1
|
Wang T, Luo R, Zhang J, Lan J, Lu Z, Zhai H, Li LF, Sun Y, Qiu HJ. The African swine fever virus MGF300-4L protein is associated with viral pathogenicity by promoting the autophagic degradation of IKK β and increasing the stability of I κB α. Emerg Microbes Infect 2024; 13:2333381. [PMID: 38501350 PMCID: PMC11018083 DOI: 10.1080/22221751.2024.2333381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), which imposes a substantial economic burden on the global pig industry. When screening for the virus replication-regulating genes in the left variable region of the ASFV genome, we observed a notable reduction in ASFV replication following the deletion of the MGF300-4L gene. However, the role of MGF300-4L in ASFV infection remains unexplored. In this study, we found that MGF300-4L could effectively inhibit the production of proinflammatory cytokines IL-1β and TNF-α, which are regulated by the NF-κB signaling pathway. Mechanistically, we demonstrated that MGF300-4L interacts with IKKβ and promotes its lysosomal degradation via the chaperone-mediated autophagy. Meanwhile, the interaction between MGF300-4L and IκBα competitively inhibits the binding of the E3 ligase β-TrCP to IκBα, thereby inhibiting the ubiquitination-dependent degradation of IκBα. Remarkably, although ASFV encodes other inhibitors of NF-κB, the MGF300-4L gene-deleted ASFV (Del4L) showed reduced virulence in pigs, indicating that MGF300-4L plays a critical role in ASFV pathogenicity. Importantly, the attenuation of Del4L was associated with a significant increase in the production of IL-1β and TNF-α early in the infection of pigs. Our findings provide insights into the functions of MGF300-4L in ASFV pathogenicity, suggesting that MGF300-4L could be a promising target for developing novel strategies and live attenuated vaccines against ASF.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Sciences, Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
2
|
Zhou J, Yu W, Zhu X, Liu H, Liu D, Wang A, Zhang G. Development of quantum dot-based immunochromatographic strip for detection of antibodies against ASFV pp62. Int J Biol Macromol 2024; 278:134559. [PMID: 39128749 DOI: 10.1016/j.ijbiomac.2024.134559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
ASFV is the only known double-stranded insect-borne DNA virus, which can rapidly infect domestic pigs and wild boars with ticks as transmission medium. Since it was first discovered in 1921, it quickly spread to all parts of the world and brought huge economic losses to the pig industry all over the world. At present, there is still no safe and effective vaccine for ASFV. Here, we developed a quantum-dot labeled antibody test strip for the detection of antibodies against ASFV pp62. The pp62 protein was labeled with quantum dots, and the antibody test strip was developed uses it in a detection mode of labeled antigen-SPA interceptor-monoclonal antibody quality control. The test strip showed high sensitivity, the positive detection limit of the strip was 1: 106 by continuous multiple dilution using the positive standard serum of ASFV antibody as reference. The test strip showed good specificity, and there was no cross reaction with other swine diseases virus (PCV2, PRRSV, CSFV, PPV). Using the detection results of commercialized kit for African swine fever virus as reference, 80 ASFV antibody negative serum and 4 different ASFV antibody positive serum were detected using the ASFV pp62 quantum-dot labeled antibody test strip. The results were consistent with the commercial kit. This study provides a new detection method for the prevention and control of African swine fever.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China
| | - Wan Yu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China
| | - DongMin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 4500000, Henan, China.
| |
Collapse
|
3
|
Yang S, Wang Y, Yang J, Tian Z, Wu M, Sun H, Zhang X, Zhao Y, Luo J, Guan G, Yin H, Hao R, Niu Q. African swine fever virus RNA polymerase subunits C315R and H359L inhibition host translation by activating the PKR-eIF2a pathway and suppression inflammatory responses. Front Microbiol 2024; 15:1469166. [PMID: 39380677 PMCID: PMC11458487 DOI: 10.3389/fmicb.2024.1469166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
ASFV C315R is homologous to the transcription factor TFIIB of large unclassified DNA viruses, and H359L is identical to the subunit 3 (RPB3) of eukaryotic RNA polymerase II. The C315R and H359L may play an important role in ASFV replication and transcription. Here, we evaluated the biological function of the C315R and H359L genes during virus replication in vitro and during infection in pigs. Results showed that C315R and H359L are highly conserved among ASFV genotype II strains; quantitative PCR (qPCR) and western blotting analyses revealed that C315R and H359L are early transcribed genes prior to viral DNA replication, but their protein expression is delayed. The immunofluorescence and western blotting analysis revealed that both proteins localized in the cell cytoplasm and nucleus at 24 h post infection, however, pH359L was mainly detected in the cell cytoplasm. Furthermore, overexpression of pH359L in MA104 cells significantly increased viral titer, RNA transcription levels, and viral protein expression levels, while overexpression of pC315R slightly enhanced ASFV replication. In contrast, siRNA targeting ASFV-H359L or C315R reduced replication efficiency in porcine macrophage culture compared to the parent ASFV-CN/SC/2019, demonstrating that C315R and H359L genes are necessary for ASFV replication. Finally, the functional role of C315R or H359L on PKR and eIF2α phosphorylation status and SG formation, as well as cytokine production were evaluated. These studies demonstrated that C315R and H359L are involved in virus replication processes in swine and play important roles in ASFV replication.
