1
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Chi H, Qu B, Prawira A, Richardt T, Maurer L, Hu J, Fu RM, Lempp FA, Zhang Z, Grimm D, Wu X, Urban S, Dao Thi VL. An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes. EMBO Rep 2024; 25:4311-4336. [PMID: 39232200 PMCID: PMC11466959 DOI: 10.1038/s44319-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angga Prawira
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Talisa Richardt
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
| | - Jungen Hu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhenfeng Zhang
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dirk Grimm
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Chung CY, Sun CP, Tao MH, Wu HL, Wang SH, Yeh SH, Zheng QB, Yuan Q, Xia NS, Ogawa K, Nakashima K, Suzuki T, Chen PJ. Major HBV splice variant encoding a novel protein important for infection. J Hepatol 2024; 80:858-867. [PMID: 38336347 DOI: 10.1016/j.jhep.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.
Collapse
Affiliation(s)
- Chen-Yen Chung
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Wang
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Qing-Bing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Quan Yuan
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Ning-Shao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Kenji Ogawa
- RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, Wako, Saitama, Japan
| | | | | | - Pei-Jer Chen
- National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Shofa M, Ohkawa A, Kaneko Y, Saito A. Conserved use of the sodium/bile acid cotransporter (NTCP) as an entry receptor by hepatitis B virus and domestic cat hepadnavirus. Antiviral Res 2023; 217:105695. [PMID: 37536428 DOI: 10.1016/j.antiviral.2023.105695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The Orthohepadnavirus genus includes hepatitis B virus (HBV) that can cause chronic hepatitis and hepatocarcinoma in humans. Recently, a novel hepadnavirus in cats, domestic cat hepadnavirus (DCH), was identified that is genetically close to HBV. DCH infection is associated with chronic hepatitis in cats, suggesting a similarity with HBV pathogenesis and the potential to use DCH as a novel animal model for HBV research. HBV is shown to use the sodium/bile acid cotransporter (NTCP) as a major cell entry receptor, but the equivalent receptor for DCH remains unknown. Here we sought to identify the entry receptor for DCH. HBV- and DCH-derived preS1 peptides efficiently bound to both human and cat NTCPs, and residue 158 of NTCP proteins determined the species-specific binding of the DCH preS1 peptide. Myrcludex B, an HBV entry inhibitor, blocked the binding of the DCH preS1 peptide. Thus, DCH and HBV may share cell entry molecules, suggesting a possibility of inter-species transmission. Furthermore, our study suggests that DCH can be useful as a novel model for HBV research.
Collapse
Affiliation(s)
- Maya Shofa
- Department of Veterinary Science, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Miyazaki, 8891692, Japan
| | - Akiho Ohkawa
- Department of Veterinary Science, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan
| | - Yasuyuki Kaneko
- Department of Veterinary Science, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan; Veterinary Teaching Hospital, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Miyazaki, 8891692, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, 8892192, Japan.
| |
Collapse
|
5
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
6
|
Brunetto MR, Ricco G, Negro F, Wedemeyer H, Yurdaydin C, Asselah T, Papatheodoridis G, Gheorghe L, Agarwal K, Farci P, Buti M. EASL Clinical Practice Guidelines on hepatitis delta virus. J Hepatol 2023; 79:433-460. [PMID: 37364791 DOI: 10.1016/j.jhep.2023.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 06/28/2023]
Abstract
Hepatitis D virus (HDV) is a defective virus that requires the hepatitis B virus to complete its life cycle and cause liver damage in humans. HDV is responsible for rare acute and chronic liver diseases and is considered the most aggressive hepatitis virus. Acute infection can cause acute liver failure, while persistent infection typically causes a severe form of chronic hepatitis which is associated with rapid and frequent progression to cirrhosis and its end-stage complications, hepatic decompensation and hepatocellular carcinoma. Major diagnostic and therapeutic innovations prompted the EASL Governing Board to commission specific Clinical Practice Guidelines on the identification, virologic and clinical characterisation, prognostic assessment, and appropriate clinical and therapeutic management of HDV-infected individuals.
Collapse
|
7
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
8
|
Zhao K, Guo F, Wang J, Zhong Y, Yi J, Teng Y, Xu Z, Zhao L, Li A, Wang Z, Chen X, Cheng X, Xia Y. Limited disassembly of cytoplasmic hepatitis B virus nucleocapsids restricts viral infection in murine hepatic cells. Hepatology 2023; 77:1366-1381. [PMID: 35718932 DOI: 10.1002/hep.32622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Murine hepatic cells cannot support hepatitis B virus (HBV) infection even with supplemental expression of viral receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). However, the specific restricted step remains elusive. In this study, we aimed to dissect HBV infection process in murine hepatic cells. APPROACH AND RESULTS Cells expressing hNTCP were inoculated with HBV or hepatitis delta virus (HDV). HBV pregenomic RNA (pgRNA), covalently closed circular DNA (cccDNA), and different relaxed circular DNA (rcDNA) intermediates were produced in vitro . The repair process from rcDNA to cccDNA was assayed by in vitro repair experiments and in mouse with hydrodynamic injection. Southern blotting and in situ hybridization were used to detect HBV DNA. HBV, but not its satellite virus HDV, was restricted from productive infection in murine hepatic cells expressing hNTCP. Transfection of HBV pgRNA could establish HBV replication in human, but not in murine, hepatic cells. HBV replication-competent plasmid, cccDNA, and recombinant cccDNA could support HBV transcription in murine hepatic cells. Different rcDNA intermediates could be repaired to form cccDNA both in vitro and in vivo . In addition, rcDNA could be detected in the nucleus of murine hepatic cells, but cccDNA could not be formed. Interestingly, nuclease sensitivity assay showed that the protein-linked rcDNA isolated from cytoplasm was completely nuclease resistant in murine, but not in human, hepatic cells. CONCLUSIONS Our results imply that the disassembly of cytoplasmic HBV nucleocapsids is restricted in murine hepatic cells. Overcoming this limitation may help to establish an HBV infection mouse model.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Fangteng Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Junzhu Yi
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Aixin Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Zichen Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| | - Xinwen Chen
- State Key Laboratory of Virology , Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan , China
- Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , Guangzhou , China
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
- Wuhan University Center for Pathology and Molecular Diagnostics , Zhongnan Hospital of Wuhan University , Wuhan , China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases , Wuhan , China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology , Institute of Medical Virology , TaiKang Medical School , Wuhan University , Wuhan , China
| |
Collapse
|
9
|
Proteomic Analysis of Nuclear HBV rcDNA Associated Proteins Identifies UV-DDB as a Host Factor Involved in cccDNA Formation. J Virol 2021; 96:e0136021. [PMID: 34705558 DOI: 10.1128/jvi.01360-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) utilizes host DNA repair mechanisms to convert viral relaxed circular DNA (rcDNA) into a persistent viral genome, the covalently closed circular DNA (cccDNA). To identify said host factors involved in cccDNA formation, we developed an unbiased approach to discover proteins involved in cccDNA formation by precipitating nuclear rcDNA from induced HepAD38 cells and identifying the co-precipitated proteins by mass spectrometry. The DNA damage binding protein 1 (DDB1) surfaced as a hit, coinciding with our previously reported shRNA screen in which shRNA-DDB1 in HepDES19 cells reduced cccDNA production. DDB1 binding to nuclear rcDNA was confirmed in HepAD38 cells via ChIP-qPCR. DDB1 and DNA damage binding protein 2 (DDB2) form the UV-DDB complex and the latter senses DNA damage to initiate the global genome nucleotide excision repair (GG-NER) pathway. To investigate the role of DDB complex in cccDNA formation, DDB2 was knocked out in HepAD38 and HepG2-NTCP cells. In both knockout cell lines, cccDNA formation was stunted significantly, and in HepG2-NTCP-DDB2 knockout cells, downstream indicators of cccDNA such as HBV RNA, HBcAg, and HBeAg were similarly reduced. Knockdown of DDB2 in HBV-infected HepG2-NTCP cells and primary human hepatocytes (PHH) also resulted in cccDNA reduction. Trans-complementation of wild type DDB2 in HepG2-NTCP-DDB2 knockout cells rescued cccDNA formation and its downstream indicators. However, ectopic expression of DDB2 mutants deficient in DNA-binding, DDB1-binding, or ubiquitination failed to rescue cccDNA formation. Our study thus suggests an integral role of UV-DDB, specifically DDB2, in the formation of HBV cccDNA. IMPORTANCE Serving as a key viral factor for chronic hepatitis B virus (HBV) infection, HBV covalently closed circular DNA (cccDNA) is formed in the cell nucleus from viral relaxed circular DNA (rcDNA) by hijacking host DNA repair machinery. Previous studies have identified a handful of host DNA repair factors involved in cccDNA formation through hypothesis-driven research with some help from RNAi screening and/or biochemistry approaches. To enrich the landscape of tools for discovering host factors responsible for rcDNA-to-cccDNA conversion, we developed an rcDNA immunoprecipitation paired mass spectrometry assay, which allowed us to pull down nuclear rcDNA in its transitional state to cccDNA and observe the associated host factors. From this assay we discovered a novel relationship between the UV-DDB complex and cccDNA formation, hence, providing a proof-of-concept for a more direct discovery of novel HBV DNA-host interactions that can be exploited to develop new cccDNA-targeting antivirals.
