1
|
Schaub A, David SC, Glas I, Klein LK, Violaki K, Terrettaz C, Motos G, Bluvshtein N, Luo B, Pohl M, Hugentobler W, Nenes A, Krieger UK, Peter T, Stertz S, Kohn T. Impact of organic compounds on the stability of influenza A virus in deposited 1-μL droplets. mSphere 2024; 9:e0041424. [PMID: 39171937 PMCID: PMC11423574 DOI: 10.1128/msphere.00414-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
The composition of respiratory fluids influences the stability of viruses in exhaled aerosol particles and droplets, though the role of respiratory organics in modulating virus stability remains poorly understood. This study investigates the effect of organic compounds on the stability of influenza A virus (IAV) in deposited droplets. We compare the infectivity loss of IAV at different relative humidities (RHs) over the course of 1 h in 1-µL droplets consisting of phosphate-buffered saline (without organics), synthetic lung fluid, or nasal mucus (both containing organics). We show that IAV stability increases with increasing organic:salt ratios. Among the various organic species, proteins are identified as the most protective component, with smaller proteins stabilizing IAV more efficiently at the same mass concentration. Organics act by both increasing the efflorescence RH and shortening the drying period until efflorescence at a given RH. This research advances our mechanistic understanding of how organics stabilize exhaled viruses and thus influence their inactivation in respiratory droplets. IMPORTANCE This study investigates how the composition of respiratory fluids affects the stability of viruses in exhaled droplets. Understanding virus stability in droplets is important as it impacts how viruses spread and how we can combat them. We focus on influenza A virus (IAV) and investigate how different organic compounds found in lung fluid and nasal mucus protect the virus from inactivation. We demonstrate that the ratio of organics to salt in the fluid is an indicator of IAV stability. Among organics, small proteins are particularly effective at protecting IAV. Their effect is in part explained by the proteins' influence on the crystallization of salts in the droplets, thereby shielding the viruses from prolonged exposure to harmful salt concentrations. Understanding these mechanisms helps us grasp how viruses sustain their infectivity over time in respiratory droplets, contributing to efforts in controlling infectious diseases.
Collapse
Affiliation(s)
- Aline Schaub
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shannon C David
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Liviana K Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Restori KH, Septer KM, Field CJ, Patel DR, VanInsberghe D, Raghunathan V, Lowen AC, Sutton TC. Risk assessment of a highly pathogenic H5N1 influenza virus from mink. Nat Commun 2024; 15:4112. [PMID: 38750016 PMCID: PMC11096306 DOI: 10.1038/s41467-024-48475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.
Collapse
Affiliation(s)
- Katherine H Restori
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
| | - Kayla M Septer
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Cassandra J Field
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Devanshi R Patel
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Vedhika Raghunathan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence of Influenza Research and Response (CEIRR), Atlanta, GA, USA
| | - Troy C Sutton
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, USA.
- Emory Center of Excellence of Influenza Research and Response (CEIRR), University Park, PA, USA.
- The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Lorenz C, Libonati R, Belém LBC, Oliveira A, Chiaravalloti RM, Nunes AV, Batista EKL, Fernandes GW, Chiaravalloti-Neto F, Damasceno-Junior GA, Berlinck CN, Roque FO. Wildfire and smoke association with COVID-19 cases in the Pantanal wetland, Brazil. Public Health 2023; 225:311-319. [PMID: 37972494 DOI: 10.1016/j.puhe.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES In 2020, Brazil experienced two concurrent public health challenges related to respiratory disease: wildfires and increased mortality due to the coronavirus (COVID-19) pandemic. Smoke from these wildfires contributed to a variety of air pollutants, including fine particulate matter (PM2.5). The present study aims to investigate the effects of environmental and socio-economic factors on COVID-19 hospitalisation in the Pantanal. STUDY DESIGN Ecological retrospective study. METHODS We applied a multilevel negative binomial model to relate monthly hospitalisation data with environmental variables. RESULTS We showed that monthly PM2.5 concentration levels had the greatest influence on the increase in hospitalisations by COVID-19 in the elderly (23 % increase). The Gini index, a coefficient that reflects income inequalities, also had a positive association with COVID-19 hospitalisations (18 % increase). Higher temperatures and humidity were protective factors, showing a 15 % and 14 % decrease in hospitalisations, respectively. The results of the present study suggest that high PM2.5 exposure contributed to the increase in COVID-19 hospitalisations, as did the social inequalities of each municipality. CONCLUSIONS The present study highlights the importance of gathering evidence supported by multiple information sources to guide decision-making and identify populations needing better public health systems.
Collapse
Affiliation(s)
- C Lorenz
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513 - Butantã, São Paulo/SP, 05508-060, São Paulo, Brazil.
| | - R Libonati
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - L B C Belém
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - A Oliveira
- Departamento de Meteorologia, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, 21941-916, Rio de Janeiro, Brazil
| | - R M Chiaravalloti
- University College London, Anthropology Department, 14 Taviton Street, WC1H 0BW, London, United Kingdom
| | - A V Nunes
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil
| | - E K L Batista
- National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Estrada Municipal Hisaichi Takebayashi 8600, Atibaia, 12952-011, São Paulo, Brazil
| | - G W Fernandes
- Evolutionary Ecology & Biodiversity (DGEE ICB) Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - F Chiaravalloti-Neto
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, Av. Dr. Arnaldo 715, 01246-904, São Paulo/SP, Brazil
| | - G A Damasceno-Junior
- Laboratório de Botânica/Laboratório de Ecologia Vegetal, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil
| | - C N Berlinck
- National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Estrada Municipal Hisaichi Takebayashi 8600, Atibaia, 12952-011, São Paulo, Brazil
| | - F O Roque
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Av. Costa e Silva - Pioneiros, MS, 79070-900, Campo Grande, Brazil; Centre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, 1 James Cook Dr, Douglas, Cairns, 4811, Queensland, Australia
| |
Collapse
|
4
|
Bolton KJ, McCaw JM, Dafilis MP, McVernon J, Heffernan JM. Seasonality as a driver of pH1N12009 influenza vaccination campaign impact. Epidemics 2023; 45:100730. [PMID: 38056164 DOI: 10.1016/j.epidem.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
Although the most recent respiratory virus pandemic was triggered by a Coronavirus, sustained and elevated prevalence of highly pathogenic avian influenza viruses able to infect mammalian hosts highlight the continued threat of pandemics of influenza A virus (IAV) to global health. Retrospective analysis of pandemic outcomes, including comparative investigation of intervention efficacy in different regions, provide important contributions to the evidence base for future pandemic planning. The swine-origin IAV pandemic of 2009 exhibited regional variation in onset, infection dynamics and annual infection attack rates (IARs). For example, the UK experienced three severe peaks of infection over two influenza seasons, whilst Australia experienced a single severe wave. We adopt a seasonally forced 2-subtype model for the transmission of pH1N12009 and seasonal H3N2 to examine the role vaccination campaigns may play in explaining differences in pandemic trajectories in temperate regions. Our model differentiates between the nature of vaccine- and infection-acquired immunity. In particular, we assume that immunity triggered by infection elicits heterologous cross-protection against viral shedding in addition to long-lasting neutralising antibody, whereas vaccination induces imperfect reduction in susceptibility. We employ an Approximate Bayesian Computation (ABC) framework to calibrate the model using data for pH1N12009 seroprevalence, relative subtype dominance, and annual IARs for Australia and the UK. Heterologous cross-protection substantially suppressed the pandemic IAR over the posterior, with the strength of protection against onward transmission inversely correlated with the initial reproduction number. We show that IAV pandemic timing relative to the usual seasonal influenza cycle influenced the size of the initial waves of pH1N12009 in temperate regions and the impact of vaccination campaigns.
Collapse
Affiliation(s)
- Kirsty J Bolton
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mathew P Dafilis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jodie McVernon
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Australia
| | - Jane M Heffernan
- Centre for Disease Modelling, Mathematics & Statistics, York University, Canada
| |
Collapse
|
5
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
6
|
Liang Y, Sun Z, Hua W, Li D, Han L, Liu J, Huo L, Zhang H, Zhang S, Zhao Y, He X. Spatiotemporal effects of meteorological conditions on global influenza peaks. ENVIRONMENTAL RESEARCH 2023; 231:116171. [PMID: 37230217 DOI: 10.1016/j.envres.2023.116171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Numerous studies have suggested that meteorological conditions such as temperature and absolute humidity are highly indicative of influenza outbreaks. However, the explanatory power of meteorological factors on the seasonal influenza peaks varied widely between countries at different latitudes. OBJECTIVES We aimed to explore the modification effects of meteorological factors on the seasonal influenza peaks in multi-countries. METHODS Data on influenza positive rate (IPR) were collected across 57 countries and data on meteorological factors were collected from ECMWF Reanalysis v5 (ERA5). We used linear regression and generalized additive models to investigate the spatiotemporal associations between meteorological conditions and influenza peaks in cold and warm seasons. RESULTS Influenza peaks were significantly correlated with months with both lower and higher temperatures. In temperate countries, the average intensity of cold season peaks was stronger than that of warm season peaks. However, the average intensity of warm season peaks was stronfger than of cold season peaks in tropical countries. Temperature and specific humidity had synergistic effects on influenza peaks at different latitudes, stronger in temperate countries (cold season: R2=0.90; warm season: R2=0.84) and weaker in tropical countries (cold season: R2=0.64; warm season: R2=0.03). Furthermore, the effects could be divided into cold-dry and warm-humid modes. The temperature transition threshold between the two modes was 16.5-19.5 °C. During the transition from cold-dry mode to warm-humid mode, the average 2 m specific humidity increased by 2.15 times, illustrating that transporting a large amount of water vapor may compensate for the negative effect of rising temperatures on the spread of the influenza virus. CONCLUSION Differences in the global influenza peaks were related to the synergistic influence of temperature and specific humidity. The global influenza peaks could be divided into cold-dry and warm-humid modes, and specific thresholds of meteorological conditions were needed for the transition of the two modes.
