1
|
Katona M, Jeles K, Takács P, Csoma E. DNA and seroprevalence study of MW and STL polyomaviruses. J Med Virol 2024; 96:e29860. [PMID: 39145597 DOI: 10.1002/jmv.29860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The clinical importance and the pathogenesis of the MW and STL polyomaviruses (PyVs) remain unclear. Our aim was to study the seroprevalence of MWPyV and STLPyV, and to examine the prevalence of viral DNA in respiratory samples and secondary lymphoid tissues. In total, 618 serum samples (0.8-90 years) were analyzed for seroprevalence. For the DNA prevalence study, 146 patients (2.5-37.5 years) were sampled for adenoids (n = 100), tonsils (n = 100), throat swabs (n = 146), and middle ear discharge (n = 15) in study Group 1. In Group 2, we analyzed 1130 nasopharyngeal samples from patients (0.8-92 years) tested for SARS-CoV-2 infection. The adult seropositivity was 54% for MWPyV, and 81.2% for STLPyV. Both seroprevalence rates increased with age; however, the majority of STLPyV primary infections appeared to occur in children. MWPyV was detected in 2.7%-4.9% of respiratory samples, and in a middle ear discharge. STLPyV DNA prevalence was 1.4%-3.4% in swab samples, and it was detected in an adenoid and in a middle ear discharge. The prevalence of both viruses was significantly higher in the children. Noncoding control regions of both viruses and the complete genomes of STLPyV were sequenced. MWPyV and STLPyV are widespread viruses, and respiratory transmission may be possible.
Collapse
Affiliation(s)
- Melinda Katona
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Jeles
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Takács
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Nicol JTJ, Mazzoni E, Iaquinta MR, De Pace R, Gaboriaud P, Maximova N, Cason C, De Martino E, Mazziotta C, Coursaget P, Touzé A, Boz V, Comar M, Tognon M, Martini F. Prevalence of IgG antibodies against Malawi polyomavirus in patients with autoimmune diseases and lymphoproliferative disorders subjected to bone marrow transplantation. Front Immunol 2024; 14:1293313. [PMID: 38299147 PMCID: PMC10827882 DOI: 10.3389/fimmu.2023.1293313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Human polyomaviruses (HPyVs) cause persistent/latent infections in a large fraction of the population. HPyV infections may cause severe diseases in immunocompromised patients. Malawi polyomavirus (MWPyV) is the 10th discovered human polyomavirus (HPyV 10). MWPyV was found in stool samples of healthy children. So far, the few investigations carried out on HPyV 10 did not find an association with human disease. Methods In this study, to verify the putative association between MWPyV and human diseases, MWPyV seroprevalence was investigated in patients affected by i) lymphoproliferative disorders (LPDs) and ii) immune system disorders, i.e., autoimmune diseases (ADs), and in iii) healthy subjects. An indirect ELISA, employing virus-like particles (VLPs) to detect serum IgG antibodies against MWPyV/HPyV 10, was carried out. The study also revealed the prevalence of another polyomavirus, Merkel cell polyomavirus (MCPyV). Results Sera from patients with distinct autoimmune diseases (n = 44; mean age 20 years) had a prevalence of MWPyV antibodies of 68%, while in patients with lymphoproliferative disorders (n = 15; mean age 14 years), subjected to bone marrow transplantation, the prevalence was 47%. In healthy subjects (n = 66; mean age 13 years), the prevalence of MWPyV antibodies was 67%. Our immunological investigation indicates that MWPyV/HPyV 10 seroconversion occurs early in life and MWPyV/HPyV 10 appears to be another polyomavirus ubiquitous in the human population. A significantly lower MWPyV antibody reactivity together with a lower immunological profile was detected in the sera of LPD patients compared with HS2 (*p < 0.05) (Fisher's exact test). LPD and AD patients have a similar MCPyV seroprevalence compared with healthy subjects. Discussion MWPyV seroprevalence indicates that this HPyV is not associated with lymphoproliferative and autoimmune diseases. However, the ability to produce high levels of antibodies against MWPyV appears to be impaired in patients with lymphoproliferative disorders. Immunological investigations indicate that MWPyV seroconversion occurs early in life. MCPyV appears to be a ubiquitous polyomavirus, like other HPyVs, in the human population.
