1
|
Zhao G, He Y, Chen Y, Jiang Y, Li C, Xiong T, Han S, He Y, Gao J, Su Y, Wang J, Wang C. Application of a derivative of human defensin 5 to treat ionizing radiation-induced enterogenic infection. JOURNAL OF RADIATION RESEARCH 2024; 65:194-204. [PMID: 38264835 PMCID: PMC10959430 DOI: 10.1093/jrr/rrad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024]
Abstract
Enterogenic infection is a common complication for patients with radiation injury and requires efficient therapeutics in the clinic. Herein, we evaluated the promising drug candidate T7E21RHD5, which is a peptide derived from intestinal Paneth cell-secreted human defensin 5. Oral administration of this peptide alleviated the diarrhea symptoms of mice that received total abdominal irradiation (TAI, γ-ray, 12 Gy) and improved survival. Pathologic analysis revealed that T7E21RHD5 elicited an obvious mitigation of ionizing radiation (IR)-induced epithelial damage and ameliorated the reduction in the levels of claudin, zonula occluden 1 and occludin, three tight junction proteins in the ileum. Additionally, T7E21RHD5 regulated the gut microbiota in TAI mice by remodeling β diversity, manifested as a reversal of the inverted proportion of Bacteroidota to Firmicutes caused by IR. T7E21RHD5 treatment also decreased the abundance of pathogenic Escherichia-Shigella but significantly increased the levels of Alloprevotella and Prevotellaceae_NK3B31, two short-chain fatty acid-producing bacterial genera in the gut. Accordingly, the translocation of enterobacteria and lipopolysaccharide to the blood, as well as the infectious inflammatory responses in the intestine after TAI, was all suppressed by T7E21RHD5 administration. Hence, this versatile antimicrobial peptide possesses promising application prospects in the treatment of IR-induced enterogenic infection.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yiyi Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Chenwenya Li
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Tainong Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| |
Collapse
|
2
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Kim MI, Pham TK, Kim D, Park M, Kim BO, Cho YH, Kim YW, Lee C. Identification of brevinin-1EMa-derived stapled peptides as broad-spectrum virus entry blockers. Virology 2021; 561:6-16. [PMID: 34089997 DOI: 10.1016/j.virol.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Based on the previously reported 13-residue antibacterial peptide analog, brevinin-1EMa (FLGWLFKVASKVL, peptide B), we attempted to design a novel class of antiviral peptides. For this goal, we synthesized three peptides with different stapling positions (B-2S, B-8S, and B-5S). The most active antiviral peptide with the specific stapling position (B-5S) was further modified in combination with either cysteine (B-5S3C, B-5S7C, and B-5S10C) or hydrophilic amino acid substitution (Bsub and Bsub-5S). Overall, B, B-5S, and Bsub-5S peptides showed superior antiviral activities against enveloped viruses such as retrovirus, lentivirus, hepatitis C virus, and herpes simplex virus with EC50 values of 1-5 μM. Murine norovirus, a non-enveloped virus, was not susceptible to the virucidal actions of these peptides, suggesting the virus membrane disruption as their main antiviral mechanisms of action. We believe that these three novel peptides could serve as promising candidates for further development of membrane-targeting antiviral drugs in the future.
Collapse
Affiliation(s)
- Mi Il Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Thanh K Pham
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Dahee Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Minkyung Park
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Republic of Korea
| | - Young-Woo Kim
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea.
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021; 19:1205-1217. [PMID: 33844613 PMCID: PMC8054488 DOI: 10.1080/14787210.2021.1912593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19. Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained. Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Madanchi
- Department of Biotechnology and Biotechnology Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Abstract
Defensins are a major family of host defense peptides expressed predominantly in neutrophils and epithelial cells. Their broad antimicrobial activities and multifaceted immunomodulatory functions have been extensively studied, cementing their role in innate immunity as a core host-protective component against bacterial, viral and fungal infections. More recent studies, however, paint defensins in a bad light such that they are "alleged" to promote viral and bacterial infections in certain biological settings. This mini review summarizes the latest findings on the potential pathogenic properties of defensins against the backdrop of their protective roles in antiviral and antibacterial immunity. Further, a succinct description of both tumor-proliferative and -suppressive activities of defensins is also given to highlight their functional and mechanistic complexity in antitumor immunity. We posit that given an enabling environment defensins, widely heralded as the "Swiss army knife," can function as a "double-edged sword" in host immunity.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Böffert R, Businger R, Preiß H, Ehmann D, Truffault V, Simon C, Ruetalo N, Hamprecht K, Müller P, Wehkamp J, Schindler M. The human α-defensin-derived peptide HD5(1-9) inhibits cellular attachment and entry of human cytomegalovirus. Antiviral Res 2020; 177:104779. [PMID: 32209394 DOI: 10.1016/j.antiviral.2020.104779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection causes severe illness in newborns and immunocompromised patients. Since treatment options are limited there is an unmet need for new therapeutic approaches. Defensins are cationic peptides, produced by various human tissues, which serve as antimicrobial effectors of the immune system. Furthermore, some defensins are proteolytically cleaved, resulting in the generation of smaller fragments with increased activity. Together, this led us to hypothesize that defensin-derived peptides are natural human inhibitors of virus infection with low toxicity. We screened several human defensin HNP4- and HD5-derived peptides and found HD5(1-9) to be antiviral without toxicity at high concentrations. HD5(1-9) inhibited HCMV cellular attachment and thereby entry and was active against primary as well as a multiresistant HCMV isolate. Moreover, cysteine and arginine residues were identified to mediate the antiviral activity of HD5(1-9). Altogether, defensin-derived peptides, in particular HD5(1-9), qualify as promising candidates for further development as a novel class of HCMV entry inhibitors.