Collapse
|
10
|
Miao J, Gao P, Li Q, He K, Zhang L, Wang J, Huang L. Advances in Nanoparticle Drug Delivery Systems for Anti-Hepatitis B Virus Therapy: A Narrative Review. Int J Mol Sci 2021; 22:ijms222011227. [PMID: 34681886 PMCID: PMC8538950 DOI: 10.3390/ijms222011227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B (CHB) is an infectious viral disease that is prevalent worldwide. Traditional nucleoside analogues, as well as the novel drug targets against hepatitis B virus (HBV), are associated with certain critical factors that influence the curative effect, such as biological stability and safety, effective drug delivery, and controlled release. Nanoparticle drug delivery systems have significant advantages and have provided a basis for the development of anti-HBV strategies. In this review, we aim to review the advances in nanoparticle drug delivery systems for anti-hepatitis B virus therapy by summarizing the relevant literature. First, we focus on the characteristics of nanoparticle drug delivery systems for anti-HBV therapy. Second, we discuss the nanoparticle delivery systems for anti-HBV nucleoside drugs, gene-based drugs, and vaccines. Lastly, we provide an overview of the prospects for nanoparticle-based anti-HBV agents.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Peng Gao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Qian Li
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kaifeng He
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Liwen Zhang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Junyan Wang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| | - Lingfei Huang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| |
Collapse
|
11
|
Dziri S, Rodriguez C, Gerber A, Brichler S, Alloui C, Roulot D, Dény P, Pawlotsky JM, Gordien E, Le Gal F. Variable In Vivo Hepatitis D Virus (HDV) RNA Editing Rates According to the HDV Genotype. Viruses 2021; 13:v13081572. [PMID: 34452437 PMCID: PMC8402866 DOI: 10.3390/v13081572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain.
Collapse
Affiliation(s)
- Samira Dziri
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Christophe Rodriguez
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Athenaïs Gerber
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
| | - Ségolène Brichler
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Chakib Alloui
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Dominique Roulot
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Unité d’hépatologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Université Sorbonne-Paris-Cité, 93000 Bobigny, France
| | - Paul Dény
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-UMR CNRS 5286, 69001 Lyon, France
| | - Jean Michel Pawlotsky
- Centre National de référence des Hépatites Virales B, C et Delta, Département de Virologie, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, 94000 Créteil, France; (C.R.); (J.M.P.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Emmanuel Gordien
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
| | - Frédéric Le Gal
- Centre National de Référence des Hépatites Virales B, C et Delta, Laboratoire de Microbiologie Clinique, Hôpital-Avicenne, Assistance Publique Hôpitaux de Paris, Université Sorbonne Paris Cité, 93000 Bobigny, France; (S.D.); (A.G.); (S.B.); (C.A.); (P.D.); (E.G.)
- Unité INSERM U955, équipe 18, 94000 Créteil, France;
- Correspondence:
| |
Collapse
|
12
|
Giersch K, Hermanussen L, Volz T, Volmari A, Allweiss L, Sureau C, Casey J, Huang J, Fischer N, Lütgehetmann M, Dandri M. Strong Replication Interference Between Hepatitis Delta Viruses in Human Liver Chimeric Mice. Front Microbiol 2021; 12:671466. [PMID: 34305837 PMCID: PMC8297590 DOI: 10.3389/fmicb.2021.671466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hepatitis D Virus (HDV) is classified into eight genotypes with distinct clinical outcomes. Despite the maintenance of highly conserved functional motifs, it is unknown whether sequence divergence between genotypes, such as HDV-1 and HDV-3, or viral interference mechanisms may affect co-infection in the same host and cell, thus hindering the development of HDV inter-genotypic recombinants. We aimed to investigate virological differences of HDV-1 and HDV-3 and assessed their capacity to infect and replicate within the same liver and human hepatocyte in vivo. Methods Human liver chimeric mice were infected with hepatitis B virus (HBV) and with one of the two HDV genotypes or with HDV-1 and HDV-3 simultaneously. In a second set of experiments, HBV-infected mice were first infected with HDV-1 and after 9 weeks with HDV-3, or vice versa. Also two distinct HDV-1 strains were used to infect mice simultaneously and sequentially. Virological parameters were determined by strain-specific qRT-PCR, RNA in situ hybridization and immunofluorescence staining. Results HBV/HDV co-infection studies indicated faster spreading kinetics and higher intrahepatic levels of HDV-3 compared to HDV-1. In mice that simultaneously received both HDV strains, HDV-3 became the dominant genotype. Interestingly, antigenomic HDV-1 and HDV-3 RNA were detected within the same liver but hardly within the same cell. Surprisingly, sequential super-infection experiments revealed a clear dominance of the HDV strain that was inoculated first, indicating that HDV-infected cells may acquire resistance to super-infection. Conclusion Infection with two largely divergent HDV genotypes could be established in the same liver, but rarely within the same hepatocyte. Sequential super-infection with distinct HDV genotypes and even with two HDV-1 isolates was strongly impaired, suggesting that virus interference mechanisms hamper productive replication in the same cell and hence recombination events even in a system lacking adaptive immune responses.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Volmari
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - John Casey
- Georgetown University Medical Center, Washington, DC, United States
| | - Jiabin Huang
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany
| |
Collapse
|
13
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
14
|
Loureiro D, Castelnau C, Tout I, Boyer N, Narguet S, Menasria Benazzouz S, Louis Z, Pons-Kerjean N, Giuly N, Marcellin P, Mansouri A, Asselah T. New therapies for hepatitis delta virus infection. Liver Int 2021; 41 Suppl 1:30-37. [PMID: 34155804 DOI: 10.1111/liv.14838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis delta virus (HDV) infection is a defective virus requiring hepatitis B virus (HBV) for its complete replication cycle. HDV is a small hepatotropic RNA virus and around 15 to 25 million people worldwide are living with chronic hepatitis delta (CHD) infection. However, the prevalence of HDV may be underestimated, and screening is frequently insufficient. HDV infection remains endemic in several regions including Central and West Africa, the Mediterranean basin, the Middle East, Eastern Europe, Northern Asia, certain areas of Southeast Asia and the Amazon basin of South America. The best preventive strategy to decrease HDV infection is to improve coverage of the prophylactic HBV vaccine. HDV infection may occur by HBV-HDV co-infection or superinfection, and the latter is usually more severe. CHD is associated with a higher risk of cirrhosis and hepatocellular carcinoma (HCC) compared to HBV mono-infection. Pegylated interferon alpha (PEG-IFNα) therapy is limited by moderate effectiveness (around 20%) and its adverse effects. The entry inhibitor, bulevirtide (BLV, Hepcludex® ), which was recently approved in Europe at a dose of 2 mg in sub-cutaneous injection per day, is indicated for the treatment of CHD in adult patients with compensated liver disease and positive HDV viremia. BLV can be administrated in monotherapy or in combination with PEG-IFNα. Nucleos(t)ide analogues can be used in combination for underlying HBV infection. The optimal treatment duration has not yet been determined and treatment should be continued if a clinical benefit is observed. There are other promising therapies such as IFN lambda (IFNλ) (immunomodulator), lonafarnib (prenylation inhibitor) and nucleic acid polymers (Inhibitors of HBsAg release). In this review, we will present an update on CHD and future promising treatments.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Sabrina Menasria Benazzouz
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Zeina Louis
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Service de Pharmacie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons-Kerjean
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Service de Pharmacie, AP-HP, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Patrick Marcellin