Collapse
Affiliation(s)
- Jérôme T. J. Nicol
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Raffaella De Pace
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Natalia Maximova
- Onco-Hematology Division, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Eleonora De Martino
- Laboratory of Pediatric Immunology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pierre Coursaget
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Antoine Touzé
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Valentina Boz
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
4
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
5
|
Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer 2020; 122:306-314. [PMID: 31708575 PMCID: PMC7000688 DOI: 10.1038/s41416-019-0602-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/28/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The human papillomavirus (HPV) family includes more than 170 different types of virus that infect stratified epithelium. High-risk HPV is well established as the primary cause of cervical cancer, but in recent years, a clear role for this virus in other malignancies is also emerging. Indeed, HPV plays a pathogenic role in a subset of head and neck cancers-mostly cancers of the oropharynx-with distinct epidemiological, clinical and molecular characteristics compared with head and neck cancers not caused by HPV. This review summarises our current understanding of HPV in these cancers, specifically detailing HPV infection in head and neck cancers within different racial/ethnic subpopulations, and the differences in various aspects of these diseases between women and men. Finally, we provide an outlook for this disease, in terms of clinical management, and consider the issues of 'diagnostic biomarkers' and targeted therapies.
Collapse
Affiliation(s)
- Maria Elisa Sabatini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, IFOM-IEO Campus, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
6
|
Kim JW, Berrios C, Kim M, Schade AE, Adelmant G, Yeerna H, Damato E, Iniguez AB, Florens L, Washburn MP, Stegmaier K, Gray NS, Tamayo P, Gjoerup O, Marto JA, DeCaprio J, Hahn WC. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 2020; 9:53003. [PMID: 31913126 PMCID: PMC6984821 DOI: 10.7554/elife.53003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B’’’, striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity. Cells maintain a fine balance of signals that promote or counter cell growth and division. Two sets of enzymes – called kinases and phosphatases – contribute to this balance. In general, kinases “switch on” other proteins by tagging them with a phosphate molecule. This process is called phosphorylation. Phosphatases, on the other hand, dephosphorylate these proteins, switching them off. Cancer cells often have mutations that activate kinases to drive cancer growth. The same cells can have mutations that inactivate the phosphatases or reduce their abundance. The roles of phosphatases in cancer are still being studied. One major hurdle in this research is that it is not always clear how they recognize the proteins they dephosphorylate. Protein phosphatase 2A (or PP2A for short) is one of the phosphatases that is often mutated or deleted in human cancers. Even just reduced levels of PP2A can promote cancer. Kim, Berrios, Kim, Schade et al. used an experimental trick to decrease the phosphatase activity of PP2A in human cells growing in a dish. Biochemical analysis of these cells showed that, as expected, many proteins were now in their phosphorylated states. Unexpectedly, however, some proteins were dephosphorylated under these conditions. One of these proteins was called MAP4K4. In the case of MAP4K4, the dephosphorylated state contributes to the growth of the cancer cell. Kim et al. carried out further genetic and biochemical experiments to show that, in these cells, PP2A and MAP4K4 stay physically connected to one another. This connection was enabled by a group of proteins called the STRIPAK complex. The STRIPAK proteins directed the remaining PP2A towards MAP4K4. Low levels or activity of PP2A could, therefore, promote cancer in a different way. Taken together, PP2A is not a single phosphatase that always turns proteins off, but rather is a dual switch that turns off some proteins while turning on others. Future experiments will explore to what extent these findings also apply in tumors. Information about how mutations in PP2A affect human cancers could suggest new targets for cancer drugs.
