1
|
Koma T, Doi N, Le BQ, Kondo T, Ishizue M, Tokaji C, Tsukada C, Adachi A, Nomaguchi M. Involvement of a Rarely Used Splicing SD2b Site in the Regulation of HIV-1 vif mRNA Production as Revealed by a Growth-Adaptive Mutation. Viruses 2023; 15:2424. [PMID: 38140666 PMCID: PMC10747208 DOI: 10.3390/v15122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
We have previously reported an HIV-1 mutant designated NL-Y226tac that expresses Vif at an ultra-low level, being replication-defective in high-APOBEC3G cells, such as H9. It carries a synonymous mutation within the splicing SA1 site relative to its parental clone. In order to determine whether a certain mutant(s) emerges during multi-infection cycles, we maintained H9 cells infected with a relatively low or high input of NL-Y226tac for extended time periods. Unexpectedly, we reproducibly identified a g5061a mutation in the SD2b site in the two independent long-term culture experiments that partially increases Vif expression and replication ability. Importantly, the adaptive mutation g5061a was demonstrated to enhance vif mRNA production by activation of the SA1 site mediated through increasing usage of a rarely used SD2b site. In the long-term culture initiated by a high virus input, we additionally found a Y226Fttc mutation at the original Y226tac site in SA1 that fully restores Vif expression and replication ability. As expected, the adaptive mutation Y226Fttc enhances vif mRNA production through increasing the splicing site usage of SA1. Our results here revealed the importance of the SD2b nucleotide sequence in producing vif mRNA involved in the HIV-1 adaptation and of mutual antagonism between Vif and APOBEC3 proteins in HIV-1 adaptation/evolution and survival.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Naoya Doi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Bao Quoc Le
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Tomoyuki Kondo
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Mitsuki Ishizue
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chiaki Tokaji
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chizuko Tsukada
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| |
Collapse
|
2
|
Xia Y, Zhang T, Gong D, Qi J, Jiang S, Yang H, Zhu X, Gan Y, Zhang Y, Han Y, Li Y, Li J. Recombination and Mutation in a New HP-PRRSV Strain (SD2020) from China. Viruses 2023; 15:165. [PMID: 36680205 PMCID: PMC9864264 DOI: 10.3390/v15010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
A new HP-PRRSV strain (SD2020) was isolated from pigs with suspected highly pathogenic porcine reproductive and respiratory syndrome disease in a pig farm in Shandong Province, China, and its genome was sequenced. This pig farm has been using the VR-2332 vaccine strain to immunize pigs for a long time. The phylogenic and single nucleotide polymorphisms (SNPs) analysis of the viruses isolated from dead pigs showed that SD2020 was a natural recombinant virus of the VR-2332 vaccine strain and the JXA1 similar strain, and that two splicing fragments highly homologous to JXA1 in the virus genome were probably derived from the JXA1 wild strain and JXA1-R vaccine strain, respectively. Therefore, the possible recombination events of SD2020 and its mutation site might be related to high pathogenicity.
Collapse
Affiliation(s)
- Yang Xia
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
- Southwest Guizhou Vocational & Technical College Nationalities, Southwest Guizhou Autonomous Prefecture, Xingyi 562400, China
| | - Tianying Zhang
- Shijiazhuang Fuli Properties Co., Ltd., Shijiazhuang 050000, China
| | - Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Juan Qi
- Animal Husbandry Development and Service Center in Jimo District, Qingdao 266000, China
| | - Shenghai Jiang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Hao Yang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Xianchang Zhu
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yu Gan
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yi Zhang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yanyan Han
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Yan Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Koma T, Doi N, Takemoto M, Watanabe K, Yamamoto H, Nakashima S, Adachi A, Nomaguchi M. The Expression Level of HIV-1 Vif Is Optimized by Nucleotide Changes in the Genomic SA1D2prox Region during the Viral Adaptation Process. Viruses 2021; 13:2079. [PMID: 34696508 PMCID: PMC8537775 DOI: 10.3390/v13102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Vif plays an essential role in viral replication by antagonizing anti-viral cellular restriction factors, a family of APOBEC3 proteins. We have previously shown that naturally-occurring single-nucleotide mutations in the SA1D2prox region, which surrounds the splicing acceptor 1 and splicing donor 2 sites of the HIV-1 genome, dramatically alter the Vif expression level, resulting in variants with low or excessive Vif expression. In this study, we investigated how these HIV-1 variants with poor replication ability