1
|
Hu X, Zhao M, Bai M, Xue Z, Wang F, Zhu Z, Yu J, Yue J. PARP inhibitor plus radiotherapy reshape the immune suppressive microenvironment and potentiate the efficacy of immune checkpoint inhibitors in tumors with IDH1 mutation. Cancer Lett 2024; 586:216676. [PMID: 38278469 DOI: 10.1016/j.canlet.2024.216676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Isocitrate dehydrogenase 1 mutant (IDH1mut) tumors respond poorly to immunotherapy, but are more sensitive to chemoradiotherapy and poly (ADP-ribose) polymerase inhibition (PARPi). Accordingly, some efforts have aimed to capitalize on the IDH1 mutation rather than reverse it. Moreover, radiotherapy (RT) and PARPi can stimulate antitumor immunity, raising the possibility of reversing the immunosuppression caused by IDH1 mutation while killing the tumor. To assess this possibility, we treated IDH1mut tumors and cells with RT + PARPi. RT + PARPi showed enhanced efficacy over either modality alone both in vitro and in vivo. RT + PARPi induced more DNA damage and activated the cGAS-STING pathway more. IFNβ, CXCL10, and CCL5 were also more highly expressed at both the mRNA and protein levels. In two different tumor models, RT + PARPi increased infiltration and cytolytic function of CD8+ T cells, with one model also showing increased CD8+T cell proliferation. RT+PARPi also increased PD-L1 expression and enhanced checkpoint inhibition. Knocking out cGAS reversed the increased CD8+ T cell infiltration and the antitumor effect of RT+PARPi. We conclude that RT + PARPi reshapes the IDH1mut tumor immunosuppressive microenvironment, thereby augmenting checkpoint inhibition.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuang Xue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Stein SR, Platt AP, Teague HL, Anthony SM, Reeder RJ, Cooper K, Byrum R, Drawbaugh DJ, Liu DX, Burdette TL, Hadley K, Barr B, Warner S, Rodriguez-Hernandez F, Johnson C, Stanek P, Hischak J, Kendall H, Huzella LM, Strich JR, Herbert R, St. Claire M, Vannella KM, Holbrook MR, Chertow DS. Clinical and Immunologic Correlates of Vasodilatory Shock Among Ebola Virus-Infected Nonhuman Primates in a Critical Care Model. J Infect Dis 2023; 228:S635-S647. [PMID: 37652048 PMCID: PMC10651209 DOI: 10.1093/infdis/jiad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations. METHODS Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3. High-dimensional spectral cytometry was used to phenotype neutrophils and peripheral blood mononuclear cells daily. RESULTS We observed progressive vasodilatory shock with preserved cardiac function following viremia onset on day 5. Multiorgan dysfunction began on day 6 coincident with the nadir of circulating neutrophils. Consumptive coagulopathy and anemia occurred on days 7 to 8 along with irreversible shock, followed by death. The monocyte repertoire began shifting on day 4 with a decline in classical and expansion of double-negative monocytes. A selective loss of CXCR3-positive B and T cells, expansion of naive B cells, and activation of natural killer cells followed viremia onset. CONCLUSIONS Our model allows for high-fidelity characterization of the pathophysiology of acute Ebola virus infection with host innate and adaptive immune responses, which may advance host-targeted therapy design and evaluation for use after the onset of multiorgan failure.
Collapse
Affiliation(s)
- Sydney R Stein
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Andrew P Platt
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Scott M Anthony
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Rebecca J Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Russell Byrum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David J Drawbaugh
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - David X Liu
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Tracey L Burdette
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kyra Hadley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Bobbi Barr
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Seth Warner
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Francisco Rodriguez-Hernandez
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Cristal Johnson
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Phil Stanek
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Joseph Hischak
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Heather Kendall
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
- Pathogenesis and Therapeutics Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Marisa St. Claire
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Kevin M Vannella
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick
| | - Daniel S Chertow
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute
| |
Collapse
|
3
|
Rožmanić C, Lisnić B, Pribanić Matešić M, Mihalić A, Hiršl L, Park E, Lesac Brizić A, Indenbirken D, Viduka I, Šantić M, Adler B, Yokoyama WM, Krmpotić A, Juranić Lisnić V, Jonjić S, Brizić I. Perinatal murine cytomegalovirus infection reshapes the transcriptional profile and functionality of NK cells. Nat Commun 2023; 14:6412. [PMID: 37828009 PMCID: PMC10570381 DOI: 10.1038/s41467-023-42182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Infections in early life can elicit substantially different immune responses and pathogenesis than infections in adulthood. Here, we investigate the consequences of murine cytomegalovirus infection in newborn mice on NK cells. We show that infection severely compromised NK cell maturation and functionality in newborns. This effect was not due to compromised virus control. Inflammatory responses to infection dysregulated the expression of major transcription factors governing NK cell fate, such as Eomes, resulting in impaired NK cell function. Most prominently, NK cells from perinatally infected mice have a diminished ability to produce IFN-γ due to the downregulation of long non-coding RNA Ifng-as1 expression. Moreover, the bone marrow's capacity to efficiently generate new NK cells is reduced, explaining the prolonged negative effects of perinatal infection on NK cells. This study demonstrates that viral infections in early life can profoundly impact NK cell biology, including long-lasting impairment in NK cell functionality.
Collapse
Affiliation(s)
- Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Lesac Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ina Viduka
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Marina Šantić
- Department of Microbiology and Parasitology, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
4
|
Padula L, Fisher E, Wijayalath W, Patterson NB, Huang J, Ganeshan H, Robinson T, Bates FA, Hanson MA, Martin ML, Rivas K, Garcia D, Edgel KA, Sedegah M, Villasante E, Strbo N. Induction of antigen specific intrahepatic CD8+ T cell responses by a secreted heat shock protein based gp96-Ig-PfCA malaria vaccine. Front Immunol 2023; 14:1130054. [PMID: 37056783 PMCID: PMC10086177 DOI: 10.3389/fimmu.2023.1130054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionA highly efficacious and durable vaccine against malaria is an essential tool for global malaria eradication. One of the promising strategies to develop such a vaccine is to induce robust CD8+ T cell mediated immunity against malaria liver-stage parasites.MethodsHere we describe a novel malaria vaccine platform based on a secreted form of the heat shock protein, gp96-immunoglobulin, (gp96-Ig) to induce malaria antigen specific, memory CD8+ T cells. Gp96-Ig acts as an adjuvant to activate antigen presenting cells (APCs) and chaperone peptides/antigens to APCs for cross presentation to CD8+ T cells.ResultsOur study shows that vaccination of mice and rhesus monkeys with HEK-293 cells transfected with gp96-Ig and two well-known Plasmodium falciparum CSP and AMA1 (PfCA) vaccine candidate antigens, induces liver-infiltrating, antigen specific, memory CD8+ T cell responses. The majority of the intrahepatic CSP and AMA1 specific CD8+ T cells expressed CD69 and CXCR3, the hallmark of tissue resident memory T cells (Trm). Also, we found intrahepatic, antigen-specific memory CD8+ T cells secreting IL-2, which is relevant for maintenance of effective memory responses in the liver.DiscussionOur novel gp96-Ig malaria vaccine strategy represents a unique approach to induce liver-homing, antigen-specific CD8+ T cells critical for Plasmodium liver-stage protection.
Collapse
Affiliation(s)
- Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wathsala Wijayalath
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- CAMRIS International, Bethesda, MD, United States
| | - Noelle B. Patterson
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, United States
| | - Jun Huang
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, United States
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, United States
| | - Tanisha Robinson
- Malaria Serology Lab, Immunology Core, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Parsons Technical Services Inc., Pasadena, CA, United States
| | - François A. Bates
- Animal Medicine Branch, Veterinary Services Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Margaret A. Hanson
- Necropsy Branch, Veterinary Services Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Monica L. Martin
- Animal Medicine Branch, Veterinary Services Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Katelyn Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kimberly A. Edgel
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Natasa Strbo,
| |
Collapse
|
5
|
Immunoprofiling Identifies Functional B and T Cell Subsets Induced by an Attenuated Whole Parasite Malaria Vaccine as Correlates of Sterile Immunity. Vaccines (Basel) 2022; 10:vaccines10010124. [PMID: 35062785 PMCID: PMC8780163 DOI: 10.3390/vaccines10010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Immune correlates of protection remain elusive for most vaccines. An identified immune correlate would accelerate the down-selection of vaccine formulations by reducing the need for human pathogen challenge studies that are currently required to determine vaccine efficacy. Immunization via mosquito-delivered, radiation-attenuated P. falciparum sporozoites (IMRAS) is a well-established model for efficacious malaria vaccines, inducing greater than 90% sterile immunity. The current immunoprofiling study utilized samples from a clinical trial in which vaccine dosing was adjusted to achieve only 50% protection, thus enabling a comparison between protective and non-protective immune signatures. In-depth immunoprofiling was conducted by assessing a wide range of antigen-specific serological and cellular parameters and applying our newly developed computational tools, including machine learning. The computational component of the study pinpointed previously un-identified cellular T cell subsets (namely, TNFα-secreting CD8+CXCR3−CCR6− T cells, IFNγ-secreting CD8+CCR6+ T cells and TNFα/FNγ-secreting CD4+CXCR3−CCR6− T cells) and B cell subsets (i.e., CD19+CD24hiCD38hiCD69+ transitional B cells) as important factors predictive of protection (92% accuracy). Our study emphasizes the need for in-depth immunoprofiling and subsequent data integration with computational tools to identify immune correlates of protection. The described process of computational data analysis is applicable to other disease and vaccine models.
