1
|
Gao M, Yang X, Wu Y, Wang J, Hu X, Ma Z, Zhou JH. Analysis for codon usage bias in membrane anchor of nonstructural protein 5A from BVDV. J Basic Microbiol 2023; 63:1106-1114. [PMID: 37407515 DOI: 10.1002/jobm.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The nonstructural protein 5A (NS5A) of the bovine viral diarrhea virus (BVDV) is a monotopic membrane protein. This protein can anchor to the cell membrane by an in-plane amphipathic ⍺-helix, which participates in the viral replication complex. In this study, the effects of synonymous codon usage pattern of NS5A and the overall transfer RNA (tRNA) abundance in cells on the formation of the in-plane membrane anchor of NS5A were analyzed, based on NS5A coding sequences of different BVDV genotypes. BVDV NS5A coding sequences represent the most potential for BVDV genotyping. Moreover, the nucleotide usage of BVDV NS5A dominates the genotype-specific pattern of synonymous codon usage. There is an obvious relationship between synonymous codon usage bias and the spatial conformation of the in-plane membrane anchor. Furthermore, the overall tRNA abundance profiling displays that codon positions with a high level of tRNA abundance are more than ones with a low level of tRNA abundance in the in-plane membrane anchor, implying that high translation speed probably acts on the spatial conformation of in-plane membrane anchor of BVDV NS5A. These results give a new opinion on the effect of codon usage bias in the formation of the in-plane membrane anchor of BVDV NS5A.
Collapse
Affiliation(s)
- Mingyang Gao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xuanye Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yuhu Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
| | - Jian-Hua Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
| |
Collapse
|
2
|
Fellenberg J, Dubrau D, Isken O, Tautz N. Packaging defects in pestiviral NS4A can be compensated by mutations in NS2 and NS3. J Virol 2023; 97:e0057223. [PMID: 37695056 PMCID: PMC10537661 DOI: 10.1128/jvi.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.
Collapse
Affiliation(s)
- Jonas Fellenberg
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Danilo Dubrau
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
3
|
Reovirus uses temporospatial compartmentalization to orchestrate core versus outercapsid assembly. PLoS Pathog 2022; 18:e1010641. [PMID: 36099325 PMCID: PMC9514668 DOI: 10.1371/journal.ppat.1010641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Reoviridae virus family members, such as mammalian orthoreovirus (reovirus), encounter a unique challenge during replication. To hide the dsRNA from host recognition, the genome remains encapsidated in transcriptionally active proteinaceous core capsids that transcribe and release +RNA. De novo +RNAs and core proteins must repeatedly assemble into new progeny cores in order to logarithmically amplify replication. Reoviruses also produce outercapsid (OC) proteins μ1, σ3 and σ1 that assemble onto cores to create highly stable infectious full virions. Current models of reovirus replication position amplification of transcriptionally-active cores and assembly of infectious virions in shared factories, but we hypothesized that since assembly of OC proteins would halt core amplification, OC assembly is somehow regulated. Kinetic analysis of virus +RNA production, core versus OC protein expression, and core particles versus whole virus particle accumulation, indicated that assembly of OC proteins onto core particles was temporally delayed. All viral RNAs and proteins were made simultaneously, eliminating the possibility that delayed OC RNAs or proteins account for delayed OC assembly. High resolution fluorescence and electron microscopy revealed that core amplification occurred early during infection at peripheral core-only factories, while all OC proteins associated with lipid droplets (LDs) that coalesced near the nucleus in a μ1–dependent manner. Core-only factories transitioned towards the nucleus despite cycloheximide-mediated halting of new protein expression, while new core-only factories developed in the periphery. As infection progressed, OC assembly occurred at LD-and nuclear-proximal factories. Silencing of OC μ1 expression with siRNAs led to large factories that remained further from the nucleus, implicating μ1 in the transition to perinuclear factories. Moreover, late during infection, +RNA pools largely contributed to the production of de-novo viral proteins and fully-assembled infectious viruses. Altogether the results suggest an advanced model of reovirus replication with spatiotemporal segregation of core amplification, OC complexes and fully assembled virions. It is important to understand how viruses replicate and assemble to discover antiviral therapies and to modify viruses for applications like gene therapy or cancer therapy. Reovirus is a harmless virus being tested as a cancer therapy. Reovirus has two coats of proteins, an inner coat and an outer coat. To replicate, reovirus particles need only the inner coat, but to become infectious they require the outer coat. Strangely, inner and outer coat proteins are all made by the virus at once, so it was unknown what determines whether newly made viruses will contain just the inner coat to continue to replicate, or both coats to transmit to new hosts. Our experiments reveal that the inner coat proteins are located in a different area of an infected cell versus the outer coat proteins. The location therefore determines if the newly made viruses contain just the inner coat versus both coats. Reoviruses have evolved extravagant mechanisms to be able to efficiently take on the best composition required for replication and transmission.