Collapse
Affiliation(s)
- Yinglin Liang
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China; State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Zhaobin Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China.
| | - Wei Hua
- School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Demin Li
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jian Liu
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Liming Huo
- Cardiology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Hongchun Zhang
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, 100192, China
| | - Shuwen Zhang
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Yuxin Zhao
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), CMA, Beijing, 100081, China
| | - Xiaonan He
- Emergency Critical Care Center, Beijing AnZhen Hospital, Capital Medical University, Beijing, 100029, China
| |
Collapse
|
7
|
Wu Y, Liang M, Liang Q, Yang X, Sun Y. A distributed lag non-linear time-series study of ambient temperature and healthcare-associated infections in Hefei, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:258-267. [PMID: 34915779 DOI: 10.1080/09603123.2021.2017862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Little is known about the effects of temperature on healthcare-associated infections (HAIs). A distributed lag non-linear model was used to estimate the association between ambient temperature and HAIs in Hefei, China. In total, 9,592 HAIs were included. The effect of low temperature (-0.1°C, 2.5th percentile) was significant on the current day (RR = 1.108, 95%CI:1.003-1.222), and then appeared on the 4th day (RR = 1.045, 95%CI:1.007-1.084) and the 5th day (RR = 1.033, 95%CI:1.006-1.061). The cumulative lag effects of low temperature lasted from the 5th to 10th days (RR = 1.123-1.143), and a long-term cumulative lag effect was observed on the 14th day (RR = 1.157, 95%CI:1.001-1.338). The lag effect of high temperature (31.0°C, 97.5th percentile) was not statistically significant. However, the effects of temperatures on HAIs were not significant among gender or age subgroups. This study suggests that the low temperatures have acute and lag effects on HAIs in Hefei, China.
Collapse
Affiliation(s)
- Yile Wu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Hospital infection Prevention and Control, Children's Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiyao Yang
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Center for Evidence-Based Practice, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Wilasang C, Suttirat P, Chadsuthi S, Wiratsudakul A, Modchang C. Competitive evolution of H1N1 and H3N2 influenza viruses in the United States: A mathematical modeling study. J Theor Biol 2022; 555:111292. [PMID: 36179800 DOI: 10.1016/j.jtbi.2022.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Seasonal influenza causes vast public health and economic impact globally. The prevention and control of the annual epidemics remain a challenge due to the antigenic evolution of the viruses. Here, we presented a novel modeling framework based on changes in amino acid sequences and relevant epidemiological data to retrospectively investigate the competitive evolution and transmission of H1N1 and H3N2 influenza viruses in the United States during October 2002 and April 2019. To do so, we estimated the time-varying disease transmission rate from the reported influenza cases and the time-varying antigenic change rate of the viruses from the changes in amino acid sequences. By incorporating the time-varying antigenic change rate into the transmission models, we found that the models could capture the evolutionary transmission dynamics of influenza viruses in the United States. Our modeling results also showed that the antigenic change of the virus plays an essential role in seasonal influenza dynamics.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pikkanet Suttirat
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand.
| |
Collapse
|
9
|
Zhou L, Yang H, Pan W, Xu J, Feng Y, Zhang W, Shao Z, Li T, Li S, Huang T, Wang C, Li W, Li M, He S, Zhan Y, Pan M. Association between meteorological factors and the epidemics of influenza (sub)types in a subtropical basin of Southwest China. Epidemics 2022; 41:100650. [PMID: 36375312 DOI: 10.1016/j.epidem.2022.100650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The effects of climatic conditions on the prevalence of individual influenza (sub)types are not well understood in the subtropics. This study aims to evaluate the associations between meteorological factors and seasonal epidemics of A(H3N2), A(H1N1)pdm09, and type B influenza viruses, as well as to estimate the interactions between climatic variables in a subtropical basin region. METHODS The seasonality of influenza (sub)types during 2010-2019 were characterized in Chengdu Plain Economic Zone, a densely populated and highly humid plain area in Sichuan Basin in subtropical Southwest China. Generalized additive models were adopted to assess the independent exposure-response relationship between meteorological variables and influenza prevalence. The interactions of meteorological variables were further estimated using bivariate response surface models and strata models. RESULTS Our analyses indicated that the temperature, relative humidity, and absolute humidity have exhibited a major influence on influenza infection in Chengdu Plain Economic Zone. Low temperature was shown to promote the prevalence of A(H1N1)pdm09 and type B in winter-spring days at all levels of relative humidity. High risk of A(H3N2) infections was observed at low temperature or high temperature, and at higher relative humidity. Moreover, absolute humidity decreased or increased influenza (sub)type infections within different ranges. CONCLUSIONS This study found different nonlinear relationships between meteorological factors and the seasonality of influenza (sub)types, as well as significant interactive effects between climatic variables, contributing to the research on the climate drivers of influenza prevalence in warm-humid basin regions in the subtropics.
Collapse
Affiliation(s)
- Linlin Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huiping Yang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Wen Pan
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Jianan Xu
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yuliang Feng
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Weihua Zhang
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Zerui Shao
- College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Tianshu Li
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Shuang Li
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Ting Huang
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Chuang Wang
- Department of Medical Technology, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Wanyi Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mingyuan Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shusen He
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Ming Pan
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China.
| |
Collapse
|
10
|
Thornton GM, Fleck BA, Dandnayak D, Kroeker E, Zhong L, Hartling L. The impact of heating, ventilation and air conditioning (HVAC) design features on the transmission of viruses, including the 2019 novel coronavirus (COVID-19): A systematic review of humidity. PLoS One 2022; 17:e0275654. [PMID: 36215321 PMCID: PMC9550073 DOI: 10.1371/journal.pone.0275654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
The aerosol route has been a pathway for transmission of many viruses. Similarly, recent evidence has determined aerosol transmission for SARS-CoV-2 to be significant. Consequently, public health officials and professionals have sought data regarding the role of Heating, Ventilation, and Air Conditioning (HVAC) features as a means to mitigate transmission of viruses, particularly coronaviruses. Using international standards, a systematic review was conducted to comprehensively identify and synthesize research examining the effect of humidity on transmission of coronaviruses and influenza. The results from 24 relevant studies showed that: increasing from mid (40-60%) to high (>60%) relative humidity (RH) for SARS-CoV-2 was associated with decreased virus survival; although SARS-CoV-2 results appear consistent, coronaviruses do not all behave the same; increasing from low (<40%) to mid RH for influenza was associated with decreased persistence, infectivity, viability, and survival, however effects of increased humidity from mid to high for influenza were not consistent; and medium, temperature, and exposure time were associated with inconsistency in results for both coronaviruses and influenza. Adapting humidity to mitigate virus transmission is complex. When controlling humidity as an HVAC feature, practitioners should take into account virus type and temperature. Future research should also consider the impact of exposure time, temperature, and medium when designing experiments, while also working towards more standardized testing procedures. Clinical trial registration: PROSPERO 2020 CRD42020193968.
Collapse
Affiliation(s)
- Gail M. Thornton
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Brian A. Fleck
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dhyey Dandnayak
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Emily Kroeker
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lexuan Zhong
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Lisa Hartling
- Alberta Research Centre for Health Evidence, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Longitudinal surveillance of influenza in Japan, 2006-2016. Sci Rep 2022; 12:12026. [PMID: 35835833 PMCID: PMC9281223 DOI: 10.1038/s41598-022-15867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
We analysed 2006–2016 national influenza surveillance data in Japan with regards to age-, sex-, and predominant virus-related epidemic patterns and the prevalence of serum influenza virus antibodies. We found a significant increase in influenza prevalence in both children (≤ 19 years old) and adults (≥ 20 years old) over time. The influenza prevalence was higher in children (0.33 [95% CI 0.26–0.40]) than in adults (0.09 [95% CI 0.07–0.11]). Additionally, the mean prevalence of antibodies for A(H1N1)pdm09 and A(H3N2) was significantly higher in children than in adults, whereas the mean prevalence of antibodies for B lineages was relatively low in both children and adults. There was a biennial cycle of the epidemic peak in children, which was associated with a relatively higher prevalence of B lineages. The female-to-male ratios of the influenza prevalence were significantly different in children (≤ 19 years old; 1.10 [95% CI:1.08–1.13]), adults (20–59 years old; 0.79 [95% CI 0.75–0.82]), and older adults (≥ 60 years old; 1.01 [95% CI 0.97–1.04]). The significant increase in influenza prevalence throughout the study period suggests a change of immunity to influenza infection. Long-term surveillance is important for developing a strategy to monitor, prevent and control for influenza epidemics.
Collapse
|
12
|
How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116404. [PMID: 35681989 PMCID: PMC9180569 DOI: 10.3390/ijerph19116404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
The current novel Coronavirus Disease 2019 (COVID-19) is a multistage epidemic consisting of multiple rounds of alternating outbreak and containment periods that cannot be modeled with a conventional single-stage Suspected-Exposed-Infectious-Removed (SEIR) model. Seasonality and control measures could be the two most important driving factors of the multistage epidemic. Our goal is to formulate and incorporate the influences of seasonality and control measures into an epidemic model and interpret how these two factors interact to shape the multistage epidemic curves. New confirmed cases will be collected daily from seven Northern Hemisphere countries and five Southern Hemisphere countries from March 2020 to March 2021 to fit and validate the modified model. Results show that COVID-19 is a seasonal epidemic and that epidemic curves can be clearly distinguished in the two hemispheres. Different levels of control measures between different countries during different seasonal periods have different influences on epidemic transmission. Seasonality alone cannot cause the baseline reproduction number R0 to fall below one and control measures must be taken. A superposition of a high level of seasonality and a low level of control measures can lead to a dramatically rapid increase in reported cases.
Collapse
|
13
|
Inaida S, Paul RE, Matsuno S. Viral transmissibility of SARS-CoV-2 accelerates in the winter, similarly to influenza epidemics. Am J Infect Control 2022; 50:1070-1076. [PMID: 35605752 PMCID: PMC9121648 DOI: 10.1016/j.ajic.2022.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
The transmissibility of SARS-CoV-2 is anticipated to increase in the winter because of increased viral survival in cold damp air and thus would exacerbate viral spread in community. Analysis to capture the seasonal trend is needed to be prepared for future epidemics. We compared regression models for the 5-week case prior to each epidemic peak week for both the COVID-19 and influenza epidemics in winter and summer. The weekly case increase ratio was compared, using non-paired t tests between seasons. In order to test the robustness of seasonal transmission patterns, the normalized weekly case numbers of COVID-19 and influenza case rates of all seasons were assessed in a combined quadratic regression analysis. In winter, the weekly case increase ratio accelerated before epidemic peaks, similarly, for both COVID-19 and influenza. The quadratic regression models of weekly cases were observed to be convex curves in the winter and concave curves in the spring/summer for both COVID-19 and influenza. A significant increase of case increase ratio (3.19 [95%CI:0.01-6.37, P = .049]) of the COVID-19 and influenza epidemics was observed in winter as compared to spring/summer before the epidemic peak. The epidemic of COVID-19 was found to mirror that of influenza, suggesting a strong underlying seasonal transmissibility. Influenza epidemics can potentially be a useful reference for the COVID-19 epidemics.