Collapse
|
6
|
Martinez-Espinosa I, Serrato JA, Ortiz-Quintero B. Role of IL-10-Producing Natural Killer Cells in the Regulatory Mechanisms of Inflammation during Systemic Infection. Biomolecules 2021; 12:biom12010004. [PMID: 35053151 PMCID: PMC8773486 DOI: 10.3390/biom12010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells have the dual ability to produce pro-inflammatory (IFNγ) and anti-inflammatory (IL-10) cytokines during systemic infection, which points to their crucial role both as inflammatory effectors for infection clearance and as regulators to counterbalance inflammation to limit immune-mediated damage to the host. In particular, immunosuppressive IL-10 secretion by NK cells has been described to occur in systemic, but not local, infections as a recent immunoregulatory mechanism of inflammation that may be detrimental or beneficial, depending on the timing of release, type of disease, or the infection model. Understanding the factors that drive the production of IL-10 by NK cells and their impact during dualistic inflammatory states, such as sepsis and other non-controlled inflammatory diseases, is relevant for achieving effective therapeutic advancements. In this review, the evidence regarding the immunoregulatory role of IL-10-producing NK cells in systemic infection is summarized and discussed in detail, and the potential molecular mechanisms that drive IL-10 production by NK cells are considered.
Collapse
|
7
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
8
|
Luo XH, Meng Q, Liu Z, Paraschoudi G. Generation of high-affinity CMV-specific T cells for adoptive immunotherapy using IL-2, IL-15, and IL-21. Clin Immunol 2020; 217:108456. [PMID: 32376504 DOI: 10.1016/j.clim.2020.108456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Cytomegalovirus (CMV) infection remains a life-threatening condition in individuals with a suppressed immune system. CMV may also represent a clinically relevant target for immune responses in CMV-positive malignancies. We established a protocol to expand CMV-specific T cells (CMV-T) using peripheral blood mononuclear cells (PBMCs). PBMCs from 16 HLA-A*0201 donors were cultured with a cytokine cocktail comprising IL-2/IL-15/IL-21 along with overlapping peptides from CMV-pp65. Ten days later, T cells were stimulated with anti-CD3 (OKT3) and irradiated autologous PBMCs. CMV-T were detected by HLA-A*0201 CMV-pp65NLVPMVATV wild type and q226a mutant tetramers (for high-affinity T cells), intracellular cytokine staining, a CD107a mobilization assays as well as IFN-γ and TNF-α production in cell culture supernatants. We reliably obtained 50.25 ± 27.27% of CD8+ and 22.08 ± 21.83% of CD4+ T cells post-CMV-pp65 stimulation of PBMCs with a Th1-polarized phenotype and decreased Th2/Th17 responses. Most CD3 + CD8 + tetramer+ T cells were effector-memory cells, particularly among high-affinity CMV-T (q226a CMV-tetramer+). High-affinity CMV-T cells, compared to WT-tetramer+ cells, expressed higher IL-21R and lower FasL post-stimulation with CMV-pp65. The IL-2/IL-15/IL-21 cocktail also promoted CCR6 and CXCR3 expression necessary for T-cell migration into tissues. We have optimized methods for generating high-affinity CMV-specific T cells that can be used for adoptive cellular therapy in clinical practice.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Qingda Meng
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic immunology unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Pirozyan MR, Nguyen N, Cameron B, Luciani F, Bull RA, Zekry A, Lloyd AR. Chemokine-Regulated Recruitment of Antigen-Specific T-Cell Subpopulations to the Liver in Acute and Chronic Hepatitis C Infection. J Infect Dis 2020; 219:1430-1438. [PMID: 30496498 DOI: 10.1093/infdis/jiy679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hepatitis C virus (HCV) infection, virus-specific CD8+ T cells are recruited to the liver for antiviral activity. Multiple chemokine ligands are induced by the infection, notably interferon-inducible chemokine, CXCL10. In HCV, intrahepatic T cells express chemokine receptors (CCRs), including CXCR3, CXCR6, CCR1, and CCR5, but CCR expression on antigen-specific effector and memory T cells has not been investigated. METHODS Paired blood and liver samples were collected from subjects with chronic HCV for flow cytometric analysis of CCR expression on CD8+ T cells. Expression of these CCRs was then examined on HCV-specific CD8+ T-cell subpopulations in the blood from subjects with acute or chronic HCV. RESULTS Relative to peripheral blood, the liver was enriched with CD8+ T cells expressing CCR2, CCR5, CXCR3, and CXCR6 either singly or in combinations. CXCR3 was preferentially expressed on HCV-specific CD8+ T cells in both acute and chronic phases of infection in blood. Both CXCR3 and CCR2 were overexpressed on HCV-specific CD8+CCR7+CD45RO+ (central memory) cells, whereas effector memory (CD8+CCR7-CD45RO+) cells expressed more CXCR6. CONCLUSIONS CXCR3-mediated signals support the accumulation of HCV-specific CD8+ memory T cells in the infected liver, and emphasize the importance of the CXCL10/CXCR3 trafficking pathway during acute and chronic HCV infection.
Collapse
Affiliation(s)
- Mehdi R Pirozyan
- Viral Immunology Systems Program, The Kirby Institute.,School of Medical Sciences, Faculty of Medicine.,Melanoma Immunology and Oncology, The Centenary Institute, Sydney, Australia
| | - Nam Nguyen
- School of Medical Sciences, Faculty of Medicine
| | | | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute
| | - Amany Zekry
- School of Medical Sciences, Faculty of Medicine.,St George Hospital Clinical School, University of New South Wales
| | | |
Collapse
|
10
|
Lefebvre MN, Harty JT. You Shall Not Pass: Memory CD8 T Cells in Liver-Stage Malaria. Trends Parasitol 2019; 36:147-157. [PMID: 31843536 DOI: 10.1016/j.pt.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Each year over 200 million malaria infections occur, with over 400 000 associated deaths. Vaccines formed with attenuated whole parasites can induce protective memory CD8 T cell responses against liver-stage malaria; however, widespread administration of such vaccines is logistically challenging. Recent scientific findings are delineating how protective memory CD8 T cell populations are primed and maintained and how such cells mediate immunity to liver-stage malaria. Memory CD8 T cell anatomic localization and expression of transcription factors, homing receptors, and signaling molecules appear to play integral roles in protective immunity to liver-stage malaria. Further investigation of how such factors contribute to optimal protective memory CD8 T cell generation and maintenance in humans will inform efforts for improved vaccines.
Collapse
Affiliation(s)
- Mitchell N Lefebvre
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
11
|
Ali AK, Komal AK, Almutairi SM, Lee SH. Natural Killer Cell-Derived IL-10 Prevents Liver Damage During Sustained Murine Cytomegalovirus Infection. Front Immunol 2019; 10:2688. [PMID: 31803193 PMCID: PMC6873346 DOI: 10.3389/fimmu.2019.02688] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immune response that play a vital role in controlling infections and cancer. Their pro-inflammatory role has been well-established; however, less is known about the regulatory functions of NK cells, in particular, their production of the anti-inflammatory cytokine IL-10. In this study, we investigated the immunoregulatory function of NK cells during MCMV infection and demonstrated that NK cells are major producers of IL-10 during the early stage of infection. To investigate the effect of NK cell-derived IL-10, we have generated NK cell-specific IL-10-deficient mice (NKp46-Cre-Il10fl/fl) displaying no signs of age-related spontaneous inflammation, with NK cells that show no detectable IL-10 production upon in vitro stimulation. In NKp46-Cre-Il10fl/fl mice, the levels of IL-10 and IFNγ, viral burdens and T cell activation were similar between NKp46-Cre-Il10fl/fl mice and their control littermates, suggesting that NK cell-derived IL-10 is dispensable during acute MCMV infection in immunocompetent hosts. In perforin-deficient mice that show a more sustained infection, NK cells produce more sustained levels of IL-10. By crossing NKp46-Cre-Il10fl/fl mice with perforin-deficient mice, we demonstrated that NK cell-derived IL-10 regulates T cell activation, prevents liver damage, and allows for better disease outcome. Taken together, NK cell-derived IL-10 can be critical in regulating the immune response during early phases of infection and therefore protecting the host from excessive immunopathology.
Collapse
Affiliation(s)
- Alaa Kassim Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amandeep Kaur Komal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saeedah Musaed Almutairi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Key features and homing properties of NK cells in the liver are shaped by activated iNKT cells. Sci Rep 2019; 9:16362. [PMID: 31704965 PMCID: PMC6841958 DOI: 10.1038/s41598-019-52666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of natural killer (NK) cells to the clearance of hepatic viral infections is well recognized. The recently discovered heterogeneity of NK cell populations renders them interesting targets for immune interventions. Invariant natural killer T (iNKT) cells represent a key interaction partner for hepatic NK cells. The present study addressed whether characteristics of NK cells in the liver can be shaped by targeting iNKT cells. For this, the CD1d-binding pegylated glycolipid αGalCerMPEG was assessed for its ability to modulate the features of NK cells permanently or transiently residing in the liver. In vivo administration resulted in enhanced functionality of educated and highly differentiated CD27+ Mac-1+ NK cells accompanied by an increased proliferation. Improved liver homing was supported by serum-derived and cellular factors. Reduced viral loads in a mCMV infection model confirmed the beneficial effect of NK cells located in the liver upon stimulation with αGalCerMPEG. Thus, targeting iNKT cell-mediated NK cell activation in the liver represents a promising approach for the establishment of liver-directed immune interventions.
