1
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Malatinkova E, Thomas J, De Spiegelaere W, Rutsaert S, Geretti AM, Pollakis G, Paxton WA, Vandekerckhove L, Ruggiero A. Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life (Basel) 2021; 11:life11121410. [PMID: 34947941 PMCID: PMC8706387 DOI: 10.3390/life11121410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, B-9820 Ghent, Belgium;
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Anna Maria Geretti
- Fondazione PTV and Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
- Department Neurosciences, Biomedicine and Movement Sciences, School of Medicine-University of Verona, 37129 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7190
| |
Collapse
|
3
|
The Intact Non-Inducible Latent HIV-1 Reservoir is Established In an In Vitro Primary T CM Cell Model of Latency. J Virol 2021; 95:JVI.01297-20. [PMID: 33441346 PMCID: PMC8092701 DOI: 10.1128/jvi.01297-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The establishment of HIV-1 latency has hindered an HIV-1 cure. "Shock and Kill" strategies to target this reservoir aim to induce the latent provirus with latency reversing agents (LRAs). However, recent studies have shown that the majority of the intact HIV-1 viral reservoir found in ART-suppressed HIV infected individuals is not inducible. We sought to understand whether this non-inducible reservoir is established, and thus able to be studied, in an in vitro primary TCM model of latency. Furthermore, we wanted to expand this model system to include R5-tropic and non-B subtype viruses. To that end, we generated our TCM model of latency with an R5 subtype B virus, AD8 and an R5 subtype C virus, MJ4. Our results demonstrate that both intact and defective proviruses are generated in this model. Less than 50% of intact proviruses are inducible regardless of viral strain in the context of maximal stimulation through the TCR or with different clinically relevant LRAs including the HDAC inhibitors SAHA and MS-275, the PKC agonist Ingenol 3,20-dibenzoate or the SMAC mimetic AZD-5582. Our findings suggest that current LRA strategies are insufficient to effectively reactivate intact latent HIV-1 proviruses in primary CD4 TCM cells and that the mechanisms involved in the generation of the non-inducible HIV-1 reservoir can be studied using this primary in vitro model.Importance: HIV-1 establishes a latent reservoir that persists under antiretroviral therapy. Antiretroviral therapy is able to stop the spread of the virus and the progression of the disease but does not target this latent reservoir. If antiretroviral therapy is stopped, the virus is able to resume replication and the disease progresses. Recently, it has been demonstrated that most of the latent reservoir capable of generating replication competent virus cannot be induced in the laboratory setting. However, the mechanisms that influence the generation of this intact and non-inducible latent reservoir are still under investigation. Here we demonstrate the generation of defective, intact and intact non-inducible latent HIV-1 in a TCM model of latency using different HIV-1 strains. Thus, the mechanisms which control inducibility can be studied using this primary cell model of latency, which may accelerate our understanding of the latent reservoir and the development of curative strategies.
Collapse
|
4
|
Falcinelli SD, Kilpatrick KW, Read J, Murtagh R, Allard B, Ghofrani S, Kirchherr J, James KS, Stuelke E, Baker C, Kuruc JD, Eron JJ, Hudgens MG, Gay CL, Margolis DM, Archin NM. Longitudinal Dynamics of Intact HIV Proviral DNA and Outgrowth Virus Frequencies in a Cohort of Individuals Receiving Antiretroviral Therapy. J Infect Dis 2020; 224:92-100. [PMID: 33216132 DOI: 10.1093/infdis/jiaa718] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The replication-competent human immunodeficiency virus (HIV) reservoir is the major barrier to cure. The quantitative viral outgrowth assay (QVOA), the gold-standard method to quantify replication-competent HIV, is resource intensive, which limits its application in large clinical trials. The intact proviral DNA assay (IPDA) requires minimal cell input relative to QVOA and quantifies both defective and intact proviral HIV DNA, the latter potentially serving as a surrogate marker for replication-competent provirus. However, there are limited cross-sectional and longitudinal data on the relationship between IPDA and QVOA measurements. METHODS QVOA and IPDA measurements were performed on 156 resting CD4 T-cell (rCD4) samples from 83 antiretroviral therapy-suppressed HIV-positive participants. Longitudinal QVOA and IPDA measurements were performed on rCD4 from 29 of these participants. RESULTS Frequencies of intact, defective, and total proviruses were positively associated with frequencies of replication-competent HIV. Longitudinally, decreases in intact proviral frequencies were strikingly similar to that of replication-competent virus in most participants. In contrast, defective proviral DNA frequencies appeared relatively stable over time in most individuals. CONCLUSIONS Changes in frequencies of IPDA-derived intact proviral DNA and replication-competent HIV measured by QVOA are similar. IPDA is a promising high-throughput approach to estimate changes in the frequency of the replication-competent reservoir.