Collapse
Affiliation(s)
- Saixia Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yiwang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hualin Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Xiaoqiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yaru Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Li S, Song J, Liu J, Zhou S, Zhao G, Li T, Huang L, Li J, Weng C. African swine fever virus infection regulates pyroptosis by cleaving gasdermin A via active caspase-3 and caspase-4. J Biol Chem 2024; 300:107307. [PMID: 38657868 PMCID: PMC11163174 DOI: 10.1016/j.jbc.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.
Collapse
Affiliation(s)
- Shuai Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Jie Song
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Jia Liu
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Shijun Zhou
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Gaihong Zhao
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Tingting Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Liang Z, Wang S, Yao K, Ren S, Cheng P, Qu M, Ma X, Gao X, Yin X, Wang X, Sun Y. Lumpy skin disease virus ORF127 protein suppresses type I interferon responses by inhibiting K63-linked ubiquitination of tank binding kinase 1. FASEB J 2024; 38:e23467. [PMID: 38329325 DOI: 10.1096/fj.202301987rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Lumpy skin disease (LSD) is a severe animal infectious disease caused by lumpy skin disease virus (LSDV), inducing extensive nodules on the cattle mucosa or the scarfskin. LSDV genome encodes multiple proteins to evade host innate immune response. However, the underlying molecular mechanisms are poorly understood. In this study, we found that LSDV could suppress the expression of IFN-β and interferon-stimulated genes (ISGs) in MDBK cells during the early stage of infection. Subsequently, an unbiased screen was performed to screen the LSDV genes with inhibitory effects on the type I interferon (IFN-I) production. ORF127 protein was identified as one of the strongest inhibitory effectors on the expression of IFN-β and ISGs, meanwhile, the 1-43 aa of N-terminal of ORF127 played a vital role in suppressing the expression of IFN-β. Overexpression of ORF127 could significantly promote LSDV replication through inhibiting the production of IFN-β and ISGs in MDBK cells. Mechanism study showed that ORF127 specifically interacted with TBK1 and decreased the K63-linked polyubiquitination of TBK1 which suppressed the phosphorylation of TBK1 and ultimately decreased the production of IFN-β. In addition, truncation mutation analysis indicated that the 1-43 aa of N-terminal of ORF127 protein was the key structural domain for its interaction with TBK1. In short, these results validated that ORF127 played a negative role in regulating IFN-β expression through cGAS-STING signaling pathway. Taken together, this study clarified the molecular mechanism of ORF127 gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for the treatment and prevention of LSD.
Collapse
Affiliation(s)
- Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Kaishen Yao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoqin Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xin Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Orosco FL. Host immune responses against African swine fever virus: Insights and challenges for vaccine development. Open Vet J 2023; 13:1517-1535. [PMID: 38292721 PMCID: PMC10824091 DOI: 10.5455/ovj.2023.v13.i12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The African swine fever virus (ASFV) poses a serious threat to global swine populations, underscoring the urgent need for effective preventive strategies. This comprehensive review investigates the intricate interplay between innate, cellular, and humoral immunity against ASFV, with a focus on their relevance to vaccine development. By delving into immunopathogenesis and immunological challenges, this review article aims to provide a holistic perspective on the complexities of ASFV infections and immune evasion. Key findings underscore the critical role of innate immune recognition in shaping subsequent adaptive immune defenses, potential protective antigens, and the multifaceted nature of ASFV-specific antibodies and cytotoxic T-cell responses. Despite advancements, the unique attributes of ASFV present hurdles in the development of a successful vaccine. In conclusion, this review examines the current state of ASFV immune responses and offers insights into future research directions, fostering the development of effective interventions against this devastating pathogen.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
7
|
Chen Q, Li L, Liu L, Liu Z, Guo S, Tan C, Chen H, Wang X. African Swine Fever Virus pF778R Attenuates Type I Interferon Response by Impeding STAT1 Nuclear Translocation. Virus Res 2023; 335:199190. [PMID: 37536381 PMCID: PMC10424126 DOI: 10.1016/j.virusres.2023.199190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
African swine fever virus (ASFV) is an extensive and intricate double-stranded DNA virus with approximately 100% lethality in domestic swine. There is no effective vaccine to combat this virus, and this has led to substantial economic losses in the swine industry. ASFV encodes various proteins that impede interferon-based immune defenses in the host by employing diverse mechanisms. However, the roles of most of these proteins remain unknown. Therefore, understanding the immune evasion mechanisms employed by ASFV may facilitate the development of effective measures against the virus. In this study, we discovered a negative regulation of the type I interferon (IFN) response by the ASFV ribonuclease reductase large subunit pF778R. This novel type Ⅰ IFN response antagonist significantly inhibits IFN-α-induced interferon-stimulated response element promoter activation, precludes the upregulation of various interferon-stimulated genes, and prevents STAT1 nuclear translocation. Mechanistically, pF778R did not affect the protein levels of crucial molecules in the JAK/STAT signaling pathway or engage in direct interactions. However, pF778R expression impedes type I IFN responses mediated by the JAK/STAT signaling pathway. Further investigations revealed that pF778R did not interfere with STAT1 phosphorylation or dimerization, but it inhibited IFN signaling by weakening the nuclear accumulation of activated STAT1. The critical role of the ASFV protein pF778R in evading IFN-I-mediated innate immunity highlights a unique mode of ASFV evasion and provides insights into the pathogenic mechanism of the virus.