Collapse
Affiliation(s)
- Rebecca Böffert
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Hannes Preiß
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Dirk Ehmann
- Department for Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | | | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Translational Oncology Division, University Hospital Tübingen, Tübingen, Germany
| | - Jan Wehkamp
- Department for Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
8
|
Huang J, Qi Y, Wang A, Huang C, Liu X, Yang X, Li L, Zhou R. Porcine β-defensin 2 inhibits proliferation of pseudorabies virus in vitro and in transgenic mice. Virol J 2020; 17:18. [PMID: 32014007 PMCID: PMC6998849 DOI: 10.1186/s12985-020-1288-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background Porcine β-defensin 2 (PBD-2), produced by host cells, is an antimicrobial cysteine-rich cationic peptide with multi-functions. Previous studies have demonstrated that PBD-2 can kill various bacteria, regulate host immune responses and promote growth of piglets. However, the antiviral role of PBD-2 is rarely investigated. This study aimed to reveal the antiviral ability of PBD-2 against pseudorabies virus (PRV), the causative pathogen of Aujeszky’s disease, in PK-15 cells and in a PBD-2 expressing transgenic (TG) mouse model. Methods In this study, the cytotoxicity of PBD-2 on PK-15 cells was measured by CCK-8 assay. PK-15 cells were incubated with PRV pre-treated with different concentrations of PBD-2 and PRV titers in cell culture supernatants were determined by real-time quantitative PCR (RT-qPCR). TG mice and wild-type (WT) mice were intraperitoneally injected with PRV and the survival rate was recorded for 10 days. Meanwhile, tissue lesions in brain, spleen and liver of infected mice were observed and the viral loads of PRV in brain, liver and lung were analyzed by RT-qPCR. Results PBD-2 at a maximum concentration of 80 μg/mL displayed no significant cytotoxicity on PK-15 cells. A threshold concentration of PBD-2 at 40 μg/mL was required to inhibit PRV proliferation in PK-15 cells. The survival rate in PBD-2 TG mice was 50% higher than that of WT mice. In addition, TG mice showed alleviated tissue lesions in brain, spleen and liver compared with their WT littermates after PRV challenge, while viral loads of PRV in brain, liver and lung of TG mice were significantly lower than that of WT mice. Conclusions PBD-2 could inhibit PRV proliferation in PK-15 cells and protect mice from PRV infection, which confirmed the antiviral ability of PBD-2 both in vitro and in vivo. The application of PBD-2 in developing anti-viral drugs or disease-resistant animals can be further investigated.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanhua Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xi Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, 430070, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, 430070, China. .,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
9
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
10
|
Chen F, Tang Y, Zheng H, Xu Y, Wang J, Wang C. Roles of the Conserved Amino Acid Residues in Reduced Human Defensin 5: Cysteine and Arginine Are Indispensable for Its Antibacterial Action and LPS Neutralization. ChemMedChem 2019; 14:1457-1465. [DOI: 10.1002/cmdc.201900282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/21/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Yong Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao HospitalThird Military Medical University Chongqing 400037 China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive MedicineThird Military Medical University Chongqing 400038 China
| |
Collapse
|
11
|
Park MS, Kim JI, Lee I, Park S, Bae JY, Park MS. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul) 2018; 26:242-254. [PMID: 29310427 PMCID: PMC5933891 DOI: 10.4062/biomolther.2017.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sehee Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
A Simplified Derivative of Human Defensin 5 with Potent and Efficient Activity against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2018; 62:AAC.01504-17. [PMID: 29158275 DOI: 10.1128/aac.01504-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/04/2017] [Indexed: 02/08/2023] Open
Abstract