adapt and evolve under the pressure of APOBEC3 proteins. Adapted clones obtained through adaptation experiments exhibited an altered replication ability and Vif expression level compared to each parental clone. While various mutations were present throughout the viral genome, all replication-competent adapted clones with altered Vif expression levels were found to bear them within SA1D2prox, without exception. Indeed, the mutations identified within SA1D2prox were responsible for changes in the Vif expression levels and altered the splicing pattern. Moreover, for samples collected from HIV-1-infected patients, we showed that the nucleotide sequences of SA1D2prox can be chronologically changed and concomitantly affect the Vif expression levels. Taken together, these results demonstrated the importance of the SA1D2prox nucleotide sequence for modulating the Vif expression level during HIV-1 replication and adaptation.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Mai Takemoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Kyosuke Watanabe
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Yamamoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Satoshi Nakashima
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| |
Collapse
|
4
|
Jordan-Paiz A, Franco S, Martínez MA. Impact of Synonymous Genome Recoding on the HIV Life Cycle. Front Microbiol 2021; 12:606087. [PMID: 33796084 PMCID: PMC8007914 DOI: 10.3389/fmicb.2021.606087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Synonymous mutations within protein coding regions introduce changes in DNA or messenger (m) RNA, without mutating the encoded proteins. Synonymous recoding of virus genomes has facilitated the identification of previously unknown virus biological features. Moreover, large-scale synonymous recoding of the genome of human immunodeficiency virus type 1 (HIV-1) has elucidated new antiviral mechanisms within the innate immune response, and has improved our knowledge of new functional virus genome structures, the relevance of codon usage for the temporal regulation of viral gene expression, and HIV-1 mutational robustness and adaptability. Continuous improvements in our understanding of the impacts of synonymous substitutions on virus phenotype - coupled with the decreased cost of chemically synthesizing DNA and improved methods for assembling DNA fragments - have enhanced our ability to identify potential HIV-1 and host factors and other aspects involved in the infection process. In this review, we address how silent mutagenesis impacts HIV-1 phenotype and replication capacity. We also discuss the general potential of synonymous recoding of the HIV-1 genome to elucidate unknown aspects of the virus life cycle, and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ana Jordan-Paiz
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Miguel Angel Martínez
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| |
Collapse
|
5
|
Adachi A, Koma T, Doi N, Nomaguchi M. Commentary: Derivation of Simian Tropic HIV-1 Infectious Clone Reveals Virus Adaptation to a New Host. Front Cell Infect Microbiol 2020; 10:235. [PMID: 32500043 PMCID: PMC7243179 DOI: 10.3389/fcimb.2020.00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
6
|
Retrospective analysis of HIV-1 drug resistance mutations in Suzhou, China from 2009 to 2014. Virus Genes 2020; 56:557-563. [PMID: 32500372 DOI: 10.1007/s11262-020-01774-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
In this study, we investigated drug resistance levels in human immunodeficiency virus (HIV)-1-infected patients in Suzhou by retrospectively analyzing this property and the characteristics of circulating HIV-1 strains collected from 2009 to 2014. A total of 261 HIV-1-positive plasma samples, confirmed by the Suzhou CDC, were collected and evaluated to detect HIV-1 drug resistance genotypes using an in-house method. The pol gene fragment was amplified, and its nucleic acid sequence was determined by Sanger sequencing. Drug resistance mutations were then analyzed using the Stanford University HIV resistance database ( https://hivdb.stanford.edu ). A total of 216 pol gene fragments were amplified and sequenced with 16.7% (36/216) of sequences revealing these mutations. The drug resistance rates of protease, nucleoside reverse transcriptase, and non-nucleoside reverse transcriptase inhibitors (NNRTIs) were 4/36 (11.1%), 2/36 (5.6%), and 30/36 (83.3%), respectively. Five surveillance drug resistance mutations were found in 36 sequences, of which, three were found among specimens of men who have sex with men. Potential low-level resistance accounted for 33% of amino acid mutations associated with NNRTIs. Two of the mutations, M230L and L100I, which confer a high level of resistance efavirenz (EFV) and nevirapine (NVP) used as NNRTIs for first-line antiretroviral therapy (ART), were detected in this study. Therefore, when HIV-1 patients in Suzhou are administered fist-line ART, much attention should be paid to the status of these mutations that cause resistance to EVP, EFV, and NVP.