Collapse
Affiliation(s)
- Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China.
| |
Collapse
|
8
|
Hao S, Zheng X, Zhu Y, Yao Y, Li S, Xu Y, Feng WH. African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Front Immunol 2023; 14:1186916. [PMID: 37228597 PMCID: PMC10203406 DOI: 10.3389/fimmu.2023.1186916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes viral DNA and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING/MITA) and downstream mediators to elicit an innate immune response. African swine fever virus (ASFV) proteins can antagonize host immune responses to promote its infection. Here, we identified ASFV protein QP383R as an inhibitor of cGAS. Specifically, we found that overexpression of QP383R suppressed type I interferons (IFNs) activation stimulated by dsDNA and cGAS/STING, resulting in decreased transcription of IFNβ and downstream proinflammatory cytokines. In addition, we showed that QP383R interacted directly with cGAS and promoted cGAS palmitoylation. Moreover, we demonstrated that QP383R suppressed DNA binding and cGAS dimerization, thus inhibiting cGAS enzymatic functions and reducing cGAMP production. Finally, the truncation mutation analysis indicated that the 284-383aa of QP383R inhibited IFNβ production. Considering these results collectively, we conclude that QP383R can antagonize host innate immune response to ASFV by targeting the core component cGAS in cGAS-STING signaling pathways, an important viral strategy to evade this innate immune sensor.
Collapse
Affiliation(s)
- Siyuan Hao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojie Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingqi Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yao Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sihan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangyang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-hai Feng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies. Viruses 2023; 15:v15020557. [PMID: 36851771 PMCID: PMC9963768 DOI: 10.3390/v15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
African Swine Fever (ASF) is a highly contagious and lethal pig disease and poses a huge threat to the pig industry worldwide. ASF virus (ASFV) encodes more than 150 different proteins, but the biological properties of most viral proteins are still unknown. ASFV CP312R protein has been proven to be one of the most immunogenic proteins during ASFV infection in pigs; however, its specific epitopes have yet to be identified. In this study, we verified the immunogenicity of CP312R protein in the sera from attenuated ASFV-inoculated pigs. We generated seven anti-ASFV CP312R mouse monoclonal antibodies (mAbs) from mice immunized with recombinant CP312R protein (rCP312R). All seven mAbs are the IgG2b-Kappa isotype and specifically interacted with the CP312R protein expressed in various cells that were infected by ASFVs or transfected with plasmid CP312R. The epitope mapping was performed by using these characterized mAbs and the peptide scanning (Pepscan) method followed by Western blot. As a result, two antigenic determinant regions were identified: two of the seven mAbs recognized the 122KNEQGEEIYP131 amino acids, and the remaining five mAbs recognized the 78DEEVIRMNAE87 amino acids of the CP312R protein. These antigenic determinants of CP312R are conserved in different ASFV strains of seven genotypes. By using the characterized mAb, confocal microscopy observation revealed that the CP312R was mainly localized in the cytoplasm and, to some extent, in nuclei and on the nuclear membrane of infected host cells. In summary, our results benefit our understanding on the antigenic regions of ASFV CP312R and help to develop better serological diagnosis of ASF and vaccine research.
Collapse
|
11
|
Zhu Z, Li S, Ma C, Yang F, Cao W, Liu H, Chen X, Feng T, Shi Z, Tian H, Zhang K, Chen H, Liu X, Zheng H. African Swine Fever Virus E184L Protein Interacts with Innate Immune Adaptor STING to Block IFN Production for Viral Replication and Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:442-458. [PMID: 36602826 DOI: 10.4049/jimmunol.2200357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
African swine fever is one of the most serious viral diseases that affects domestic and wild pigs. The causative agent, African swine fever virus (ASFV), has evolved sophisticated immune evasion mechanisms that target both innate and adaptive immune responses. However, the underlying molecular mechanisms have not been fully understood. Here, we report that ASFV E184L protein inhibits host innate immune response via targeting the stimulator of IFN genes (STING)-mediated signaling pathway in both human embryonic kidney HEK-293T cells and porcine pulmonary alveolar macrophages. E184L interacts with STING, impairing dimerization and oligomerization of STING but not affecting its puncta formation at the perinuclear region. Furthermore, E184L disrupts STING-TBK1-IRF3 complex formation, leading to inhibition of STING phosphorylation, and IRF3 dimerization and nuclear translocation. The 1-20 aa region in E184L is essential for E184L-STING interaction and blocking IL-1β and type I IFN production. Deletion of E184L in ASFV considerably impairs antagonistic function of the virus in suppression of the STING-mediated antiviral response, an effect that is reversible by introduction of E184L. Importantly, the virulence of mutant ASFV lacking E184L is reduced in pigs compared with its parental virus due to induction of higher IFN production in vivo. Our findings indicate that ASFV E184L is an important antagonist of IFN signaling to evade host innate immune antiviral responses, which improves our understanding of immune evasion mechanisms of ASFV.