Collapse
|
4
|
Isken O, Walther T, Wong-Dilworth L, Rehders D, Redecke L, Tautz N. Identification of NS2 determinants stimulating intrinsic HCV NS2 protease activity. PLoS Pathog 2022; 18:e1010644. [PMID: 35727826 PMCID: PMC9249167 DOI: 10.1371/journal.ppat.1010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Thomas Walther
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Luis Wong-Dilworth
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - Dirk Rehders
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Hamburg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
5
|
Walther T, Bruhn B, Isken O, Tautz N. A novel NS3/4A protease dependent cleavage site within pestiviral NS2. J Gen Virol 2021; 102. [PMID: 34676824 DOI: 10.1099/jgv.0.001666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pestiviruses like bovine viral diarrhoea virus (BVDV) and classical swine fever virus (CSFV) belong to the family Flaviviridae. A special feature of the Flaviviridae is the importance of nonstructural (NS) proteins for both genome replication and virion morphogenesis. The NS2-3-4A region and its regulated processing by the NS2 autoprotease and the NS3/4A protease plays a central role in the pestiviral life cycle. We report the identification and characterization of a novel internal cleavage in BVDV NS2, which is mediated by the NS3/4A protease. Further mapping using the NS2 of BVDV-1 strain NCP7 showed that cleavage occurs between L188 and G189. This cleavage site represents a novel sequence motif recognized by the NS3/4A protease and is conserved between the pestivirus species A, B and D. Inhibition of this internal NS2 cleavage by mutating the cleavage site did not cause obvious effects on RNA replication or virion morphogenesis in cultured cell lines. Accordingly, this novel internal NS2 cleavage adds an additional layer to the already complex polyprotein processing of Pestiviruses and might further extend the repertoires of the multifunctional NS2. However, unravelling of the functional relevance of this novel processing event in NS2, therefore, awaits future in vivo studies.
Collapse
Affiliation(s)
- Thomas Walther
- University of Luebeck, Institute of Virology and Cell Biology, Luebeck, Germany.,Present address: EUROIMMUN AG, Luebeck, Germany
| | - Barbara Bruhn
- University of Luebeck, Institute of Virology and Cell Biology, Luebeck, Germany
| | - Olaf Isken
- University of Luebeck, Institute of Virology and Cell Biology, Luebeck, Germany
| | - Norbert Tautz
- University of Luebeck, Institute of Virology and Cell Biology, Luebeck, Germany
| |
Collapse
|
6
|
Wu K, Fan S, Zou L, Zhao F, Ma S, Fan J, Li X, Zhao M, Yan H, Chen J. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol 2021; 12:651952. [PMID: 34093468 PMCID: PMC8175637 DOI: 10.3389/fmicb.2021.651952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Diseases caused by Flaviviridae have a wide global and economic impact due to high morbidity and mortality. Flaviviridae infection usually leads to severe, acute or chronic diseases, such as liver injury and liver cancer resulting from hepatitis C virus (HCV) infection, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) caused by dengue virus (DENV). Given the highly complex pathogenesis of Flaviviridae infections, they are still not fully understood at present. Accumulating evidence suggests that host autophagy is disrupted to regulate the life cycle of Flaviviridae. Organelle-specific autophagy is able to selectively target different organelles for quality control, which is essential for regulating cellular homeostasis. As an important sub process of autophagy, lipophagy regulates lipid metabolism by targeting lipid droplets (LDs) and is also closely related to the infection of a variety of pathogenic microorganisms. In this review, we briefly understand the LDs interaction relationship with Flaviviridae infection, outline the molecular events of how lipophagy occurs and the related research progress on the regulatory mechanisms of lipophagy in Flaviviridae infection. Exploring the crosstalk between viral infection and lipophagy induced molecular events may provide new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huichao Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Membrane Topology of Pestiviral Non-Structural Protein 2 and determination of the minimal autoprotease domain. J Virol 2021; 95:JVI.00154-21. [PMID: 33731461 PMCID: PMC8139697 DOI: 