Collapse
|
13
|
The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2019; 17:75-90. [PMID: 31548600 DOI: 10.1038/s41571-019-0266-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
The past decade has seen the emergence of immunotherapy as a prime approach to cancer treatment, revolutionizing the management of many types of cancer. Despite the promise of immunotherapy, most patients do not have a response or become resistant to treatment. Thus, identifying combinations that potentiate current immunotherapeutic approaches will be crucial. The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed key roles of epigenetic processes in regulating immune cell function and mediating antitumour immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic therapies and detail current efforts to translate this knowledge into clinical benefit for patients.
Collapse
|
14
|
Zimmerer JM, Ringwald BA, Elzein SM, Avila CL, Warren RT, Abdel-Rasoul M, Bumgardner GL. Antibody-suppressor CD8+ T Cells Require CXCR5. Transplantation 2019; 103:1809-1820. [PMID: 30830040 PMCID: PMC6713619 DOI: 10.1097/tp.0000000000002683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We previously reported the novel activity of alloprimed CD8 T cells that suppress posttransplant alloantibody production. The purpose of the study is to investigate the expression and role of CXCR5 on antibody-suppressor CD8 T-cell function. METHODS C57BL/6 mice were transplanted with FVB/N hepatocytes. Alloprimed CD8 T cells were retrieved on day 7 from hepatocyte transplant recipients. Unsorted or flow-sorted (CXCR5CXCR3 and CXCR3CXCR5) alloprimed CD8 T-cell subsets were analyzed for in vitro cytotoxicity and capacity to inhibit in vivo alloantibody production following adoptive transfer into C57BL/6 or high alloantibody-producing CD8 knock out (KO) hepatocyte transplant recipients. Alloantibody titer was assessed in CD8 KO mice reconstituted with naive CD8 T cells retrieved from C57BL/6, CXCR5 KO, or CXCR3 KO mice. Antibody suppression by ovalbumin (OVA)-primed monoclonal OVA-specific t-cell receptor transgenic CD8+ T cells (OT-I) CXCR5 or CXCR3 CD8 T-cell subsets was also investigated. RESULTS Alloprimed CXCR5CXCR3CD8 T cells mediated in vitro cytotoxicity of alloprimed "self" B cells, while CXCR3CXCR5CD8 T cells did not. Only flow-sorted alloprimed CXCR5CXCR3CD8 T cells (not flow-sorted alloprimed CXCR3CXCR5CD8 T cells) suppressed alloantibody production and enhanced graft survival when transferred into transplant recipients. Unlike CD8 T cells from wild-type or CXCR3 KO mice, CD8 T cells from CXCR5 KO mice do not develop alloantibody-suppressor function. Similarly, only flow-sorted CXCR5CXCR3 (and not CXCR3CXCR5) OVA-primed OT-I CD8 T cells mediated in vivo suppression of anti-OVA antibody production. CONCLUSIONS These data support the conclusion that expression of CXCR5 by antigen-primed CD8 T cells is critical for the function of antibody-suppressor CD8 T cells.
Collapse
Affiliation(s)
- Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Bryce A. Ringwald
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Steven M. Elzein
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH
| | - Christina L. Avila
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | - Robert T. Warren
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| | | | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, The Ohio State University, Columbus, OH
| |
Collapse
|
15
|
Phage Therapy of Pneumonia Is Not Associated with an Overstimulation of the Inflammatory Response Compared to Antibiotic Treatment in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00379-19. [PMID: 31182526 DOI: 10.1128/aac.00379-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
Supported by years of clinical use in some countries and more recently by literature on experimental models, as well as its compassionate use in Europe and in the United States, bacteriophage (phage) therapy is providing a solution for difficult-to-treat bacterial infections. However, studies of the impact of such treatments on the host remain scarce. Murine acute pneumonia initiated by intranasal instillation of two pathogenic strains of Escherichia coli (536 and LM33) was treated by two specific bacteriophages (536_P1 and LM33_P1; intranasal) or antibiotics (ceftriaxone, cefoxitin, or imipenem-cilastatin; intraperitoneal). Healthy mice also received phages alone. The severity of pulmonary edema, acute inflammatory cytokine concentration (blood and lung homogenates), complete blood counts, and bacterial and bacteriophage counts were determined at early (≤12 h) and late (≥20 h) time points. The efficacy of bacteriophage to decrease bacterial load was faster than with antibiotics, but the two displayed similar endpoints. Bacteriophage treatment was not associated with overinflammation but in contrast tended to lower inflammation and provided a faster correction of blood cell count abnormalities than did antibiotics. In the absence of bacterial infection, bacteriophage 536_P1 promoted a weak increase in the production of antiviral cytokines (gamma interferon [IFN-γ] and interleukin-12 [IL-12]) and chemokines in the lungs but not in the blood. However, such variations were no longer observed when bacteriophage 536_P1 was administered to treat infected animals. The rapid lysis of bacteria by bacteriophages in vivo does not increase the innate inflammatory response compared to that with antibiotic treatment.
Collapse
|
16
|
Park S, Park J, Kim E, Lee Y. The Capicua/ETS Translocation Variant 5 Axis Regulates Liver-Resident Memory CD8 + T-Cell Development and the Pathogenesis of Liver Injury. Hepatology 2019; 70:358-371. [PMID: 30810242 DOI: 10.1002/hep.30594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022]
Abstract
Liver-resident memory T (liver TRM ) cells exert protective immune responses following liver infection by malaria parasites. However, how these TRM cells are developed and what the consequence is if they are not properly maintained remain poorly understood. Here, we show that the transcriptional repressor, Capicua (CIC), controls liver CD8+ TRM cell development to maintain normal liver function. Cic-deficient mice have a greater number of liver CD8+ TRM cells and liver injury phenotypes accompanied by increased levels of proinflammatory cytokine genes in liver tissues. Excessive formation of CD69+ CD8+ TRM -like cells was also observed in mice with acetaminophen-induced liver injury (AILI). Moreover, expansion of liver CD8+ TRM cell population and liver injury phenotypes in T-cell-specific Cic null mice were rescued by codeletion of ETS translocation variant [Etv]5 alleles, indicating that Etv5 is a CIC target gene responsible for regulation of CD8+ TRM cell development and liver function. We also discovered that ETV5 directly regulates expression of Hobit, a master transcription factor for TRM cell development, in CD8+ T cells. Conclusion: Our findings suggest the CIC-ETV5 axis as a key molecular module that controls CD8+ TRM cell development, indicating a pathogenic role for CD8+ TRM cells in liver injury.