Collapse
Affiliation(s)
- Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shasha Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China; and
| | - Caina Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xia Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengwang Shi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
12
|
Liu H, Wang A, Yang W, Liang C, Zhou J, Chen Y, Liu Y, Zhou Y, Zhang G. Expression of extracellular domain of ASFV CD2v protein in mammalian cells and identification of B cell epitopes. Virus Res 2023; 323:199000. [PMID: 36356676 PMCID: PMC10194146 DOI: 10.1016/j.virusres.2022.199000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
African swine fever virus (ASFV), a highly pathogenic large DNA virus, is the cause of African swine fever worldwide. The ASFV virulence gene EP402R encodes CD2v, a structural protein that plays an important role in the ASFV infection process. In this study, a CHO-S cell line stably expressing the extracellular region of CD2v was generated and secretory CD2v(sCD2v)was purified from the cell culture supernatant. The purified glycosylated sCD2v protein possessed high immunoreactivity and immunogenicity. In addition, we found that glycosylation had a decisive effect on the immune reactivity of CD2v. Then sCD2v was used to generate five CD2v-specific monoclonal antibodies. The reactivity of all monoclonal antibodies with CD2v protein was confirmed by Western blot and indirect immunofluorescence assay (IFA). Interestingly, mAb 8D5 reactivity with sCD2v depended on sCD2v glycosylation status. Subsequent B cell epitope mapping experiments conducted using a series of overlapping synthetic peptides of the CD2v extracellular domain led to identification of mAb B cell epitopes of 128TCKKNNGTNT137 for mAb 4B11 and 148VKYTNESILE157 for mAbs 5H4 and 5F7. Due to their well-defined epitopes, these three mAbs will likely serve as valuable tools for use in ASFV CD2v structure-function studies, diagnostic assays, and prophylactic methodologies to control ASFV transmission.
Collapse
Affiliation(s)
- Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Weiru Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Yongmeng Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100080, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Chen Q, Li L, Guo S, Liu Z, Liu L, Tan C, Chen H, Wang X. African swine fever virus pA104R protein acts as a suppressor of type I interferon signaling. Front Microbiol 2023; 14:1169699. [PMID: 37089552 PMCID: PMC10119599 DOI: 10.3389/fmicb.2023.1169699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
This study evaluates the role of the late viral protein, pA104R, in African swine fever virus immunosuppression. ASFV-encoded pA104R is a putative histone-like protein that is highly conserved throughout different virulent and non-virulent isolates. Previous studies have demonstrated that pA104R plays a vital role in the ASFV replication cycle and is a potential target for antiviral therapy. Here, we demonstrated that pA104R is a potent antagonist of type I interferon signaling. IFN-stimulated response element activity and subsequent transcription of co-transfected and endogenous interferon-stimulated genes were attenuated by pA104R treatment in HEK-293 T cells. Immunoprecipitation assay and reciprocal pull-down showed that pA104R does not interact directly with STAT1, STAT2, or IRF9. However, pA104R could inhibit IFN signaling by attenuating STAT1 phosphorylation, and we identified the critical amino acid residues (R/H69,72 and K/R92,94,97) involved through the targeted mutation functional assays. Although pA104R is a histone-like protein localized to the nucleus, it did not inhibit IFN signaling through its DNA-binding capacity. In addition, activation of the ISRE promoter by IRF9-Stat2(TA), a STAT1-independent pathway, was inhibited by pA104R. Further results revealed that both the transcriptional activation and recruitment of transcriptional stimulators by interferon-stimulated gene factor 3 were not impaired. Although we failed to determine a mechanism for pA104R-mediated IFN signaling inhibition other than attenuating the phosphorylation of STAT1, these results might imply a possible involvement of epigenetic modification by ASFV pA104R. Taken together, these findings support that pA104R is an antagonist of type I interferon signaling, which may interfere with multiple signaling pathways.
Collapse
Affiliation(s)
- Qichao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangru Wang,
| |
Collapse
|
14
|
Jiang W, Jiang D, Li L, Wang J, Wang P, Shi X, Zhao Q, Liu B, Ji P, Zhang G. Identification of Two Novel Linear B Cell Epitopes on the CD2v Protein of African Swine Fever Virus Using Monoclonal Antibodies. Viruses 2022; 15:131. [PMID: 36680174 PMCID: PMC9866794 DOI: 10.3390/v15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
African swine fever virus (ASFV) is a highly infectious viral pathogen that endangers the global pig industry, and no effective vaccine is available thus far. The CD2v protein is a glycoprotein on the outer envelope of ASFV, which mediates the transmission of the virus in the blood and recognition of the virus serotype, playing an important role in ASFV vaccine development and disease prevention. Here, we generated two specific monoclonal antibodies (mAbs), 6C11 and 8F12 (subtype IgG1/kappa-type), against the ASFV CD2v extracellular domain (CD2v-ex, GenBank: MK128995.1, 1-588 bp) and characterized their specificity. Peptide scanning technology was used to identify the epitopes recognized by mAbs 6C11 and 8F12. As a result, two novel B cell epitopes, 38DINGVSWN45 and 134GTNTNIY140, were defined. Amino acid sequence alignment showed that the defined epitopes were conserved in all referenced ASFV strains from various regions of China including the highly pathogenic, epidemic strain, Georgia2007/1 (NC_044959.2), with the same noted substitutions compared to the four foreign ASFV wild-type strains. This study provides important reference values for the design and development of an ASFV vaccine and useful biological materials for the functional study of the CD2v protein by deletion analysis.