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Centre de recherche sur l'inflammation, Université de Paris, Inserm, CNRS, Paris, France.,Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| |
Collapse
|
15
|
Zhang Z, Urban S. New insights into HDV persistence: The role of interferon response and implications for upcoming novel therapies. J Hepatol 2021; 74:686-699. [PMID: 33276031 DOI: 10.1016/j.jhep.2020.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis D (CHD), a global health problem, manifests as the most severe form of viral hepatitis. The causative agent, HDV, is the smallest known human virus; it replicates its circular single-stranded RNA genome in the nucleus of hepatocytes. HDV requires HBV-encoded envelope proteins for dissemination and de novo cell entry. However, HDV can also spread through cell division. Following entry into hepatocytes, replicative intermediates of HDV RNA are sensed by the pattern recognition receptor MDA5 (melanoma differentiation antigen 5) resulting in interferon (IFN)-β/λ induction. This IFN response strongly suppresses cell division-mediated spread of HDV genomes, however, it only marginally affects HDV RNA replication in already infected, resting hepatocytes. Monotherapy with IFN-α/λ shows efficacy but rarely results in HDV clearance. Recent molecular insights into key determinants of HDV persistence and the accelerated development of specifically acting antivirals that interfere with the replication cycle have revealed promising new therapeutic perspectives. In this review, we briefly summarise our knowledge on replication/persistence of HDV, the newly discovered HDV-like agents, and the interplay of HDV with the IFN response and its consequences for persistence. Finally, we discuss the possible role of IFNs in combination with upcoming therapies aimed at HDV cure.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
16
|
Miao J, Yang X, Shang X, Gao Z, Li Q, Hong Y, Wu J, Meng T, Yuan H, Hu F. Hepatocyte-targeting and microenvironmentally responsive glycolipid-like polymer micelles for gene therapy of hepatitis B. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:127-139. [PMID: 33738144 PMCID: PMC7943969 DOI: 10.1016/j.omtn.2021.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Hepatitis B (HB) is a viral infectious disease that seriously endangers human health, and since there are no radical drugs to counter this, effective and safe therapies urgently need to be developed. HB virus (HBV) mainly infects hepatocytes (HCs), while the drugs are easily phagocytosed by Kupffer cells (KCs). In this study, the glutathione concentration difference between HCs and KCs was examined and utilized in an ideal drug-release strategy. Here, galactosylated chitosan-oligosaccharide-SS-octadecylamine (Gal-CSSO) was prepared to accurately deliver 10-23 DNAzyme DrzBC (blocking HBeAg expression) or DrzBS (blocking HBsAg expression) in targeted HB therapy. In vitro Gal-CSSO systems exhibited low cytotoxicity, endosomal escape, and glutathione responsiveness. The HBeAg and HBsAg secretion of HepG2.2.15 was significantly decreased by Gal-CSSO systems, and the maximum inhibition rates were 1.82-fold and 2.38-fold greater than those of commercial Lipofectamine 2000 (Lipo2000) systems. In vivo Gal-CSSO systems exhibited HC targeting and HC microenvironmental responsiveness without noticeable hepatotoxicity or systemic toxicity. The HBeAg and HBsAg titers of the HBV-infected mice were evidently decreased by Gal-CSSO systems, and the inhibition rates were 1.52-fold and 1.22-fold greater than those of Lipo2000 systems. This study presents a kind of glycolipid-like polymer micelles that promise efficient and safe gene therapy of HB.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Xiqin Yang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Xuwei Shang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Zhe Gao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qian Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yun Hong
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaying Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Corresponding author: Jiaying Wu, PhD, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Corresponding author: Fuqiang Hu, PhD, College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Giersch K, Hermanussen L, Volz T, Kah J, Allweiss L, Casey J, Sureau C, Dandri M, Lütgehetmann M. Murine hepatocytes do not support persistence of Hepatitis D virus mono-infection in vivo. Liver Int 2021; 41:410-419. [PMID: 32997847 DOI: 10.1111/liv.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS & AIMS As a result of the limited availability of in vivo models for hepatitis D virus (HDV), treatment options for HDV chronically infected patients are still scant. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as HDV entry receptor has enabled the development of new infection models. AIM To comparatively assess the efficacy and persistence of HDV mono-infection in murine and human hepatocytes in vivo. METHODS Mice with humanized NTCP (hNTCPed84-87 mice) were generated by editing amino acid residues 84-87 of murine NTCP in C57BL/6J mice. HDV infection was assessed in hNTCPed84-87 mice and in immune deficient uPA/SCID/beige (USB) mice, whose livers were reconstituted with human or murine (hNTCPed84-87 ) hepatocytes. Livers were analysed between 5 and 42 days post-HDV inoculation by qRT-PCR, immunofluorescence and RNA in situ hybridization (ISH). RESULTS hNTCPed84-87 mice could be infected with HDV genotype 1 or 3. ISH analysis demonstrated the presence of antigenomic HDV RNA positive murine hepatocytes with both genotypes, proving initiation of HDV replication. Strikingly, murine hepatocytes cleared HDV within 21 days both in immunocompetent hNTCPed84-87 mice and in immunodeficient USB mice xenografted with murine hepatocytes. In contrast, HDV infection remained stable for at least 42 days in human hepatocytes. Intrinsic innate responses were not enhanced in any of the HDV mono-infected cells and livers. CONCLUSION These findings suggest that in addition to NTCP, further species-specific factors limit HDV infection efficacy and persistence in murine hepatocytes. Identifying such species barriers may be crucial to develop novel potential therapeutic targets of HDV.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janine Kah
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - John Casey
- Georgetown University Medical Center, Washington, DC, USA
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems site, Borstel, Germany.,Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Fauzyah Y, Ono C, Torii S, Anzai I, Suzuki R, Izumi T, Morioka Y, Maeda Y, Okamoto T, Fukuhara T, Matsuura Y. Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation. Antiviral Res 2020; 186:104999. [PMID: 33346055 DOI: 10.1016/j.antiviral.2020.104999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of novel antivirals to treat hepatitis B virus (HBV) infection is urgently needed, as the currently available drugs mainly target viral proteins at replication step, whereas host factors also play significant roles in HBV infection. Although numerous studies have reported candidate drugs for HBV treatment, there remains a need to find a new drug that may target other steps of the HBV life cycle. In this study, by drug screening of a 533 G-protein-coupled receptors (GPCRs)-associated compound library, we identified ponesimod, a selective agonist of sphingosine-1-phosphate receptor 1 (S1P1), as a drug candidate for the suppression of HBV infection. However, the anti-HBV effect of ponesimod is independent of S1P1 and other sphingosine-1-phosphate receptors (S1PRs). Treatment with ponesimod at an early step of infection but not at a post-entry step significantly reduced the HBV relaxed circular DNA (rcDNA) level in a dose-dependent manner. Ponesimod treatment did not inhibit attachment, binding, or internalization of HBV particles via endocytosis through an interaction with sodium taurocholate cotransporting polypeptide (NTCP) or epidermal growth factor receptor (EGFR). Importantly, during the transportation of HBV particles to the nucleus, co-localization of HBV with early endosomes but not with late endosomes and lysosomes was induced by the treatment with ponesimod, suggesting that ponesimod interferes with the conversion of early endosomes to late endosomes without significant damage to cellular growth. Conclusion: Ponesimod is a promising anti-HBV drug targeting the endosome maturation of HBV. This finding can be applied to the development of novel antivirals that target the trafficking pathway of HBV particles.