Collapse
Affiliation(s)
- Sungjun Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Eunjeong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, Republic of Korea
| |
Collapse
|
17
|
Becker J, Kinast V, Döring M, Lipps C, Duran V, Spanier J, Tegtmeyer PK, Wirth D, Cicin-Sain L, Alcamí A, Kalinke U. Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines. Virulence 2019; 9:1669-1684. [PMID: 30403913 PMCID: PMC7000197 DOI: 10.1080/21505594.2018.1535785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
Collapse
Affiliation(s)
- Jennifer Becker
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Volker Kinast
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Marius Döring
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Christoph Lipps
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Veronica Duran
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Julia Spanier
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Pia-Katharina Tegtmeyer
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Dagmar Wirth
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Luka Cicin-Sain
- c Department of Vaccinology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d German Center for Infection Research (DZIF) , Hannover-Braunschweig site , Germany.,e Institute for Virology , Hannover Medical School , Hannover , Germany
| | - Antonio Alcamí
- f Centro de Biología Molecular Severo Ochoa , Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid , Madrid , Spain
| | - Ulrich Kalinke
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| |
Collapse
|
18
|
Seelige R, Saddawi-Konefka R, Adams NM, Picarda G, Sun JC, Benedict CA, Bui JD. Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci Rep 2018; 8:13670. [PMID: 30209334 PMCID: PMC6135835 DOI: 10.1038/s41598-018-32011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | | | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
19
|
Rattay S, Graf D, Kislat A, Homey B, Herebian D, Häussinger D, Hengel H, Zimmermann A, Schupp AK. Anti-inflammatory consequences of bile acid accumulation in virus-infected bile duct ligated mice. PLoS One 2018; 13:e0199863. [PMID: 29953538 PMCID: PMC6023182 DOI: 10.1371/journal.pone.0199863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Cholestatic patients exhibiting high bile acid serum levels were reported to be more susceptible to bacterial and viral infections. Animal studies in bile duct ligated (BDL) mice suggest that cholestasis leads to an aggravation of hepatic bacterial infections. We have investigated the impact of cholestasis on mouse cytomegalovirus (MCMV)-induced immune responses and viral replication. While MCMV did not aggravate BDL-induced liver damage, BDL markedly reduced MCMV-triggered chemokine expression and immune cell recruitment to the liver. MCMV-infected BDL mice showed diminished trafficking of Ly6C+/F4/80+ myeloid cells and NK1.1+ NK cells to the liver compared to MCMV infected control mice. Moreover, virus-driven expression of CCL7, CCL12, CXCL9 and CXCL10 was clearly impaired in BDL- compared to sham-operated mice. Furthermore, production of the anti-inflammatory cytokine IL-10 was massively augmented in infected BDL mice. In contrast, intra- and extrahepatic virus replication was unaltered in BDL-MCMV mice when compared to sham-MCMV mice. Cholestasis in the BDL model severely impaired pathogen-induced chemokine expression in the liver affecting CCR2- and CXCR3-dependent cell trafficking. Cholestasis resulted in reduced recruitment of inflammatory monocytes and NK cells to the liver.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institute of Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, Bonn, Germany
| | - Dirk Graf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Andreas Kislat
- Department of Dermatology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Albert-Ludwigs-University, Freiburg, Germany
- Department for Medical Microbiology and Hygiene, Institute of Virology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Albert Zimmermann
- Institute of Virology, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| | - Anna-Kathrin Schupp
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, University Hospital, Duesseldorf, Germany
| |
Collapse
|
20
|
Rahimi RA, Luster AD. Chemokines: Critical Regulators of Memory T Cell Development, Maintenance, and Function. Adv Immunol 2018; 138:71-98. [PMID: 29731007 DOI: 10.1016/bs.ai.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Memory T cells are central to orchestrating antigen-specific recall responses in vivo. Compared to naïve T cells, memory T cells respond more quickly to cognate peptide:MHC with a shorter lag time for entering the cell cycle and exerting effector functions. However, it is now well established that this enhanced responsiveness is not the only mechanism whereby memory T cells are better equipped than naïve T cells to rapidly and robustly induce inflammation. In contrast to naïve T cells, memory T cells are composed of distinct subsets with unique trafficking patterns and localizations. Tissue-resident memory T cells persist in previously inflamed tissue and function as first responders to cognate antigen reexposure. In addition, a heterogeneous group of circulating memory T cells augment inflammation by either rapidly migrating to inflamed tissue or responding to cognate antigen within secondary lymphoid organs and producing additional effector T cells. Defining the mechanisms regulating T cell positioning and trafficking and how this influences the development, maintenance, and function of memory T cell subsets is essential to improving vaccine design as well as treatment of immune-mediated diseases. In this chapter, we will review our current knowledge of how chemokines, critical regulators of cell positioning and migration, govern memory T cell biology in vivo. In addition, we discuss areas of uncertainty and future directions for further delineating how T cell localization influences memory T cell biology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Divison of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
21
|
Abstract
Liver sinusoidal endothelial cells (LSECs) line the low shear, sinusoidal capillary channels of the liver and are the most abundant non-parenchymal hepatic cell population. LSECs do not simply form a barrier within the hepatic sinusoids but have vital physiological and immunological functions, including filtration, endocytosis, antigen presentation and leukocyte recruitment. Reflecting these multifunctional properties, LSECs display unique structural and phenotypic features that differentiate them from the capillary endothelium present within other organs. It is now clear that LSECs have a critical role in maintaining immune homeostasis within the liver and in mediating the immune response during acute and chronic liver injury. In this Review, we outline how LSECs influence the immune microenvironment within the liver and discuss their contribution to immune-mediated liver diseases and the complications of fibrosis and carcinogenesis.
Collapse
|
22
|
Keating SM, Dodge JL, Norris PJ, Heitman J, Gange SJ, French AL, Glesby MJ, Edlin BR, Latham PS, Villacres MC, Greenblatt RM, Peters MG. The effect of HIV infection and HCV viremia on inflammatory mediators and hepatic injury-The Women's Interagency HIV Study. PLoS One 2017; 12:e0181004. [PMID: 28902848 PMCID: PMC5597129 DOI: 10.1371/journal.pone.0181004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus infection induces inflammation and while it is believed that HIV co-infection enhances this response, HIV control may reduce inflammation and liver fibrosis in resolved or viremic HCV infection. Measurement of systemic biomarkers in co-infection could help define the mechanism of inflammation on fibrosis and determine if HIV control reduces liver pathology. A nested case-control study was performed to explore the relationship of systemic biomarkers of inflammation with liver fibrosis in HCV viremic and/or seropositive women with and without HIV infection. Serum cytokines, chemokines, growth factors and cell adhesion molecules were measured in HIV uninfected (HIV-, n = 18), ART-treated HIV-controlled (ARTc, n = 20), uncontrolled on anti-retroviral therapy (ARTuc, n = 21) and elite HIV controllers (Elite, n = 20). All were HCV seroreactive and had either resolved (HCV RNA-; <50IU/mL) or had chronic HCV infection (HCV RNA+). In HCV and HIV groups, aspartate aminotransferase to platelet ratio (APRI) was measured and compared to serum cytokines, chemokines, growth factors and cell adhesion molecules. APRI correlated with sVCAM, sICAM, IL-10, and IP-10 levels and inversely correlated with EGF, IL-17, TGF-α and MMP-9 levels. Collectively, all HCV RNA+ subjects had higher sVCAM, sICAM and IP-10 compared to HCV RNA-. In the ART-treated HCV RNA+ groups, TNF-α, GRO, IP-10, MCP-1 and MDC were higher than HIV-, Elite or both. In ARTuc, FGF-2, MPO, soluble E-selectin, MMP-9, IL-17, GM-CSF and TGF-α are lower than HIV-, Elite or both. Differential expression of soluble markers may reveal mechanisms of pathogenesis or possibly reduction of fibrosis in HCV/HIV co-infection.
Collapse
Affiliation(s)
- Sheila M. Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, California, United States of America
- * E-mail:
| | - Jennifer L. Dodge
- Department of Surgery, UCSF, San Francisco, California, United States of America
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, California, United States of America
- Department of Medicine, UCSF, San Francisco, California, United States of America
| | - John Heitman
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Audrey L. French
- CORE Center, Stroger Hospital of Cook County, Chicago, Illinois, United States of America
| | - Marshall J. Glesby
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, United States of America
| | - Brian R. Edlin
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, SUNY Downstate, Brooklyn, New York, United States of America
| | - Patricia S. Latham
- Department of Pathology and Medicine, George Washington University Medical Center, Washington DC, United States of America
| | - Maria C. Villacres
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruth M. Greenblatt
- Department of Pharmacology, UCSF, San Francisco, California, United States of America
| | - Marion G. Peters
- Department of Medicine, UCSF, San Francisco, California, United States of America
| | | |
Collapse
|
23
|
Ma C, Mishra S, Demel EL, Liu Y, Zhang N. TGF-β Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. THE JOURNAL OF IMMUNOLOGY 2016; 198:749-756. [PMID: 27903738 DOI: 10.4049/jimmunol.1601500] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
Abstract
Tissue-resident memory T (TRM) cells, a population of noncirculating memory T cells, are one of the essential components of immunological memory in both mouse and human. Although CD69+CD103+ TRM cells represent a major TRM cell population in barrier tissues including the mucosal surface and the skin, CD69+CD103- TRM cells dominate most nonbarrier tissues, such as the kidney. TGF-β is required for the differentiation of CD69+CD103+ TRM cells in barrier tissues. However, the developmental control of CD69+CD103- TRM cells in nonbarrier tissues remains largely unknown and the involvement of TGF-β signaling is less clear. In this study we demonstrated that TGF-β promoted the formation of kidney-resident T cells via enhancing the tissue entry of effector T cells. Mechanistically, TGF-β enhanced E- and P-selectin and inflammatory chemokine-mediated extravasation of effector T cells. Thus TGF-β controls the first developmental checkpoint of TRM cell differentiation in nonbarrier tissues.
Collapse
Affiliation(s)
- Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Shruti Mishra
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Erika L Demel
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South Univeristy, 87 Xiangya Road, Changsha, Hunan 410008, China.,Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229
| |
Collapse
|
24
|
Gaylo A, Schrock DC, Fernandes NRJ, Fowell DJ. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning. Front Immunol 2016; 7:428. [PMID: 27790220 PMCID: PMC5063845 DOI: 10.3389/fimmu.2016.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.
Collapse
Affiliation(s)
- Alison Gaylo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Dillon C. Schrock
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Ninoshka R. J. Fernandes
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Li R, Zhang N, Tian M, Ran Z, Zhu M, Zhu H, Han F, Yin J, Zhong J. Temporary CXCR3 and CCR5 antagonism following vaccination enhances memory CD8 T cell immune responses. Mol Med 2016; 22:497-507. [PMID: 27447731 PMCID: PMC5072403 DOI: 10.2119/molmed.2015.00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Although current vaccination strategies have been successful at preventing a variety of human diseases, attempts at vaccinating against some pathogens such as AIDS and tuberculosis (TB) have been more problematic, largely in that abnormally high numbers of antigen specific CD8+ T cells are required for protection. This study assessed the effect of temporarily dampening the chemokine receptor CXCR3 and CCR5 after vaccination on host immune responses by the administration of TAK-779, a small molecule CXCR3 and CCR5 antagonists commonly used to inhibit HIV infection. Our results showed that the use of TAK-779 enhanced memory CD8+ T cell immune responses both qualitatively and quantitatively. Treatment with TAK-779 following vaccination of an influenza virus antigen resulted in enhanced memory generation with more CD8+CD127+ memory precursor and fewer terminally differentiated effector CD8+CD69+ T cells. These memory T cells were able to become IFN-γ-secreting effector cells when re-encountered the same antigen, which can further enhance the efficacy of vaccination. The mice vaccinated in the presence of TAK-779 were better protected upon influenza virus challenge than the control. These results showed that vaccination while temporarily inhibiting chemokine receptor CXCR3 and CCR5 by TAK-779 could be a promising strategy to generate large number of protective memory CD8+ T cells.