Collapse
|
7
|
Adachi A. Grand Challenge in Human/Animal Virology: Unseen, Smallest Replicative Entities Shape the Whole Globe. Front Microbiol 2020; 11:431. [PMID: 32256480 PMCID: PMC7093566 DOI: 10.3389/fmicb.2020.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan.,Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Doi N, Koma T, Adachi A, Nomaguchi M. Expression Level of HIV-1 Vif Can Be Fluctuated by Natural Nucleotide Variations in the vif-Coding and Regulatory SA1D2prox Sequences of the Proviral Genome. Front Microbiol 2019; 10:2758. [PMID: 31849897 PMCID: PMC6893887 DOI: 10.3389/fmicb.2019.02758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022] Open
Abstract
Vif is required for HIV-1 replication in natural target cells by counteracting host restriction factors, APOBEC3 (A3) proteins. We recently demonstrated that Vif expression level can be changed by naturally occurring single-nucleotide variations within SA1D2prox of the HIV-1 genome. We also found that levels for vif/vpr mRNAs are inversely correlated. While amino acid sequence per se is critical for functionality, Vif expression level modulated by signal sequences in its coding region is likely to be important as well. There are two splicing sites in the region involved in vpr expression. To reveal possible fluctuations of Vif-expression level, we examined SA1D2prox and vif gene by chimeric approaches using HIV-1 subtypes B and C with distinct anti-A3 activity. In this report, recombinant clones in subtype B backbone carrying chimeric sequences with respect to SA1D2prox/vif and those within the vif-coding region were generated. Of these, clones containing vif-coding sequence of subtype C, especially its 3′ region, expressed vif/Vif at a decreased level but did at an increased level for vpr/Vpr. Clones with reduced vif/Vif level grew similarly or slightly better than a parental clone in weakly A3G-positive cells but more poorly in highly A3G-expressing cells. Three clones with this property were also tested for their A3-degrading activity. One of the clones appeared to have some defect in addition to the poor ability to express vif/Vif. Taken all together, our results show that natural variations in the SA1D2prox and vif-coding region can change the Vif-expression level and affect the HIV-1 replication potential.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| |
Collapse
|
9
|
Skittrall JP, Ingemarsdotter CK, Gog JR, Lever AML. A scale-free analysis of the HIV-1 genome demonstrates multiple conserved regions of structural and functional importance. PLoS Comput Biol 2019; 15:e1007345. [PMID: 31545786 PMCID: PMC6791557 DOI: 10.1371/journal.pcbi.1007345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.
Collapse
Affiliation(s)
- Jordan P. Skittrall
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carin K. Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge, United Kingdom
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Izumida M, Suga K, Ishibashi F, Kubo Y. The Spirocyclic Imine from a Marine Benthic Dinoflagellate, Portimine, Is a Potent Anti-Human Immunodeficiency Virus Type 1 Therapeutic Lead Compound. Mar Drugs 2019; 17:md17090495. [PMID: 31450557 PMCID: PMC6780162 DOI: 10.3390/md17090495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
- Department of Community Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshinao Kubo
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
11
|
Doi N, Koma T, Adachi A, Nomaguchi M. Role for Gag-CA Interdomain Linker in Primate Lentiviral Replication. Front Microbiol 2019; 10:1831. [PMID: 31440231 PMCID: PMC6694209 DOI: 10.3389/fmicb.2019.01831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Gag proteins underlie retroviral replication by fulfilling numerous functional roles at various stages during viral life cycle. Out of the four mature proteins, Gag-capsid (CA) is a major component of viral particles, and has been most well studied biogenetically, biochemically and structurally. Gag-CA is composed of two structured domains, and also of a short stretch of disordered and flexible interdomain linker. While the two domains, namely, N-terminal and C-terminal domains (NTD and CTD), have been the central target for Gag research, the linker region connecting the two has been poorly studied. We recently have performed systemic mutational analyses on the Gag-CA linker region of HIV-1 by various experimental and in silico systems. In total, we have demonstrated that the linker region acts as a cis-modulator to optimize the Gag-related viral replication process. We also have noted, during the course of conducting the research project, that HIV-1 and SIVmac, belonging to distinct primate lentiviral lineages, share a similarly biologically active linker region with each other. In this brief article, we summarize and report the results obtained by mutational studies that are relevant to the functional significance of the interdomain linker of HIV/SIV Gag-CA. Based on this investigation, we discuss about the future directions of the research in this line.