Collapse
|
14
|
Ganti K, Ferreri LM, Lee CY, Bair CR, Delima GK, Holmes KE, Suthar MS, Lowen AC. Timing of exposure is critical in a highly sensitive model of SARS-CoV-2 transmission. PLoS Pathog 2022; 18:e1010181. [PMID: 35333914 PMCID: PMC8986102 DOI: 10.1371/journal.ppat.1010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/06/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023] Open
Abstract
Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing and high inoculation dose. However, contrary to expectation, trends observed with sub-optimal exposure timing and lower inoculation dose suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.
Collapse
Affiliation(s)
- Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Camden R. Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gabrielle K. Delima
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kate E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mehul S. Suthar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory-UGA Center of Excellence for Influenza Research and Surveillance [CEIRS], Atlanta, Georgia, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory-UGA Center of Excellence for Influenza Research and Surveillance [CEIRS], Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Boufekane A, Busico G, Maizi D. Effects of temperature and relative humidity on the COVID-19 pandemic in different climates: a study across some regions in Algeria (North Africa). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18077-18102. [PMID: 34677775 PMCID: PMC8532094 DOI: 10.1007/s11356-021-16903-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/01/2021] [Indexed: 05/05/2023]
Abstract
After more than a year from the first confirmed cases of coronavirus (COVID-19) disease, the role of meteorological factors in the transmission of the virus still needs to be correctly determined. In this scenario of deep uncertainty, the present study aims to investigate the effects of temperature and relative humidity on daily new cases of COVID-19. For this purpose, the COVID-19's development of infection in fourteen Algerian cities characterized by different climatic conditions, during the period from April 1, 2020, to August 31, 2020, has been investigated. A detailed time series analysis along with linear regression was used to state a possible correlation among some climate's factor variability (temperature and relative humidity) and daily new confirmed cases of COVID-19. The results showed a weak correlation between daily new cases of COVID-19 and meteorological factors throughout the selected regions. In addition, we concluded that the COVID-19 could fit to high or low values of temperature and relative humidity, and other factors not climates could affect the spreading of the virus like demography and human contact. So, after the discovery of the vaccine and before vaccination of 70% of the world's population, living with the virus has become an inevitable reality, and it is mandatory to apply the sanitary procedures to slow down the COVID-19 transmission.
Collapse
Affiliation(s)
- Abdelmadjid Boufekane
- Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences and Country Planning, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Gianluigi Busico
- DiSTABiF - Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania 7 University “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Djamel Maizi
- Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences and Country Planning, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| |
Collapse
|
16
|
Inherent heterogeneity of influenza A virus stability following aerosolization. Appl Environ Microbiol 2022; 88:e0227121. [PMID: 34985975 DOI: 10.1128/aem.02271-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.
Collapse
|
17
|
Sarwar S, Shahzad K, Fareed Z, Shahzad U. A study on the effects of meteorological and climatic factors on the COVID-19 spread in Canada during 2020. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1513-1521. [PMID: 34306711 PMCID: PMC8284697 DOI: 10.1007/s40201-021-00707-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/10/2021] [Indexed: 05/06/2023]
Abstract
The Coronavirus (COVID-19) pandemic has infected more than three million people, with thousands of deaths and millions of people into quarantine. In this research, the authors focus on meteorological and climatic factors on the COVID-19 spread, the main parameters including daily new cases of COVID-19, carbon dioxide (CO2) emission, nitrogen dioxide (NO2), Sulfur dioxide (SO2), PM2.5, Ozone (O3), average temperature, and humidity are examined to understand how different meteorological parameters affect the COVID-19 spread in Canada? The graphical quantitative analysis results indicate that CO2 emissions, air quality, temperature, and humidity have a direct negative relationship with COVID-19 infections. Quantile regression analysis revealed that air quality, Nitrogen, and Ozone significantly induce the COVID-19 spread across Canadian provinces. The findings of this study are contrary to the earlier studies, which argued that weather and climate change significantly increase COVID-19 infections. We suggested that meteorological and climatic factors might be critical to reducing the COVID-19 new cases in Canada based on the findings. This work's empirical conclusions can provide a guideline for future research and policymaking to stop the COVID-19 spread across Canadian provinces.
Collapse
Affiliation(s)
- Suleman Sarwar
- Finance and Economics Department, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Khurram Shahzad
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Sciences, Northwest University, Xi’an, People’s Republic of China
| | - Zeeshan Fareed
- School of Business, Huzhou University, Huzhou City, Zhejiang Province People’s Republic of China
| | - Umer Shahzad
- School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030 People’s Republic of China
| |
Collapse
|
18
|
Vali M, Hassanzadeh J, Mirahmadizadeh A, Hoseini M, Dehghani S, Maleki Z, Méndez-Arriaga F, Ghaem H. Effect of meteorological factors and Air Quality Index on the COVID-19 epidemiological characteristics: an ecological study among 210 countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53116-53126. [PMID: 34024000 PMCID: PMC8140752 DOI: 10.1007/s11356-021-14322-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2021] [Indexed: 05/13/2023]
Abstract
The survival of COVID-19 in different environments may be affected by a variety of weather, pollution, and seasonal parameters. Therefore, the present study aims to conduct an ecological investigation on COVID-19 average growth rate of daily cases and deaths influenced by environmental factors (temperature, humidity, and air pollution) using a sample size of adjusted cumulative incidence of daily cases and deaths based on five 60-day periods. Research data was gathered on official websites, including information on COVID-19, meteorological data, and air pollution indicators from December 31, 2019, to October 12, 2020, from 210 countries. Spearman correlation and generalized additive model (GAM) were used to analyze the data. During the observed period, the COVID-19 average growth rate of daily cases (r = -0.08, P =0.151) and deaths (r= -0.09, P = 0.207) were not correlated with humidity. Also, there was a negative relationship between the COVID-19 average growth rate of new cases and deaths with the Air Quality Index (AQI) and wind (new cases and wind: r=-0.25, P= 0.04). Furthermore, the data related to the first and second 60 day of the adjusted cumulative incidence of COVID-19 daily cases and deaths were not associated with humidity and Air Quality Index (AQI). The result of GAM showed the effect of AQI on the average growth rate of COVID-19 new cases and deaths. This study provides evidence for a positive relationship between COVID-19 daily cases, deaths, and AQI.
Collapse
Affiliation(s)
- Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Hassanzadeh
- Department of Epidemiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Mirahmadizadeh
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Maleki
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fabiola Méndez-Arriaga
- Consejo Nacional de Ciencia y Tecnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Haleh Ghaem
- Research Center for Health Sciences, Institute of Health, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Mohan Viswanathan P, Sabarathinam C, Karuppannan S, Gopalakrishnan G. Determination of vulnerable regions of SARS-CoV-2 in Malaysia using meteorology and air quality data. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 24:8856-8882. [PMID: 34393622 PMCID: PMC8354098 DOI: 10.1007/s10668-021-01719-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED This study aims to explore the state-wise assessment of SARS-CoV-2 (COVID-19) pandemic spread in Malaysia with focus on influence of meteorological parameters and air quality. In this study, state-wise COVID-19 data, meteorological parameters and air quality index (AQI) were collected from March 13 to April 30, 2020, which encompass three movement control order (MCO) periods in the country. Overall, total infected cases were observed to be higher in MCO phase 1 and 2 and significantly reduced in MCO phase 3. Due to the variation in the spatial interval of population density and individual immunity, the relationship of these parameters to pandemic spread could not be achieved. The study infers that temperature (T) between 23 and 25 °C and relative humidity (RH) (70-80%) triggered the pandemic spread by increase in the infected cases in northern and central Peninsular Malaysia. Selangor, WP Kuala Lumpur and WP Putrajaya show significantly high infected cases and a definite trend was not observed with respect to a particular meteorological factor. It is identified that high precipitation (PPT), RH and good air quality have reduced the spread in East Malaysia. A negative correlation of T and AQI and positive correlation of RH with total infected cases were found during MCO phase 3. Principal component analysis (PCA) indicated that T, RH, PPT, dew point (DP) and AQI are the main controlling factors for the spread across the country apart from social distancing. Vulnerability zones were identified based on the spatial analysis of T, RH, PPT and AQI with reference to total infected cases. Based on time series analysis, it was determined that higher RH and T in Peninsular Malaysia and high amount of PPT, RH and good air quality in East Malaysia have controlled the spreading during MCO phase 3. The predominance of D614 mutant was observed prior to March and decreases at the end of March, coinciding with the fluctuation of meteorological factors and air quality. The outcome of this study gives a general awareness to the public on COVID-19 and the influence of meteorological factors. It will also help the policymakers to enhance the management plans against the pandemic spreading apart from social distancing in the next wave of COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10668-021-01719-z.