Collapse
Affiliation(s)
- Rui Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Nan Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Miaomiao Tian
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Zihan Ran
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Mingjun Zhu
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Haiyan Zhu
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangting Han
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Juan Yin
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| |
Collapse
|
26
|
Chen Y, Zhou S, Jiang Z, Wang X, Liu Y. Chemokine receptor CXCR3 in turbot (Scophthalmus maximus): cloning, characterization and its responses to lipopolysaccharide. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:659-671. [PMID: 26585996 DOI: 10.1007/s10695-015-0167-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Chemokine (C-X-C motif) receptor 3, a member of the G protein-coupled receptors superfamily, regulates the responses of many immune responses. In this experiment, we cloned and characterized the cDNA of CXCR3 in Scophthalmus maximus (turbot). A 5'-UTR of 216-bp, a 259-bp 3'-UTR with a poly (A) tail and a 1089-bp CDS encoding 362 amino acids form the cDNA of CXCR3, which is 1564-bp long. Phylogenetic analyses indicated that turbot CXCR3 shared a high similarity with other CXCR3s and shared more similarity with CXCR5 than the other subfamilies of chemokines. The CXCR3 protein in turbot showed the highest similarity with the CXCR3b from rainbow trout (44.5%), which indicated that this CXCR3 gene/protein may be a CXCR3b isoform. Quantitative real-time PCR analysis showed that CXCR3 transcripts were constitutively expressed in all the tissues of the non-injected turbot used in this study, with the highest expression occurring in blood. Several immune-related tissues of fish, such as the spleen, head kidney, liver and blood, tissues, which were abundant of lymphocyte, were investigated in this study. CXCR3 gene was expressed at the highest level in blood than the other tested tissues. The injection experiment suggested that the CXCR3 expression level after LPS injection was significantly up-regulated in all immune-related tissues in turbot. These results improve our understanding of the functions of CXCR3 in the turbot immune response.
Collapse
Affiliation(s)
- Yadong Chen
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning, People's Republic of China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Shuhong Zhou
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning, People's Republic of China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning, People's Republic of China
| | - Xiuli Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning, People's Republic of China
| | - Yang Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, Liaoning, People's Republic of China.
| |
Collapse
|
27
|
Bruns T, Zimmermann HW, Pachnio A, Li KK, Trivedi PJ, Reynolds G, Hubscher S, Stamataki Z, Badenhorst PW, Weston CJ, Moss PA, Adams DH. CMV infection of human sinusoidal endothelium regulates hepatic T cell recruitment and activation. J Hepatol 2015; 63:38-49. [PMID: 25770658 DOI: 10.1016/j.jhep.2015.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Human cytomegalovirus infection (HCMV) is associated with an increased morbidity after liver transplantation, by facilitating allograft rejection and accelerating underlying hepatic inflammation. We hypothesized that human hepatic sinusoidal endothelial cells infected with HCMV possess the capacity to modulate allogeneic T cell recruitment and activation, thereby providing a plausible mechanism of how HCMV infection is able to enhance hepatic immune activation. METHODS Human hepatic sinusoidal endothelial cells were isolated from explanted livers and infected with recombinant endotheliotropic HCMV. We used static and flow-based models to quantify adhesion and transendothelial migration of allogeneic T cell subsets and determine their post-migratory phenotype and function. RESULTS HCMV infection of primary human hepatic sinusoidal endothelial cells facilitated ICAM-1 and CXCL10-dependent CD4 T cell transendothelial migration under physiological levels of shear stress. Recruited T cells were primarily non-virus-specific CXCR3(hi) effector memory T cells, which demonstrated features of LFA3-dependent Th1 activation after migration, and activated regulatory T cells, which retained a suppressive phenotype following transmigration. CONCLUSIONS The ability of infected hepatic endothelium to recruit distinct functional CD4 T cell subsets shows how HCMV facilitates hepatic inflammation and immune activation and may simultaneously favor virus persistence.
Collapse
Affiliation(s)
- Tony Bruns
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Internal Medicine IV, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University of Jena, Jena, Germany.
| | - Henning W Zimmermann
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Annette Pachnio
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ka-Kit Li
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Palak J Trivedi
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Gary Reynolds
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Stefan Hubscher
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul W Badenhorst
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Christopher J Weston
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul A Moss
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David H Adams
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
28
|
Lerret NM, Li T, Wang JJ, Kang HK, Wang S, Wang X, Jie C, Kanwar YS, Abecassis MM, Luo X, Zhang Z. Recipient Myd88 Deficiency Promotes Spontaneous Resolution of Kidney Allograft Rejection. J Am Soc Nephrol 2015; 26:2753-64. [PMID: 25788530 DOI: 10.1681/asn.2014080813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/12/2015] [Indexed: 11/03/2022] Open
Abstract
The myeloid differentiation protein 88 (MyD88) adapter protein is an important mediator of kidney allograft rejection, yet the precise role of MyD88 signaling in directing the host immune response toward the development of kidney allograft rejection remains unclear. Using a stringent mouse model of allogeneic kidney transplantation, we demonstrated that acute allograft rejection occurred equally in MyD88-sufficient (wild-type [WT]) and MyD88(-/-) recipients. However, MyD88 deficiency resulted in spontaneous diminution of graft infiltrating effector cells, including CD11b(-)Gr-1(+) cells and activated CD8 T cells, as well as subsequent restoration of near-normal renal graft function, leading to long-term kidney allograft acceptance. Compared with T cells from WT recipients, T cells from MyD88(-/-) recipients failed to mount a robust recall response upon donor antigen restimulation in mixed lymphocyte cultures ex vivo. Notably, exogenous IL-6 restored the proliferation rate of T cells, particularly CD8 T cells, from MyD88(-/-) recipients to the proliferation rate of cells from WT recipients. Furthermore, MyD88(-/-) T cells exhibited diminished expression of chemokine receptors, specifically CCR4 and CXCR3, and the impaired ability to accumulate in the kidney allografts despite an otherwise MyD88-sufficient environment. These results provide a mechanism linking the lack of intrinsic MyD88 signaling in T cells to the effective control of the rejection response that results in spontaneous resolution of acute rejection and long-term graft protection.
Collapse
Affiliation(s)
- Nadine M Lerret
- Division of Nephrology and Hypertension, Department of Medicine
| | - Ting Li
- Comprehensive Transplant Center
| | | | - Hee-Kap Kang
- Division of Nephrology and Hypertension, Department of Medicine
| | | | | | | | - Yashpal S Kanwar
- Division of Nephrology and Hypertension, Department of Medicine, Comprehensive Transplant Center, Department of Pathology
| | - Michael M Abecassis
- Comprehensive Transplant Center, Department of Surgery, and Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xunrong Luo
- Division of Nephrology and Hypertension, Department of Medicine, Comprehensive Transplant Center, Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zheng Zhang
- Comprehensive Transplant Center, Department of Surgery, and
| |
Collapse
|
29
|
Hickman HD, Reynoso GV, Ngudiankama BF, Cush SS, Gibbs J, Bennink JR, Yewdell JW. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 2015; 42:524-37. [PMID: 25769612 DOI: 10.1016/j.immuni.2015.02.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin. Despite normal T cell numbers in the skin, Cxcr3(-/-) mice exhibited dramatically impaired CD8(+)-T-cell-dependent virus clearance. Intravital microscopy revealed that Cxcr3(-/-) T cells were markedly deficient in locating, engaging, and killing virus-infected cells. Further, transfer of wild-type CD8(+) T cells restored viral clearance in Cxcr3(-/-) animals. These findings demonstrate a function for CXCR3 in enhancing the ability of tissue-localized CD8(+) T cells to locate virus-infected cells and thereby exert anti-viral effector functions.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Glennys V Reynoso
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Barbara F Ngudiankama
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephanie S Cush
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Gibbs
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jack R Bennink
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Regulation of tissue-dependent differences in CD8+ T cell apoptosis during viral infection. J Virol 2014; 88:9490-503. [PMID: 24942579 DOI: 10.1128/jvi.01223-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Virus-specific CD8+ T cells in the lymphoid organs contract at the resolution of virus infections by apoptosis or by dissemination into peripheral tissues, and those residing in nonlymphoid organs, including the peritoneal cavity and fat pads, are more resistant to apoptosis than those in the spleen and lymph nodes. This stability of memory T cells in the nonlymphoid tissues may enhance protection to secondary challenges. Here, we show that lymphocytic choriomeningitis virus (LCMV)-specific CD8+ T cells in nonlymphoid tissues were enriched for memory precursors (expressing high levels of interleukin-7 receptor and low levels of killer cell lectin-like receptor G1 [IL-7Rhi KLRG1lo]) and had higher expression of CD27, CXCR3, and T cell factor-1 (TCF-1), each a marker that is individually correlated with decreased apoptosis. CD8+ T cells in the peritoneal cavity of TCF-1-deficient mice had decreased survival, suggesting a role for TCF-1 in promoting survival in the nonlymphoid tissues. CXCR3+ CD8+ T cells resisted apoptosis and accumulated in the lymph nodes of mice treated with FTY720, which blocks the export of lymph node cells into peripheral tissue. The peritoneal exudate cells (PEC) expressed increased amounts of CXCR3 ligands, CXCL9 and CXCL10, which may normally recruit these nonapoptotic cells from the lymph nodes. In addition, adoptive transfer of splenic CD8+ T cells into PEC or spleen environments showed that the peritoneal environment promoted survival of CD8+ T cells. Thus, intrinsic stability of T cells which are present in the nonlymphoid tissues along with preferential migration of apoptosis-resistant CD8+ T cells into peripheral sites and the availability of tissue-specific factors that enhance memory cell survival may collectively account for the tissue-dependent apoptotic differences. IMPORTANCE Most infections are initiated at nonlymphoid tissue sites, and the presence of memory T cells in nonlymphoid tissues is critical for protective immunity in various viral infection models. Virus-specific CD8+ T cells in the nonlymphoid tissues are more resistant to apoptosis than those in lymphoid organs during the resolution and memory phase of the immune response to acute LCMV infection. Here, we investigated the mechanisms promoting stability of T cells in the nonlymphoid tissues. This increased resistance to apoptosis of virus-specific CD8+ T cells in nonlymphoid tissues was due to several factors. Nonlymphoid tissues were enriched in memory phenotype CD8+ T cells, which were intrinsically resistant to apoptosis irrespective of the tissue environment. Furthermore, apoptosis-resistant CD8+ T cells preferentially migrated into the nonlymphoid tissues, where the availability of tissue-specific factors may enhance memory cell survival. Our findings are relevant for the generation of long-lasting vaccines providing protection at peripheral infection sites.