10.1128/jvi.00154-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pestiviruses like bovine viral diarrhea virus (BVDV) belong to the family Flaviviridae A distinctive feature of the Flaviviridae is the importance of non-structural (NS) proteins for RNA genome replication and virus morphogenesis. For pestiviruses, the NS2 protease-mediated release of NS3 is essential for RNA replication, whereas uncleaved NS2-3 is indispensable for producing viral progeny. Accordingly, in the pestiviral life cycle the switch from RNA replication to virion morphogenesis is temporally regulated by the extent of NS2-3 cleavage, which is catalyzed by the NS2 autoprotease. A detailed knowledge of the structural and functional properties of pestiviral NS2 and NS2-3 is mandatory for a better understanding of these processes.In the present study, we experimentally determined the membrane topology of NS2 of BVDV-1 strain NCP7 by the Substituted Cysteine Accessibility Method (SCAM) assay. According to the resulting model, the N terminus of NS2 resides in the ER lumen and is followed by three transmembrane segments (TM) and a cytoplasmic C-terminal protease domain. We used the resulting model for fine mapping of the minimal autoprotease domain. Only one TM segment was found to be essential for maintaining residual autoprotease activity. While the topology of pestiviral NS2 is overall comparable to the one of hepatitis C virus (HCV) NS2, our data also reveal potentially important differences between the two molecules. The improved knowledge about structural and functional properties of this protein will support future functional and structural studies on pestiviral NS2.ImportancePestiviral NS2 is central to the regulation of RNA replication and virion morphogenesis via its autoprotease activity. This activity is temporally regulated by the cellular DNAJC14 as a cofactor: while free NS3 is required for RNA replication as a component of the viral replicase, only uncleaved NS2-3 supports virion morphogenesis. For a better understanding of the underlying molecular interactions, topological and structural data are required. The topology-based determination of the minimal NS2-protease domain in the present study will facilitate future attempts to determine the structure of this unusual protease cofactor complex. In the hepatitis C virus system, NS2 functions as a hub in virion morphogenesis by interacting with structural as well as non-structural proteins. Our knowledge of the membrane topology will significantly support future detailed interaction studies for pestiviral NS2.
Collapse
|
8
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
9
|
Cloherty AP, Olmstead AD, Ribeiro CM, Jean F. Hijacking of Lipid Droplets by Hepatitis C, Dengue and Zika Viruses-From Viral Protein Moonlighting to Extracellular Release. Int J Mol Sci 2020; 21:E7901. [PMID: 33114346 PMCID: PMC7662613 DOI: 10.3390/ijms21217901] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hijacking and manipulation of host cell biosynthetic pathways by human enveloped viruses are essential for the viral lifecycle. Flaviviridae members, including hepatitis C, dengue and Zika viruses, extensively manipulate host lipid metabolism, underlining the importance of lipid droplets (LDs) in viral infection. LDs are dynamic cytoplasmic organelles that can act as sequestration platforms for a unique subset of host and viral proteins. Transient recruitment and mobilization of proteins to LDs during viral infection impacts host-cell biological properties, LD functionality and canonical protein functions. Notably, recent studies identified LDs in the nucleus and also identified that LDs are transported extracellularly via an autophagy-mediated mechanism, indicating a novel role for autophagy in Flaviviridae infections. These developments underline an unsuspected diversity and localization of LDs and potential moonlighting functions of LD-associated proteins during infection. This review summarizes recent breakthroughs concerning the LD hijacking activities of hepatitis C, dengue and Zika viruses and potential roles of cytoplasmic, nuclear and extracellular LD-associated viral proteins during infection.
Collapse
Affiliation(s)
- Alexandra P.M. Cloherty
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Carla M.S. Ribeiro
- Amsterdam UMC, Amsterdam Institute for Infection & Immunity, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.P.M.C.); (C.M.S.R.)