Collapse
Affiliation(s)
- Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Rigel Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takuma Izumi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yuhei Morioka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Yoshikawa S, Yoshio S, Yoshida Y, Tsutsui Y, Kawai H, Yamazoe T, Mori T, Osawa Y, Sugiyama M, Iwamoto M, Watashi K, Kawaguchi T, Akita T, Tanaka J, Kikuchi Y, Mizokami M, Oka S, Kanto T, Gatanaga H. Impact of Immune Reconstitution-Induced Hepatic Flare on Hepatitis B Surface Antigen Loss in Hepatitis B Virus/Human Immunodeficiency Virus-1 Coinfected Patients. J Infect Dis 2020; 223:2080-2089. [PMID: 33073291 DOI: 10.1093/infdis/jiaa662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) loss is an ideal goal for chronic hepatitis B patients. Antiretroviral therapy (ART) in hepatitis B virus/human immunodeficiency virus-1 (HBV/HIV-1)-coinfected patients can lead to hepatic flare (HF) caused by immune reconstitution-induced inflammatory syndrome (IRIS). Here, we investigated the impact of IRIS-HF on HBsAg loss. METHODS This was a retrospective study of 58 HBV/HIV-1-coinfected subjects HBsAg-positive for ≥6 months before ART initiation and followed for ≥1 year (median 9.9 years) after ART initiation. We examined humoral factors in sera from healthy volunteers, HIV-monoinfected patients, and HBV/HIV-1-coinfected patients with IRIS-HF or acute hepatitis B infection. RESULTS During ART, HBsAg loss was observed in 20 of 58 HBV/HIV-1-coinfected patients (34.5%). Of the 58 patients, 15 (25.9%) developed IRIS-HF within 12 months of ART initiation. HBsAg loss was more frequent among patients who developed IRIS-HF (11/15, 73.3%) than those who did not (9/43, 20.9%). Multivariate analysis showed IRIS-HF was an independent predictor of subsequent HBsAg loss. Younger age and higher baseline HBV DNA titer were associated with IRIS-HF. Elevation of sCD163, not CXCL9, CXC10, CXCXL11, or CXCL13, was observed at IRIS-HF. CONCLUSIONS IRIS-HF was associated with HBsAg loss in HBV/HIV-1-coinfected patients.
Collapse
Affiliation(s)
- Shiori Yoshikawa
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Sachiyo Yoshio
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuichi Yoshida
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yuriko Tsutsui
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hironari Kawai
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Taiji Yamazoe
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Taizo Mori
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yosuke Osawa
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshimi Kikuchi
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Taylor JM. Infection by Hepatitis Delta Virus. Viruses 2020; 12:v12060648. [PMID: 32560053 PMCID: PMC7354607 DOI: 10.3390/v12060648] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) and hepatitis B virus (HBV) are blood-borne viruses that infect human hepatocytes and cause significant liver disease. Infections with HBV are more damaging when there is a coinfection with HDV. The genomes and modes of replication of these two viruses are fundamentally different, except for the fact that, in nature, HDV replication is dependent upon the envelope proteins of HBV to achieve assembly and release of infectious virus particles, ones that use the same host cell receptor. This review focuses on what has been found of the various ways, natural and experimental, by which HDV particles can be assembled and released. This knowledge has implications for the prevention and treatment of HDV infections, and maybe for an understanding of the origin of HDV.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
21
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
22
|
Asselah T, Loureiro D, Tout I, Castelnau C, Boyer N, Marcellin P, Mansouri A. Future treatments for hepatitis delta virus infection. Liver Int 2020; 40 Suppl 1:54-60. [PMID: 32077603 DOI: 10.1111/liv.14356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Around 15-20 million people develop chronic hepatitis delta virus worldwide. Hepatitis delta virus (HDV) is a defective RNA virus requiring the presence of the hepatitis B virus surface antigen (HBsAg) to complete its life cycle. HDV infects hepatocytes using the hepatitis B virus (HBV) receptor, the sodium taurocholate cotransporting polypeptide (NTCP). The HDV genome is a circular single-stranded RNA which encodes for a single hepatitis delta antigen (HDAg) that exists in two forms (S-HDAg and L-HDAg), and its replication is mediated by the host RNA polymerases. The HBsAg-coated HDV virions contain a ribonucleoprotein (RNP) formed by the RNA genome packaged with small and large HDAg. Farnesylation of the L-HDAg is the limiting step for anchoring this RNP to HBsAg, and thus for assembling, secreting and propagating virion particles. There is an important risk of morbidity and mortality caused by end-stage liver disease and hepatocellular carcinoma with HDV and current treatment is pegylated-interferon (PEG-IFN) for 48 weeks with no other options in patients who fail treatment. The ideal goal for HDV treatment is the clearance of HBsAg, but a reasonably achievable goal is a sustained HDV virological response (negative HDV RNA 6 months after stopping treatment). New drug development must take into account the interaction of HBV and HDV. In this review, we will present the new insights in the HDV life cycle that have led to the development of novel classes of drugs and discuss antiviral approaches in phase II and III of development: bulevirtide (entry inhibitor), lonafarnib, (prenylation inhibitor) and REP 2139 (HBsAg release inhibitor).
Collapse
Affiliation(s)
- Tarik Asselah
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Dimitri Loureiro
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Issam Tout
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Patrick Marcellin
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- CRI, UMR 1149, Inserm, University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| |
Collapse
|
23
|
Wang J, Huang H, Liu Y, Chen R, Yan Y, Shi S, Xi J, Zou J, Yu G, Feng X, Lu F. HBV Genome and Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:17-37. [PMID: 31741332 DOI: 10.1007/978-981-13-9151-4_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a serious threat to public health and is associated with many liver diseases including chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. Although nucleos(t)ide analogues (NA) and pegylated interferon-α (Peg-IFNα) have been confirmed to be efficient in inhibiting HBV replication, it is difficult to eradicate HBV and achieve the clinical cure of CHB. Therefore, long-term therapy has been recommended to CHB treatment under the current antiviral therapy. In this context, the new antiviral therapy targeting one or multiple critical steps of viral life cycle may be an alternative approach in future. In the last decade, the functional receptor [sodium-taurocholate cotransporting polypeptide (NTCP)] of HBV entry into hepatocytes has been discovered, and the immature nucleocapsids containing the non- or partially reverse-transcribed pregenomic RNA, the nucleocapsids containing double-strand linear DNA (dslDNA), and the empty particles devoid of any HBV nucleic acid have been found to be released into circulation, which have supplemented the life cycle of HBV. The understanding of HBV life cycle may offer a new instruction for searching the potential antiviral targets, and the new viral markers used to monitor the efficacy of antiviral therapy for CHB patients in the future.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Yongzhen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ran Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Xiaoyu Feng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.
| |
Collapse
|
24
|
Farag MM, Peschel G, Müller M, Weigand K. Characterization Of The Interaction Between Subviral Particles Of Hepatitis B Virus And Dendritic Cells - In Vitro Study. Infect Drug Resist 2019; 12:3125-3135. [PMID: 31632101 PMCID: PMC6789970 DOI: 10.2147/idr.s221294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background During an infection with hepatitis B virus (HBV), infectious particles (Dane particles) can be detected in addition to aggregates of the subviral particles (SVP) which is considered an immune escaping mechanism for the virus. Dendritic cells (DCs) are a specialized type of antigen-presenting cell (APC) that can activate native T-cells to prime an immune response controlling HBV infection. The aim of this study was to characterize the interaction between HBVsvp and DCs in vitro. Methods HBVsvp that comprises surface and core proteins were produced in vitro by HepG2.2.15 as a culturing system; DCs derived from the bone marrow of mice were pulsed by HBVsvp. A different pattern of cytokines secreted by bone-marrow-derived dendritic cells from C56BL/6 mice pulsed with HBVsvp were analyzed. The interactions between HBVsvp and DCs were characterized using FACS analysis, protein assay, Western blot, and immunofluorescence staining. Results Pulsation of DCs with HBVsvp resulted in strong activation and higher secretion of DC cytokines including INF-α, INF-γ, TNF-α, IL-1α, IL-10, and IL-12; but not for IL-1β, IL-2, IL-6, and IL-15. The production of CXCL-10/IP-10 was increased during the observation period and reached the maximal secretion after 24 hrs (p < 0.001). In total protein assay, we found significantly higher protein concentration in HBVsvp stimulated DC groups compared to not activated DCs (p < 0.001). Both 24 kDa small surface antigen (HBVs) and the 21 kDa core protein (HBVc) were detected in activated DCs. For DCs immunofluorescence staining, our data showed clear differences in the morphology of DCs between negative control and those pulsed with HBVsvp. Conclusion Result demonstrates a significant complex interaction between HBVsvp and DCs, in vitro.
Collapse
Affiliation(s)
- Mohamed Ms Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Georg Peschel
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg 93053, Germany
| | - Martina Müller
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg 93053, Germany
| | - Kilian Weigand
- Department of Gastroenterology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, Regensburg 93053, Germany
| |
Collapse
|
25
|
Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 2019; 10:2098. [PMID: 31068585 PMCID: PMC6506506 DOI: 10.1038/s41467-019-10117-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.