The increasing incidence of multidrug-resistant Acinetobacter baumannii (MDRAb) infections worldwide has necessitated the development of novel antibiotics. Human defensin 5 (HD5) is an endogenous peptide with a complex architecture and antibacterial activity against MDRAb In the present study, we attempted to simplify the structure of HD5 by removing disulfide bonds. We found that the Cys2-4 bond was most indispensable for HD5 to inactivate MDRAb, although the antibacterial activity of the derivative was significantly attenuated. We then replaced the noncationic and nonhydrophobic residues with electropositive Arg to increase the antibacterial activity of HD5 derivative that contains a Cys2-4 bond, obtaining another derivative termed HD5d5. The in vitro antibacterial assay and irradiation-wound-infection animal experiment both showed that HD5d5 was much more effective than HD5 at eliminating MDRAb Further investigations revealed that HD5d5 efficiently bound to outer membrane lipid A and penetrated membranes, leading to bacterial collapse and peptide translocation. Compared to HD5, more HD5d5 molecules were located in the cytoplasm of MDRAb, and HD5d5 was more efficient at reducing the activities of superoxide dismutase and catalase, causing the accumulation of reactive oxygen species that are detrimental to microbes. In addition, HD5 failed to suppress the pathogenic outer membrane protein A of Acinetobacter baumannii (AbOmpA) at concentrations up to 50 μg/ml, whereas HD5d5 strongly bound to AbOmpA and exhibited a dramatic toxin-neutralizing ability, thus expanding the repertoire of drugs that is available to treat MDRAb infections.
Collapse
|
13
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
14
|
Abstract
α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Karina Diaz
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
15
|
Hsieh IN, Hartshorn KL. The Role of Antimicrobial Peptides in Influenza Virus Infection and Their Potential as Antiviral and Immunomodulatory Therapy. Pharmaceuticals (Basel) 2016; 9:E53. [PMID: 27608030 PMCID: PMC5039506 DOI: 10.3390/ph9030053] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) remains a major threat that can cause severe morbidity and mortality due to rapid genomic variation. Resistance of IAVs to current anti-IAV drugs has been emerging, and antimicrobial peptides (AMPs) have been considered to be potential candidates for novel treatment against IAV infection. AMPs are endogenous proteins playing important roles in host defense through direct antimicrobial and antiviral activities and through immunomodulatory effects. In this review, we will discuss the anti-IAV and immunomodulatory effects of classical AMPs (defensins and cathelicidins), and proteins more recently discovered to have AMP-like activity (histones and Alzheimer's associated β-amyloid). We will discuss the interactions between AMPs and other host defense proteins. Major emphasis will be placed on novel synthetic AMPs derived from modification of natural proteins, and on potential methods of increasing expression of endogenous AMPs, since these approaches may lead to novel antiviral therapeutics.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
16
|
Shan Y, Dong Y, Jiang D. Recombinant expression of a novel antimicrobial peptide consisting of human α-defensin 5 and Mytilus coruscus mytilin-1 in Escherichia coli. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0109-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Wang W, Yang SF, Ren LH, Zhang XX, Yu SL. Effect of bifidobacterium on defensin-5 expression in intestinal injury of preweaning rats. World J Gastroenterol 2015; 21:2638-2644. [PMID: 25759531 PMCID: PMC4351213 DOI: 10.3748/wjg.v21.i9.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect of bifidobacterium in endotoxin-induced intestinal injury in preweaning rats.
METHODS: Preweaning rats were randomly divided into three groups (n = 40 for each): a control group (group C), a model group (group E) and a treatment group (group T). Both groups E and T were intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 5 mg/kg (5 mg/L in normal saline), and group T was intragastrically administrated with bifidobacterium suspension (2.0 × 109 CFU/mL, 0.5 mL each time, twice a day, until the end of the experiment) 7 d before LPS administration. Group C was intraperitoneally injected with normal saline. After intraperitoneal injection and intragastric administration, the rats were placed back to the initial cage to receive breast feeding. The rats were killed at 2, 6, 12, 24 or 72 h, respectively, after endotoxin or physiological saline injection to collect serum and ileal tissue samples. Myeloperoxidase (MPO) contents in serum and ileum were detected at different times, and expression of ileal defensin-5 mRNA was evaluated by reverse transcription-polymerase chain reaction.
