1
|
Saeed M, Alamri MA, Rashid MAR, Javed MR, Azeem F, Bashir Z, Alanzi AR, Muhseen ZT, Almusallam SY, Hussain K. Identification of novel inhibitors against VP40 protein of Marburg virus by integrating molecular modeling and dynamics approaches. J Biomol Struct Dyn 2025; 43:3942-3955. [PMID: 38178383 DOI: 10.1080/07391102.2023.2300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Marburg virus (MV) is a highly etiological agent of haemorrhagic fever in humans and has spread across the world. Its outbreaks caused a 23-90% human death rate. However, there are currently no authorized preventive or curative measures yet. VP40 is the MV matrix protein, which builds protein shell underneath the viral envelope and confers hallmark filamentous. VP40 alone is able to induce assembly and budding of filamentous virus-like particles (VLPs), which resemble authentic virions. As a result, this research is credited with clarifying the function of VP40 and leading to the discovery of new therapeutic targets effective in combating MV disease (MVD). Virtual screening, molecular docking and molecular dynamics (MD) simulation were used to find the putative active chemicals based on a 3D pharmacophore model of the protein's active site cavity. Initially, andrographidine-C, a potent inhibitor was selected for the development of the pharmacophore model. Later, a library of 30,000 compounds along with the andrographidine-C was docked against VP40 protein. Three best hits including avanafil, diuvaretin and macrourone were subjected to further MD simulation analysis, as these compounds had better binding affinities as compared to andrographidine-C. Furthermore, throughout the 100 ns simulations, the back bone of VP40 protein in presence of avanafil, diuvaretin and macrourone remained stable which was further validated by MM-PBSA analysis. Additionally, all of these compounds depict maximum drug-like properties. The predicted drugs based on the ligand, avanafil, diuvaretin and macrourone could be exploited and developed as an alternative or complementary therapy for the treatment of MVD.
Collapse
Affiliation(s)
- Muhammad Saeed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarmina Bashir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdullah R Alanzi
- Department of Pharmacogonsy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Shahad Youseff Almusallam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khadim Hussain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Sci Rep 2019; 9:12171. [PMID: 31434934 PMCID: PMC6704159 DOI: 10.1038/s41598-019-48507-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and sequentially, NF-κB and Jak-Stat pathways.
Collapse
Affiliation(s)
- Florian Sonthonnax
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Benoit Besson
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Emilie Bonnaud
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Grégory Jouvion
- Unité de Neuropathologie expérimentale, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - David Merino
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Florence Larrous
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Hervé Bourhy
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| |
Collapse
|
4
|
Olejnik J, Hume AJ, Leung DW, Amarasinghe GK, Basler CF, Mühlberger E. Filovirus Strategies to Escape Antiviral Responses. Curr Top Microbiol Immunol 2019; 411:293-322. [PMID: 28685291 PMCID: PMC5973841 DOI: 10.1007/82_2017_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes the various strategies filoviruses use to escape host immune responses with a focus on innate immune and cell death pathways. Since filovirus replication can be efficiently blocked by interferon (IFN), filoviruses have evolved mechanisms to counteract both type I IFN induction and IFN response signaling pathways. Intriguingly, marburg- and ebolaviruses use different strategies to inhibit IFN signaling. This chapter also summarizes what is known about the role of IFN-stimulated genes (ISGs) in filovirus infection. These fall into three categories: those that restrict filovirus replication, those whose activation is inhibited by filoviruses, and those that have no measurable effect on viral replication. In addition to innate immunity, mammalian cells have evolved strategies to counter viral infections, including the induction of cell death and stress response pathways, and we summarize our current knowledge of how filoviruses interact with these pathways. Finally, this chapter delves into the interaction of EBOV with myeloid dendritic cells and macrophages and the associated inflammatory response, which differs dramatically between these cell types when they are infected with EBOV. In summary, we highlight the multifaceted nature of the host-viral interactions during filoviral infections.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher F Basler
- Microbial Pathogenesis, Georgia State University, Institute for Biomedical Sciences, Atlanta, GA, 30303, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
5
|
Abstract
Filovirus small animal disease models have so far been developed in laboratory mice, guinea pigs, and hamsters. Since immunocompetent rodents do not exhibit overt signs of disease following infection with wild-type filoviruses isolated from humans, rodent models have been established using adapted viruses produced through sequential passage in rodents. Rodent-adapted viruses target the same cells/tissues as the wild-type viruses, making rodents invaluable basic research tools for studying filovirus pathogenesis. Moreover, comparative analyses using wild-type and rodent-adapted viruses have provided beneficial insights into the molecular mechanisms of pathogenicity and acquisition of species-specific virulence. Additionally, wild-type filovirus infections in immunodeficient rodents have provided a better understanding of the host factors required for resistance to filovirus infection and of the immune response against the infection. This chapter provides comprehensive information on the filovirus rodent models and rodent-adapted filoviruses. Specifically, we summarize the clinical and pathological features of filovirus infections in all rodent models described to date, including the recently developed humanized and collaborative cross (CC) resource recombinant inbred (RI) intercrossed (CC-RIX) mouse models. We also cover the molecular determinants responsible for adaptation and virulence acquisition in a number of rodent-adapted filoviruses. This chapter clearly defines the characteristic and advantages/disadvantages of rodent models, helping to evaluate the practical use of rodent models in future filovirus studies.