Collapse
Affiliation(s)
- Jimena Perez-Vargas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Chloé Mialon
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS Inserm U1134, 6 rue Alexandre Cabanel, F-75739, Paris, France
| | - Floriane Fusil
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France.
| |
Collapse
|
26
|
Down-regulation of hepatitis delta virus super-infection in the woodchuck model. Virology 2019; 531:100-113. [PMID: 30856482 DOI: 10.1016/j.virol.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms mediating clearance of hepatitis delta virus (HDV) are poorly understood. This study analyzed in detail profound down-regulation of HDV infection in the woodchuck model. Super-infection with HDV of woodchucks chronically infected with HBV-related woodchuck hepatitis virus produced two patterns. In the first, HDV viremia had a sharp peak followed by a considerable decline, and initial rise of HDV virions' infectivity followed by abrupt infectivity loss. In the second, HDV titer rose and later displayed plateau-like profile with high HDV levels; and HDV infectivity became persistently high when HDV titer reached the plateau. The infectivity loss was not due to defects in the virions' envelope, binding to anti-envelope antibodies, or mutations in HDV genome, but it correlated with profound reduction of the replication capacity of virion-associated HDV genomes. Subsequent finding that in virions with reduced infectivity most HDV RNAs were not full-length genomes suggests possible HDV clearance via RNA fragmentation.
Collapse
|
27
|
A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species Specificity. J Virol 2019; 93:JVI.01432-18. [PMID: 30541857 DOI: 10.1128/jvi.01432-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary "arms race" between hepadnaviruses and their hosts. Here, we present evidence suggesting that the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (dN/dS ratio [ratio of nonsynonymous to synonymous evolutionary changes] of <1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7% of NTCP amino acid residues exhibit rapid evolution under positive selection (dN/dS ratio of >1). Notably, a substitution at amino acid (aa) 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested a close association of the aa 158 positive selection with the pressure by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to the host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this NTCP residue. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing adaptive mutation in host receptor.IMPORTANCE HBV and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary arms race between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidence supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species specificity.
Collapse
|
28
|
Giersch K, Bhadra OD, Volz T, Allweiss L, Riecken K, Fehse B, Lohse AW, Petersen J, Sureau C, Urban S, Dandri M, Lütgehetmann M. Hepatitis delta virus persists during liver regeneration and is amplified through cell division both in vitro and in vivo. Gut 2019; 68:150-157. [PMID: 29217749 DOI: 10.1136/gutjnl-2017-314713] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Hepatitis delta virus (HDV) was shown to persist for weeks in the absence of HBV and for months after liver transplantation, demonstrating the ability of HDV to persevere in quiescent hepatocytes. The aim of the study was to evaluate the impact of cell proliferation on HDV persistence in vitro and in vivo. DESIGN Genetically labelled human sodium taurocholate cotransporting polypeptide (hNTCP)-transduced human hepatoma(HepG2) cells were infected with HBV/HDV and passaged every 7 days for 100 days in the presence of the entry inhibitor Myrcludex-B. In vivo, cell proliferation was triggered by transplanting primary human hepatocytes (PHHs) isolated from HBV/HDV-infected humanised mice into naïve recipients. Virological parameters were measured by quantitative real time polymerase chain reaction (qRT-PCR). Hepatitis delta antigen (HDAg), hepatitis B core antigen (HBcAg) and cell proliferation were determined by immunofluorescence. RESULTS Despite 15 in vitro cell passages and block of viral spreading by Myrcludex-B, clonal cell expansion permitted amplification of HDV infection. In vivo, expansion of PHHs isolated from HBV/HDV-infected humanised mice was confirmed 3 days, 2, 4 and 8 weeks after transplantation. While HBV markers rapidly dropped in proliferating PHHs, HDAg-positive hepatocytes were observed among dividing cells at all time points. Notably, HDAg-positive cells appeared in clusters, indicating that HDV was transmitted to daughter cells during liver regeneration even in the absence of de novo infection. CONCLUSION This study demonstrates that HDV persists during liver regeneration by transmitting HDV RNA to dividing cells even in the absence of HBV coinfection. The strong persistence capacities of HDV may also explain why HDV clearance is difficult to achieve in HBV/HDV chronically infected patients.
Collapse
Affiliation(s)
- Katja Giersch
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver D Bhadra
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Department of Stem Cell transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine, Asklepios Clinic St. Georg, Hamburg, Germany
| | - Camille Sureau
- Laboratoirede Virologie Moleculaire, INTS, Centre National de la Recherche Scientifique, Paris, France
| | - Stephan Urban
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, Germany
| | - Marc Lütgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Magnius L, Taylor J, Mason WS, Sureau C, Dény P, Norder H, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Deltavirus. J Gen Virol 2018; 99:1565-1566. [PMID: 30311870 DOI: 10.1099/jgv.0.001150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis delta virus, the only member of the only species in the genus Deltavirus, is a unique human pathogen. Its ~1.7 kb circular negative-sense RNA genome encodes a protein, hepatitis delta antigen, which occurs in two forms, small and large, both with unique functions. Hepatitis delta virus uses host RNA polymerase II to replicate via double rolling circle RNA synthesis. Newly synthesized linear RNAs are circularized after autocatalytic cleavage and ligation. Hepatitis delta virus requires the envelope of the helper virus, hepatitis B virus (family Hepadnaviridae), to produce infectious particles. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Deltavirus which is available at www.ictv.global/report/deltavirus.
Collapse
Affiliation(s)
- Lars Magnius
- 1Ulf Lundahls Foundation, 10061 Stockholm, Sweden
| | - John Taylor
- 2Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Camille Sureau
- 3Institut National de la Transfusion Sanguine (INTS), CNRS-INSERM U1134, Paris, France
| | - Paul Dény
- 4Centre de Recherches en Cancérologie de Lyon, INSERM U1052, UMR CNRS 5286, Team Hepatocarcinogenesis and Viral Infection, Lyon, France
| | - Helene Norder
- 5Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | | |
Collapse
|
30
|
Abstract
An estimated 240 million people worldwide are chronically infected with the hepatitis B virus (HBV). Despite readily available vaccination, HBV infections remain highly prevalent. As established HBV infections constitute a strong risk factor for developing hepatocellular carcinoma their treatment is a major task for the health system. Unfortunately, HBV is not curable with today's medicine. Approximately 15 million HBV patients have developed a hepatitis delta (HDV) infection on top of their HBV infection. The patients superinfected with this satellite virus suffer from a more severe disease development. The knowledge of the viruses, their classifications, clinical implications, treatment options and efforts to increase the drug variety are compiled in this review. The current standard therapies include nucleosidic reverse transcriptase inhibitors and interferon. As the known treatments fail to cure HBV and HDV, targeted treatment is highly warranted. The focus of this review is set on the drugs currently under clinical investigation. Furthermore, strategies for the development of targeted treatment, and compounds with novel mode of action are described.
Collapse
|
31
|
Guo F, Zhao Q, Sheraz M, Cheng J, Qi Y, Su Q, Cuconati A, Wei L, Du Y, Li W, Chang J, Guo JT. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathog 2017; 13:e1006658. [PMID: 28945802 PMCID: PMC5629035 DOI: 10.1371/journal.ppat.1006658] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. Persistent HBV infection relies on stable maintenance of a nuclear episomal viral genome called covalently closed circular (ccc) DNA, the sole transcriptional template supporting viral replication. The currently available antiviral therapeutics fail to cure chronic HBV infection due to their failure to eradicate or inactivate cccDNA. In addition to packaging viral pregenomic (pg) RNA and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, HBV core protein also participates in and regulates virion particle assembly, capsid uncoating and cccDNA formation. We report herein an intriguing observation that selected core protein allosteric modulators not only inhibit nucleocapsid assembly, but can also act on assembled, nucleus-bound nucleocapsids to promote their uncoating and consequentially interfere with cccDNA biosynthesis. This finding establishes molecular basis for development of novel core protein targeting antiviral agents with improved efficacy of suppressing cccDNA synthesis and curing chronic HBV infection.