Collapse
Affiliation(s)
- Wenting Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
| | - Lu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Jiabin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Panpan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Xuejian Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Qi Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Boyuan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou 450046, China
| |
Collapse
|
15
|
Lv C, Yang J, Zhao L, Wu C, Kang C, Zhang Q, Sun X, Chen X, Zou Z, Jin M. Infection Characteristics and Transcriptomics of African Swine Fever Virus in Bama Minipigs. Microbiol Spectr 2022; 10:e0383422. [PMID: 36445132 PMCID: PMC9769931 DOI: 10.1128/spectrum.03834-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Animal experiments on African swine fever virus (ASFV) are vital to the study of ASFV; however, ASFV can only infect pigs, and animal experiments need to be performed in animal biosafety level 3 (ABSL-3) laboratories, meaning that many small ABSL-3 laboratories are unable to carry out in vivo ASFV experiments. Therefore, miniaturized experimental animals for ASFV infection are urgently needed. Here, we successfully isolated genotype II of ASFV SY-1 from wild boars and evaluated ASFV-infected Bama minipigs in a negative-pressure isolator of a small ABSL-3 laboratory. The pathological changes of ASFV-infected Bama minipigs were consistent with characteristic lesions of ASFV-infected domestic pigs and wild boars. All pigs died 5 to 14 days postinfection (dpi) through intramuscular injection. Viral genomic DNA from nasal, oral, and rectal swab samples was first detectable at 2 to 4 dpi. The common differentially expressed genes were clustered in the immune-related, metabolic, and inflammatory response pathways from the spleen and inguinal lymph node samples comparing infected to mock. In summary, these results demonstrated that the Bama minipig was an appropriate model for ASFV infection in small ABSL-3 laboratories that can accelerate the research of vaccines and antiviral drugs and uncover pathogenic mechanisms of ASFV infection. IMPORTANCE African swine fever virus (ASFV) can only infect pigs rather than other animals. However, the domestic pigs cannot be kept in small ABSL-3 laboratories for a long time due to the characteristics of rapid growth and large size, which hinder ASFV research, including research of vaccines, antiviral drugs, and mechanisms. In contrast, Bama minipigs have unique advantages consisting of low growth and small size. In the research, Bama minipigs were used to evaluate the characteristics of ASFV infection in small ABSL-3 laboratories. The pathological changes, viral shedding, and gene regulation were consistent with those of domestic pigs infected with ASFV. Therefore, Bama minipigs can be a suitable model for ASFV infection in small ABSL-3 laboratories.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Chao Wu
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Chao Kang
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Zou
- Research Institute of Wuhan Keqian Biology Co., Ltd., Wuhan, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Liu X, Liu H, Ye G, Xue M, Yu H, Feng C, Zhou Q, Liu X, Zhang L, Jiao S, Weng C, Huang L. African swine fever virus pE301R negatively regulates cGAS-STING signaling pathway by inhibiting the nuclear translocation of IRF3. Vet Microbiol 2022; 274:109556. [PMID: 36099692 DOI: 10.1016/j.vetmic.2022.109556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/11/2022]
Abstract
African swine fever (ASF) is a highly contagious and lethal infectious disease of domestic pigs and wild boars by the African swine fever virus (ASFV). ASFV infects domestic pigs with the mortality rate approaching 100 % at acute stage of infection. The cGAS-STING-mediated antiviral responses are wildly accepted that cGAS acts as DNA sensor for sensing of viral DNA during DNA virus infection. However, the molecular mechanisms underlying negatively regulation of cGAS-STING signaling and type I IFN (IFN-I) production by ASFV proteins are not fully understood. In this study, we demonstrated that ASFV pE301R antagonize the activities of IFN-β-, NF-κB-, ISRE-luciferase (Luc) reporters-induced by cGAS-STING in a dose dependent manner. Consistent with these results, the mRNA levels of Ifnb1, Isg15, Isg56 are attenuated by ASFV pE301R. Furthermore, ASFV pE301R executes its inhibitory function at the downstream of IFN-regulatory factor 3 (IRF3) phosphorylation. Mechanistically, pE301R interacts with IRF3 via its amino acid (aa) 1-200 region, resulting in inhibition of the nuclear translocation of IRF3 induced by cGAMP and poly(dA:dT). Overall, our findings reveal that pE301R acts as a negatively regulator to inhibit IFN-I production and to subvert host antiviral innate immunity during ASFV infection.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengdi Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huibin Yu
- Department of Immunobiology, Yale University School of Medicine, New Haven 06511, CT, USA
| | - Chunying Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuemin Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Longfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shuang Jiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| |
Collapse
|
17
|
African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J Virol 2022; 96:e0094422. [PMID: 35972295 PMCID: PMC9472647 DOI: 10.1128/jvi.00944-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal hemorrhagic disease in domestic pigs and wild boars that has significant economic consequences for the pig industry. The type I interferon (IFN) signaling pathway is a pivotal component of the innate antiviral response, and ASFV has evolved multiple mechanisms to antagonize this pathway and facilitate infection. Here, we reported a novel function of ASFV pI215L in inhibiting type I IFN signaling. Our results showed that ASFV pI215L inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs) by triggering interferon regulatory factor 9 (IRF9) degradation. Additionally, we found that catalytically inactive pI215L mutations retained the ability to block type I IFN signaling, indicating that this only known viral E2 ubiquitin-conjugating enzyme mediates IFR9 degradation in a ubiquitin-conjugating activity-independent manner. By coimmunoprecipitation, confocal immunofluorescence, and subcellular fractionation approaches, we demonstrated that pI215L interacted with IRF9 and impaired the formation and nuclear translocation of IFN-stimulated gene factor 3 (ISGF3). Moreover, further mechanism studies supported that pI215L induced IRF9 degradation through the autophagy-lysosome pathway in both pI215L-overexpressed and ASFV-infected cells. These findings reveal a new immune evasion strategy evolved by ASFV in which pI215L acts to degrade host IRF9 via the autophagic pathway, thus inhibiting the type I IFN signaling and counteracting the host innate immune response. IMPORTANCE African swine fever virus (ASFV) causes a highly contagious and lethal disease in pigs and wild boars that is currently present in many countries, severely affecting the global pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking, and many fundamental questions regarding the molecular mechanisms underlying host innate immunity escape remain unclear. In this study, we identified ASFV pI215L, the only known viral E2 ubiquitin-conjugating enzyme, which is involved in antagonizing the type I interferon signaling. Mechanistically, pI215L interacted with interferon regulatory factor 9 for autophagic degradation, and this degradation was independent of its ubiquitin-conjugating activity. These results increase the current knowledge regarding ASFV evasion of innate immunity, which may instruct future research on antiviral strategies and dissection of ASFV pathogenesis.