RESULTS: Serum and ileal MPO contents in group E were significantly higher than those in group C (serum contents: 107.50 ± 17.70 vs 157.14 ± 24.67, P < 0.05; ileal contents: 1.03 ± 0.21 vs 1.57 ± 0.33, P < 0.05), which peaked at 12 h and 6 h, respectively. MPO contents in group T were significantly lower than those in group E (serum contents: 114.38 ± 24.56 vs 145.25 ± 23.62, P < 0.05; ileal contents: 1.25 ± 0.24 vs 1.57 ± 0.33, P < 0.05). The expression of defensin-5 mRNA in group E was significantly higher than that in group C (0.953 ± 0.238 vs 0.631 ± 0.146, P < 0.05), which peaked at 2 h, and then decreased gradually. The expression of defensin-5 mRNA in group T was significantly lower than that in group E (0.487 ± 0.149 vs 0.758 ± 0.160, P < 0.05) apparently in 24 h. The expression of defensin-5 mRNA at 2 h in group T was significantly higher than that in group C (0.824 ± 0.158 vs 0.631 ± 0.146, P < 0.05).
CONCLUSION: MPO and defensin-5 mRNA increase in preweaning rats with LPS-induced intestinal injury. Bifidobacterium protects the gut by inhibiting MPO activity, not by increasing defensin-5 secretion.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Defensins are a major family of antimicrobial peptides expressed predominantly in neutrophils and epithelial cells, and play important roles in innate immune defense against infectious pathogens. Their biological functions in and beyond innate immunity, structure and activity relationships, mechanisms of action, and therapeutic potential continue to be interesting research topics. This review examines recent progress in our understanding of alpha and theta-defensins - the two structural classes composed of members of myeloid origin. RECENT FINDINGS A novel mode of antibacterial action is described for human enteric alpha-defensin 6, which forms structured nanonets to entrap bacterial pathogens and protect against bacterial invasion of the intestinal epithelium. The functional multiplicity and mechanistic complexity of defensins under different experimental conditions contribute to a debate over the role of enteric alpha-defensins in mucosal immunity against HIV-1 infection. Contrary to common belief, hydrophobicity rather than cationicity plays a dominant functional role in the action of human alpha-defensins; hydrophobicity-mediated high-order assembly endows human alpha-defensins with an extraordinary ability to acquire structural diversity and functional versatility. Growing evidence suggests that theta-defensins offer the best opportunity for therapeutic development as a novel class of broadly active anti-infective and anti-inflammatory agents. SUMMARY Defensins are the 'Swiss army knife' in innate immunity against microbial pathogens. Their modes of action are often reminiscent of the story of 'The Blind Men and the Elephant'. The functional diversity and mechanistic complexity, as well as therapeutic potential of defensins, will continue to attract attention to this important family of antimicrobial peptides.
Collapse
|
19
|
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425:4965-80. [PMID: 24095897 PMCID: PMC3842434 DOI: 10.1016/j.jmb.2013.09.038] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Defensins are an effector component of the innate immune system with broad antimicrobial activity. Humans express two types of defensins, α- and β-defensins, which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids in addition to inhibition of viral fusion and post-entry neutralization. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Nonetheless, many questions regarding the antiviral activities of defensins remain. Although significant mechanistic data are known for α-defensins, molecular details for β-defensin inhibition are mostly lacking. Importantly, the role of defensin antiviral activity in vivo has not been addressed due to the lack of a complete defensin knockout model. Overall, the antiviral activity of defensins is well established as are the variety of mechanisms by which defensins achieve this inhibition; however, additional research is needed to fully understand the role of defensins in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jason G. Smith
- University of Washington School of Medicine, Box 357735, 1705 North East Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol Med 2013; 5:1465-83. [PMID: 24039130 PMCID: PMC3799574 DOI: 10.1002/emmm.201201773] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/19/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022] Open
Abstract
We survive because we adapted to a world of microorganisms. All our epithelial surfaces participate in keeping up an effective barrier against microbes while not initiating ongoing inflammatory processes and risking collateral damage to the host. Major players in this scenario are antimicrobial peptides (AMPs). Such broad-spectrum innate antibiotics are in part produced by specialized cells but also widely sourced from all epithelia as well as circulating inflammatory cells. AMPs belong to an ancient defense system found in all organisms and participated in a preservative co-evolution with a complex microbiome. Particularly interesting interactions between host barrier and microbiota can be found in the gut. The intestinal cell lining not only has to maintain a tightly regulated homeostasis during its high-throughput regeneration, but also a balanced relationship towards an extreme number of mutualistic or commensal inhabitants. Recent research suggests that advancing our understanding of the circumstances of such balanced and sometimes imbalanced interactions between gut microbiota and host AMPs should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Maureen J Ostaff
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Germany
| | | | | |
Collapse
|