Collapse
Affiliation(s)
- Jong Wook Kim
- Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Division of Medical Genetics, School of Medicine, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| | - Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, United States
| | - Miju Kim
- Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Amy E Schade
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, United States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, United States
| | - Huwate Yeerna
- Division of Medical Genetics, School of Medicine, University of California, San Diego, San Diego, United States
| | - Emily Damato
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Amanda Balboni Iniguez
- Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, United States
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, United States
| | - Kim Stegmaier
- Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Nathanael S Gray
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
| | - Pablo Tamayo
- Division of Medical Genetics, School of Medicine, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, United States.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, United States
| | - James DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
7
|
Kourieh A, Combes JD, Tommasino M, Dalstein V, Clifford GM, Lacau St Guily J, Clavel C, Franceschi S, Gheit T, For The Split Study Group. Prevalence and risk factors of human polyomavirus infections in non-malignant tonsils and gargles: the SPLIT study. J Gen Virol 2018; 99:1686-1698. [PMID: 30407150 DOI: 10.1099/jgv.0.001156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of 13 polyomaviruses (PyVs) in the tonsil brushings and gargles of immunocompetent children and adults was assessed. Patients undergoing tonsillectomy for benign indications were recruited in 19 centres in France. After resection, the entire outer surface of the right and left halves of the tonsils was brushed extensively. Gargles were also collected prior to surgery in selected adults. A species-specific multiplex assay was used to detect the DNA of 13 PyVs. In tonsil brushings (n=689), human PyV 6 (HPyV6) and Merkel cell PyV (MCPyV) were the most prevalent (≈15 %), followed by trichodysplasia spinulosa-associated PyV (TSPyV), BKPyV, Washington University PyV (WUPyV) and human PyV 9 (HPyV9) (1 to 5 %), and human PyV 7 (HPyV7), John Cunningham PyV (JCPyV) and Simian virus 40 (SV40) (<1 %), while no Karolinska Institute PyV (KIPyV), Malawi PyV (MWPyV), human PyV 12 (HPyV12) or Lyon IARC PyV (LIPyV) were detected. The prevalence of TSPyV and BKPyV was significantly higher in children versus adults, whereas for HPyV6 the opposite was found. HPyV6 and WUPyV were significantly more prevalent in men versus women. In gargles (n=139), MCPyV was the most prevalent (≈40 %), followed by HPyV6, HPyV9 and LIPyV (2 to 4 %), and then BKPyV (≈1 %), while other PyVs were not detected. MCPyV and LIPyV were significantly more prevalent in gargles compared to tonsil brushings, in contrast to HPyV6. We described differing patterns of individual PyV infections in tonsils and gargles in a large age-stratified population. Comparison of the spectrum of PyVs in paired tonsil samples and gargles adds to the current knowledge on PyV epidemiology, contributing towards a better understanding of PyV acquisition and transmission and its potential role in head and neck diseases.
Collapse
Affiliation(s)
- Aboud Kourieh
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean-Damien Combes
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Véronique Dalstein
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Gary M Clifford
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean Lacau St Guily
- 5Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Sorbonne University, Paris, France
- 6Tenon Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christine Clavel
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Silvia Franceschi
- 7Aviano Cancer Centre, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Tarik Gheit
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | | |
Collapse
|
8
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
9
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
10
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Csoma E, Bidiga L, Méhes G, Katona M, Gergely L. Survey of KI, WU, MW, and STL Polyomavirus in Cancerous and Non-Cancerous Lung Tissues. Pathobiology 2017; 85:179-185. [PMID: 28965121 DOI: 10.1159/000481174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The pathogenesis of the human polyomavirus (PyV) KI, WU, MW, and STL has not been elucidated yet. Respiratory transmission is suggested, but the site of the replication, tissue, and cell tropism is not clarified. KIPyV and WUPyV DNA and/or antigen were detected in normal lung tissues previously by others. In fact, a KIPyV DNA sequence was found in lung cancer samples. Up to date, there is no publication about the DNA prevalence of MWPyV and STLPyV neither in normal nor in cancerous lung tissues. The aim of the present study was to examine the DNA prevalence of these polyomaviruses in cancerous and non-cancerous lung tissue samples, in order to study the possible site for viral replication and/or persistence, and the potential association of these viruses with lung carcinogenesis as well. METHODS 100 cancerous and 47 non-cancerous, formalin-fixed paraffin-embedded lung tissue samples were studied for KIPyV, WUPyV, MWPyV, and STLPyV by real-time PCR. RESULTS AND CONCLUSION Neither of the viruses was found in samples from small-cell, non-small-cell (adenocarcinoma, squamous-cell carcinoma and large-cell neuroendocrine lung cancer), mixed-type and non-differentiated lung carcinoma, and non-cancerous lung tissues (from patients with pneumonia, emphysema and fibrosis).