Collapse
|
31
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
32
|
Antonelli A, Ferrari SM, Corrado A, Ferrannini E, Fallahi P. CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev 2014; 25:57-65. [PMID: 24529741 DOI: 10.1016/j.cytogfr.2014.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes (T1D) is due to antigen-specific assaults on the insulin producing pancreatic β-cells by diabetogenic T-helper (Th)1 cells. (C-X-C motif) ligand (CXCL)10, an interferon-γ inducible Th1 chemokine, and its receptor, (C-X-C motif) receptor (CXCR)3, have an important role in different autoimmune diseases. High circulating CXCL10 levels were detected in new onset T1D patients, in association with a Th1 autoimmune response. Furthermore β-cells produce CXCL10, under the influence of Th1 cytokines, that suppresses their proliferation. Viral β-cells infections induce cytokines and CXCL10 expression, inducing insulin-producing cell failure in T1D. CXCL10/CXCR3 system plays a critical role in the autoimmune process and in β-cells destruction in T1D. Blocking CXCL10 in new onset diabetes seems a possible approach for T1D treatment.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Alda Corrado
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, I-56126 Pisa, Italy.
| |
Collapse
|
33
|
Trautmann T, Kozik JH, Carambia A, Richter K, Lischke T, Schwinge D, Mittrücker HW, Lohse AW, Oxenius A, Wiegard C, Herkel J. CD4+ T-cell help is required for effective CD8+ T cell-mediated resolution of acute viral hepatitis in mice. PLoS One 2014; 9:e86348. [PMID: 24466045 PMCID: PMC3897723 DOI: 10.1371/journal.pone.0086348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/08/2013] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic CD8+ T cells are essential for the control of viral liver infections, such as those caused by HBV or HCV. It is not entirely clear whether CD4+ T-cell help is necessary for establishing anti-viral CD8+ T cell responses that successfully control liver infection. To address the role of CD4+ T cells in acute viral hepatitis, we infected mice with Lymphocytic Choriomeningitis Virus (LCMV) of the strain WE; LCMV-WE causes acute hepatitis in mice and is cleared from the liver by CD8+ T cells within about two weeks. The role of CD4+ T-cell help was studied in CD4+ T cell-lymphopenic mice, which were either induced by genetic deficiency of the major histocompatibility (MHC) class II transactivator (CIITA) in CIITA−/− mice, or by antibody-mediated CD4+ cell depletion. We found that CD4+ T cell-lymphopenic mice developed protracted viral liver infection, which seemed to be a consequence of reduced virus-specific CD8+ T-cell numbers in the liver. Moreover, the anti-viral effector functions of the liver-infiltrating CD8+ T cells in response to stimulation with LCMV peptide, notably the IFN-γ production and degranulation capacity were impaired in CIITA−/− mice. The impaired CD8+ T-cell function in CIITA−/− mice was not associated with increased expression of the exhaustion marker PD-1. Our findings indicate that CD4+ T-cell help is required to establish an effective antiviral CD8+ T-cell response in the liver during acute viral infection. Insufficient virus control and protracted viral hepatitis may be consequences of impaired initial CD4+ T-cell help.
Collapse
Affiliation(s)
- Tanja Trautmann
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Hendrik Kozik
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonella Carambia
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten Richter
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland
| | - Timo Lischke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland
| | - Christiane Wiegard
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Tuncer C, Oo YH, Murphy N, Adams DH, Lalor PF. The regulation of T-cell recruitment to the human liver during acute liver failure. Liver Int 2013; 33:852-63. [PMID: 23617240 DOI: 10.1111/liv.12182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/23/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is a rare clinical syndrome with high mortality resulting from hepatocellular necrosis and loss of function. In seronegative hepatitis (SNH), a T-cell-rich infiltrate leads to immune-mediated hepatocyte destruction, whereas in paracetamol poisoning, toxic metabolites induce hepatocyte necrosis, followed by a macrophage-rich, lymphocytic infiltrate that is an important factor in driving repair and regeneration. The nature of the hepatic inflammatory infiltrate, key to ALF pathogenesis and outcome, is determined by the recruitment of effector cells from blood, but the molecular basis of recruitment is poorly understood. To determine the phenotype of circulating and hepatic lymphocytes in patients with ALF secondary to paracetamol overdose (POD) or SNH and investigate the molecular basis of lymphocyte recruitment. METHODS We used FACS, immunohistochemistry and flow-based adhesion assays to determine the regulation of lymphocyte adhesion. RESULTS SNH and POD intrahepatic lymphocytes were αLβ2(hi), CD69(hi) and CD38(hi) with a distinct homing phenotype being L-selectin(lo), CXCR3(hi) and CCR5(+). Expression of chemokine ligands for the receptors CCR5, CXCR3 and CXCR6 and the adhesion molecules ICAM-1, VCAM-1 and VAP-1 was markedly increased in the liver in ALF. Lymphocytes isolated from the livers of patients with SNH showed enhanced chemokine-dependent adhesion and transmigration across the human hepatic endothelium in vitro under flow and used a combination of β1 and β2 integrins to adhere to endothelium and β2 integrins, CD31 and VAP-1 to transmigrate. CONCLUSION Aetiology-dependent combinations of adhesion molecules and chemokines expressed within tissue during ALF recruit lymphocytes with a distinct homing phenotype.
Collapse
Affiliation(s)
- Ceren Tuncer
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
35
|
Leukocyte transmigration across endothelial and extracellular matrix protein barriers in liver ischemia/reperfusion injury. Curr Opin Organ Transplant 2013; 16:34-40. [PMID: 21150609 DOI: 10.1097/mot.0b013e328342542e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hepatic ischemia reperfusion injury (IRI) linked to leukocyte recruitment and subsequent release of cytokines and free radicals remains a significant complication in organ transplantation. The aim of this review is to bring attention to advances made in our understanding of the mechanisms of leukocyte recruitment to sites of inflammatory stimulation in liver IRI. RECENT FINDINGS Leukocyte transmigration across endothelial and extracellular matrix barriers is dependent on adhesive events, as well as on focal matrix degradation mechanisms. Whereas adhesion molecules are critical for the successful promotion of leukocyte transmigration by providing leukocyte attachment to the vascular endothelium, matrix metalloproteinases (MMPs) are important for facilitating leukocyte movement across vascular barriers. Among different MMPs, MMP-9, an inducible gelatinase expressed by leukocytes during hepatic IRI, is emerging as an important mediator of leukocyte traffic to inflamed liver. SUMMARY It is generally accepted that the understanding of the molecular mechanisms involved in leukocyte recruitment will lead to the development of novel targeted therapeutic approaches for hepatic IRI and liver transplantation. Here, we review mechanisms of leukocyte traffic in liver IRI and the role of some of the proteins that are thought to be important for this process.
