitochondrial antiviral signaling protein (MAVS) as a key player in IFN-β induction. J Hepatol 2017; 67:669-679. [PMID: 28527664 DOI: 10.1016/j.jhep.2017.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Studying hepatitis delta virus (HDV) and developing new treatments is hampered by the limited availability of small animal models. Herein, a description of a robust mouse model of HDV infection that mimics several important characteristics of the human disease is presented. METHODS HDV and hepatitis B virus (HBV) replication competent genomes were delivered to the mouse liver using adeno-associated viruses (AAV; AAV-HDV and AAV-HBV). Viral load, antigen expression and genomes were quantified at different time points after AAV injection. Furthermore, liver pathology, genome editing, and the activation of the innate immune response were evaluated. RESULTS AAV-HDV infection initiated HDV replication in mouse hepatocytes. Genome editing was confirmed by the presence of small and large HDV antigens and sequencing. Viral replication was detected for 45days, even after the AAV-HDV vector had almost disappeared. In the presence of HBV, HDV infectious particles were detected in serum. Furthermore, as observed in patients, co-infection was associated with the reduction of HBV antigen expression and the onset of liver damage that included the alteration of genes involved in the development of liver pathologies. HDV replication induced a sustained type I interferon response, which was significantly reduced in immunodeficient mice and almost absent in mitochondrial antiviral signaling protein (MAVS)-deficient mice. CONCLUSION The animal model described here reproduces important characteristics of human HDV infection and provides a valuable tool for characterizing the viral infection and for developing new treatments. Furthermore, MAVS was identified as a main player in HDV detection and adaptive immunity was found to be involved in the amplification of the innate immune response. Lay summary: Co-infection with hepatitis B and D virus (HBV and HDV, respectively) often causes a more severe disease condition than HBV alone. Gaining more insight into HDV and developing new treatments is hampered by limited availability of adequate immune competent small animal models and new ones are needed. Here, a mouse model of HDV infection is described, which mimics several important characteristics of the human disease, such as the initiation and maintenance of replication in murine hepatocytes, genome editing and, in the presence of HBV, generation of infectious particles. Lastly, the involvement of an adaptive immunity and the intracellular signaling molecule MAVS in mounting a strong and lasting innate response was shown. Thus, our model serves as a useful tool for the investigation of HDV biology and new treatments.
Collapse
MESH Headings
- Adaptive Immunity
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Cell Line
- Coinfection/immunology
- Coinfection/pathology
- Coinfection/virology
- Dependovirus/genetics
- Disease Models, Animal
- Genome, Viral
- Hepatitis B/complications
- Hepatitis B/immunology
- Hepatitis B/virology
- Hepatitis B Antigens/metabolism
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis D/complications
- Hepatitis D/immunology
- Hepatitis D/virology
- Hepatitis Delta Virus/genetics
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/physiology
- Hepatitis delta Antigens/metabolism
- Humans
- Immunity, Innate
- Interferon-beta/biosynthesis
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Immunological
- Signal Transduction/immunology
- Virus Replication
Collapse
Affiliation(s)
- Lester Suárez-Amarán
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Carla Usai
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Marianna Di Scala
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Cristina Godoy
- Centro de Investigación Biomédica en red: Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Virology Unit, Department of Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirja Hommel
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Laura Palomo
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Víctor Segura
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain; Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Cristina Olagüe
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Africa Vales
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Alicia Ruiz-Ripa
- Centro de Investigación Biomédica en red: Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Virology Unit, Department of Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en red: Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Virology Unit, Department of Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Salido
- Department of Pathology, Centre for Biomedical Research on Rare Diseases (CIBERER), La Laguna, S/C Tenerife, Spain
| | - Jesús Prieto
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain; Centro de Investigación Biomédica en red: Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Pamplona, Spain
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Francisco Rodríguez-Frias
- Centro de Investigación Biomédica en red: Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Virology Unit, Department of Microbiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Aldabe
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Calle Irunlarrea 3, Pamplona 31008, Spain.
| |
Collapse
|
41
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
42
|
Lempp FA, Urban S. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen. Viruses 2017; 9:E172. [PMID: 28677645 PMCID: PMC5537664 DOI: 10.3390/v9070172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Elazar M, Koh C, Glenn JS. Hepatitis delta infection - Current and new treatment options. Best Pract Res Clin Gastroenterol 2017; 31:321-327. [PMID: 28774414 DOI: 10.1016/j.bpg.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
In humans, hepatitis D virus (HDV) infection only occurs in the presence of a concomitant hepatitis B virus (HBV) infection, and induces the most severe form of human viral hepatitis. Even though HDV is spread worldwide and is endemic in some regions, screening and treatment has been often neglected in part due to the lack of an effective therapy. Moreover, HDV prevalence rates are increasing in many countries driven by immigration from areas of high endemicity. Currently, no FDA-approved anti-HDV therapy is available, although interferon (IFN) alpha therapy has demonstrated benefit in a minority of patients. In this review, we present a current view of our understanding of the epidemiology, molecular virology and management of HDV infection. We additionally discuss new treatment approaches in development and describe the most promising results of recent and ongoing clinical trials of these new potential agents.