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Melinda Katona
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Gergely
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Ma FL, Li DD, Wei TL, Li JS, Zheng LS. Quantitative detection of human Malawi polyomavirus in nasopharyngeal aspirates, sera, and feces in Beijing, China, using real-time TaqMan-based PCR. Virol J 2017; 14:152. [PMID: 28806976 PMCID: PMC5557062 DOI: 10.1186/s12985-017-0817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023] Open
Abstract
Background Human Malawi polyomavirus (MWPyV) was discovered in 2012, but its prevalence and clinical characteristics are largely unknown. Methods We used real-time TaqMan-based PCR to detect MWPyV in the feces (n = 174) of children with diarrhea, nasopharyngeal aspirates (n = 887) from children with respiratory infections, and sera (n = 200) from healthy adults, and analyzed its clinical characteristics statistically. All the MWPyV-positive specimens were also screened for other common respiratory viruses. Results Sixteen specimens were positive for MWPyV, including 13 (1.47%) respiratory samples and three (1.7%) fecal samples. The samples were all co-infected with other respiratory viruses, most commonly with influenza viruses (69.2%) and human coronaviruses (30.7%). The MWPyV-positive children were diagnosed with bronchopneumonia or viral diarrhea. They ranged in age from 12 days to 9 years, and the most frequent symptoms were cough and fever. Conclusions Real-time PCR is an effective tool for the detection of MWPyV in different types of samples. MWPyV infection mainly occurs in young children, and fecal–oral transmission is a possible route of its transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0817-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fen-Lian Ma
- Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Dan-di Li
- Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Tian-Li Wei
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100052, China
| | - Jin-Song Li
- Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China
| | - Li-Shu Zheng
- Key Laboratory for Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, China CDC, 100 Ying-Xin St., Xi-Cheng District, Beijing, 100052, China.
| |
Collapse
|
13
|
Berrios C, Padi M, Keibler MA, Park DE, Molla V, Cheng J, Lee SM, Stephanopoulos G, Quackenbush J, DeCaprio JA. Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation. PLoS Pathog 2016; 12:e1006020. [PMID: 27880818 PMCID: PMC5120958 DOI: 10.1371/journal.ppat.1006020] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/23/2016] [Indexed: 02/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-κB and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-κB subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. In 2008, Merkel cell polyomavirus (MCPyV) was identified as clonally integrated in a majority of Merkel cell carcinomas (MCC), a rare but highly aggressive neuroendocrine carcinoma of the skin. Since then, studies have highlighted the roles of the MCPyV T antigens in promoting and sustaining MCC oncogenesis. In particular, MCPyV small T antigen (ST) has oncogenic activity in vivo and in vitro. We performed transcriptome analysis of normal human fibroblasts with inducible expression of MCPyV ST and observed significant alterations in levels of metabolic pathway genes, particularly those involved in glycolysis. MCT1, a major monocarboxylate transporter, was rapidly induced following ST expression and inhibition of MCT1 activity reduced the ST growth promoting and transforming activities. The metabolic perturbations induced by this oncogenic human polyomavirus reflect a potent transforming mechanism of MCPyV ST.