Collapse
Affiliation(s)
- Prasanna Mohan Viswanathan
- Department of Applied Geology, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Chidambaram Sabarathinam
- Water Research Centre, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Shankar Karuppannan
- Department of Applied Geology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Gnanachandrasamy Gopalakrishnan
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
- Center for Earth, Environment and Resources, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
20
|
Sahoo MM. Significance between air pollutants, meteorological factors, and COVID-19 infections: probable evidences in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40474-40495. [PMID: 33638789 PMCID: PMC7912974 DOI: 10.1007/s11356-021-12709-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 04/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease represents the causative agent with a potentially fatal risk which is having great global human health concern. Earlier studies suggested that air pollutants and meteorological factors were considered as the risk factors for acute respiratory infection, which carries harmful pathogens and affects the immunity. The study intended to explore the correlation between air pollutants, meteorological factors, and the daily reported infected cases caused by novel coronavirus in India. The daily positive infected cases, concentrations of air pollutants, and meteorological factors in 288 districts were collected from January 30, 2020, to April 23, 2020, in India. Spearman's correlation and generalized additive model (GAM) were applied to investigate the correlations of four air pollutants (PM2.5, PM10, NO2, and SO2) and eight meteorological factors (Temp, DTR, RH, AH, AP, RF, WS, and WD) with COVID-19-infected cases. The study indicated that a 10 μg/m3 increase during (Lag0-14) in PM2.5, PM10, and NO2 resulted in 2.21% (95%CI: 1.13 to 3.29), 2.67% (95% CI: 0.33 to 5.01), and 4.56 (95% CI: 2.22 to 6.90) increase in daily counts of Coronavirus Disease 2019 (COVID 19)-infected cases respectively. However, only 1 unit increase in meteorological factor levels in case of daily mean temperature and DTR during (Lag0-14) associated with 3.78% (95%CI: 1.81 to 5.75) and 1.82% (95% CI: -1.74 to 5.38) rise of COVID-19-infected cases respectively. In addition, SO2 and relative humidity were negatively associated with COVID-19-infected cases at Lag0-14 with decrease of 7.23% (95% CI: -10.99 to -3.47) and 1.11% (95% CI: -3.45 to 1.23) for SO2 and for relative humidity respectively. The study recommended that there are significant correlations between air pollutants and meteorological factors with COVID-19-infected cases, which substantially explain the effect of national lockdown and suggested positive implications for control and prevention of the spread of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Mrunmayee Manjari Sahoo
- Domain of Environmental and Water Resources Engg, SCE, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
21
|
Qin L, Sun Q, Shao J, Chen Y, Zhang X, Li J, Chen M, Shia BC, Wu SY. Association of temperature and relative humidity with the growth rate of the coronavirus disease 2019 epidemic. Am J Transl Res 2021; 13:5943-5955. [PMID: 34306336 PMCID: PMC8290681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The effects of temperature and relative humidity on the growth of coronavirus disease 2019 (COVID-19) remain unclear. Data on the COVID-19 epidemic that were analyzed in this study were obtained from the official websites of the National Health Commission of China and the Health Commissions of 31 provinces in China. From January 26 to February 25, 2020, the cumulative number of confirmed COVID-19 cases in each region was counted daily using data from our database. Curve fitting of daily scatter plots of the relationship between epidemic growth rate (GR) with average temperature (AT) and average relative humidity (ARH) was conducted using the loess method. The heterogeneity across days and provinces was calculated to assess the necessity of using a longitudinal model. Fixed-effect models with polynomial terms were developed to quantify the relationship between variations in the GR and AT or ARH. An increased AT markedly reduced the GR when the AT was lower than -5°C, the GR was moderately reduced when the AT ranged from -5°C to 15°C, and the GR increased when the AT exceeded 15°C. ARH increased the GR when it was less than 72% and reduced the GR when it exceeded 72%. The temperature and relative humidity curves were not linearly associated with the GR of COVID-19. The GR was moderately reduced when the AT ranged from -5°C to 15°C. When the AT was lower or higher than -5°C to 15°C, the GR of COVID-19 increased. An increased ARH increased the GR when the ARH was lower than 72% and reduced the GR when the ARH exceeded 72%.
Collapse
Affiliation(s)
- Lei Qin
- School of Statistics, University of International Business and EconomicsBeijing, China
| | - Qiang Sun
- School of Statistics, University of International Business and EconomicsBeijing, China
| | - Jiani Shao
- School of International Education, University of International Business and EconomicsBeijing, China
| | - Yang Chen
- School of Statistics, University of International Business and EconomicsBeijing, China
| | - Xiaomei Zhang
- School of Statistics, University of International Business and EconomicsBeijing, China
| | - Jian Li
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityNew Taipei, Taiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia UniversityTaichung, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia UniversityTaichung, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical UniversityTaipei 110, Taiwan
| |
Collapse
|
22
|
Rayan RA. Seasonal variation and COVID-19 infection pattern: A gap from evidence to reality. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 20:100238. [PMID: 33644502 PMCID: PMC7896490 DOI: 10.1016/j.coesh.2021.100238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In December 2019, the coronavirus disease (COVID-19) was discovered in China, causing many cases and deaths. Several studies have explored the role of environmental factors in the spread of COVID-19, emphasizing the effect of two weather parameters, humidity and temperature. Those parameters are evidently vital in affecting outbreaks of infectious respiratory diseases, like influenza; yet, such an effect on COVID-19 remains controversial. This review explores the relation between the change in weather-related factors and the transmission of the COVID-19. With seasonal variation from winter to summer and in the absence of adopting thorough public health measures, elevated temperature and humidity might not limit the COVID-19 cases. Hence, we need multidisciplinary strategies and interventions to limit the burden of this pandemic over the healthcare systems.
Collapse
Affiliation(s)
- Rehab A Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Egypt
| |
Collapse
|
23
|
What Are the Effects of Meteorological Factors on Exacerbations of Chronic Obstructive Pulmonary Disease? ATMOSPHERE 2021. [DOI: 10.3390/atmos12040442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the greatest global public health challenges. Acute exacerbations of COPD lead to the accelerated deterioration of lung function, reduced quality of life, a higher number of hospitalizations, and increased mortality. The factor causing the exacerbation is usually an infectious agent, but the impact of environmental factors is being studied more thoroughly. Among them, meteorological factors are the least examined. Multiple studies have shown that lower temperatures during the cold season, as well as sudden temperature changes regardless of the season, have the most significant negative effect on patients with COPD. However, higher temperatures, especially during summer heatwaves, can also cause COPD exacerbation and it is expected that this will be an even more important health problem in the future considering climate changes. The effects of other meteorological factors on acute exacerbation of COPD, such as atmospheric pressure, solar radiation, rainfall, wind speed, and humidity are far less investigated and opposing results have been obtained in different studies. Thus, there is a need for further research in this area that would result in clinical recommendations and public health interventions that could decrease the global burden of COPD.
Collapse
|
24
|
Pan J, Yao Y, Liu Z, Meng X, Ji JS, Qiu Y, Wang W, Zhang L, Wang W, Kan H. Warmer weather unlikely to reduce the COVID-19 transmission: An ecological study in 202 locations in 8 countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142272. [PMID: 33207446 PMCID: PMC7480263 DOI: 10.1016/j.scitotenv.2020.142272] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 05/18/2023]
Abstract
PURPOSE To examine the association between meteorological factors (temperature, relative humidity, wind speed, and UV radiation) and transmission capacity of COVID-19. METHODS We collected daily numbers of COVID-19 cases in 202 locations in 8 countries. We matched meteorological data from the NOAA National Centers for Environmental Information. We used a time-frequency approach to examine the possible association between meteorological conditions and basic reproductive number (R0) of COVID-19. We determined the correlations between meteorological factors and R0 of COVID-19 using multiple linear regression models and meta-analysis. We further validated our results using a susceptible-exposed-infectious-recovered (SEIR) metapopulation model to simulate the changes of daily cases of COVID-19 in China under different temperatures and relative humidity conditions. PRINCIPAL RESULTS Temperature did not exhibit significant association with R0 of COVID-19 (meta p = 0.446). Also, relative humidity (meta p = 0.215), wind speed (meta p = 0.986), and ultraviolet (UV) radiation (meta p = 0.491) were not significantly associated with R0 either. The SEIR model in China showed that with a wide range of meteorological conditions, the number of COVID-19 confirmed cases would not change substantially. CONCLUSIONS Meteorological conditions did not have statistically significant associations with the R0 of COVID-19. Warmer weather alone seems unlikely to reduce the COVID-19 transmission.
Collapse
Affiliation(s)
- Jinhua Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ye Yao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhixi Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Yang Qiu
- Department of Environmental Sciences and Engineering, School of Architecture and Environmental Sciences, Sichuan University, Chengdu, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lina Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Weibing Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Rahal F, Rezak S, Hamed FZB. Impact of Meteorological Parameters on the COVID-19 Incidence: The Case of the City of Oran, Algeria. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/9562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
26
|
Carleton T, Cornetet J, Huybers P, Meng KC, Proctor J. Global evidence for ultraviolet radiation decreasing COVID-19 growth rates. Proc Natl Acad Sci U S A 2021. [PMID: 33323525 DOI: 10.2139/ssrn.3588601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
With nearly every country combating the 2019 novel coronavirus (COVID-19), there is a need to understand how local environmental conditions may modify transmission. To date, quantifying seasonality of the disease has been limited by scarce data and the difficulty of isolating climatological variables from other drivers of transmission in observational studies. We combine a spatially resolved dataset of confirmed COVID-19 cases, composed of 3,235 regions across 173 countries, with local environmental conditions and a statistical approach developed to quantify causal effects of environmental conditions in observational data settings. We find that ultraviolet (UV) radiation has a statistically significant effect on daily COVID-19 growth rates: a SD increase in UV lowers the daily growth rate of COVID-19 cases by ∼1 percentage point over the subsequent 2.5 wk, relative to an average in-sample growth rate of 13.2%. The time pattern of lagged effects peaks 9 to 11 d after UV exposure, consistent with the combined timescale of incubation, testing, and reporting. Cumulative effects of temperature and humidity are not statistically significant. Simulations illustrate how seasonal changes in UV have influenced regional patterns of COVID-19 growth rates from January to June, indicating that UV has a substantially smaller effect on the spread of the disease than social distancing policies. Furthermore, total COVID-19 seasonality has indeterminate sign for most regions during this period due to uncertain effects of other environmental variables. Our findings indicate UV exposure influences COVID-19 cases, but a comprehensive understanding of seasonality awaits further analysis.