Collapse
|
18
|
MGF360-9L Is a Major Virulence Factor Associated with the African Swine Fever Virus by Antagonizing the JAK/STAT Signaling Pathway. mBio 2022; 13:e0233021. [PMID: 35076286 PMCID: PMC8788333 DOI: 10.1128/mbio.02330-21] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
African swine fever (ASF)-an aggressive infectious disease caused by the African swine fever virus (ASFV)-is significantly unfavorable for swine production. ASFV has a complex structure and encodes 150-167 proteins; however, the function of most of these proteins is unknown. This study identified ASFV MGF360-9L as a negative regulator of the interferon (IFN)-β signal. Further evidence showed that MGF360-9L interacts with signal transducer and activator of transcription (STAT) 1 and STAT2 and degrades STAT1 and STAT2 through apoptosis and ubiquitin-proteasome pathways, respectively. Subsequently, the activation of IFN-β signaling was inhibited. Naturally isolated or genetically manipulated live attenuated viruses are known to protect against the virulent parental ASFV strains. Therefore, through homologous recombination, we deleted MGF360-9L from the virulent ASFV CN/GS/2018 strain to construct a recombinant strain, ASFV-Δ360-9L. Compared with the parent ASFV CN/GS/2018 strain, the replication level of ASFV-Δ360-9L decreased in primary porcine alveolar macrophage cultures at 24 h postinfection, but the difference is unlikely to be biologically relevant. Notably, ASFV-Δ360-9L was partially attenuated in pigs. To our knowledge, this study is the first to uncover the function of MGF360-9L during ASFV infection. MGF360-9L inhibits IFN-β signaling through the targeted degradation of STAT1 and STAT2. Furthermore, MGF360-9L is a key virulence gene of ASFV. Our findings reveal a new mechanism by which ASFV inhibits host antiviral response; this might facilitate the development of live attenuated ASFV vaccines. IMPORTANCE African swine fever-an acute, febrile, hemorrhagic, highly contacting, and highly lethal disease caused by African swine fever virus (ASFV)-jeopardizes the global pig industry. Understanding the mechanism ASFV employs to evade host defense during infection is essential for developing targeted drugs and vaccines against ASFV. To our knowledge, this study identifies the mechanism of innate immunity against by MGF360-9L and the effect of MGF360-9L on ASFV pathogenicity. The results showed that MGF360-9L may help ASFV escape the host immunity by degrading STAT1 and STAT2 and thus inhibiting IFN-β signaling. MGF360-9L is also an important virulence factor of ASFV. The deletion of MGF360-9L reduces ASFV virulence in pigs. This study explored a new mechanism of ASFV against innate immunity and identified a new ASFV virulence factor; these findings may guide the development of live attenuated ASFV vaccines.
Collapse
|
19
|
Sun H, Niu Q, Yang J, Zhao Y, Tian Z, Fan J, Zhang Z, Wang Y, Geng S, Zhang Y, Guan G, Williams DT, Luo J, Yin H, Liu Z. Transcriptome Profiling Reveals Features of Immune Response and Metabolism of Acutely Infected, Dead and Asymptomatic Infection of African Swine Fever Virus in Pigs. Front Immunol 2022; 12:808545. [PMID: 34975923 PMCID: PMC8714921 DOI: 10.3389/fimmu.2021.808545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
African swine fever virus (ASFV) infection can result in lethal disease in pigs. ASFV encodes 150-167 proteins, of which only approximately 50 encoded viral structure proteins are functionally known. ASFV also encodes some nonstructural proteins that are involved in the regulation of viral transcription, viral replication and evasion from host defense. However, the understanding of the molecular correlates of the severity of these infections is still limited. The purpose of this study was to compare host and viral gene expression differences and perform functional analysis in acutely infected, dead and cohabiting asymptomatic pigs infected with ASFV by using RNA-Seq technique; healthy pigs were used as controls. A total of 3,760 and 2,874 upregulated genes and 4,176 and 2,899 downregulated genes were found in healthy pigs vs. acutely infected, dead pigs or asymptomatic pigs, respectively. Additionally, 941 upregulated genes and 956 downregulated genes were identified in asymptomatic vs. acutely infected, dead pigs. Different alternative splicing (AS) events were also analyzed, as were gene chromosome locations, and protein-protein interaction (PPI) network prediction analysis was performed for significantly differentially expressed genes (DEGs). In addition, 30 DEGs were validated by RT-qPCR, and the results were consistent with the RNA-Seq results. We further analyzed the interaction between ASFV and its host at the molecular level and predicted the mechanisms responsible for asymptomatic pigs based on the selected DEGs. Interestingly, we found that some viral genes in cohabiting asymptomatic pigs might integrate into host genes (DP96R, I73R and L83L) or remain in the tissues of cohabiting asymptomatic pigs. In conclusion, the data obtained in the present study provide new evidence for further elucidating ASFV-host interactions and the ASFV infection mechanism and will facilitate the implementation of integrated strategies for controlling ASF spread.