| | - François Jean
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 3559–2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| |
Collapse
|
10
|
Moriel-Carretero M. The hypothetical role of phosphatidic acid in subverting ER membranes during SARS-CoV infection. Traffic 2020; 21:545-551. [PMID: 32424954 PMCID: PMC7276787 DOI: 10.1111/tra.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Positive sense (+) RNA viruses exploit membranes from a variety of cellular organelles to support the amplification of their genomes. This association concurs with the formation of vesicles whose main morphological feature is that of being wrapped by a double membrane. In the case of the SARS‐CoV virus, the outer membrane is not discrete for each vesicle, but seems to be continuous and shared between many individual vesicles, a difference with other +RNA viruses whose nature has remained elusive. I present morphological, biochemical and pharmacological arguments defending the striking analogy of this arrangement and that of entangled, nascent Lipid Droplets whose birth has been aborted by an excess of Phosphatidic Acid. Since Phosphatidic Acid can be targeted with therapeutical purposes, considering this working hypothesis may prove important in tackling SARS‐CoV infection.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), University of Montpellier - CNRS, Montpellier, France
| |
Collapse
|
11
|
Determination of Critical Requirements for Classical Swine Fever Virus NS2-3-Independent Virion Formation. J Virol 2019; 93:JVI.00679-19. [PMID: 31292243 DOI: 10.1128/jvi.00679-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/27/2019] [Indexed: 01/07/2023] Open
Abstract
For members of the Flaviviridae, it is known that, besides the structural proteins, nonstructural (NS) proteins also play a critical role in virion formation. Pestiviruses, such as bovine viral diarrhea virus (BVDV), rely on uncleaved NS2-3 for virion formation, while its cleavage product, NS3, is selectively active in RNA replication. This dogma was recently challenged by the selection of gain-of-function mutations in NS2 and NS3 which allowed virion formation in the absence of uncleaved NS2-3 in BVDV type 1 (BVDV-1) variants encoding either a ubiquitin (Ubi) (NS2-Ubi-NS3) or an internal ribosome entry site (IRES) (NS2-IRES-NS3) between NS2 and NS3. To determine whether the ability to adapt to NS2-3-independent virion morphogenesis is conserved among pestiviruses, we studied the corresponding NS2 and NS3 mutations (2/T444-V and 3/M132-A) in classical swine fever virus (CSFV). We observed that these mutations were capable of restoring low-level NS2-3-independent virion formation only for CSFV NS2-Ubi-NS3. Interestingly, a second NS2 mutation (V439-D), identified by selection, was essential for high-titer virion production. Similar to previous findings for BVDV-1, these mutations in NS2 and NS3 allowed for low-titer virion production only in CSFV NS2-IRES-NS3. For efficient virion morphogenesis, additional exchanges in NS4A (A48-T) and NS5B (D280-G) were required, indicating that these proteins cooperate in NS2-3-independent virion formation. Interestingly, both NS5B mutations, selected independently for NS2-IRES-NS3 variants of BVDV-1 and CSFV, are located in the fingertip region of the viral RNA-dependent RNA polymerase, classifying this structural element as a novel determinant for pestiviral NS2-3-independent virion formation. Together, these findings will stimulate further mechanistic studies on the genome packaging of pestiviruses.IMPORTANCE For Flaviviridae members, the nonstructural proteins are essential for virion formation and thus exert a dual role in RNA replication and virion morphogenesis. However, it remains unclear how these proteins are functionalized for either process. In wild-type pestiviruses, the NS3/4A complex is selectively active in RNA replication, while NS2-3/4A is essential for virion formation. Mutations recently identified in BVDV-1 rendered NS3/4A capable of supporting NS2-3-independent virion morphogenesis. A comparison of NS3/4A complexes incapable/capable of supporting virion morphogenesis revealed that changes in NS3/NS4A surface interactions are decisive for the gain of function. However, so far, the role of the NS2 mutations as well as the accessory mutations additionally required in the NS2-IRES-NS3 virus variant has not been clarified. To unravel the course of genome packaging, the additional sets of mutations obtained for a second pestivirus species (CSFV) are of significant importance to develop mechanistic models for this complex process.