Collapse
Affiliation(s)
- Tamma Carleton
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-3151
| | - Jules Cornetet
- Département de Sciences Sociales, École Normale Supérieure Paris-Saclay, 94235 Cachan Cedex, France
| | - Peter Huybers
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Kyle C Meng
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-3151;
- Department of Economics, University of California, Santa Barbara, CA 93106-3151
- National Bureau of Economic Research, Cambridge, MA 02138
| | - Jonathan Proctor
- Center for the Environment, Harvard University, Cambridge, MA 02138
- Data Science Initiative, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Abstract
There is interest in whether COVID-19 cases respond to environmental conditions. If an effect is present, seasonal changes in local environmental conditions could alter the global spatial pattern of COVID-19 and inform local public health responses. Using a comprehensive global dataset of daily COVID-19 cases and local environmental conditions, we find that increased daily ultraviolet (UV) radiation lowers the cumulative daily growth rate of COVID-19 cases over the subsequent 2.5 wk. Although statistically significant, the implied influence of UV seasonality is modest relative to social distancing policies. Temperature and specific humidity cumulative effects are not statistically significant, and total COVID-19 seasonality remains to be established because of uncertainty in the net effects from seasonally varying environmental variables. With nearly every country combating the 2019 novel coronavirus (COVID-19), there is a need to understand how local environmental conditions may modify transmission. To date, quantifying seasonality of the disease has been limited by scarce data and the difficulty of isolating climatological variables from other drivers of transmission in observational studies. We combine a spatially resolved dataset of confirmed COVID-19 cases, composed of 3,235 regions across 173 countries, with local environmental conditions and a statistical approach developed to quantify causal effects of environmental conditions in observational data settings. We find that ultraviolet (UV) radiation has a statistically significant effect on daily COVID-19 growth rates: a SD increase in UV lowers the daily growth rate of COVID-19 cases by ∼1 percentage point over the subsequent 2.5 wk, relative to an average in-sample growth rate of 13.2%. The time pattern of lagged effects peaks 9 to 11 d after UV exposure, consistent with the combined timescale of incubation, testing, and reporting. Cumulative effects of temperature and humidity are not statistically significant. Simulations illustrate how seasonal changes in UV have influenced regional patterns of COVID-19 growth rates from January to June, indicating that UV has a substantially smaller effect on the spread of the disease than social distancing policies. Furthermore, total COVID-19 seasonality has indeterminate sign for most regions during this period due to uncertain effects of other environmental variables. Our findings indicate UV exposure influences COVID-19 cases, but a comprehensive understanding of seasonality awaits further analysis.
Collapse
|
28
|
Shahzad K, Shahzad U, Iqbal N, Shahzad F, Fareed Z. Effects of climatological parameters on the outbreak spread of COVID-19 in highly affected regions of Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39657-39666. [PMID: 32827296 DOI: 10.21203/rs.3.rs-30377/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 05/22/2023]
Abstract
The coronavirus (COVID-19) pandemic is infecting the human population, killing people, and destroying livelihoods. This research sought to explore the associations of daily average temperature (AT) and air quality (PM2.5) with the daily new cases of COVID-19 in the top four regions of Spain (Castilla y Leon, Castilla-La Mancha, Catalonia, and Madrid). To this end, the authors employ Pearson correlation, Spearman correlation, and robust panel regressions to quantify the overall co-movement between temperature, air quality, and daily cases of COVID-19 from 29 February to 17 July 2020. Overall empirical results show that temperature may not be a determinant to induce COVID-19 spread in Spain, while the rising temperature may reduce the virus transmission. However, the correlation and regression findings illustrate that air quality may speed up the transmission rate of COVID-19. Our findings are contrary to the earlier studies, which show a significant impact of temperature in raising the COVID-19 spread. The conclusions of this work can serve as an input to mitigate the rapid spread of COVID-19 in Spain and reform policies accordingly.
Collapse
Affiliation(s)
- Khurram Shahzad
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Umer Shahzad
- School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030, People's Republic of China.
| | - Najaf Iqbal
- School of Finance, Anhui University of Finance and Economics, Bengbu, 233030, People's Republic of China
| | - Farrukh Shahzad
- School of Economics and Management, Guangdong University of Petrochemical Technology, Maoming, Guangdong, People's Republic of China
| | - Zeeshan Fareed
- School of Business, Huzhou University, Huzhou City, Zhejiang, Province, People's Republic of China
| |
Collapse
|
29
|
Shahzad K, Shahzad U, Iqbal N, Shahzad F, Fareed Z. Effects of climatological parameters on the outbreak spread of COVID-19 in highly affected regions of Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39657-39666. [PMID: 32827296 PMCID: PMC7442890 DOI: 10.1007/s11356-020-10551-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 04/15/2023]
Abstract
The coronavirus (COVID-19) pandemic is infecting the human population, killing people, and destroying livelihoods. This research sought to explore the associations of daily average temperature (AT) and air quality (PM2.5) with the daily new cases of COVID-19 in the top four regions of Spain (Castilla y Leon, Castilla-La Mancha, Catalonia, and Madrid). To this end, the authors employ Pearson correlation, Spearman correlation, and robust panel regressions to quantify the overall co-movement between temperature, air quality, and daily cases of COVID-19 from 29 February to 17 July 2020. Overall empirical results show that temperature may not be a determinant to induce COVID-19 spread in Spain, while the rising temperature may reduce the virus transmission. However, the correlation and regression findings illustrate that air quality may speed up the transmission rate of COVID-19. Our findings are contrary to the earlier studies, which show a significant impact of temperature in raising the COVID-19 spread. The conclusions of this work can serve as an input to mitigate the rapid spread of COVID-19 in Spain and reform policies accordingly.
Collapse
Affiliation(s)
- Khurram Shahzad
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, People’s Republic of China
| | - Umer Shahzad
- School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, 233030 People’s Republic of China
| | - Najaf Iqbal
- School of Finance, Anhui University of Finance and Economics, Bengbu, 233030 People’s Republic of China
| | - Farrukh Shahzad
- School of Economics and Management, Guangdong University of Petrochemical Technology, Maoming, Guangdong People’s Republic of China
| | - Zeeshan Fareed
- School of Business, Huzhou University, Huzhou City, Zhejiang, Province People’s Republic of China
| |
Collapse
|
30
|
Pani SK, Lin NH, RavindraBabu S. Association of COVID-19 pandemic with meteorological parameters over Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140112. [PMID: 32544735 PMCID: PMC7289735 DOI: 10.1016/j.scitotenv.2020.140112] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
Meteorological parameters are the critical factors affecting the transmission of infectious diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and influenza. Consequently, infectious disease incidence rates are likely to be influenced by the weather change. This study investigates the role of Singapore's hot tropical weather in COVID-19 transmission by exploring the association between meteorological parameters and the COVID-19 pandemic cases in Singapore. This study uses the secondary data of COVID-19 daily cases from the webpage of Ministry of Health (MOH), Singapore. Spearman and Kendall rank correlation tests were used to investigate the correlation between COVID-19 and meteorological parameters. Temperature, dew point, relative humidity, absolute humidity, and water vapor showed positive significant correlation with COVID-19 pandemic. These results will help the epidemiologists to understand the behavior of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus against meteorological variables. This study finding would be also a useful supplement to help the local healthcare policymakers, Center for Disease Control (CDC), and the World Health Organization (WHO) in the process of strategy making to combat COVID-19 in Singapore.
Collapse
Affiliation(s)
- Shantanu Kumar Pani
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan 32001, Taiwan.
| | - Saginela RavindraBabu
- Center for Space and Remote Sensing Research, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
31
|
Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One 2020; 15:e0238339. [PMID: 32946453 PMCID: PMC7500589 DOI: 10.1371/journal.pone.0238339] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/15/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Faced with the global pandemic of COVID-19, declared by World Health Organization (WHO) on March 11th 2020, and the need to better understand the seasonal behavior of the virus, our team conducted this systematic review to describe current knowledge about the emergence and replicability of the virus and its connection with different weather factors such as temperature and relative humidity. METHODS The review was registered with the PROSPERO database. The electronic databases PubMed, Scopus, Web of Science, Cochrane Library, LILACS, OpenGrey and Google Scholar were examined with the searches restricted to the years 2019 and 2020. Risk of bias assessment was performed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist tool. The GRADE tool was used to assess the certainty of the evidence. RESULTS The initial screening identified 517 articles. After examination of the full texts, seventeen studies met the review's eligibility criteria. Great homogeneity was observed in the findings regarding the effect of temperature and humidity on the seasonal viability and transmissibility of COVID-19. Cold and dry conditions were potentiating factors on the spread of the virus. After quality assessment, two studies had a high risk of bias, eleven studies were scored as moderate risk of bias, and four studies were classified as low risk of bias. The certainty of evidence was graded as low for both outcomes evaluated. CONCLUSION Considering the existing scientific evidence, warm and wet climates seem to reduce the spread of COVID-19. However, these variables alone could not explain most of the variability in disease transmission. Therefore, the countries most affected by the disease should focus on health policies, even with climates less favorable to the virus. Although the certainty of the evidence generated was classified as low, there was homogeneity between the results reported by the included studies.
Collapse
Affiliation(s)
- Paulo Mecenas
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - David Normando
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
32
|
Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One 2020; 15:e0238339. [PMID: 32946453 DOI: 10.1101/2020.04.14.20064923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/15/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Faced with the global pandemic of COVID-19, declared by World Health Organization (WHO) on March 11th 2020, and the need to better understand the seasonal behavior of the virus, our team conducted this systematic review to describe current knowledge about the emergence and replicability of the virus and its connection with different weather factors such as temperature and relative humidity. METHODS The review was registered with the PROSPERO database. The electronic databases PubMed, Scopus, Web of Science, Cochrane Library, LILACS, OpenGrey and Google Scholar were examined with the searches restricted to the years 2019 and 2020. Risk of bias assessment was performed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist tool. The GRADE tool was used to assess the certainty of the evidence. RESULTS The initial screening identified 517 articles. After examination of the full texts, seventeen studies met the review's eligibility criteria. Great homogeneity was observed in the findings regarding the effect of temperature and humidity on the seasonal viability and transmissibility of COVID-19. Cold and dry conditions were potentiating factors on the spread of the virus. After quality assessment, two studies had a high risk of bias, eleven studies were scored as moderate risk of bias, and four studies were classified as low risk of bias. The certainty of evidence was graded as low for both outcomes evaluated. CONCLUSION Considering the existing scientific evidence, warm and wet climates seem to reduce the spread of COVID-19. However, these variables alone could not explain most of the variability in disease transmission. Therefore, the countries most affected by the disease should focus on health policies, even with climates less favorable to the virus. Although the certainty of the evidence generated was classified as low, there was homogeneity between the results reported by the included studies.