Collapse
Affiliation(s)
- Hualin Sun
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingli Niu
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jifei Yang
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaru Zhao
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhancheng Tian
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Fan
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yiwang Wang
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuxian Geng
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yulong Zhang
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - David T Williams
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Jianxun Luo
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory, China (Lanzhou) and State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
20
|
Yang K, Xue Y, Niu H, Shi C, Cheng M, Wang J, Zou B, Wang J, Niu T, Bao M, Yang W, Zhao D, Jiang Y, Yang G, Zeng Y, Cao X, Wang C. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production. Vet Res 2022; 53:7. [PMID: 35073979 PMCID: PMC8785597 DOI: 10.1186/s13567-022-01025-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood. In the present study, ASFV MGF360-11L inhibited cGAS, STING, TBK1, IKKε, IRF7 and IRF3-5D mediated activation of the IFN-β and ISRE promoters, accompanied by decreases in IFN-β, ISG15 and ISG56 mRNA expression. ASFV MGF360-11L interacted with TBK1 and IRF7, degrading TBK1 and IRF7 through the cysteine, ubiquitin-proteasome and autophagy pathways. Moreover, ASFV MGF360-11L also inhibited the phosphorylation of TBK1 and IRF3 stimulated by cGAS-STING overexpression. Truncation mutation analysis revealed that aa 167-353 of ASFV MGF360-11L could inhibit cGAS-STING-mediated activation of the IFN-β and ISRE promoters. Finally, the results indicated that ASFV MGF360-11L plays a significant role in inhibiting IL-1β, IL-6 and IFN-β production in PAM cells (PAMs) infected with ASFV. In short, these results demonstrated that ASFV MGF360-11L was involved in regulating IFN-I expression by negatively regulating the cGAS signaling pathway. In summary, this study preliminarily clarified the molecular mechanism by which the ASFV MGF360-11L protein antagonizes IFN-I-mediated antiviral activity, which will help to provide new strategies for the treatment and prevention of ASF.
Collapse
Affiliation(s)
- Kaidian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Meiying Bao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dandan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China. .,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China. .,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China. .,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China. .,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
21
|
Spatiotemporally Orchestrated Interactions between Viral and Cellular Proteins Involved in the Entry of African Swine Fever Virus. Viruses 2021; 13:v13122495. [PMID: 34960765 PMCID: PMC8703583 DOI: 10.3390/v13122495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars with a mortality of up to 100%. The causative agent, African swine fever virus (ASFV), is a member of the Asfarviridae family of the nucleocytoplasmic large DNA viruses. The genome size of ASFV ranges from 170 to 194 kb, encoding more than 50 structural and 100 nonstructural proteins. ASFV virions are 260–300 nm in diameter and composed of complex multilayered structures, leading to an intricate internalization pathway to enter host cells. Currently, no commercial vaccines or antivirals are available, due to the insufficient knowledge of the viral receptor(s), the molecular events of ASFV entry into host cells, and the functions of virulence-associated genes. During the early stage of ASFV infection, the fundamental aspects of virus-host interactions, including virus internalization, intracellular transport through the endolysosomal system, and membrane fusion with endosome, are precisely regulated and orchestrated via a series of molecular events. In this review, we summarize the currently available knowledge on the pathways of ASFV entry into host cells and the functions of viral proteins involved in virus entry. Furthermore, we conclude with future perspectives and highlight areas that require further investigation. This review is expected to provide unique insights for further understanding ASFV entry and facilitate the development of vaccines and antivirals.
Collapse
|
22
|
Zhao G, Li T, Liu X, Zhang T, Zhang Z, Kang L, Song J, Zhou S, Chen X, Wang X, Li J, Huang L, Li C, Bu Z, Zheng J, Weng C. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J Biol Chem 2021; 298:101480. [PMID: 34890644 PMCID: PMC8728581 DOI: 10.1016/j.jbc.2021.101480] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
African swine fever (ASF) is a viral hemorrhagic disease that affects domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). The ASFV virion contains a long double-stranded DNA genome, which encodes more than 150 proteins. However, the immune escape mechanism and pathogenesis of ASFV remain poorly understood. Here, we report that the pyroptosis execution protein gasdermin D (GSDMD) is a new binding partner of ASFV-encoded protein S273R (pS273R), which belongs to the SUMO-1 cysteine protease family. Further experiments demonstrated that ASFV pS273R-cleaved swine GSDMD in a manner dependent on its protease activity. ASFV pS273R specifically cleaved GSDMD at G107-A108 to produce a shorter N-terminal fragment of GSDMD consisting of residues 1 to 107 (GSDMD-N1–107). Interestingly, unlike the effect of GSDMD-N1–279 fragment produced by caspase-1-mediated cleavage, the assay of LDH release, cell viability, and virus replication showed that GSDMD-N1–107 did not trigger pyroptosis or inhibit ASFV replication. Our findings reveal a previously unrecognized mechanism involved in the inhibition of ASFV infection-induced pyroptosis, which highlights an important function of pS273R in inflammatory responses and ASFV replication.