Collapse
|
12
|
CRISPR/Cas9-Mediated Knockout of DNAJC14 Verifies This Chaperone as a Pivotal Host Factor for RNA Replication of Pestiviruses. J Virol 2019; 93:JVI.01714-18. [PMID: 30518653 DOI: 10.1128/jvi.01714-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Pestiviruses like bovine viral diarrhea virus (BVDV) are a threat to livestock. For pestiviruses, cytopathogenic (cp) and noncytopathogenic (noncp) strains are distinguished in cell culture. The noncp biotype of BVDV is capable of establishing persistent infections, which is a major problem in disease control. The noncp biotype rests on temporal control of viral RNA replication, mediated by regulated cleavage of nonstructural protein 2-3 (NS2-3). This cleavage is catalyzed by the autoprotease in NS2, the activity of which depends on its cellular cofactor, DNAJC14. Since this chaperone is available in small amounts and binds tightly to NS2, NS2-3 translated later in infection is no longer cleaved. As NS3 is an essential constituent of the viral replicase, this shift in polyprotein processing correlates with downregulation of RNA replication. In contrast, cp BVDV strains arising mostly by RNA recombination show highly variable genome structures and display unrestricted NS3 release. The functional importance of DNAJC14 for noncp pestiviruses has been established so far only for BVDV-1. It was therefore enigmatic whether replication of other noncp pestiviruses is also DNAJC14 dependent. By generating bovine and porcine DNAJC14 knockout cells, we could show that (i) replication of 6 distinct noncp pestivirus species (A to D, F, and G) depends on DNAJC14, (ii) the pestiviral replicase NS3-5B can assemble into functional complexes in the absence of DNAJC14, and (iii) all cp pestiviruses replicate their RNA and generate infectious progeny independent of host DNAJC14. Together, these findings confirm DNAJC14 as a pivotal cellular cofactor for the replication and maintenance of the noncp biotype of pestiviruses.IMPORTANCE Only noncp pestivirus strains are capable of establishing life-long persistent infections to generate the virus reservoir in the field. The molecular basis for this biotype is only partially understood and only investigated in depth for BVDV-1 strains. Temporal control of viral RNA replication correlates with the noncp biotype and is mediated by limiting amounts of cellular DNAJC14 that activate the viral NS2 protease to catalyze the release of the essential replicase component NS3. Here, we demonstrate that several species of noncp pestiviruses depend on DNAJC14 for their RNA replication. Moreover, all cp pestiviruses, in sharp contrast to their noncp counterparts, replicate independently of DNAJC14. The generation of a cp BVDV in the persistently infected animal is causative for onset of mucosal disease. Therefore, the observed strict biotype-specific difference in DNAJC14 dependency should be further examined for its role in cell type/tissue tropism and the pathogenesis of this lethal disease.
Collapse
|
13
|
Suda Y, Murakami S, Horimoto T. Bovine viral diarrhea virus non-structural protein NS4B induces autophagosomes in bovine kidney cells. Arch Virol 2018; 164:255-260. [PMID: 30259142 DOI: 10.1007/s00705-018-4045-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/15/2018] [Indexed: 11/28/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen in cattle that causes economic losses in livestock industries. Autophagy is an essential cell system for the maintenance of homeostasis and is induced by various triggers, including infection by viruses. BVDV infection leads to autophagy in order to enhance its replication in cells. In this study, we investigated the effect of BVDV non-structural proteins on the induction of autophagosomes. We found that NS4B alone could induce autophagosomes, suggesting a novel and important function of NS4B in BVDV replication.
Collapse
Affiliation(s)
- Yuto Suda
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Shin Murakami
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
14
|
Postel A, Meyer D, Cagatay GN, Feliziani F, De Mia GM, Fischer N, Grundhoff A, Milićević V, Deng MC, Chang CY, Qiu HJ, Sun Y, Wendt M, Becher P. High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia. Emerg Infect Dis 2018; 23:2104-2107. [PMID: 29148382 PMCID: PMC5708225 DOI: 10.3201/eid2312.170951] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atypical porcine pestivirus (APPV) was recently reported to be associated with neurologic disorders in newborn piglets. Investigations of 1,460 serum samples of apparently healthy pigs from different parts of Europe and Asia demonstrate a geographically wide distribution of genetically highly variable APPV and high APPV genome and antibody detection rates.
Collapse
|
15
|
Shi H, Fu Q, Li S, Hu X, Tian R, Yao G, Zhao H, Wang J. Bta-miR-2411 attenuates bovine viral diarrhea virus replication via directly suppressing Pelota protein in Madin-Darby bovine kidney cells. Vet Microbiol 2018; 215:43-48. [DOI: 10.1016/j.vetmic.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
|
16
|
Chernick A, Ambagala A, Orsel K, Wasmuth JD, van Marle G, van der Meer F. Bovine viral diarrhea virus genomic variation within persistently infected cattle. INFECTION GENETICS AND EVOLUTION 2018; 58:218-223. [PMID: 29306002 DOI: 10.1016/j.meegid.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/21/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is a single stranded RNA virus in the family Flaviviridae that causes a form of persistent infection. If a fetus is infected in utero during the first 120days of gestation the resulting calf will be immunotolerant to the infecting strain and maintain the virus for life. These animals are epidemiologically important in maintaining BVDV on farms, but also present a unique opportunity to study quasispecies in vivo in the absence of significant selection by the host adaptive immune response. We used deep sequencing and novel analytical methods to characterize the viral populations within the mesenteric lymph nodes of 10 persistently infected animals. Our results indicate that the pattern of variability across the viral genome from animal to animal is very consistent within BVDV subgenotypes. However, the individual mutations that constitute this variation are not necessarily the same in each animal. Even in the absence of significant immune selection the structural genes of BVDV vary more extensively than the non-structural genes. These findings could be useful for future vaccine design against BVDV as well as for measuring and understanding patterns of variation in other ssRNA viruses, especially those that belong to the family Flaviviridae.