Collapse
|
6
|
Abstract
Marburgviruses are closely related to ebolaviruses and cause a devastating disease in humans. In 2012, we published a comprehensive review of the first 45 years of research on marburgviruses and the disease they cause, ranging from molecular biology to ecology. Spurred in part by the deadly Ebola virus outbreak in West Africa in 2013-2016, research on all filoviruses has intensified. Not meant as an introduction to marburgviruses, this article instead provides a synopsis of recent progress in marburgvirus research with a particular focus on molecular biology, advances in animal modeling, and the use of Egyptian fruit bats in infection experiments.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, 02118, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, 02118, USA
| |
Collapse
|
7
|
Luthra P, Naidoo J, Pietzsch CA, De S, Khadka S, Anantpadma M, Williams CG, Edwards MR, Davey RA, Bukreyev A, Ready JM, Basler CF. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Res 2018; 158:288-302. [PMID: 30144461 DOI: 10.1016/j.antiviral.2018.08.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/27/2022]
Abstract
Specific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH). We generated compound SW835, the racemic version of GSK983 and demonstrated that SW835 and brequinar, another DHODH inhibitor, potently inhibit the MG assay and the replication of EBOV, vesicular stomatitis virus (VSV) and Zika (ZIKV) in vitro. Nucleoside and deoxynucleoside supplementation studies demonstrated that depletion of pyrimidine pools contributes to antiviral activity of these compounds. As reported for other DHODH inhibitors, SW835 and brequinar also induced expression of interferon stimulated genes (ISGs). ISG induction was demonstrated to occur without production of IFNα/β and independently of the IFNα receptor and was not blocked by EBOV-encoded suppressors of IFN signaling pathways. Furthermore, we demonstrated that transcription factor IRF1 is required for this ISG induction, and that IRF1 induction requires the DNA damage response kinase ATM. Therefore, de novo pyrimidine biosynthesis is critical for the replication of EBOV and other RNA viruses and inhibition of this pathway activates an ATM and IRF1-dependent innate immune response that subverts EBOV immune evasion functions.
Collapse
Affiliation(s)
- Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jacinth Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Colette A Pietzsch
- Department of Pathology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Sampriti De
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sudip Khadka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Alexander Bukreyev
- Department of Pathology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA; Department of Microbiology & Immunology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Guito JC, Albariño CG, Chakrabarti AK, Towner JS. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virology 2017; 501:147-165. [PMID: 27930961 PMCID: PMC11524407 DOI: 10.1016/j.virol.2016.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/10/2023]
Abstract
Filoviruses are highly lethal in humans and nonhuman primates, likely due to potent antagonism of host interferon (IFN) responses early in infection. Filoviral protein VP35 is implicated as the major IFN induction antagonist, while Ebola virus (EBOV) VP24 or Marburg virus (MARV) VP40 are known to block downstream IFN signaling. Despite progress elucidating EBOV and MARV antagonist function, those for most other filoviruses, including Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), Bundibugyo (BDBV) and Ravn (RAVV) viruses, remain largely neglected. Thus, using standardized vectors and reporter assays, we characterized activities by each IFN antagonist from all known ebolavirus and marburgvirus species side-by-side. We uncover noncanonical suppression of IFN induction by ebolavirus VP24, differing potencies by MARV and RAVV proteins, and intriguingly, weaker antagonism by VP24 of RESTV. These underlying molecular explanations for differential virulence in humans could guide future investigations of more-neglected filoviruses as well as treatment and vaccine studies.