Collapse
Affiliation(s)
- Christian Berrios
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Megha Padi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Donglim Esther Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Vadim Molla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soo Mi Lee
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Rachmadi AT, Torrey JR, Kitajima M. Human polyomavirus: Advantages and limitations as a human-specific viral marker in aquatic environments. WATER RESEARCH 2016; 105:456-469. [PMID: 27665433 DOI: 10.1016/j.watres.2016.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 05/27/2023]
Abstract
Human polyomaviruses (HPyVs) cause persistent infections in organs such as kidney, brain, skin, liver, respiratory tract, etc., and some types of HPyV are constantly excreted in the urine and/or feces of infected and healthy individuals. The use of an enteric virus as an indicator for human sewage/waste contamination in aquatic environments has been proposed; HPyVs are a good candidate since they are routinely found in environmental water samples from different geographical areas with relatively high abundance. HPyVs are highly human specific, having been detected in human waste from all age ranges and undetected in animal waste samples. In addition, HPyVs show a certain degree of resistance to high temperature, chlorine, UV, and low pH, with molecular signals (i.e., DNA) persisting in water for several months. Recently, various concentration methods (electronegative/positive filtration, ultrafiltration, skim-milk flocculation) and detection methods (immunofluorescence assay, cell culture, polymerase chain reaction (PCR), integrated cell culture PCR (ICC-PCR), and quantitative PCR) have been developed and demonstrated for HPyV, which has enabled the identification and quantification of HPyV in various environmental samples, such as sewage, surface water, seawater, drinking water, and shellfish. In this paper, we summarize these recent advancements in detection methods and the accumulation of environmental surveillance and laboratory-scale experiment data, and discuss the potential advantages as well as limitations of HPyV as a human-specific viral marker in aquatic environments.
Collapse
Affiliation(s)
- Andri T Rachmadi
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Jason R Torrey
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Japan.
| |
Collapse
|
15
|
Barth H, Solis M, Lepiller Q, Sueur C, Soulier E, Caillard S, Stoll-Keller F, Fafi-Kremer S. 45 years after the discovery of human polyomaviruses BK and JC: Time to speed up the understanding of associated diseases and treatment approaches. Crit Rev Microbiol 2016; 43:178-195. [DOI: 10.1080/1040841x.2016.1189873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Quentin Lepiller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Charlotte Sueur
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Eric Soulier
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sophie Caillard
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Françoise Stoll-Keller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Barth H, Solis M, Kack-Kack W, Soulier E, Velay A, Fafi-Kremer S. In Vitro and In Vivo Models for the Study of Human Polyomavirus Infection. Viruses 2016; 8:E292. [PMID: 27782080 PMCID: PMC5086624 DOI: 10.3390/v8100292] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Developments of genome amplification techniques have rapidly expanded the family of human polyomaviruses (PyV). Following infection early in life, PyV persist in their hosts and are generally of no clinical consequence. High-level replication of PyV can occur in patients under immunosuppressive or immunomodulatory therapy and causes severe clinical entities, such as progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy or Merkel cell carcinoma. The characterization of known and newly-discovered human PyV, their relationship to human health, and the mechanisms underlying pathogenesis remain to be elucidated. Here, we summarize the most widely-used in vitro and in vivo models to study the PyV-host interaction, pathogenesis and anti-viral drug screening. We discuss the strengths and limitations of the different models and the lessons learned.
Collapse
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Wallys Kack-Kack
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Eric Soulier
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Aurélie Velay
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France.