Collapse
Affiliation(s)
- A Chernick
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - A Ambagala
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - K Orsel
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J D Wasmuth
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - G van Marle
- Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - F van der Meer
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag. J Virol 2018; 92:JVI.01582-17. [PMID: 29093094 DOI: 10.1128/jvi.01582-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023] Open
Abstract
The family Flaviviridae consists of four genera, Flavivirus, Pestivirus, Pegivirus, and Hepacivirus, and comprises important pathogens of human and animals. Although the construction of recombinant viruses carrying reporter genes encoding fluorescent and bioluminescent proteins has been reported, the stable insertion of foreign genes into viral genomes retaining infectivity remains difficult. Here, we applied the 11-amino-acid subunit derived from NanoLuc luciferase to the engineering of the Flaviviridae viruses and then examined the biological characteristics of the viruses. We successfully generated recombinant viruses carrying the split-luciferase gene, including dengue virus, Japanese encephalitis virus, hepatitis C virus (HCV), and bovine viral diarrhea virus. The stability of the viruses was confirmed by five rounds of serial passages in the respective susceptible cell lines. The propagation of the recombinant luciferase viruses in each cell line was comparable to that of the parental viruses. By using a purified counterpart luciferase protein, this split-luciferase assay can be applicable in various cell lines, even when it is difficult to transduce the counterpart gene. The efficacy of antiviral reagents against the recombinant viruses could be monitored by the reduction of luciferase expression, which was correlated with that of viral RNA, and the recombinant HCV was also useful to examine viral dynamics in vivo Taken together, our findings indicate that the recombinant Flaviviridae viruses possessing the split NanoLuc luciferase gene generated here provide powerful tools to understand viral life cycle and pathogenesis and a robust platform to develop novel antivirals against Flaviviridae viruses.IMPORTANCE The construction of reporter viruses possessing a stable transgene capable of expressing specific signals is crucial to investigations of viral life cycle and pathogenesis and the development of antivirals. However, it is difficult to maintain the stability of a large foreign gene, such as those for fluorescence and bioluminescence, after insertion into a viral genome. Here, we successfully generated recombinant Flaviviridae viruses carrying the 11-amino-acid subunit derived from NanoLuc luciferase and demonstrated that these viruses are applicable to in vitro and in vivo experiments, suggesting that these recombinant Flaviviridae viruses are powerful tools for increasing our understanding of viral life cycle and pathogenesis and that these recombinant viruses will provide a robust platform to develop antivirals against Flaviviridae viruses.
Collapse
|
18
|
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1260-1272. [PMID: 28735096 PMCID: PMC5595650 DOI: 10.1016/j.bbalip.2017.07.006] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, United States.
| | | |
Collapse
|
19
|
Chernick A, van der Meer F. Evolution of Bovine viral diarrhea virus in Canada from 1997 to 2013. Virology 2017; 509:232-238. [PMID: 28668732 DOI: 10.1016/j.virol.2017.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a rapidly evolving, single-stranded RNA virus and a production limiting pathogen of cattle worldwide. 79 viral isolates collected between 1997 and 2013 in Canada were subjected to next-generation sequencing. Bayesian phylogenetics was used to assess the evolution of this virus. A mean substitution rate of 1.4×10-3 substitutions/site/year was found across both BVDV1 and BVDV2. Evolutionary rates in the E2 gene were slightly faster than other regions. We also identified population structures below the sub-genotype level that likely have phenotypic implications. Two distinct clusters within BVDV2a are present and can be differentiated, in part, by a tyrosine to isoleucine mutation at position 963 in the E2 protein, a position implicated in the antigenicity of BVDV1 isolates. Distinct clustering within all sub-genotypes, particularly BVDV2a, is apparent and could lead to new levels of genotypic classification. Continuous monitoring of emerging variants is therefore necessary.