Collapse
Affiliation(s)
- Fang Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Muhammad Sheraz
- Microbiology and Immunology graduate program, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Junjun Cheng
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Yonghe Qi
- National Institute of Biological Sciences, Beijing, China
| | - Qing Su
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Andrea Cuconati
- Arbutus Biopharma Inc., Doylestown, Pennsylvania, United States of America
| | - Lai Wei
- Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (JTG); (JC)
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail: (JTG); (JC)
| |
Collapse
|
32
|
Lempp FA, Urban S. Hepatitis Delta Virus: Replication Strategy and Upcoming Therapeutic Options for a Neglected Human Pathogen. Viruses 2017; 9:E172. [PMID: 28677645 PMCID: PMC5537664 DOI: 10.3390/v9070172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The human Hepatitis Delta Virus (HDV) is unique among all viral pathogens. Encoding only one protein (Hepatitis Delta Antigen; HDAg) within its viroid-like self-complementary RNA, HDV constitutes the smallest known virus in the animal kingdom. To disseminate in its host, HDV depends on a helper virus, the human Hepatitis B virus (HBV), which provides the envelope proteins required for HDV assembly. HDV affects an estimated 15-20 million out of the 240 million chronic HBV-carriers and disperses unequally in disparate geographical regions of the world. The disease it causes (chronic Hepatitis D) presents as the most severe form of viral hepatitis, leading to accelerated progression of liver dysfunction including cirrhosis and hepatocellular carcinoma and a high mortality rate. The lack of approved drugs interfering with specific steps of HDV replication poses a high burden for gaining insights into the molecular biology of the virus and, consequently, the development of specific novel medications that resiliently control HDV replication or, in the best case, functionally cure HDV infection or HBV/HDV co-infection. This review summarizes our current knowledge of HBV molecular biology, presents an update on novel cell culture and animal models to study the virus and provides updates on the clinical development of the three developmental drugs Lonafarnib, REP2139-Ca and Myrcludex B.
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Abstract
This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
34
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
35
|
Guo Z, King T. Therapeutic Strategies and New Intervention Points in Chronic Hepatitis Delta Virus Infection. Int J Mol Sci 2015; 16:19537-52. [PMID: 26295228 PMCID: PMC4581312 DOI: 10.3390/ijms160819537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis delta virus infection (CHD) is a condition arising from super-infection of hepatitis B virus (HBV)-infected patients, resulting in a more rapid advance in liver pathology and hepatocellular carcinoma than is observed for HBV mono-infection. Although hepatitis delta virus (HDV) is structurally simple, its life cycle involves the complex participation of host enzymes, HBV-derived surface antigen (HBsAg), and HDV-auto-ribozyme and hepatitis delta antigen (HDAg) activities. Unsatisfactory clinical trial results with interferon-based therapies are motivating researchers to adjust and redirect the approach to CHD drug development. This new effort will likely require additional structural and functional studies of the viral and cellular/host components involved in the HDV replication cycle. This review highlights recent work aimed at new drug interventions for CHD, with interpretation of key pre-clinical- and clinical trial outcomes and a discussion of promising new technological approaches to antiviral drug design.
Collapse
Affiliation(s)
- Zhimin Guo
- Huron Peak Ave., Superior, CO 80027, USA.
| | - Thomas King
- Allevagen, LLC, 4105 Perry St., Denver, CO 80212, USA.
| |
Collapse
|
36
|
Support of the infectivity of hepatitis delta virus particles by the envelope proteins of different genotypes of hepatitis B virus. J Virol 2014; 88:6255-67. [PMID: 24648462 DOI: 10.1128/jvi.00346-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED This study examined how the envelope proteins of 25 variants of hepatitis B virus (HBV) genotypes A to I support hepatitis delta virus (HDV) infectivity. The assembled virions bore the same HDV ribonucleoprotein and differed only by the HBV variant-specific envelope proteins coating the particles. The total HDV yields varied within a 122-fold range. A residue Y (position 374) in the HDV binding site was identified as critical for HDV assembly. Virions that bound antibodies, which recognize the region that includes the HBV matrix domain and predominantly but not exclusively immunoprecipitate the PreS1-containing virions, were termed PreS1*-HDVs. Using in vitro infection of primary human hepatocytes (PHH), we measured the specific infectivity (SI), which is the number of HDV genomes/cell produced by infection and normalized by the PreS1*-MOI, which is the multiplicity of infection that reflects the number of PreS1*-HDVs per cell in the inoculum used. The SI values varied within a 160-fold range and indicated a probable HBV genotype-specific trend of D > B > E > A in supporting HDV infectivity. Three variants, of genotypes B, C, and D, supported the highest SI values. We also determined the normalized index (NI) of infected PHH, which is the percentage of HDV-infected hepatocytes normalized by the PreS1*-MOI. Comparison of the SI and NI values revealed that, while a particular HBV variant may facilitate the infection of a relatively significant fraction of PHH, it may not always result in a considerable number of genomes that initiated replication after entry. The potential implications of these findings are discussed in the context of the mechanism of attachment/entry of HBV and HDV. IMPORTANCE The study advances the understanding of the mechanisms of (i) attachment and entry of HDV and HBV and (ii) transmission of HDV infection/disease.
Collapse
|
37
|
Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J Virol 2014; 88:5742-54. [PMID: 24623409 DOI: 10.1128/jvi.00430-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED A natural subviral agent of human hepatitis B virus (HBV), hepatitis delta virus (HDV), requires only the envelope proteins from HBV in order to maintain persistent infection. HBV surface antigens (HBsAgs) can be produced either by HBV replication or from integrated HBV DNA regardless of replication. The functional properties of the integrant-generated HBsAgs were examined using two human hepatocellular carcinoma-derived cell lines, Hep3B and PLC/PRF/5, that contain HBV integrants but do not produce HBV virions and have no signs of HBV replication. Both cell lines were able to support HDV replication and assembly/egress of HDV virions. Neither of the cell lines was able to produce substantial amounts of the pre-S1-containing HDV particles. HDV virions assembled in PLC/PRF/5 cells were able to infect primary human hepatocytes, while Hep3B-derived HDV appeared to be noninfectious. These results correlate with the findings that the entire open reading frame (ORF) for the large (L) envelope protein that is essential for infectivity is present on HBV RNAs from PLC/PRF/5 cells, while an L protein ORF that was truncated and fused to inverted precore sequences was found using RNAs from Hep3B cells. This study demonstrates for the first time that at least some of the HBV DNA sequence naturally integrated during infection can produce functional small and large envelope proteins capable of the formation of infectious HDV virions. Our data indicate that in vivo chronic HDV infection can persist in the absence of HBV replication (or when HBV replication is profoundly suppressed) if functional envelope proteins are supplied from HBV integrants. IMPORTANCE The study addresses the unique mechanism of HDV persistence in the absence of ongoing HBV replication, advances our understanding of HDV-HBV interactions, and supports the implementation of treatments directly targeting HDV for HDV/HBV-infected individuals.
Collapse
|
38
|
Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection. J Hepatol 2014; 60:538-44. [PMID: 24280293 DOI: 10.1016/j.jhep.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 11/01/2013] [Accepted: 11/17/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Clinical studies have shown that hepatitis delta virus (HDV) infection can persist for years and intrahepatic latency of the large delta antigen (HDAg) has been detected following liver transplantation. However, large HDAg arising via RNA-editing is associated with increasing amounts of non-infectious HDV quasi-species. This study investigated whether HDV could persist intrahepatically in the absence of HBV in vivo and whether infectious HDV could subsequently be released following HBV super-infection. METHODS Humanized mice were infected with HDV particles lacking HBV. To test for rescue of latent HDV infection 3 and 6 weeks HDV mono-infected mice were super-infected with HBV. Viral loads and cell toxicity were determined by qRT-PCR and immunohistochemistry. RESULTS The presence of HDAg-positive human hepatocytes determined after 2, 3, and 6 weeks of HDV inoculation demonstrated establishment and maintenance of intrahepatic HDV mono-infection. Although intrahepatic amounts of large HDAg and edited HDV RNA forms increased over time in HDV mono-infected livers, HBV super-infection led to prompt viremia development (up to 10(8) HDV RNA and 10(7) HBV-DNA copies/ml) even after 6 weeks of latent mono-infection. Concurrently, the number of HDAg-positive human hepatocytes increased, demonstrating intrahepatic HDV spreading. The infectivity of the rescued HDV virions was verified by serial passage in naive chimeric mice. CONCLUSIONS HDV mono-infection can persist intrahepatically for at least 6 weeks before being rescued by HBV. Conversion of a latent HDV infection to a productive HBV/HDV co-infection may contribute to HDV persistence even in patients with low HBV replication and in the setting of liver transplantation.