- Université de Strasbourg, INSERM, IRM UMR-S 1109, 4 rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
17
|
Papa N, Zanotta N, Knowles A, Orzan E, Comar M. Detection of Malawi polyomavirus sequences in secondary lymphoid tissues from Italian healthy children: a transient site of infection. Virol J 2016; 13:97. [PMID: 27287743 PMCID: PMC4901423 DOI: 10.1186/s12985-016-0553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023] Open
Abstract
Background The novel Malawi polyomavirus (MWPyV) was initially detected in stool specimens from healthy children and children with gastrointestinal symptoms, mostly diarrhea, indicating that MWPyV might play a role in human gastroenteric diseases. Recently, MWPyV sequences were additionally identified in respiratory secretions from both healthy and acutely ill children suggesting that MWPyV may have a tropism for different human tissues. This study was designed to investigate the possible sites of latency/persistence for MWPyV in a cohort of healthy Italian children. Methods Specimens (n° 500) of tonsils, adenoids, blood, urines and feces, from 200 healthy and immunocompetent children (age range: 1–15 years) were tested for the amplification of the MWPyV LT antigen sequence by quantitative real-time PCR. Samples (n° 80) of blood and urines from 40 age-matched children with autoimmune diseases, were screened for comparison. Polyomaviruses JC/BK and Epstein-Barr Virus (EBV) were also tested as markers of infection in all samples using the same molecular technique. Results In our series of healthy children, MWPyV was detected only in the lymphoid tissues showing a prevalence of 6 % in tonsils and 1 % in adenoids, although with a low viral load. No JCPyV or BKPyV co-infection was found in MWPyV positive samples, while EBV showed a similar percentage of both in tonsils and adenoids (38 and 37 %). Conversely, no MWPyV DNA was detected in stool from babies with gastroenteric syndrome. With regards to autoimmune children, neither MWPyV nor BKPyV were detected in blood, while JCPyV viremia was observed in 15 % (6/40) of children treated with Infliximab. Urinary BKPyV shedding was observed in 12.5 % (5/40) while JCPyV in 100 % of the samples. Conclusions The detection of MWPyV sequences in tonsils and adenoids of healthy children suggests that secondary lymphoid tissues can harbour MWPyV probably as transient sites of persistence rather than actual sites of latency.
Collapse
Affiliation(s)
- N Papa
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - N Zanotta
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - A Knowles
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - E Orzan
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - M Comar
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy. .,Medical Sciences Department, University of Trieste, Piazzale Europa 1, 34128, Trieste, Italy.
| |
Collapse
|
18
|
Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, Hoen AG, Christensen BC, Kelsey KT, Marsit CJ, Pawlita M, Karagas MR. Seroepidemiology of Human Polyomaviruses in a US Population. Am J Epidemiol 2016; 183:61-9. [PMID: 26667254 PMCID: PMC5006224 DOI: 10.1093/aje/kwv155] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Polyomaviruses (PyV) are potentially tumorigenic in humans. However, limited data exist on the population seroprevalence of PyVs and individual characteristics that relate to seropositivity. Using multiplex serology, we determined the seroprevalence of 10 human PyVs (BK, JC, KI, WU, MCV, HPyV6, HPyV7, TSV, HPyV9, and HPyV10) among controls from a population-based skin cancer case-control study (n = 460) conducted in New Hampshire between 1993 and 1995. On a subset of participants (n = 194), methylation at CpG dinucleotides across the genome was measured in peripheral blood using the Illumina Infinium HumanMethylation27 BeadChip array (Illumina Inc., San Diego, California), from which lymphocyte subtype proportions were inferred. All participants were seropositive for at least 1 PyV, with seroprevalences ranging from 17.6% (HPyV9) to 99.1% (HPyV10). Seropositivity to JC, MCV, and HPyV7 increased with age. JC and TSV seropositivity were more common among men than among women. Smokers were more likely to be HPyV9-seropositive but MCV-seronegative, and HPyV7 seropositivity was associated with prolonged glucocorticoid use. Based on DNA methylation profiles, differences were observed in CD8-positive T- and B-cell proportions by BK, JC, and HPyV9 seropositivity. Our findings suggest that PyV seropositivity is common in the United States and varies by sociodemographic and biological characteristics, including those related to immune function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Margaret R. Karagas