Collapse
Affiliation(s)
- Menashe Elazar
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, 10 Center Drive, CRC, 5-2740 Bethesda, MD 20892 USA.
| | - Jeffrey S Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Veterans Administration Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
44
|
Alfaiate D, Miaglia C, Zoulim F. Hépatite delta : aspects cliniques et perspectives thérapeutiques. Presse Med 2017; 46:271-281. [DOI: 10.1016/j.lpm.2016.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022] Open
|
45
|
Lempp FA, Ni Y, Urban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol 2016; 13:580-9. [PMID: 27534692 DOI: 10.1038/nrgastro.2016.126] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis D is the most severe form of viral hepatitis, affecting ∼20 million HBV-infected people worldwide. The causative agent, hepatitis delta virus (HDV), is a unique human pathogen: it is the smallest known virus; it depends on HBV to disseminate its viroid-like RNA; it encodes only one protein (HDAg), which has both structural and regulatory functions; and it replicates using predominantly host proteins. The failure of HBV-specific nucleoside analogues to suppress the HBV helper function, and the limitations of experimental systems to study the HDV life cycle, have impeded the development of HDV-specific drugs. Thus, the only clinical regimen for HDV is IFNα, which shows some efficacy but long-term virological responses are rare. Insights into the receptor-mediated entry of HDV, and the observation that HDV assembly requires farnesyltransferase, have enabled novel therapeutic strategies to be developed. Interference with entry, for example through blockade of the HBV-HDV-specific receptor sodium/taurocholate cotransporting polypeptide NTCP by Myrcludex B, and inhibition of assembly by blockade of farnesyltransferase using lonafarnib or nucleic acid polymers such as REP 2139-Ca, have shown promising results in phase II studies. In this Review, we summarize our knowledge of HDV epidemiology, pathogenesis and molecular biology, with a particular emphasis on possible future developments.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Chao M, Lin CC, Lin FM, Li HP, Iang SB. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency. J Gen Virol 2016; 96:3460-3469. [PMID: 26407543 DOI: 10.1099/jgv.0.000297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.
Collapse
Affiliation(s)
- Mei Chao
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Chia-Chi Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Feng-Ming Lin
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Hsin-Pai Li
- Division of Microbiology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| | - Shan-Bei Iang
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 33302, Taiwan
| |
Collapse
|
47
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
48
|
Bakirci S, Bayram R, Yilmaz I, Yaykasli KO, Bayram S, Kaya E. Purification andin vitrotoxicity of gamma amanitin. TOXIN REV 2016. [DOI: 10.3109/15569543.2015.1135172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Abstract
The hepatitis D virus (HDV) is unique in animal virology. It has a circular RNA genome that is the smallest of human viruses, requires the HBsAg capsid of the hepatitis B virus to assembly into infectious virions, parasitizes the transcriptional machinery of the host by hijacking cellular RNA polymerases to replicate its RNA genome and is replicated by a rolling circle mechanism unknown to mammalian cells. Hepatitis D is ubiquitous but prevalence varies throughout the world. It is the most severe form of chronic viral liver disorder; carriers of HBsAg superinfected by the HDV are the major victims and the reservoir of the infection. In the last 20 years vaccination against the hepatitis B virus (HBV) has decreased the circulation of HDV in industrialized countries; nevertheless hepatitis D is returning to Western Europe through immigration from HDV endemic areas. Hepatitis D is being rediscovered in the developing world. It has a significant medical impact on areas of Africa, Asia and South America where the partner HBV is not controlled; Pakistan and Mongolia appear to be worldwide the areas with the highest prevalence of the disease. A major obstacle in treatment is that the virus has no replicative function of its own to be targeted by antivirals. Peg-Interferon remains the mainstay of treatment. New strategies are explored to prevent entry of the virion into hepatocytes by blocking the cellular HBsAg receptor or preventing the prenylation process of the large-delta antigen necessary for the assembly of the HDV particle.
Collapse
Affiliation(s)
- Mario Rizzetto
- Department of Medical Sciences, University of Torino, Torino, 10126, Italy
| |
Collapse
|
50
|
Abstract
This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|