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Doi N, Yokoyama M, Koma T, Kotani O, Sato H, Adachi A, Nomaguchi M. Concomitant Enhancement of HIV-1 Replication Potential and Neutralization-Resistance in Concert With Three Adaptive Mutations in Env V1/C2/C4 Domains. Front Microbiol 2019; 10:2. [PMID: 30705669 PMCID: PMC6344430 DOI: 10.3389/fmicb.2019.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 Env protein functions in the entry process and is the target of neutralizing antibodies. Its intrinsically high mutation rate is certainly one of driving forces for persistence/survival in hosts. For optimal replication in various environments, HIV-1 Env must continue to adapt and evolve through balancing sometimes incompatible function, replication fitness, and neutralization sensitivity. We have previously reported that adapted viruses emerge in repeated and prolonged cultures of cells originally infected with a macaque-tropic HIV-1NL4-3 derivative. We have also shown that the adapted viral clones exhibit enhanced growth potentials both in macaque PBMCs and individuals, and that three single-amino acid mutations are present in their Env V1/C2/C4 domains. In this study, we investigated how lab-adapted and highly neutralization-sensitive HIV-1NL4-3 adapts its Env to macaque cells with strongly replication-restrictive nature for HIV-1. While a single and two mutations gave a significantly enhanced replication phenotype in a macaque cell line and also in human cell lines that stably express either human CD4 or macaque CD4, the virus simultaneously carrying the three adaptive mutations always grew best. Entry kinetics of parental and triple mutant viruses were similar, whereas the mutant was significantly more readily inhibited for its infectivity by soluble CD4 than parental virus. Furthermore, molecular dynamics simulations of the Env ectodomain (gp120 and gp41 ectodomain) bound with CD4 suggest that the three mutations increase binding affinity of Env for CD4 in solution. Thus, it is quite likely that the affinity for CD4 of the mutant Env is enhanced relative to the parental Env. Neutralization sensitivity of the triple mutant to CD4 binding site antibodies was not significantly different from that of parental virus, whereas the mutant exhibited a considerably higher resistance against neutralization by a CD4-induced epitope antibody and Env trimer-targeting V1/V2 antibodies. These results suggest that the three adaptive mutations cooperatively promote viral growth via increased CD4 affinity, and also that they enhance viral resistance to several neutralization antibodies by changing the Env-trimer conformation. In total, we have verified here an HIV-1 adaptation pathway in host cells and individuals involving Env derived from a lab-adapted and highly neutralization-sensitive clone.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Osamu Kotani
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|
13
|
Kamiyama H, Izumida M, Umemura Y, Hayashi H, Matsuyama T, Kubo Y. Role of Ezrin Phosphorylation in HIV-1 Replication. Front Microbiol 2018; 9:1912. [PMID: 30210460 PMCID: PMC6119696 DOI: 10.3389/fmicb.2018.01912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
Host-cell expression of the ezrin protein is required for CXCR4 (X4)-tropic HIV-1 infection. Ezrin function is regulated by phosphorylation at threonine-567. This study investigates the role of ezrin phosphorylation in HIV-1 infection and virion release. We analyzed the effects of ezrin mutations involving substitution of threonine-567 by alanine (EZ-TA), a constitutively inactive mutant, or by aspartic acid (EZ-TD), which mimics phosphorylated threonine. We also investigated the effects of ezrin silencing on HIV-1 virion release using a specific siRNA. We observed that X4-tropic HIV-1 vector infection was inhibited by expression of the EZ-TA mutant but increased by expression of the EZ-TD mutant, suggesting that ezrin phosphorylation in target cells is required for efficient HIV-1 entry. Expression of a dominant-negative mutant of ezrin (EZ-N) and ezrin silencing in HIV-1 vector-producing cells significantly reduced the infectivity of released virions without affecting virion production. This result indicates that endogenous ezrin expression is required for virion infectivity. The EZ-TD but not the EZ-TA inhibited virion release from HIV-1 vector-producing cells. Taken together, these findings suggest that ezrin phosphorylation in target cells is required for efficient HIV-1 entry but inhibits virion release from HIV-1 vector-producing cells.