Collapse
|
39
|
Freitas N, Salisse J, Cunha C, Toshkov I, Menne S, Gudima SO. Hepatitis delta virus infects the cells of hepadnavirus-induced hepatocellular carcinoma in woodchucks. Hepatology 2012; 56:76-85. [PMID: 22334419 PMCID: PMC3376664 DOI: 10.1002/hep.25663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatitis delta virus (HDV) is a natural subviral agent of human hepatitis B virus (HBV). HDV enhances liver damage during concomitant infection with HBV. The molecular pathogenesis of HDV infection remains poorly understood. To advance our understanding of the relationship between HDV infection and liver cancer, it was determined whether HDV could infect in vivo the cells of hepadnavirus-induced hepatocellular carcinoma (HCC). Woodchucks (Marmota monax) that were chronically infected with HBV-related woodchuck hepatitis virus (WHV) and already developed HCCs were used as an experimental model. The locations of HCCs within the livers were determined using ultrasound imaging followed by open surgery. One week after surgery the WHV carrier woodchucks were superinfected with WHV-enveloped HDV (wHDV). Six weeks later the animals were sacrificed and HDV replication in normal liver tissues and in center masses of HCCs was evidenced by Northern analysis, real-time polymerase chain reaction assay, and immunohistochemistry. Based on accumulation levels of HDV RNAs and numbers of infected cells, the efficiency of wHDV infection appears to be comparable in most HCCs and normal liver tissues. CONCLUSION Cells of WHV-induced HCCs are susceptible to HDV infection in vivo, and therefore express functional putative WHV receptors and support the steps of the attachment/entry governed by the hepadnavirus envelope proteins. Because others previously hypothesized that hepadnavirus-induced HCCs are resistant to reinfection with a hepadnavirus in vivo, our data suggest that if such a resistance exists it likely occurs via a block at the post-entry step. The demonstrated ability of HDV to infect already formed HCCs may facilitate development of novel strategies further dissecting the mechanism of liver pathogenesis associated with HDV infection.
Collapse
Affiliation(s)
- Natalia Freitas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jessica Salisse
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Celso Cunha
- Molecular Biology Unit, Institute of Hygiene and Tropical Medicine, Lisbon, Portugal
| | | | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
40
|
Han Z, Nogusa S, Nicolas E, Balachandran S, Taylor J. Interferon impedes an early step of hepatitis delta virus infection. PLoS One 2011; 6:e22415. [PMID: 21811602 PMCID: PMC3139649 DOI: 10.1371/journal.pone.0022415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) infects hepatocytes, the major cell type of the liver. Infection of the liver may be either transient or chronic. The prognosis for patients with chronic HDV infection is poor, with a high risk of cirrhosis and hepatocellular carcinoma. The best antiviral therapy is weekly administration for at least one year of high doses of interferon alpha. This efficacy of interferon therapy has been puzzling in that HDV replication in transfected cell lines is reported as insensitive to administration of interferon alpha or gamma. Similarly, this study shows that even when an interferon response was induced by transfection of poly(IC) into a cell line, HDV RNA accumulation was only modestly inhibited. However, when the HDV replication was initiated by infection of primary human hepatocytes, simultaneous addition of interferons alpha or gamma at 600 units/ml, a concentration comparable to that achieved in treated patients, the subsequent HDV RNA accumulation was inhibited by at least 80%. These interferon treatments were shown to produce significant time-dependent increases of host response proteins such as for Stat-1, phosphoStat-1, Mx1/2/3 and PKR, and yet interferon pretreatment of hepatocytes did not confer an increased inhibition of HDV replication over interferon treatment at the time of (or after) infection. These and other data support the interpretation that interferon action against HDV replication can occur and is largely mediated at the level of entry into primary human hepatocytes. Thus in vivo, the success of long-term interferon therapy for chronic HDV, may likewise involve blocking HDV spread by interfering with the initiation of productive infection of naïve hepatocytes.
Collapse
Affiliation(s)
- Ziying Han
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shoko Nogusa
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Emmanuelle Nicolas
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | - John Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Taylor JM, Han Z. Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus. PLoS One 2010; 5:e15784. [PMID: 21187936 PMCID: PMC3004961 DOI: 10.1371/journal.pone.0015784] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/22/2010] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH) and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS) and brilliant blue G (BBG), both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America.
| | | |
Collapse
|
42
|
Alves C, Cheng H, Roder H, Taylor J. Intrinsic disorder and oligomerization of the hepatitis delta virus antigen. Virology 2010; 407:333-40. [PMID: 20855099 DOI: 10.1016/j.virol.2010.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
The 195 amino acid basic protein (δAg) of hepatitis delta virus (HDV) is essential for replication of the HDV RNA genome. Numerous properties have been mapped to full-length δAg and attempts made to link these to secondary, tertiary and quaternary structures. Here, for the full-size δAg, extensive intrinsic disorder was predicted using PONDR-FIT, a meta-predictor of intrinsic disorder, and evidenced by circular dichroism measurements. Most δAg amino acids are in disordered configurations with no more than 30% adopting an α-helical structure. In addition, dynamic light scattering studies indicated that purified δAg assembled into structures of as large as dodecamers. Cross-linking followed by denaturing polyacrylamide gel electrophoresis revealed hexamers to octamers for this purified δAg and at least this size for δAg found in virus-like particles. Oligomers of purified δAg were resistant to elevated NaCl and urea concentrations, and bound without specificity to RNA and single- and double-stranded DNAs.
Collapse
|
43
|
Meshki J, Douglas SD, Lai JP, Schwartz L, Kilpatrick LE, Tuluc F. Neurokinin 1 receptor mediates membrane blebbing in HEK293 cells through a Rho/Rho-associated coiled-coil kinase-dependent mechanism. J Biol Chem 2009; 284:9280-9. [PMID: 19179340 DOI: 10.1074/jbc.m808825200] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have investigated the effect of neurokinin 1 receptor (NK1R) agonists on HEK293 cells transfected with the NK1R receptor. The NK1R receptor mediates dramatic shape changes that include contractions of the membrane cortex resulting in membrane bleb formation. We have found that the cell shape changes correlate with changes in electrical impedance measured in cellular monolayers. The shape and impedance changes were prevented after preincubation with NK1R antagonists aprepitant and L-73060. Although bleb formation usually heralds apoptotic cell death, we have found that NK1R-mediated cellular blebbing does not associate with apoptosis. Preincubation with a cell-permeable derivative of C3 transferase that blocks Rho or with the Rho-associated coiled-coil kinase inhibitor Y27632 completely prevented NK1R-induced shape and impedance changes. Blebbing was also completely inhibited by ML-9, a myosin light chain kinase inhibitor. Furthermore, the phospholipase C inhibitor U73,122 did not interfere with the effect of Substance P (SP) on cellular morphology and cellular impedance but completely blocked SP-induced intracellular calcium increase, indicating that the blebbing is a process independent of intracellular calcium elevations. Blebbing is a protein kinase C-independent process, since the nonselective protein kinase C inhibitor GF109203X did not interfere with SP-induced effects. Based on these results, we provide the first evidence that NK1R receptor-ligand interaction can cause apoptosis-independent cellular blebbing and that this process is mediated by the Rho/Rho-associated coiled-coil kinase pathway.
Collapse
Affiliation(s)
- John Meshki
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
In the sera of patients infected with hepatitis B virus (HBV), in addition to infectious particles, there is an excess (typically 1,000- to 100,000-fold) of empty subviral particles (SVP) composed solely of HBV envelope proteins in the form of relatively smaller spheres and filaments of variable length. Hepatitis delta virus (HDV) assembly also uses the envelope proteins of HBV to produce an infectious particle. Rate-zonal sedimentation was used to study the particles released from liver cell lines that produced SVP only, HDV plus SVP, and HBV plus SVP. The SVP made in the absence of HBV or HDV were further examined by electron microscopy. They bound efficiently to heparin columns, consistent with an ability to bind cell surface glycosaminoglycans. However, unlike soluble forms of HBV envelope protein that were potent inhibitors, the SVP did not inhibit the ability of HBV and HDV to infect primary human hepatocytes.