Collapse
|
36
|
Tse SW, Cockburn IA, Zhang H, Scott AL, Zavala F. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites. Genes Immun 2013; 14:302-9. [PMID: 23594961 PMCID: PMC3722257 DOI: 10.1038/gene.2013.20] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/28/2022]
Abstract
Sterile immunity against live Plasmodium infection can be achieved by immunization with radiation attenuated sporozoites. This protection is known to be mediated in part by antigen-specific memory CD8+ T cells, presumably those residing in the liver. We characterized and compared the transcriptional profile of parasite-specific memory CD8+ T cells residing in the liver and spleen after immunization of mice with irradiated sporozoites. Microarray-based expression analysis of these memory CD8+ T cells indicated that liver resident memory cells display a distinct gene expression profile. We found major differences in the expression of immune function genes as well as genes involved in the cell cycle, cell trafficking, transcription and intracellular signaling. Importantly, the malaria parasite-induced liver resident CD8+ T cells display a transcriptional profile different to that described for CD8+ T cells following other microbial challenges.
Collapse
Affiliation(s)
- S-W Tse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Rollag H, Ueland T, Asberg A, Hartmann A, Jardine AG, Humar A, Pescovitz MD, Bignamini AA, Aukrust P. Characterization of cytomegalovirus disease in solid organ transplant recipients by markers of inflammation in plasma. PLoS One 2013; 8:e60767. [PMID: 23593305 PMCID: PMC3620537 DOI: 10.1371/journal.pone.0060767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/02/2013] [Indexed: 12/19/2022] Open
Abstract
Background While several studies have examined the general inflammatory responses in relation to cytomegalovirus infection, the identification of the various inflammatory mediators as well as their relative importance is far from clear. Patients and Methods Solid organ recipients enrolled in an international multicenter trial of cytomegalovirus disease treatment (the VICTOR study) were analyzed (n = 289) (ClinicalTrials.gov NCT00431353). Plasma markers of inflammation and endothelial cell activation were assessed at baseline by enzyme immunoassays. Results The major findings were: (i) Plasma levels of the CXC-chemokine interferon-inducible protein-10 (P<0.001) and C-reactive protein (P = 0.046) were independently associated with the presence of cytomegalovirus DNAemia above lower level of quantification. (ii) High levels of CC-chemokine ligand 21 (P = 0.027) and pentraxin 3 (P = 0.033) were independently associated with tissue invasive cytomegalovirus disease as opposed to cytomegalovirus syndrome. Conclusion Our findings illustrate the complex interaction between cytomegalovirus and the immune system, involving a wide range of inflammatory mediators that could be associated to disease manifestations in cytomegalovirus related disease.
Collapse
Affiliation(s)
- Halvor Rollag
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsuda M, Zhang W, Yang GX, Tsuneyama K, Ando Y, Kawata K, Park O, Leung PS, Coppel RL, Ansari AA, Ridgway WM, Gao B, Lian ZX, Flavell R, He XS, Gershwin ME. Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFβ receptor type II mice. Hepatology 2013; 57:806-16. [PMID: 22576253 PMCID: PMC3424295 DOI: 10.1002/hep.25829] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/01/2012] [Indexed: 12/20/2022]
Abstract
Mice with a dominant-negative transforming growth factor β receptor restricted to T cells (dnTGFβRII mice) develop an inflammatory biliary ductular disease that strongly resembles human primary biliary cirrhosis (PBC). Furthermore, deletion of the gene encoding interleukin (IL)-12p40 resulted in a strain (IL-12p40(-/-) dnTGFβRII) with dramatically reduced autoimmune cholangitis. To further investigate the role of the IL-12 cytokine family in dnTGFβRII autoimmune biliary disease, we deleted the gene encoding the IL-12p35 subunit from dnTGFβRII mice, resulting in an IL-12p35(-/-) dnTGFβRII strain which is deficient in two members of the IL-12 family, IL-12 and IL-35. In contrast to IL-12p40(-/-) mice, the IL-12p35(-/-) mice developed liver inflammation and bile duct damage with similar severity but delayed onset as the parental dnTGFβRII mice. The p35(-/-) mice also demonstrated a distinct cytokine profile characterized by a shift from a T-helper 1 (Th1) to a Th17 response. Strikingly, liver fibrosis was frequently observed in IL-12p35(-/-) mice. In conclusion, IL-12p35(-/-) dnTGFβRII mice, histologically and immunologically, reflect key features of PBC, providing a useful generic model to understand the immunopathology of human PBC.
Collapse
Affiliation(s)
- Masanobu Tsuda
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616,Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka 570-8506, Japan
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Koichi Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616,Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | - Yugo Ando
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Kazuhito Kawata
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Victoria, 3168, Australia
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Zhe-Xiong Lian
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616,Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Richard Flavell
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
39
|
Abstract
One common sign of human cytomegalovirus infection is altered liver function. Murine cytomegalovirus strain v70 induces a rapid and severe hepatitis in immunocompetent mice that requires the presence of T cells in order to develop. v70 exhibits approximately 10-fold-greater virulence than the commonly used strain K181, resulting in a more severe, sustained, and lethal hepatitis but not dramatically higher viral replication levels. Hepatitis and death are markedly delayed in immunodeficient SCID compared to immunocompetent BALB/c mice. Transfer of BALB/c splenocytes to SCID mice conferred rapid disease following infection, and depletion of either CD4 or CD8 T cells in BALB/c mice reduced virus-induced hepatitis. The frequency of CD8 T cells producing gamma interferon and tumor necrosis factor in response to viral antigen was higher in settings where more severe disease occurred. Thus, virus-specific effector CD8 T cells appear to contribute to lethal virus-induced hepatitis, contrasting their protective role during sublethal infection. This study reveals how protection and disease during cytomegalovirus infection depend on viral strain and dose, as well as the quality of the T cell response.
Collapse
|
40
|
Gaddi PJ, Crane MJ, Kamanaka M, Flavell RA, Yap GS, Salazar-Mather TP. IL-10 mediated regulation of liver inflammation during acute murine cytomegalovirus infection. PLoS One 2012; 7:e42850. [PMID: 22880122 PMCID: PMC3411849 DOI: 10.1371/journal.pone.0042850] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/12/2012] [Indexed: 01/01/2023] Open
Abstract
Various cell types in both lymphoid and non-lymphoid tissues produce the anti-inflammatory cytokine interleukin (IL)-10 during murine cytomegalovirus (MCMV) infection. The functions of IL-10 in the liver during acute infection and the cells that generate this cytokine at this site have not been extensively investigated. In this study, we demonstrate that the production of IL-10 in the liver is elevated in C57BL/6 mice during late acute MCMV infection. Using IL-10 green fluorescence protein (GFP) reporter knock-in mice, designated IL-10-internal ribosomal entry site (IRES)-GFP-enhanced reporter (tiger), NK cells are identified as major IL-10 expressing cells in the liver after infection, along with T cells and other leukocytes. In the absence of IL-10, mice exhibit marked elevations in proinflammatory cytokines and in the numbers of mononuclear cells and lymphocytes infiltrating the liver during this infection. IL-10-deficiency also enhances liver injury without improving viral clearance from this site. Collectively, the results indicate that IL-10-producing cells in the liver provide protection from collateral injury by modulating the inflammatory response associated with MCMV infection.
Collapse
Affiliation(s)
- Pamela J. Gaddi
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Meredith J. Crane
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Masahito Kamanaka
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- The Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Thais P. Salazar-Mather
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
41
|
Migration of lymphocytes into hepatic sinusoids. J Hepatol 2012; 57:218-20. [PMID: 22446509 DOI: 10.1016/j.jhep.2011.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/04/2022]
|
42
|
Xiang X, Gui H, King NJC, Cole L, Wang H, Xie Q, Bao S. IL-22 and non-ELR-CXC chemokine expression in chronic hepatitis B virus-infected liver. Immunol Cell Biol 2012; 90:611-9. [PMID: 21946664 DOI: 10.1038/icb.2011.79] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus infection is still a major global health problem, despite decades of research. Interleukin (IL)-22 induces acute phase reactants and chemokines, favors anti-microbial defence and protects tissues from damage. IL-22 is important in chronic skin inflammation, but its role in chronic hepatitis B (CHB) is unclear. This study explores the association between intra-hepatic IL-22 expression, its relevant associated cytokines and the severity of liver inflammation/fibrosis in CHB patients. IL-22, IL-17, IL-10, IL-6, non-ELR-CXC chemokines (CXCL-9, CXCL-10, CXCL-11), fibroblast growth factors and Kupffer cell (KC) numbers were measured in patients with CHB (n=65), acute hepatitis B (AHB; n=4), chronic hepatitis C (CHC; n=14) and non-viral hepatitis (n=23), using immunohistochemistry. Expression of IL-22, IL-17, IL-10, IL-6, non-ELR-CXC chemokines and number of KCs in liver tissues were substantially higher in AHB patients than others. In CHB patients, the expression of IL-22, IL-6, CXCL-9 and CXCL-10 were significantly higher with alanine aminotransferase (ALT) levels ≤ twice the upper limit of normal (ULN), compared with those with ALT levels >twice the ULN, whereas IL-10 and IL-17 showed a reverse pattern. IL-22 was inversely (P<0.01), but IL-17 was positively (P<0.05), correlated with the histological activity index) in these patients, and a significant negative correlation between the fibrosis stage and IL-22 or non-ELR-CXC chemokines was observed. Furthermore, immunofluorescent labeling demonstrated a close spatial association of IL-22, CXCL-9, -10 or -11 in the CHB liver. We speculate that IL-22 and non-ELR-CXC chemokines synergistically may provide protection in liver inflammation/fibrosis during CHB infection.