Collapse
Affiliation(s)
- Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuria Umemura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator (MEDURA), Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
14
|
Doi N, Sakai Y, Adachi A, Nomaguchi M. Generation and characterization of new CCR5-tropic HIV-1rmt clones. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 64:272-279. [PMID: 28954995 DOI: 10.2152/jmi.64.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To develop effective non-human primate models for coping with numerous HIV-1/AIDS studies, rhesus macaque-tropic HIV-1 (HIV-1rmt) clones with a variety of biological properties are required. Such clones, if available, are powerful tools to experimentally elucidate HIV-1 replication and pathogenicity in host individuals, and also to develop anti-HIV-1 drugs/vaccines. However, only limited numbers of HIV-1rmt clones have been currently reported. In the present study, we generated new HIV-1rmt clones carrying various CCR5-tropic env (envelope) genes by standard recombinant DNA and intracellular homologous recombination techniques. Resultant virus clones contain the env sequences derived from an AIDS-inducible laboratory or two clinically isolated viral strains. We further constructed their variant clones bearing N160K, S304G, or G310R mutation in Env that potentially can change the viruses to better grow. Newly generated clones were analyzed for their virological properties such as Env expression, single-cycle infectivity, and multi-cycle replication ability. Out of a number of new clones examined, two were found to grow better in macaque cells than the previously constructed clone used for comparison. Our study described here constitutes the initial and essential step towards obtaining CCR5-tropic HIV-1rmt clones useful for various basic and clinical research projects on infected individuals. J. Med. Invest. 64: 272-279, August, 2017.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | - Yosuke Sakai
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| | | | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science
| |
Collapse
|
15
|
Nomaguchi M, Doi N, Yoshida T, Koma T, Adachi S, Ode H, Iwatani Y, Yokoyama M, Sato H, Adachi A. Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region. Front Microbiol 2017; 8:2542. [PMID: 29326677 PMCID: PMC5741601 DOI: 10.3389/fmicb.2017.02542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Genomic RNA of HIV-1 contains localized structures critical for viral replication. Its structural analysis has demonstrated a stem-loop structure, SLSA1, in a nearby region of HIV-1 genomic splicing acceptor 1 (SA1). We have previously shown that the expression level of vif mRNA is considerably altered by some natural single-nucleotide variations (nSNVs) clustering in SLSA1 structure. In this study, besides eleven nSNVs previously identified by us, we totally found nine new nSNVs in the SLSA1-containing sequence from SA1, splicing donor 2, and through to the start codon of Vif that significantly affect the vif mRNA level, and designated the sequence SA1D2prox (142 nucleotides for HIV-1 NL4-3). We then examined by extensive variant and mutagenesis analyses how SA1D2prox sequence and SLSA1 secondary structure are related to vif mRNA level. While the secondary structure and stability of SLSA1 was largely changed by nSNVs and artificial mutations introduced to restore the original NL4-3 form from altered ones by nSNVs, no clear association of the two SLSA1 properties with vif mRNA level was observed. In contrast, when naturally occurring SA1D2prox sequences that contain multiple nSNVs were examined, we attained significant inverse correlation between the vif level and SLSA1 stability. These results may suggest that SA1D2prox sequence adapts over time, and also that the altered SA1D2prox sequence, SLSA1 stability, and vif level are mutually related. In total, we show here that the entire SA1D2prox sequence and SLSA1 stability critically contribute to the modulation of vif mRNA level.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Tomoya Yoshida
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Shun Adachi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
16
|
Nomaguchi M, Doi N, Koma T, Adachi A. HIV-1 mutates to adapt in fluxing environments. Microbes Infect 2017; 20:610-614. [PMID: 28859896 DOI: 10.1016/j.micinf.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is specifically adapted for replication, persistence, transmission, and survival in humans. HIV-1 is highly mutable in nature, and well responds to a variety of environmental pressures by altering its genome sequences. In this review, we have described experimental evidence that demonstrates this phantasmagoric property of HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan; Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan.
| |
Collapse
|
17
|
Ronsard L, Rai T, Rai D, Ramachandran VG, Banerjea AC. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity. Front Microbiol 2017; 8:1467. [PMID: 28848502 PMCID: PMC5550727 DOI: 10.3389/fmicb.2017.01467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022] Open
Abstract
HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC) is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues) of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyNew Delhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesNew Delhi, India
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesNew Delhi, India
| | - Vishnampettai G Ramachandran
- Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyNew Delhi, India
| |
Collapse
|
18
|
Sakai Y, Miyake A, Doi N, Sasada H, Miyazaki Y, Adachi A, Nomaguchi M. Expression Profiles of Vpx/Vpr Proteins Are Co-related with the Primate Lentiviral Lineage. Front Microbiol 2016; 7:1211. [PMID: 27536295 PMCID: PMC4971069 DOI: 10.3389/fmicb.2016.01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 01/03/2023] Open
Abstract
Viruses of human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency virus (SIV) lineages carry a unique accessory protein called Vpx. Vpx is essential or critical for viral replication in natural target cells such as macrophages and T lymphocytes. We have previously shown that a poly-proline motif (PPM) located at the C-terminal region of Vpx is required for its efficient expression in two strains of HIV-2 and SIVmac, and that the Vpx expression levels of the two clones are significantly different. Notably, the PPM sequence is conserved and confined to Vpx and Vpr proteins derived from certain lineages of HIV-2/SIVs. In this study, Vpx/Vpr proteins from diverse primate lentiviral lineages were experimentally and phylogenetically analyzed to obtain the general expression picture in cells. While both the level and PPM-dependency of Vpx/Vpr expression in transfected cells varied among viral strains, each viral group, based on Vpx/Vpr amino acid sequences, was found to exhibit a characteristic expression profile. Moreover, phylogenetic tree analyses on Gag and Vpx/Vpr proteins gave essentially the same results. Taken together, our study described here suggests that each primate lentiviral lineage may have developed a unique expression pattern of Vpx/Vpr proteins for adaptation to its hostile cellular and species environments in the process of viral evolution.