Collapse
Affiliation(s)
- Adam Chernick
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Frank van der Meer
- Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
20
|
Dubrau D, Tortorici MA, Rey FA, Tautz N. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis. PLoS Pathog 2017; 13:e1006134. [PMID: 28151973 PMCID: PMC5308820 DOI: 10.1371/journal.ppat.1006134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/14/2017] [Accepted: 12/16/2016] [Indexed: 01/20/2023] Open
Abstract
The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation. Many positive-strand RNA viruses replicate without transcribing subgenomic RNAs otherwise often used to temporally coordinate the expression of proteins involved either in genome replication (early) or virion formation (late). Instead, the RNA genomes of the Flaviviridae are translated into a single polyprotein. Their nonstructural proteins (NS), while not present in the virions, are known to be crucially involved in RNA replication and virion formation. The important question how the same proteins form specific complexes required for fundamentally different aspects of the viral replication cycle is not solved yet. For pestiviruses the mature NS3/4A complex is an essential component of the viral RNA-replicase but is incapable of participating in virion morphogenesis which in turn depends on uncleaved NS2-3 in complex with NS4A. However, a gain of function mutation in NS3 enabled the NS3/4A complex to function in virion assembly. Using structure guided mutagenesis in combination with functional studies we identified the interface between NS3 and the C-terminal NS4A region as a module critical for the decision whether a NS3/4A complex serves in RNA replication or as a packaging component. Thus, we propose that subtle changes in local protein interactions represent decisive switches in viral complex formation pathways.
Collapse
Affiliation(s)
- Danilo Dubrau
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
| | - M. Alejandra Tortorici
- Institut Pasteur, Unité de Virologie Structurale, Paris, France
- CNRS UMR 3569 Virologie, Paris, France
| | - Félix A. Rey
- Institut Pasteur, Unité de Virologie Structurale, Paris, France
- CNRS UMR 3569 Virologie, Paris, France
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Luebeck, Luebeck, Germany
- * E-mail:
| |
Collapse
|
21
|
Schwarz L, Riedel C, Högler S, Sinn LJ, Voglmayr T, Wöchtl B, Dinhopl N, Rebel-Bauder B, Weissenböck H, Ladinig A, Rümenapf T, Lamp B. Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence. Vet Res 2017; 48:1. [PMID: 28057061 PMCID: PMC5217315 DOI: 10.1186/s13567-016-0406-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
In 2013, several Austrian piglet-producing farms recorded outbreaks of action-related repetitive myoclonia in newborn piglets (“shaking piglets”). Malnutrition was seen in numerous piglets as a complication of this tremor syndrome. Overall piglet mortality was increased and the number of weaned piglets per sow decreased by more than 10% due to this outbreak. Histological examination of the CNS of affected piglets revealed moderate hypomyelination of the white substance in cerebellum and spinal cord. We detected a recently discovered pestivirus, termed atypical porcine pestivirus (APPV) in all these cases by RT-PCR. A genomic sequence and seven partial sequences were determined and revealed a 90% identity to the US APPV sequences and 92% identity to German sequences. In confirmation with previous reports, APPV genomes were identified in different body fluids and tissues including the CNS of diseased piglets. APPV could be isolated from a “shaking piglet”, which was incapable of consuming colostrum, and passaged on different porcine cells at very low titers. To assess the antibody response a blocking ELISA was developed targeting NS3. APPV specific antibodies were identified in sows and in PCR positive piglets affected by congenital tremor (CT). APPV genomes were detected continuously in piglets that gradually recovered from CT, while the antibody titers decreased over a 12-week interval, pointing towards maternally transmitted antibodies. High viral loads were detectable by qRT-PCR in saliva and semen of infected young adults indicating a persistent infection.