Collapse
Affiliation(s)
- Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
44
|
Crane MJ, Gaddi PJ, Salazar-Mather TP. UNC93B1 mediates innate inflammation and antiviral defense in the liver during acute murine cytomegalovirus infection. PLoS One 2012; 7:e39161. [PMID: 22723955 PMCID: PMC3377622 DOI: 10.1371/journal.pone.0039161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022] Open
Abstract
Antiviral defense in the liver during acute infection with the hepatotropic virus murine cytomegalovirus (MCMV) involves complex cytokine and cellular interactions. However, the mechanism of viral sensing in the liver that promotes these cytokine and cellular responses has remained unclear. Studies here were undertaken to investigate the role of nucleic acid-sensing Toll-like receptors (TLRs) in initiating antiviral immunity in the liver during infection with MCMV. We examined the host response of UNC93B1 mutant mice, which do not signal properly through TLR3, TLR7 and TLR9, to acute MCMV infection to determine whether liver antiviral defense depends on signaling through these molecules. Infection of UNC93B1 mutant mice revealed reduced production of systemic and liver proinflammatory cytokines including IFN-α, IFN-γ, IL-12 and TNF-α when compared to wild-type. UNC93B1 deficiency also contributed to a transient hepatitis later in acute infection, evidenced by augmented liver pathology and elevated systemic alanine aminotransferase levels. Moreover, viral clearance was impaired in UNC93B1 mutant mice, despite intact virus-specific CD8+ T cell responses in the liver. Altogether, these results suggest a combined role for nucleic acid-sensing TLRs in promoting early liver antiviral defense during MCMV infection.
Collapse
Affiliation(s)
- Meredith J. Crane
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Pamela J. Gaddi
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thais P. Salazar-Mather
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
45
|
Kimball P, McDougan F, Stirling R. CXCR3 Expression Elevated on Peripheral CD8+ Lymphocytes from HIV/HCV Coinfected Individuals. Viral Immunol 2011; 24:441-8. [DOI: 10.1089/vim.2011.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Pam Kimball
- Department of Surgery, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Felecia McDougan
- Department of Surgery, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Richard Stirling
- Department of Surgery, Virginia Commonwealth University Health Systems, Richmond, Virginia
| |
Collapse
|
46
|
Spahn J, Pierce RH, Crispe IN. Ineffective CD8(+) T-cell immunity to adeno-associated virus can result in prolonged liver injury and fibrogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2370-81. [PMID: 21925469 DOI: 10.1016/j.ajpath.2011.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 01/12/2023]
Abstract
Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. This results in a sustained immune response accompanied by tissue injury and fibrogenesis. We have created a mouse model that reproduces these effects, based on the response of CD8(+) T cells to hepatocellular antigen delivered by an adeno-associated virus (AAV) vector. Ten thousand antigen-specific CD8(+) T cells undergo slow expansion in the liver and can precipitate a subacute inflammatory hepatitis with stellate cell activation and fibrosis. Over time, antigen-specific CD8(+) T cells show signs of exhaustion, including high expression of PD-1, and eventually both inflammation and fibrosis resolve. This model allows the investigation of both chronic liver immunopathology and its resolution.
Collapse
Affiliation(s)
- Jessica Spahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|
47
|
Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J, Ueha S, Tomura M, Sugihara K, Takamura S, Kakimi K, Matsushima K. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration. ACTA ACUST UNITED AC 2011; 208:1605-20. [PMID: 21788406 PMCID: PMC3149224 DOI: 10.1084/jem.20102101] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Strength of inflammatory stimuli during the early expansion phase plays a crucial role in the effector versus memory cell fate decision of CD8(+) T cells. But it is not known how early lymphocyte distribution after infection has an impact on this process. We demonstrate that the chemokine receptor CXCR3 is involved in promoting CD8(+) T cell commitment to an effector fate rather than a memory fate by regulating T cell recruitment to an antigen/inflammation site. After systemic viral or bacterial infection, the contraction of CXCR3(-/-) antigen-specific CD8(+) T cells is significantly attenuated, resulting in massive accumulation of fully functional memory CD8(+) T cells. Early after infection, CXCR3(-/-) antigen-specific CD8(+) T cells fail to cluster at the marginal zone in the spleen where inflammatory cytokines such as IL-12 and IFN-α are abundant, thus receiving relatively weak inflammatory stimuli. Consequently, CXCR3(-/-) CD8(+) T cells exhibit transient expression of CD25 and preferentially differentiate into memory precursor effector cells as compared with wild-type CD8(+) T cells. This series of events has important implications for development of vaccination strategies to generate increased numbers of antigen-specific memory CD8(+) T cells via inhibition of CXCR3-mediated T cell migration to inflamed microenvironments.
Collapse
Affiliation(s)
- Makoto Kurachi
- Department of Molecular Preventive Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The role of CXCR3 in the induction of primary biliary cirrhosis. Clin Dev Immunol 2011; 2011:564062. [PMID: 21647407 PMCID: PMC3102447 DOI: 10.1155/2011/564062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/09/2011] [Accepted: 02/24/2011] [Indexed: 12/16/2022]
Abstract
Objective. Investigate whether CXCR3 and its ligands were involved in the pathogenesis of primary biliary cirrhosis (PBC) in an autoimmune cholangitis animal model. Methods. Female C57BL/6 mice were injected with 5 mg/kg of poly I:C intraperitoneally twice a week for 24 weeks. PBC model was confirmed by liver function, serum autoantibodies and liver biopsy. Lymphocytes subsets in liver and spleen and CXCL10 serum level were tested by flow cytometry and ELISA. Liver specimens were collected to evaluate the differences in pathology between WT and CXCR3−/− mice. Results. Antimitochondrial antibody was detected in all PBC model. Numbers of infiltrates were detected in the portal areas 8 weeks after poly I:C injection, which progressed up to 24 weeks. Compared to control mice, CXCL10 serum level increased in PBC mice and the proportion of CXCR3+ cells increased in the intrahepatic infiltrates of PBC mice, chiefly on CD8+ cells, whereas the expression of CXCR3 on CD3+ and CD8+ splenocytes decreased in PBC model. Compared with WT mice, CXCR3−/− mice developed delayed and milder progression of cellular inflammation. Conculsions. CXCR3 might contribute to the development of PBC in murine model. Knockout of CXCR3 might delay and alleviate the PBC disease progression, but could not entirely block the disease development.
Collapse
|
49
|
Weseslindtner L, Nachbagauer R, Kundi M, Jaksch P, Kerschner H, Simon B, Hatos-Agyi L, Scheed A, Aberle JH, Klepetko W, Puchhammer-Stöckl E. Human cytomegalovirus infection in lung transplant recipients triggers a CXCL-10 response. Am J Transplant 2011; 11:542-52. [PMID: 21219583 DOI: 10.1111/j.1600-6143.2010.03404.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) causes significant morbidity in lung transplant recipients (LTRs). The clinical effects of HCMV replication are determined partly by a type 1 T-helper cell (Th1) response. Because the chemokine interferon-inducible protein of 10 kilodaltons (IP-10, CXCL-10) induces a Th1 response, we investigated whether HCMV triggers IP-10 in LTRs. The IP-10 concentration and HCMV DNA load were determined in 107 plasma and 46 bronchoalveolar lavage fluid (BALF) samples from 36 LTRs. Initial HCMV detection posttransplantation was significantly associated with increased plasma IP-10, regardless of whether the patients showed HCMV DNAemia (p = 0.001) or HCMV replication only in the allograft (p < 0.0001). In subsequent episodes of HCMV detection, plasma IP-10 increased regardless of whether HCMV was detected in blood (p = 0.0078) or only in BALF (p < 0.0001) and decreased after successful antiviral therapy (p = 0.0005). Furthermore, levels of HCMV DNA and IP-10 correlated statistically (p = 0.0033). Increased IP-10 levels in HCMV-positive BALF samples were significantly associated with severe airflow obstruction, as indicated by a decrease in forced expiratory volume in one second (FEV1). Our data indicate that HCMV replication in LTRs evokes a plasma IP-10 response and that, when an IP-10 response is observed in BALF, it is associated with inflammatory airway obstruction in the allograft.
Collapse
Affiliation(s)
- L Weseslindtner
- Department of Virology Institute of Environmental Health Department of Cardiothoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2010; 2011:812742. [PMID: 21253509 PMCID: PMC3021883 DOI: 10.1155/2011/812742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/27/2010] [Indexed: 11/17/2022] Open
Abstract
The advent of cloning herpesviral genomes as bacterial artificial chromosomes (BACs) has made herpesviruses accessible to bacterial genetics and has thus revolutionised their mutagenesis. This opened all possibilities of reverse genetics to ask scientific questions by introducing precisely accurate mutations into the viral genome for testing their influence on the phenotype under study or to create phenotypes of interest. Here, we report on our experience with using BAC technology for a designed modulation of viral antigenicity and immunogenicity with focus on the CD8 T-cell response. One approach is replacing an intrinsic antigenic peptide in a viral carrier protein with a foreign antigenic sequence, a strategy that we have termed "orthotopic peptide swap". Another approach is the functional deletion of an antigenic peptide by point mutation of its C-terminal MHC class-I anchor residue. We discuss the concepts and summarize recently published major scientific results obtained with immunological mutants of murine cytomegalovirus.
Collapse
|