Collapse
Affiliation(s)
- Jonathan C Guito
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - César G Albariño
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ayan K Chakrabarti
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jonathan S Towner
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
9
|
Banadyga L, Dolan MA, Ebihara H. Rodent-Adapted Filoviruses and the Molecular Basis of Pathogenesis. J Mol Biol 2016; 428:3449-66. [PMID: 27189922 PMCID: PMC5010511 DOI: 10.1016/j.jmb.2016.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Ebola, Marburg, and Ravn viruses, all filoviruses, are the causative agents of severe hemorrhagic fever. Much of what we understand about the pathogenesis of filovirus disease is derived from work with animal models, including nonhuman primates, which are considered the "gold standard" filovirus model since they faithfully recapitulate the clinical hallmarks of filovirus disease. However, rodent models, including the mouse, guinea pig, and hamster, also exist for Ebola, Marburg, and Ravn viruses, and although they may not reproduce all the clinical signs of filovirus disease, thanks to their relative ease of use and low cost, they are often the first choice for initial descriptions of virus pathogenesis and evaluation of antiviral prophylactics and therapeutics. Since filoviruses do not cause significant disease in adult, immunocompetent rodents, these models rely on "rodent-adapted" viruses that have been passaged several times through their host until virulence and lethality are achieved. In the process of adaptation, the viruses acquire numerous nucleotide/amino acid mutations that contribute to virulence in their rodent host. Interestingly, virus protein 24 (VP24) and nucleoprotein (NP) appear to be major virulence factors for ebolaviruses in rodents, whereas VP40 appears to be the major virulence factor for marburgviruses. By characterizing these mutations and understanding the molecular mechanisms that lead to the acquisition of virulence, we can gain better insight into the pathogenic processes that underlie filovirus disease in humans. These processes, and the viral and/or cellular proteins that contribute to them, will make attractive targets for the development of novel therapeutics and counter-measures.
Collapse
Affiliation(s)
- Logan Banadyga
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
10
|
Schmidt KM, Mühlberger E. Marburg Virus Reverse Genetics Systems. Viruses 2016; 8:E178. [PMID: 27338448 PMCID: PMC4926198 DOI: 10.3390/v8060178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.
Collapse
Affiliation(s)
- Kristina Maria Schmidt
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems 17493, Germany.
| | - Elke Mühlberger
- Department of Microbiology, School of Medicine, Boston University, 620 Albany Street, Boston, MA 02118, USA.
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
11
|
Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015; 13:663-76. [PMID: 26439085 DOI: 10.1038/nrmicro3524] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- School of Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Gaya K Amarasinghe
- The Division of Biology &Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
12
|
Basler CF. Innate immune evasion by filoviruses. Virology 2015; 479-480:122-30. [DOI: 10.1016/j.virol.2015.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/17/2015] [Indexed: 01/07/2023]
|
13
|
Feagins AR, Basler CF. Amino Acid Residue at Position 79 of Marburg Virus VP40 Confers Interferon Antagonism in Mouse Cells. J Infect Dis 2015; 212 Suppl 2:S219-25. [PMID: 25926685 DOI: 10.1093/infdis/jiv010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Marburg viruses (MARVs) cause highly lethal infections in humans and nonhuman primates. Mice are not generally susceptible to MARV infection; however, if the strain is first adapted to mice through serial passaging, it becomes able to cause disease in this animal. A previous study correlated changes accrued during mouse adaptation in the VP40 gene of a MARV strain known as Ravn virus (RAVV) with an increased capacity to inhibit interferon (IFN) signaling in mouse cell lines. The MARV strain Ci67, which belongs to a different phylogenetic clade than RAVV, has also been adapted to mice and in the process the Ci67 VP40 acquired a different collection of genetic changes than did RAVV VP40. Here, we demonstrate that the mouse-adapted Ci67 VP40 more potently antagonizes IFN-α/β-induced STAT1 and STAT2 tyrosine phosphorylation, gene expression, and antiviral activity in both mouse and human cell lines, compared with the parental Ci67 VP40. Ci67 VP40 is also demonstrated to target the activation of kinase Jak1. A single change at VP40 residue 79 was found to be sufficient for the increased VP40 IFN antagonism. These data argue that VP40 IFN-antagonist activity plays a key role in MARV pathogenesis in mice.
Collapse
Affiliation(s)
- Alicia R Feagins
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Gustin JK, Bai Y, Moses AV, Douglas JL. Ebola Virus Glycoprotein Promotes Enhanced Viral Egress by Preventing Ebola VP40 From Associating With the Host Restriction Factor BST2/Tetherin. J Infect Dis 2015; 212 Suppl 2:S181-90. [PMID: 25821226 DOI: 10.1093/infdis/jiv125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. RESULTS We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. CONCLUSIONS These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Ying Bai
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Janet L Douglas
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| |
Collapse
|