Collapse
Affiliation(s)
- Lukas Schwarz
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Christiane Riedel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Sandra Högler
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Leonie J Sinn
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Thomas Voglmayr
- Traunkreis Vet Clinic, Großendorf 3, 4551, Ried im Traunkreis, Austria
| | - Bettina Wöchtl
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Nora Dinhopl
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Barbara Rebel-Bauder
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Benjamin Lamp
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
22
|
Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses. J Virol 2015; 89:11668-80. [PMID: 26355097 DOI: 10.1128/jvi.01646-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED A peculiarity of the Flaviviridae is the critical function of nonstructural (NS) proteins for virus particle formation. For pestiviruses, like bovine viral diarrhea virus (BVDV), uncleaved NS2-3 represents an essential factor for virion morphogenesis, while NS3 is an essential component of the viral replicase. Accordingly, in natural pestivirus isolates, processing at the NS2-3 cleavage site is not complete, to allow for virion morphogenesis. Virion morphogenesis of the related hepatitis C virus (HCV) shows a major deviation from that of pestiviruses: while RNA replication also requires free NS3, virion formation does not depend on uncleaved NS2-NS3. Recently, we described a BVDV-1 chimera based on strain NCP7 encompassing the NS2-4B*-coding region of strain Osloss (E. Lattwein, O. Klemens, S. Schwindt, P. Becher, and N. Tautz, J Virol 86:427-437, 2012, doi:10.1128/JVI.06133-11). This chimera allowed for the production of infectious virus particles in the absence of uncleaved NS2-3. The Osloss sequence deviates in the NS2-4B* part from NCP7 in 48 amino acids and also has a ubiquitin insertion between NS2 and NS3. The present study demonstrates that in the NCP7 backbone, only two amino acid exchanges in NS2 (E1576V) and NS3 (V1721A) are sufficient and necessary to allow for efficient NS2-3-independent virion morphogenesis. The adaptation of a bicistronic virus encompassing an internal ribosomal entry site element between the NS2 and NS3 coding sequences to efficient virion morphogenesis led to the identification of additional amino acids in E2, NS2, and NS5B that are critically involved in this process. The surprisingly small requirements for approximating the packaging schemes of pestiviruses and HCV with respect to the NS2-3 region is in favor of a common mechanism in an ancestral virus. IMPORTANCE For positive-strand RNA viruses, the processing products of the viral polyprotein serve in RNA replication as well as virion morphogenesis. For bovine viral diarrhea virus, nonstructural protein NS2-3 is of critical importance to switch between these processes. While free NS3 is essential for RNA replication, uncleaved NS2-3, which accumulates over time in the infected cell, is required for virion morphogenesis. In contrast, the virion morphogenesis of the related hepatitis C virus is independent from uncleaved NS2-NS3. Here, we demonstrate that pestiviruses can adapt to virion morphogenesis in the absence of uncleaved NS2-3 by just two amino acid exchanges. While the mechanism behind this gain of function remains elusive, the fact that it can be achieved by such minor changes is in line with the assumption that an ancestral virus already used this mechanism but lost it in the course of adapting to a new host/infection strategy.
Collapse
|
23
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
24
|
Zhang C, Kang K, Ning P, Peng Y, Lin Z, Cui H, Cao Z, Wang J, Zhang Y. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication. Virology 2015; 482:9-18. [PMID: 25827528 DOI: 10.1016/j.virol.2015.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling via to its ability to interact with various cellular proteins. Here, HSP70/NS5A complex formation is confirmed by coimmunoprecipitation and GST-pulldown studies. Additionally, the N-terminal amino acids (29-240) of NS5A were identified as the interaction region through in vivo deletion analyses, and confocal microscopy showed that NS5A and HSP70 colocalized in the cytoplasm. Overexpression of HSP70 via the eukaryotic expression plasmid pDsRED N1 or lentivirus significantly promoted viral RNA synthesis. Whereas the knockdown of HSP70 by lentivirus-mediated shRNA or inhibition by quercetin markedly decreased the viral load. These data suggest that HSP70 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of HSP70 protein functions may be beneficial for developing new strategies to treat CSFV infection.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yangxin Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Hongjie Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
25
|
Isken O, Langerwisch U, Jirasko V, Rehders D, Redecke L, Ramanathan H, Lindenbach BD, Bartenschlager R, Tautz N. A conserved NS3 surface patch orchestrates NS2 protease stimulation, NS5A hyperphosphorylation and HCV genome replication. PLoS Pathog 2015; 11:e1004736. [PMID: 25774920 PMCID: PMC4361677 DOI: 10.1371/journal.ppat.1004736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | | | - Vlastimil Jirasko
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dirk Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Harish Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, Germany
- * E-mail:
| |
Collapse
|
26
|
Hepatitis C virus and lipid droplets: finding a niche. Trends Mol Med 2014; 21:34-42. [PMID: 25496657 DOI: 10.1016/j.molmed.2014.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) causes serious liver disease in chronically infected individuals. Infectious virions are released from hepatocytes as lipoprotein complexes, indicating that the virus interacts with very low density lipoprotein (VLDL) assembly to propagate. The primary source of lipid for incorporation into VLDL is cytoplasmic lipid droplets (LDs). This organelle is targeted by two virus-encoded proteins as part of a process essential for virion morphogenesis. Moreover, LDs regulate infection. A common condition in HCV-infected individuals is steatosis, characterized by an accumulation of LDs. The mechanisms underlying development of steatosis include direct effects of the virus on lipid metabolism. This review reveals new insights into HCV infection and a further twist to the growing list of functions performed by LDs.
Collapse
|
27
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|