- Correspondence to Dr. Margaret R. Karagas, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (e-mail: )
| |
Collapse
|
19
|
Šroller V, Hamšíková E, Ludvíková V, Musil J, Němečková Š, Saláková M. Seroprevalence rates of HPyV6, HPyV7, TSPyV, HPyV9, MWPyV and KIPyV polyomaviruses among the healthy blood donors. J Med Virol 2015; 88:1254-61. [PMID: 26630080 DOI: 10.1002/jmv.24440] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 11/10/2022]
Abstract
Human polyomaviruses HPyV6, HPyV7, TSPyV, HPyV9, MWPyV, and KIPyV have been discovered between 2007 and 2012. TSPyV causes a rare skin disease trichodysplasia spinulosa in immunocompromised patients, the role of remaining polyomaviruses in human pathology is not clear. In this study, we assessed the occurrence of serum antibodies against above polyomaviruses in healthy blood donors. Serum samples were examined by enzyme-linked immunoassay (ELISA), using virus-like particles (VLPs) based on the major VP1 capsid proteins of these viruses. Overall, serum antibodies against HPyV6, HPyV7, TSPyV, HPyV9, MWPyV, and KIPyV were found in 88.2%, 65.7%, 63.2%, 31.6%, 84.4%, and 58%, respectively, of this population. The seroprevalence generally increased with age, the highest rise we observed for HPyV9 and KIPyV specific antibodies. The levels of anti-HPyV antibodies remained stable across the age-groups, except for TSPyV and HPyV9, where we saw change with age. ELISAs based on VLP and GST-VP1 gave comparable seroprevalence for HPyV6 antibodies (88.2% vs.85.3%) but not for HPyV7 antibodies (65.7% vs. 77.2%), suggesting some degree of crossreactivity between HPyV6 and HPyV7 VP1 proteins. In conclusion, these results provide evidence that human polyomaviruses HPyV6, HPyV7, TSPyV, HPyV9, MwPyV, and KIPyV circulate widely in the Czech population and their seroprevalence is comparable to other countries.
Collapse
Affiliation(s)
- Vojtěch Šroller
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Eva Hamšíková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Viera Ludvíková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Jan Musil
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Šárka Němečková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| | - Martina Saláková
- Department of Immunology, Institute of Hematology and Blood Transfusion (IHBT), Prague 2, Czech Republic
| |
Collapse
|
20
|
Expression of pRb and p16INK4 in human thymic epithelial tumors in relation to the presence of human polyomavirus 7. Diagn Pathol 2015; 10:201. [PMID: 26537237 PMCID: PMC4634587 DOI: 10.1186/s13000-015-0418-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background We have recently reported the presence of the Human polyomavirus 7 (HPyV7) in human thymic epithelial tumors as assessed by diverse molecular techniques. Here we report on the co-expression of p16, retinoblastoma protein (pRb) and phosphorylated retinoblastoma protein (phospho-Rb) in human thymic epithelial tumors in relation to HPyV7. Methods PRB, phospho-RB and p16 expression was assessed by immuno-histochemistry in 37 thymomas and 2 thymic carcinomas. 17 thymomas (46 %) and 1 thymic carcinoma (50 %) were recently tested positive for HPyV7. In addition, 20 follicular hyperplasias were tested. Results Expression of pRb was observed in 35 thymomas (94.6 %), in 16 thymomas (43.2 %) the expression was strong. Phospho-Rb was observed in 31 thymomas (83.8 %). 19 thymomas (51.4 %) showed immunoreactivity for p16 of which 8 thymomas revealed very strong p16 expression. No p16 expression was detected in thymic carcinomas. In addition, no significant correlation between the presence of HPyV7 and pRb-, phospho-Rb- and p16-expression could be established. No correlation between pRb, phospho-Rb, p16 and WHO staging, Masaoka-Koga staging or the presence of MG was found. All 20 follicular hyperplasias showed expression of pRb and less expression of phospho-Rb. Conclusions Although polyomaviruses have been shown to interact with cell cycle proteins no correlation between the presence of HPyV7 and the expression of pRb, phospho-Rb and p16 in human thymic epithelial tumors was observed. In as much HPyV7 contributes to human thymomagenesis remains to be established. Our data indicate pRb, phospho-Rb and p16 expression are rather unlikely to be involved in HPyV7 related thymomagenesis.
Collapse
|
21
|
The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7:1871-901. [PMID: 25866902 PMCID: PMC4411681 DOI: 10.3390/v7041871] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Collapse
|