Collapse
Affiliation(s)
- Yosuke Sakai
- Department of Microbiology, Tokushima University Graduate School of Medical Science Tokushima, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University Yamaguchi, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science Tokushima, Japan
| | - Hikari Sasada
- Department of Microbiology, Tokushima University Graduate School of Medical Science Tokushima, Japan
| | - Yasuyuki Miyazaki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science Tokushima, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science Tokushima, Japan
| |
Collapse
|
19
|
Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels. J Virol 2016; 90:4563-4578. [PMID: 26912631 DOI: 10.1128/jvi.02939-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving forces behind mutual evolution. The interplay of cellular APOBEC3G and viral Vif proteins is a typical example. Here, we demonstrate that naturally occurring single-nucleotide variations in the proximal region of splicing acceptor 1 (SA1prox) of the HIV-1 genome frequently alter Vif expression levels, thereby modulating viral replication potential in cells with various ABOBEC3G levels. The results of the present study reveal a previously unidentified and important way for HIV-1 to compete with APOBEC3G restriction by regulating its Vif expression levels. We propose that SA1prox plays a regulatory role in Vif counteraction against APOBEC3G in order to contribute to HIV-1 replication and evolution, and this may be applicable to other primate lentiviruses.
Collapse
|
20
|
Yokoyama M, Nomaguchi M, Doi N, Kanda T, Adachi A, Sato H. In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells. Front Microbiol 2016; 7:110. [PMID: 26903989 PMCID: PMC4746247 DOI: 10.3389/fmicb.2016.00110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Tadahito Kanda
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious DiseasesTokyo, Japan; Department of Research Promotion, Division of Infectious Disease Research, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
21
|
Doi N, Adachi A, Nomaguchi M. Growth properties of macaque-tropic HIV-1 clones carrying vpr/vpx genes derived from simian immunodeficiency viruses in place of their vpr regions. THE JOURNAL OF MEDICAL INVESTIGATION 2014; 61:374-9. [PMID: 25264057 DOI: 10.2152/jmi.61.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We have previously generated a macaque-tropic human immunodeficiency virus type 1 (HIV-1mt) clone designated MN4/LSDQgtu by genetic manipulation from a parental virus that replicates poorly in rhesus macaque cells. In rhesus cell line M1.3S and peripheral blood mononuclear cells (PBMCs), MN4/LSDQgtu grows comparably to a standard simian immunodeficiency virus clone derived from the rhesus macaque (SIVmac239) that can induce the acquired immunodeficiency syndrome (AIDS) in the animals. In this study, we further modified the Vpr-coding region of MN4/LSDQgtu genome by introducing vpr gene of an SIV clone from the greater spot-nosed monkey (SIVgsn166) or vpx gene of SIVmac239 to generate four new clones for determining functional importance of the central genomic area. Furthermore, two clones with an additional Gag-p6 mutation were made to ensure the virion-packaging of Vpx. In addition, accessory gene mutant clones of MN4/LSDQgtu with a frame-shift mutation, including a vpr mutant, were constructed and their growth properties were examined. Infection experiments showed that newly constructed viruses all grew poorly to various degrees in M1.3S cells, relative to MN4/LSDQgtu. Together with the previous data, our results here show that vpr/vpx gene in the appropriate context of HIV-1 genome is critical for viral growth ability.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | |
Collapse
|
22
|
Virological characterization of HIV-2 vpx gene mutants in various cell systems. Microbes Infect 2014; 16:695-701. [DOI: 10.1016/j.micinf.2014.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
|