Collapse
Affiliation(s)
- Paulo Mecenas
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - David Normando
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
33
|
Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139278. [PMID: 32434058 PMCID: PMC7227583 DOI: 10.1016/j.scitotenv.2020.139278] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 04/13/2023]
Abstract
In order to benefit the public, community workers and scientific community, we hereby present a chronicle of SARS-CoV-2 that leads to the unseen precedent of social distancing and lockdown owing to coronavirus disease (COVID-19). Information on this life-threatening pandemic of COVID-19 is sparse and discrete; and the urgency is such that the dissemination of information is increasing with numerous daily publications on the topic. Therefore, we developed a comprehensive review on various aspects of SARS-CoV-2 and COVID-19. We scientifically compiled published research, news, and reports from various sources to comprehend and summarize the information and findings on Coronaviruses. The review explicitly covers the aspects like genome and pedigree of SARS-CoV-2; epidemiology, prognosis, pathogenesis, symptoms and diagnosis of COVID-19 in order to catalog the right information on transmission route, and influence of environmental factors on virus transmissions, for the robust understanding of right strategical steps for proper COVID-19 management. We have explicitly highlighted several useful information and facts like: i) No established relationship between progression of SARS-CoV-2 with temperature, humidity and/or both, ii) The underlying mechanism of SARS-CoV-2 is not fully understood, iii) Respiratory droplet size determines drop and airborne-based transmission, iv) Prognosis of COVID-19 can be done by its effects on various body organs, v) Infection can be stopped by restricting the binding of S protein and AE2, vi) Hydroxychloroquine is believed to be better than chloroquine for COVID-19, vii) Ivermectin with Vero-hSLAM cells is able to reduce infection by ~5000 time within 2 days, and viii) Nafamostat mesylate can inhibit SARS-CoV-2 S protein-initiated membrane fusion. We have also suggested future research perspectives, challenges and scope.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Rohit Gahlot
- Discipline of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Ayushi Sharma
- Department of Pharmacology, Vallabhbhai Patel Chest Institute (VPCI), Delhi University, Delhi 110007, India
| | - Kiran Dhangar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| |
Collapse
|
34
|
Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139278. [PMID: 32434058 DOI: 10.1016/j.scitotenv.2020.139278139278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 05/21/2023]
Abstract
In order to benefit the public, community workers and scientific community, we hereby present a chronicle of SARS-CoV-2 that leads to the unseen precedent of social distancing and lockdown owing to coronavirus disease (COVID-19). Information on this life-threatening pandemic of COVID-19 is sparse and discrete; and the urgency is such that the dissemination of information is increasing with numerous daily publications on the topic. Therefore, we developed a comprehensive review on various aspects of SARS-CoV-2 and COVID-19. We scientifically compiled published research, news, and reports from various sources to comprehend and summarize the information and findings on Coronaviruses. The review explicitly covers the aspects like genome and pedigree of SARS-CoV-2; epidemiology, prognosis, pathogenesis, symptoms and diagnosis of COVID-19 in order to catalog the right information on transmission route, and influence of environmental factors on virus transmissions, for the robust understanding of right strategical steps for proper COVID-19 management. We have explicitly highlighted several useful information and facts like: i) No established relationship between progression of SARS-CoV-2 with temperature, humidity and/or both, ii) The underlying mechanism of SARS-CoV-2 is not fully understood, iii) Respiratory droplet size determines drop and airborne-based transmission, iv) Prognosis of COVID-19 can be done by its effects on various body organs, v) Infection can be stopped by restricting the binding of S protein and AE2, vi) Hydroxychloroquine is believed to be better than chloroquine for COVID-19, vii) Ivermectin with Vero-hSLAM cells is able to reduce infection by ~5000 time within 2 days, and viii) Nafamostat mesylate can inhibit SARS-CoV-2 S protein-initiated membrane fusion. We have also suggested future research perspectives, challenges and scope.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Rohit Gahlot
- Discipline of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Ayushi Sharma
- Department of Pharmacology, Vallabhbhai Patel Chest Institute (VPCI), Delhi University, Delhi 110007, India
| | - Kiran Dhangar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| |
Collapse
|
35
|
Swelum AA, Shafi ME, Albaqami NM, El-Saadony MT, Elsify A, Abdo M, Taha AE, Abdel-Moneim AME, Al-Gabri NA, Almaiman AA, Saleh Al-wajeeh A, Tufarelli V, Staffa VN, Abd El-Hack ME. COVID-19 in Human, Animal, and Environment: A Review. Front Vet Sci 2020; 7:578. [PMID: 33102545 PMCID: PMC7498845 DOI: 10.3389/fvets.2020.00578] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 01/12/2023] Open
Abstract
The medical authority in China, especially in Wuhan city, reported on December 2019 a large number of highly fatal, rapidly spreading viral pneumonia caused by an unknown coronavirus. The common history of all the patients was their visiting a Wuhan's whole food store, where live animals and seafood are sold. Irrespective of the efforts of the Chinese authorities, the virus spread rapidly all over the world by travelers, provoking widespread attention by the media and panic. Many previous coronavirus epidemics had been recorded, such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and the recently newly discovered epidemic is named coronavirus disease of 2019 (COVID-19). This disease is caused by SARS Coronavirus-2 (SARS-CoV-2), and this virus is antigenically related to the SARS virus (SARS-CoV), which had been detected in 2002, depending on clinical, serological, and molecular findings. There is rapid competition among the researchers to discover the source of the virus, understand the mechanism of the disease development, establish treatment strategies, and determine the factors affecting the incidence of infection and severity of the disease, and focus on the production of a vaccine. Coronaviruses are a group of single-stranded, positive-sense RNA genome viruses; its genome length varies from 26 to 32 kb. Coronavirus causes mild to severe respiratory disorders. In December 2019, several cases of pneumonia of unknown causes were found in Wuhan city, which is located in the Hubei province in China. Chinese health authorities investigated the problem and found that a new virus caused such infection and, using next-generation sequencing, found the 2019 novel coronavirus (2019-nCoV). It has been transferred from humans to humans and animals to humans (zoonotic). Coronaviruses cause multiple respiratory problems, varying from common cold to severe infections such as SARS. General symptoms of infection include fatigue, cough, and breathing problems such as shortness of breath, as described by World Health Organization. Serious cases may result in pneumonia, renal failure, and even death. We address current information about the new SARS Coronavirus-2 as well as the COVID-19 disease caused by it in this review.
Collapse
Affiliation(s)
- Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed, Egypt
| | | | - Naif A. Al-Gabri
- Pathology Department, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen
- Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar International Est. 1999, Arta, Djibouti
| | - Amer A. Almaiman
- Department of Applied Medical Sciences, Community College of Unaizah, Qassim University, Buraydah, Saudi Arabia
| | | | - Vincenzo Tufarelli
- DETO—Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | - Vito N. Staffa
- DETO—Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
36
|
Sarmadi M, Marufi N, Kazemi Moghaddam V. Association of COVID-19 global distribution and environmental and demographic factors: An updated three-month study. ENVIRONMENTAL RESEARCH 2020; 188:109748. [PMID: 32516636 PMCID: PMC7258807 DOI: 10.1016/j.envres.2020.109748] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
We investigated the association of some environmental and economic factors and the global distribution indicators of the COVID-19 pandemic. Since the number of cases and deaths is higher in high-income countries located in higher latitudes and colder climates, further studies are required to shed light on this matter.
Collapse
Affiliation(s)
- Mohammad Sarmadi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Nilufar Marufi
- Students Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Vahid Kazemi Moghaddam
- Department of Environmental Health, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
37
|
Rouen A, Adda J, Roy O, Rogers E, Lévy P. COVID-19: relationship between atmospheric temperature and daily new cases growth rate. Epidemiol Infect 2020; 148:e184. [PMID: 32811577 PMCID: PMC7463156 DOI: 10.1017/s0950268820001831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose: The novel coronavirus (severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)) first appeared in Wuhan, China, in December 2019, and rapidly spread across the globe. Since most respiratory viruses are known to show a seasonal pattern of infection, it has been hypothesised that SARS-CoV-2 may be seasonally dependent as well. The present study looks at a possible effect of atmospheric temperature, which is one of the suspected factors influencing seasonality, on the evolution of the pandemic. Basic procedures: Since confirming a seasonal pattern would take several more months of observation, we conducted an innovative day-to-day micro-correlation analysis of nine outbreak locations, across four continents and both hemispheres, in order to examine a possible relationship between atmospheric temperature (used as a proxy for seasonality) and outbreak progression. Main findings: There was a negative correlation between atmospheric temperature variations and daily new cases growth rates, in all nine outbreaks, with a median lag of 10 days. Principal conclusions: The results presented here suggest that high temperatures might dampen SARS-CoV-2 propagation, while lower temperatures might increase its transmission. Our hypothesis is that this could support a potential effect of atmospheric temperature on coronavirus disease progression, and potentially a seasonal pattern for this virus, with a peak in the cold season and rarer occurrences in the summer. This could guide government policy in both the Northern and Southern hemispheres for the months to come.
Collapse
Affiliation(s)
- A. Rouen
- Département de Génétique Médicale, unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J. Adda
- Département de Cardiologie, CHU Montpellier, Montpellier, France
| | - O. Roy
- Synlab Paris, Synlab France, Paris, France
| | - E. Rogers
- Département de Génétique Médicale, unité INSERM U933, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P. Lévy
- Departement de Santé Publique, Institut Pierre-Louis de Santé Publique (INSERM UMR S 1136, EPAR Team), Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, 75020Paris, France
| |
Collapse
|
38
|
Sood S, Aggarwal V, Aggarwal D, Upadhyay SK, Sak K, Tuli HS, Kumar M, Kumar J, Talwar S. COVID-19 Pandemic: from Molecular Biology, Pathogenesis, Detection, and Treatment to Global Societal Impact. CURRENT PHARMACOLOGY REPORTS 2020; 6:212-227. [PMID: 32837855 PMCID: PMC7382994 DOI: 10.1007/s40495-020-00229-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger. RECENT FINDINGS According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known. SUMMARY In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.