Collapse
|
45
|
Primary human hepatocytes are susceptible to infection by hepatitis delta virus assembled with envelope proteins of woodchuck hepatitis virus. J Virol 2008; 82:7276-83. [PMID: 18495772 DOI: 10.1128/jvi.00576-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) share the HBV envelope proteins. When woodchucks chronically infected with woodchuck hepatitis virus (WHV) are superinfected with HDV, they produce HDV with a WHV envelope, wHDV. Several lines of evidence are provided that wHDV infects not only cultured primary woodchuck hepatocytes (PWH) but also primary human hepatocytes (PHH). Surprisingly, HBV-enveloped HDV (hHDV) and wHDV infected PHH with comparable efficiencies; however, hHDV did not infect PWH. The basis for these host range specificities was investigated using as inhibitors peptides bearing species-specific pre-S (where S is the small envelope protein) sequences. It was found that pre-S1 contributed to the ability of wHDV to infect both PHH and PWH. In addition, the inability of hHDV to infect PWH was not overcome using a chimeric form of hHDV containing WHV S protein, again supporting the essential role of pre-S1 in infection of target cells. One interpretation of these data is that host range specificity of HDV is determined entirely by pre-S1 and that the WHV and HBV pre-S1 proteins recognize different receptors on PHH.
Collapse
|
46
|
Chang J, Nie X, Chang HE, Han Z, Taylor J. Transcription of hepatitis delta virus RNA by RNA polymerase II. J Virol 2008; 82:1118-27. [PMID: 18032511 PMCID: PMC2224410 DOI: 10.1128/jvi.01758-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022] Open
Abstract
Previous studies have indicated that the replication of the RNA genome of hepatitis delta virus (HDV) involves redirection of RNA polymerase II (Pol II), a host enzyme that normally uses DNA as a template. However, there has been some controversy about whether in one part of this HDV RNA transcription, a polymerase other than Pol II is involved. The present study applied a recently described cell system (293-HDV) of tetracycline-inducible HDV RNA replication to provide new data regarding the involvement of host polymerases in HDV transcription. The data generated with a nuclear run-on assay demonstrated that synthesis not only of genomic RNA but also of its complement, the antigenome, could be inhibited by low concentrations of amanitin specific for Pol II transcription. Subsequent studies used immunoprecipitation and rate-zonal sedimentation of nuclear extracts together with double immunostaining of 293-HDV cells, in order to examine the associations between Pol II and HDV RNAs, as well as the small delta antigen, an HDV-encoded protein known to be essential for replication. Findings include evidence that HDV replication is somehow able to direct the available delta antigen to sites in the nucleoplasm, almost exclusively colocalized with Pol II in what others have described as transcription factories.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Hepatitis B viruses are small enveloped DNA viruses referred to as Hepadnaviridae that cause transient or persistent (chronic) infections of the liver. This family is divided into two genera, orthohepadnavirus and avihepadnavirus, which infect mammals or birds as natural hosts, respectively. They possess a narrow host range determined by the initial steps of viral attachment and entry. Hepatitis B virus is the focus of biomedical research owing to its medical significance. Approximately 2 billion people have serological evidence of hepatitis B, and of these approximately 350 million people have chronic infections (World Health Organisation, Fact Sheet WHO/204, October 2000). Depending on viral and host factors, the outcomes of infection with hepatitis B virus vary between acute hepatitis, mild or severe chronic hepatitis or cirrhosis. Chronic infections are associated with an increased risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hans-Jürgen Netter
- Monash University, Department of Microbiology, Clayton Campus, Victoria 3800, Australia
| | - Shau-Feng Chang
- Industrial Technology Research Institute, Biomedical Engineering Laboratories, 300 Hsinchu, Taiwan
| | - Michael Bruns
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, 20251 Hamburg, Germany
| |
Collapse
|
48
|
Abstract
Host range describes the range of species that a virus can infect to productively propagate itself. Productive infection requires compatibility between virus and host molecules. Thus host range may be restricted by lack of appropriate permissivity factors;alternatively, hosts may actively counteract infection using restriction factors. Incompatibility between virus and host can manifest on the level of individual cells,of tissues or organs,and of the entire organism. All hepatitis B viruses are hepatotropic,but individual viruses infect the livers of only selected mammalian (orthohepadnaviruses) and avian (avihepadnaviruses) hosts. Hence a narrow host range is thought to be a salient feature of hepadnaviruses. Here we briefly review general mechanisms of host range restriction,and summarise older as well as recent data pertaining to hepadnaviral host range. Clearly,the term species-specific is inadequate for many hepadnaviruses because they can infect different species from one genus,and even species from different genera. For a few others,only a single species,or genus,has been identified that supports efficient infection;however,this could as well relate to the restricted number of experimentally addressable test species. Together with the uncertainty about quantitative phylogenetic relationships between species,still largely based on morphological rather than molecular criteria,this leaves the term narrow open to interpretation. Finally,few if any of the host molecules enabling productive infection by a hepadnavirus have unambiguously been identified,the role of restriction factors has not yet been assessed,and even on the virus side the so-called host determining regions in the PreS domains of the large envelope proteins appear to be relevant only under specialised experimental conditions. Hence this important aspect of hepadnavirus biology is still far from being understood.
Collapse
|
49
|
Chai N, Chang HE, Nicolas E, Gudima S, Chang J, Taylor J. Assembly of hepatitis B virus envelope proteins onto a lentivirus pseudotype that infects primary human hepatocytes. J Virol 2007; 81:10897-904. [PMID: 17670822 PMCID: PMC2045538 DOI: 10.1128/jvi.00959-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study demonstrates that the envelope proteins of hepatitis B virus (HBV) could be incorporated into the lipid membrane of lentivirus pseudotype particles. The assembly procedure was initiated by the transfection of 293T cells with three plasmids: (i) a human immunodeficiency virus (HIV) packaging construct, (ii) a transfer plasmid expressing a reporter gene, and (iii) a plasmid expressing large (L), middle (M), and small (S) HBV envelope proteins. After 2 days, hepatitis B surface antigen and the antigenic forms of L, M, and S were detected at the cell surface by flow cytometry. Also, virus particles that were able to infect cultured primary human hepatocytes (PHH) were released. Under optimal conditions, 50% of PHH could be infected. In addition, the susceptibility of PHH and the resistance of other cell types to the pseudotype particles were similar to those observed for HBV and hepatitis delta virus (HDV), which shares the same L, M, and S. Furthermore, the infection of PHH by the pseudotype was sensitive to known inhibitors of HBV and HDV entry. These findings of specific and efficient infection of hepatocytes could be applicable to liver-specific gene therapy and may help clarify the attachment and entry mechanism used by HBV and HDV.
Collapse
Affiliation(s)
- Ning Chai
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chai N, Gudima S, Chang J, Taylor J. Immunoadhesins containing pre-S domains of hepatitis B virus large envelope protein are secreted and inhibit virus infection. J Virol 2007; 81:4912-8. [PMID: 17329331 PMCID: PMC1900235 DOI: 10.1128/jvi.02865-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) replication produces three envelope proteins (L, M, and S) that have a common C terminus. L, the largest, contains a domain, pre-S1, not present on M. Similarly M contains a domain, pre-S2, not present on S. The pre-S1 region has important functions in the HBV life cycle. Thus, as an approach to studying these roles, the pre-S1 and/or pre-S2 sequences of HBV (serotype adw2, genotype A) were expressed as N-terminal fusions to the Fc domain of a rabbit immunoglobulin G chain. Such proteins, known as immunoadhesins (IA), were highly expressed following transfection of cultured cells and, when the pre-S1 region was present, >80% were secreted. The IA were myristoylated at a glycine penultimate to the N terminus, although mutation studies showed that this modification was not needed for secretion. As few as 30 amino acids from the N terminus of pre-S1 were both necessary and sufficient to drive secretion of IA. Even expression of pre-S1 plus pre-S2, in the absence of an immunoglobulin chain, led to efficient secretion. Overall, these studies demonstrate an unexpected ability of the N terminus of pre-S1 to promote protein secretion. In addition, some of these secreted IA, at nanomolar concentrations, inhibited infection of primary human hepatocytes either by hepatitis delta virus (HDV), a subviral agent that uses HBV envelope proteins, or HBV. These IA have potential to be part of antiviral therapies against chronic HDV and HBV, and may help understand the attachment and entry mechanisms used by these important human pathogens.
Collapse
Affiliation(s)
- Ning Chai
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA
| | | | | | | |
Collapse
|