Collapse
Affiliation(s)
- Shane D Falcinelli
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kayla W Kilpatrick
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Read
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ross Murtagh
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigitte Allard
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Simon Ghofrani
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Katherine S James
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erin Stuelke
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - JoAnn D Kuruc
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael G Hudgens
- Biostatistics Core, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cynthia L Gay
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David M Margolis
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancie M Archin
- University of North Carolina HIV Cure Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Moron-Lopez S, Telwatte S, Sarabia I, Battivelli E, Montano M, Macedo AB, Aran D, Butte AJ, Jones RB, Bosque A, Verdin E, Greene WC, Wong JK, Yukl SA. Human splice factors contribute to latent HIV infection in primary cell models and blood CD4+ T cells from ART-treated individuals. PLoS Pathog 2020; 16:e1009060. [PMID: 33253324 PMCID: PMC7728277 DOI: 10.1371/journal.ppat.1009060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
It is unclear what mechanisms govern latent HIV infection in vivo or in primary cell models. To investigate these questions, we compared the HIV and cellular transcription profile in three primary cell models and peripheral CD4+ T cells from HIV-infected ART-suppressed individuals using RT-ddPCR and RNA-seq. All primary cell models recapitulated the block to HIV multiple splicing seen in cells from ART-suppressed individuals, suggesting that this may be a key feature of HIV latency in primary CD4+ T cells. Blocks to HIV transcriptional initiation and elongation were observed more variably among models. A common set of 234 cellular genes, including members of the minor spliceosome pathway, was differentially expressed between unstimulated and activated cells from primary cell models and ART-suppressed individuals, suggesting these genes may play a role in the blocks to HIV transcription and splicing underlying latent infection. These genes may represent new targets for therapies designed to reactivate or silence latently-infected cells.
Collapse
Affiliation(s)
- Sara Moron-Lopez
- University of California San Francisco, San Francisco, California, United States of America
- San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Sushama Telwatte
- University of California San Francisco, San Francisco, California, United States of America
- San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Indra Sarabia
- George Washington University, Washington DC, United States of America
| | | | - Mauricio Montano
- Gladstone Institutes, San Francisco, California, United States of America
| | - Amanda B. Macedo
- George Washington University, Washington DC, United States of America
| | - Dvir Aran
- University of California San Francisco, San Francisco, California, United States of America
| | - Atul J. Butte
- University of California San Francisco, San Francisco, California, United States of America
| | - R. Brad Jones
- Infectious Diseases Division, Weill Cornell Medicine, New York City, New York, United States of America
| | - Alberto Bosque
- George Washington University, Washington DC, United States of America
| | - Eric Verdin
- Buck Institute, Novato, California, United States of America
| | - Warner C. Greene
- University of California San Francisco, San Francisco, California, United States of America
- Gladstone Institutes, San Francisco, California, United States of America
| | - Joseph K. Wong
- University of California San Francisco, San Francisco, California, United States of America
- San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Steven A. Yukl
- University of California San Francisco, San Francisco, California, United States of America
- San Francisco VA Medical Center, San Francisco, California, United States of America
| |
Collapse
|
6
|
Venanzi Rullo E, Pinzone MR, Cannon L, Weissman S, Ceccarelli M, Zurakowski R, Nunnari G, O'Doherty U. Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight 2020; 5:133157. [PMID: 33055422 PMCID: PMC7605525 DOI: 10.1172/jci.insight.133157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Collapse
Affiliation(s)
- Emmanuele Venanzi Rullo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - LaMont Cannon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Virginia, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Ceccarelli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|