Collapse
Affiliation(s)
- Shivani Sood
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, 134007 India
| | - Jayant Kumar
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Shivangi Talwar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
39
|
Meyer A, Sadler R, Faverjon C, Cameron AR, Bannister-Tyrrell M. Evidence That Higher Temperatures Are Associated With a Marginally Lower Incidence of COVID-19 Cases. Front Public Health 2020; 8:367. [PMID: 32754568 PMCID: PMC7365860 DOI: 10.3389/fpubh.2020.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
Seasonal variations in COVID-19 incidence have been suggested as a potentially important factor in the future trajectory of the pandemic. Using global line-list data on COVID-19 cases reported until 17th of March 2020 and global gridded weather data, we assessed the effects of air temperature and relative humidity on the daily incidence of confirmed COVID-19 local cases at the subnational level (first-level administrative divisions). After adjusting for surveillance capacity and time since first imported case, average temperature had a statistically significant, negative association with COVID-19 incidence for temperatures of -15°C and above. However, temperature only explained a relatively modest amount of the total variation in COVID-19 cases. The effect of relative humidity was not statistically significant. These results suggest that warmer weather may modestly reduce the rate of spread of COVID-19, but anticipation of a substantial decline in transmission due to temperature alone with onset of summer in the northern hemisphere, or in tropical regions, is not warranted by these findings.
Collapse
|
40
|
Guo XJ, Zhang H, Zeng YP. Transmissibility of COVID-19 in 11 major cities in China and its association with temperature and humidity in Beijing, Shanghai, Guangzhou, and Chengdu. Infect Dis Poverty 2020; 9:87. [PMID: 32650838 PMCID: PMC7348130 DOI: 10.1186/s40249-020-00708-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The new coronavirus disease COVID-19 began in December 2019 and has spread rapidly by human-to-human transmission. This study evaluated the transmissibility of the infectious disease and analyzed its association with temperature and humidity to study the propagation pattern of COVID-19. METHODS In this study, we revised the reported data in Wuhan based on several assumptions to estimate the actual number of confirmed cases considering that perhaps not all cases could be detected and reported in the complex situation there. Then we used the equation derived from the Susceptible-Exposed-Infectious-Recovered (SEIR) model to calculate R0 from January 24, 2020 to February 13, 2020 in 11 major cities in China for comparison. With the calculation results, we conducted correlation analysis and regression analysis between R0 and temperature and humidity for four major cities in China to see the association between the transmissibility of COVID-19 and the weather variables. RESULTS It was estimated that the cumulative number of confirmed cases had exceeded 45 000 by February 13, 2020 in Wuhan. The average R0 in Wuhan was 2.7, significantly higher than those in other cities ranging from 1.8 to 2.4. The inflection points in the cities outside Hubei Province were between January 30, 2020 and February 3, 2020, while there had not been an obvious downward trend of R0 in Wuhan. R0 negatively correlated with both temperature and humidity, which was significant at the 0.01 level. CONCLUSIONS The transmissibility of COVID-19 was strong and importance should be attached to the intervention of its transmission especially in Wuhan. According to the correlation between R0 and weather, the spread of disease will be suppressed as the weather warms.
Collapse
Affiliation(s)
- Xiao-Jing Guo
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Hui Zhang
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Yi-Ping Zeng
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084 People’s Republic of China
| |
Collapse
|
41
|
Guo XJ, Zhang H, Zeng YP. Transmissibility of COVID-19 in 11 major cities in China and its association with temperature and humidity in Beijing, Shanghai, Guangzhou, and Chengdu. Infect Dis Poverty 2020; 9:87. [PMID: 32650838 DOI: 10.21203/rs.3.rs-17715/v1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The new coronavirus disease COVID-19 began in December 2019 and has spread rapidly by human-to-human transmission. This study evaluated the transmissibility of the infectious disease and analyzed its association with temperature and humidity to study the propagation pattern of COVID-19. METHODS In this study, we revised the reported data in Wuhan based on several assumptions to estimate the actual number of confirmed cases considering that perhaps not all cases could be detected and reported in the complex situation there. Then we used the equation derived from the Susceptible-Exposed-Infectious-Recovered (SEIR) model to calculate R0 from January 24, 2020 to February 13, 2020 in 11 major cities in China for comparison. With the calculation results, we conducted correlation analysis and regression analysis between R0 and temperature and humidity for four major cities in China to see the association between the transmissibility of COVID-19 and the weather variables. RESULTS It was estimated that the cumulative number of confirmed cases had exceeded 45 000 by February 13, 2020 in Wuhan. The average R0 in Wuhan was 2.7, significantly higher than those in other cities ranging from 1.8 to 2.4. The inflection points in the cities outside Hubei Province were between January 30, 2020 and February 3, 2020, while there had not been an obvious downward trend of R0 in Wuhan. R0 negatively correlated with both temperature and humidity, which was significant at the 0.01 level. CONCLUSIONS The transmissibility of COVID-19 was strong and importance should be attached to the intervention of its transmission especially in Wuhan. According to the correlation between R0 and weather, the spread of disease will be suppressed as the weather warms.
Collapse
Affiliation(s)
- Xiao-Jing Guo
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hui Zhang
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yi-Ping Zeng
- Institute of Public Safety Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
42
|
Berry I, Tuite AR, Salomon A, Drews S, Harris AD, Hatchette T, Johnson C, Kwong J, Lojo J, McGeer A, Mermel L, Ng V, Fisman DN. Association of Influenza Activity and Environmental Conditions With the Risk of Invasive Pneumococcal Disease. JAMA Netw Open 2020; 3:e2010167. [PMID: 32658286 PMCID: PMC7358913 DOI: 10.1001/jamanetworkopen.2020.10167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Streptococcus pneumoniae is the most commonly identified cause of bacterial pneumonia, and invasive pneumococcal disease (IPD) has a high case fatality rate. The wintertime coseasonality of influenza and IPD in temperate countries has suggested that pathogen-pathogen interaction or environmental conditions may contribute to IPD risk. OBJECTIVES To evaluate the short-term associations of influenza activity and environmental exposures with IPD risk in temperate countries and to examine the generalizability of such associations across multiple jurisdictions. DESIGN, SETTING, AND PARTICIPANTS This case-crossover analysis of 19 566 individuals with IPD from 1998 to 2011 combined individual-level outcomes of IPD and population-level exposures. Participants lived in 12 jurisdictions in Canada (the province of Alberta and cities of Toronto, Vancouver, and Halifax), Australia (Perth, Sydney, Adelaide, Brisbane, and Melbourne), and the United States (Baltimore, Providence, and Philadelphia). Data were analyzed in 2019. EXPOSURES Influenza activity, mean temperature, absolute humidity, and UV radiation at delays of 1 to 3 weeks before case occurrence in each jurisdiction. MAIN OUTCOMES AND MEASURES Matched odds ratios (ORs) for IPD associated with changes in exposure variables, estimated using multivariable conditional logistic regression models. Heterogeneity in effects across jurisdictions were evaluated using random-effects meta-analytic models. RESULTS This study included 19 566 patients: 9629 from Australia (mean [SD] age, 42.8 [30.8] years; 5280 [54.8%] men), 8522 from Canada (only case date reported), and 1415 from the United States (only case date reported). In adjusted models, increased influenza activity was associated with increases in IPD risk 2 weeks later (adjusted OR [aOR] per SD increase, 1.07; 95% CI, 1.01-1.13). Increased humidity was associated with decreased IPD risk 1 week later (aOR per 1 g/m3, 0.98; 95% CI, 0.96-1.00). Other associations were heterogeneous; metaregression suggested that combinations of environmental factors might represent unique local risk signatures. For example, the heterogeneity in effects of UV radiation and humidity at a 2-week lag was partially explained by variation in temperature (UV index: coefficient, 0.0261; 95% CI, 0.0078 to 0.0444; absolute humidity: coefficient, -0.0077; 95% CI, -0.0125 to -0.0030). CONCLUSIONS AND RELEVANCE In this study, influenza was associated with increased IPD risk in temperate countries. This association was not explained by coseasonality or case characteristics and appears generalizable. Absolute humidity was associated with decreased IPD risk in the same jurisdictions. The generalizable nature of these associations has important implications for influenza control and advances the understanding of the seasonality of this important disease.
Collapse
Affiliation(s)
- Isha Berry
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ashleigh R. Tuite
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Angela Salomon
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Steven Drews
- Canadian Blood Services, Ottawa, Ontario, Canada
- University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd Hatchette
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Caroline Johnson
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania
| | - Jeff Kwong
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jose Lojo
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Leonard Mermel
- Warren Alpert School of Medicine of Brown University, Providence, Rhode Island
- Rhode Island Hospital, Providence
| | - Victoria Ng
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - David N. Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, Yan J, Niu J, Zhou J, Luo B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138226. [PMID: 32408453 DOI: 10.1101/2020.03.15.20036426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/24/2023]
Abstract
Meteorological parameters are the important factors influencing the infectious diseases such as severe acute respiratory syndrome (SARS) and influenza. This study aims to explore the association between Corona Virus Disease 2019 (COVID-19) deaths and weather parameters. In this study, we collected the daily death numbers of COVID-19, meteorological parameters and air pollutant data from 20 January 2020 to 29 February 2020 in Wuhan, China. Generalized additive model was applied to explore the effect of temperature, humidity and diurnal temperature range on the daily death counts of COVID-19. There were 2299 COVID-19 death counts in Wuhan during the study period. A positive association with COVID-19 daily death counts was observed for diurnal temperature range (r = 0.44), but negative association for relative humidity (r = -0.32). In addition, one unit increase in diurnal temperature range was only associated with a 2.92% (95% CI: 0.61%, 5.28%) increase in COVID-19 deaths in lag 3. However, both 1 unit increase of temperature and absolute humidity were related to the decreased COVID-19 death in lag 3 and lag 5, with the greatest decrease both in lag 3 [-7.50% (95% CI: -10.99%, -3.88%) and -11.41% (95% CI: -19.68%, -2.29%)]. In summary, this study suggests the temperature variation and humidity may also be important factors affecting the COVID-19 mortality.
Collapse
Affiliation(s)
- Yueling Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yadong Zhao
- Sexually Transmitted Disease and Acquired Immune Deficiency Syndrome Prevention Branch, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiaotao He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Shihua Fu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, People's Republic of China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, People's Republic of China.
| |
Collapse
|
44
|
Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, Yan J, Niu J, Zhou J, Luo B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138226. [PMID: 32408453 PMCID: PMC7142681 DOI: 10.1016/j.scitotenv.2020.138226] [Citation(s) in RCA: 502] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 04/13/2023]
Abstract
Meteorological parameters are the important factors influencing the infectious diseases such as severe acute respiratory syndrome (SARS) and influenza. This study aims to explore the association between Corona Virus Disease 2019 (COVID-19) deaths and weather parameters. In this study, we collected the daily death numbers of COVID-19, meteorological parameters and air pollutant data from 20 January 2020 to 29 February 2020 in Wuhan, China. Generalized additive model was applied to explore the effect of temperature, humidity and diurnal temperature range on the daily death counts of COVID-19. There were 2299 COVID-19 death counts in Wuhan during the study period. A positive association with COVID-19 daily death counts was observed for diurnal temperature range (r = 0.44), but negative association for relative humidity (r = -0.32). In addition, one unit increase in diurnal temperature range was only associated with a 2.92% (95% CI: 0.61%, 5.28%) increase in COVID-19 deaths in lag 3. However, both 1 unit increase of temperature and absolute humidity were related to the decreased COVID-19 death in lag 3 and lag 5, with the greatest decrease both in lag 3 [-7.50% (95% CI: -10.99%, -3.88%) and -11.41% (95% CI: -19.68%, -2.29%)]. In summary, this study suggests the temperature variation and humidity may also be important factors affecting the COVID-19 mortality.
Collapse
Affiliation(s)
- Yueling Ma
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yadong Zhao
- Sexually Transmitted Disease and Acquired Immune Deficiency Syndrome Prevention Branch, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiangtao Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiaotao He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Bo Wang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Shihua Fu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jun Yan
- Department of General Surgery, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, People's Republic of China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, People's Republic of China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, People's Republic of China.
| |
Collapse
|
45
|
Mandal CC, Panwar MS. Can the summer temperatures reduce COVID-19 cases? Public Health 2020; 185:72-79. [PMID: 32574871 PMCID: PMC7275978 DOI: 10.1016/j.puhe.2020.05.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Despite huge global, national, and local preventive measures including travel restriction, social distancing, and quarantines, the outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develops the coronavirus disease 2019 (COVID-19) worldwide pandemic. SARS-CoV-2 emerging from Wuhan, China, took only three months to cover >200 countries worldwide by infecting more than 2.4 million people and killing more than 150,000 people. Although this infection at the early stage creates seasonal flu-like symptoms with a higher illness, it eventually causes a higher mortality. Epidemiological studies not only find the causes of many health issues but also suggest preventive measures. This study aimed to see the link between environment temperature and COVID-19 cases. STUDY DESIGN The monthly average environment temperature (MAET) and various COVID-19 cases of a country were collected and analyzed to see the relationship between these parameters. METHODS Univariate analysis and statistical modeling were used to determine the relationship between environment temperature and different COVID-19 cases. RESULTS This study found that the majorities of the countries having higher COVID-19 cases are located in the higher latitude (colder region) in the globe. As of 20th April data available, statistical analyses by various methods have found that strong negative correlations with statistical significance exist between MAET and several COVID-19 cases including total cases, active cases, and cases per million of a country (Spearman correlation coefficients were -0.45, -0.42, and -0.50 for total cases, active cases, and cases/per million, respectively). Analysis by the statistical log-linear regression model further supports that the chance of patients to contract COVID-19 is less in warmer countries than in colder countries. CONCLUSION This pilot study proposes that cold environment may be an additional risk factor for COVID-19 cases.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| | - M S Panwar
- Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
46
|
Abstract
The seasonal cycle of respiratory viral diseases has been widely recognized for thousands of years, as annual epidemics of the common cold and influenza disease hit the human population like clockwork in the winter season in temperate regions. Moreover, epidemics caused by viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and the newly emerging SARS-CoV-2 occur during the winter months. The mechanisms underlying the seasonal nature of respiratory viral infections have been examined and debated for many years. The two major contributing factors are the changes in environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory virus stability and transmission rates. More recent research highlights the importance of the environmental factors, especially temperature and humidity, in modulating host intrinsic, innate, and adaptive immune responses to viral infections in the respiratory tract. Here we review evidence of how outdoor and indoor climates are linked to the seasonality of viral respiratory infections. We further discuss determinants of host response in the seasonality of respiratory viruses by highlighting recent studies in the field.
Collapse
Affiliation(s)
- Miyu Moriyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Walter J Hugentobler
- Institute of Primary Care, University of Zurich and University Hospital, Zurich, Switzerland CH-8091
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06512, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
47
|
Meyer A, Sadler R, Faverjon C, Cameron AR, Bannister-Tyrrell M. Evidence That Higher Temperatures Are Associated With a Marginally Lower Incidence of COVID-19 Cases. Front Public Health 2020. [PMID: 32754568 DOI: 10.1101/2020.03.18.20036731] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Seasonal variations in COVID-19 incidence have been suggested as a potentially important factor in the future trajectory of the pandemic. Using global line-list data on COVID-19 cases reported until 17th of March 2020 and global gridded weather data, we assessed the effects of air temperature and relative humidity on the daily incidence of confirmed COVID-19 local cases at the subnational level (first-level administrative divisions). After adjusting for surveillance capacity and time since first imported case, average temperature had a statistically significant, negative association with COVID-19 incidence for temperatures of -15°C and above. However, temperature only explained a relatively modest amount of the total variation in COVID-19 cases. The effect of relative humidity was not statistically significant. These results suggest that warmer weather may modestly reduce the rate of spread of COVID-19, but anticipation of a substantial decline in transmission due to temperature alone with onset of summer in the northern hemisphere, or in tropical regions, is not warranted by these findings.
Collapse
|
48
|
Mecenas P, Bastos RTDRM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One 2020. [PMID: 32946453 DOI: 10.1371/journal.pone0238339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Faced with the global pandemic of COVID-19, declared by World Health Organization (WHO) on March 11th 2020, and the need to better understand the seasonal behavior of the virus, our team conducted this systematic review to describe current knowledge about the emergence and replicability of the virus and its connection with different weather factors such as temperature and relative humidity. METHODS The review was registered with the PROSPERO database. The electronic databases PubMed, Scopus, Web of Science, Cochrane Library, LILACS, OpenGrey and Google Scholar were examined with the searches restricted to the years 2019 and 2020. Risk of bias assessment was performed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist tool. The GRADE tool was used to assess the certainty of the evidence. RESULTS The initial screening identified 517 articles. After examination of the full texts, seventeen studies met the review's eligibility criteria. Great homogeneity was observed in the findings regarding the effect of temperature and humidity on the seasonal viability and transmissibility of COVID-19. Cold and dry conditions were potentiating factors on the spread of the virus. After quality assessment, two studies had a high risk of bias, eleven studies were scored as moderate risk of bias, and four studies were classified as low risk of bias. The certainty of evidence was graded as low for both outcomes evaluated. CONCLUSION Considering the existing scientific evidence, warm and wet climates seem to reduce the spread of COVID-19. However, these variables alone could not explain most of the variability in disease transmission. Therefore, the countries most affected by the disease should focus on health policies, even with climates less favorable to the virus. Although the certainty of the evidence generated was classified as low, there was homogeneity between the results reported by the included studies.
Collapse
Affiliation(s)
- Paulo Mecenas
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - David Normando
- Department of Orthodontics, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
49
|
Meyer A, Sadler R, Faverjon C, Cameron AR, Bannister-Tyrrell M. Evidence That Higher Temperatures Are Associated With a Marginally Lower Incidence of COVID-19 Cases. Front Public Health 2020. [PMID: 32754568 DOI: 10.1101/2020.03.18.2003673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Seasonal variations in COVID-19 incidence have been suggested as a potentially important factor in the future trajectory of the pandemic. Using global line-list data on COVID-19 cases reported until 17th of March 2020 and global gridded weather data, we assessed the effects of air temperature and relative humidity on the daily incidence of confirmed COVID-19 local cases at the subnational level (first-level administrative divisions). After adjusting for surveillance capacity and time since first imported case, average temperature had a statistically significant, negative association with COVID-19 incidence for temperatures of -15°C and above. However, temperature only explained a relatively modest amount of the total variation in COVID-19 cases. The effect of relative humidity was not statistically significant. These results suggest that warmer weather may modestly reduce the rate of spread of COVID-19, but anticipation of a substantial decline in transmission due to temperature alone with onset of summer in the northern hemisphere, or in tropical regions, is not warranted by these findings.
Collapse
|
50
|
Association of meteorological factors with seasonal activity of influenza A subtypes and B lineages in subtropical western China. Epidemiol Infect 2019; 147:e72. [PMID: 30869001 PMCID: PMC6518542 DOI: 10.1017/s0950268818003485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The seasonality of individual influenza subtypes/lineages and the association of influenza epidemics with meteorological factors in the tropics/subtropics have not been well understood. The impact of the 2009 H1N1 pandemic on the prevalence of seasonal influenza virus remains to be explored. Using wavelet analysis, the periodicities of A/H3N2, seasonal A/H1N1, A/H1N1pdm09, Victoria and Yamagata were identified, respectively, in Panzhihua during 2006–2015. As a subtropical city in southwestern China, Panzhihua is the first industrial city in the upper reaches of the Yangtze River. The relationship between influenza epidemics and local climatic variables was examined based on regression models. The temporal distribution of influenza subtypes/lineages during the pre-pandemic (2006–2009), pandemic (2009) and post-pandemic (2010–2015) years was described and compared. A total of 6892 respiratory specimens were collected and 737 influenza viruses were isolated. A/H3N2 showed an annual cycle with a peak in summer–autumn, while A/H1N1pdm09, Victoria and Yamagata exhibited an annual cycle with a peak in winter–spring. Regression analyses demonstrated that relative humidity was positively associated with A/H3N2 activity while negatively associated with Victoria activity. Higher prevalence of A/H1N1pdm09 and Yamagata was driven by lower absolute humidity. The role of weather conditions in regulating influenza epidemics could be complicated since the diverse viral transmission modes and mechanism. Differences in seasonality and different associations with meteorological factors by influenza subtypes/lineages should be considered in epidemiological studies in the tropics/subtropics. The development of subtype- and lineage-specific prevention and control measures is of significant importance.
Collapse
|