Collapse
Affiliation(s)
- Gaihong Zhao
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Tingting Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xuemin Liu
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Taoqing Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhaoxia Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Li Kang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jie Song
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Shijun Zhou
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xin Chen
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xiao Wang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Changyao Li
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhigao Bu
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China.
| |
Collapse
|
23
|
African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway. Vet Microbiol 2021; 263:109265. [PMID: 34710767 DOI: 10.1016/j.vetmic.2021.109265] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 11/20/2022]
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and highly contact infectious disease caused by African swine fever virus (ASFV) infecting domestic pigs or wild boars, the mortality rate up to 100 %. Evasion of host innate immunity plays a vital role in the pathogenesis of ASFV. Studies have showed that the MGF505 genes involve in regulating the IFN-I response, but its mechanism of action remains poorly understood. In our present study, ASFV MGF505-11R inhibited IFN-β and ISRE activation induced by cGAS, IRF7, IRF3-5D, STING, IKKε and TBK1 accompanied by decreases of IFN-β, ISG15 and ISG56 mRNA transcription. ASFV MGF505-11R interacted with STING, degrading STING expression by the lysosomal, ubiquitin-proteasome and autophagy pathways. Moreover, ASFV MGF505-11R could inhibit the phosphorylation of TBK1 and IRF3 stimulated by cGAS/STING overexpression. Finally, the truncation mutation analysis indicated that the 1-191 aa and 182-360 aa of ASFV MGF505-11R could inhibit cGAS-STING-mediated activation of IFN-β promoters. In short, these results demonstrated that ASFV MGF505-11R involved in regulating the IFN-I response by negatively regulating the cGAS signaling pathway. In summary, this study preliminarily clarified the molecular mechanism of ASFV MGF505-11R gene antagonizing IFN-I-mediated antiviral, which will helpfully provide new strategies for treatment and prevention of ASF.
Collapse
|
24
|
Deletion of the H240R Gene of African Swine Fever Virus Decreases Infectious Progeny Virus Production due to Aberrant Virion Morphogenesis and Enhances the Inflammatory Cytokines Expression in Porcine Macrophages. J Virol 2021; 96:e0166721. [PMID: 34787458 PMCID: PMC8826909 DOI: 10.1128/jvi.01667-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.
Collapse
|
25
|
Njau EP, Machuka EM, Cleaveland S, Shirima GM, Kusiluka LJ, Okoth EA, Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses 2021; 13:2285. [PMID: 34835091 PMCID: PMC8623397 DOI: 10.3390/v13112285] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.
Collapse
Affiliation(s)
- Emma P. Njau
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
| | - Eunice M. Machuka
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Sarah Cleaveland
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gabriel M. Shirima
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
| | - Lughano J. Kusiluka
- Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (S.C.); (G.M.S.); (L.J.K.)
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3015, Tanzania
- Mzumbe University, Morogoro P.O. Box 1, Tanzania
| | - Edward A. Okoth
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute Hub, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.M.); (E.A.O.); (R.P.)
| |
Collapse
|
26
|
Arabyan E, Hakobyan A, Hakobyan T, Grigoryan R, Izmailyan R, Avetisyan A, Karalyan Z, Jackman JA, Ferreira F, Elrod CC, Zakaryan H. Flavonoid Library Screening Reveals Kaempferol as a Potential Antiviral Agent Against African Swine Fever Virus. Front Microbiol 2021; 12:736780. [PMID: 34745038 PMCID: PMC8567988 DOI: 10.3389/fmicb.2021.736780] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Naturally occurring plant flavonoids are a promising class of antiviral agents to inhibit African swine fever virus (ASFV), which causes highly fatal disease in pigs and is a major threat to the swine industry. Currently known flavonoids with anti-ASFV activity demonstrate a wide range of antiviral mechanisms, which motivates exploration of new antiviral candidates within this class. The objective of this study was to determine whether other flavonoids may significantly inhibit ASFV infection in vitro. We performed a cell-based library screen of 90 flavonoids. Our screening method allowed us to track the development of virus-induced cytopathic effect by MTT in the presence of tested flavonoids. This screening method was shown to be robust for hit identification, with an average Z-factor of 0.683. We identified nine compounds that inhibit ASFV Ba71V strain in Vero cells. Among them, kaempferol was the most potent and exhibited dose-dependent inhibition, which occurred through a virostatic effect. Time-of-addition studies revealed that kaempferol acts on the entry and post-entry stages of the ASFV replication cycle and impairs viral protein and DNA synthesis. It was further identified that kaempferol induces autophagy in ASFV-infected Vero cells, which is related to its antiviral activity and could be partially abrogated by the addition of an autophagy inhibitor. Kaempferol also exhibited dose-dependent inhibition of a highly virulent ASFV Arm/07 isolate in porcine macrophages. Together, these findings support that kaempferol is a promising anti-ASFV agent and has a distinct antiviral mechanism compared to other anti-ASFV flavonoids.
Collapse
Affiliation(s)
- Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Astghik Hakobyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Tamara Hakobyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Rafaella Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Aida Avetisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Zaven Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Fernando Ferreira
- Faculdade de Medicina Veterinária, Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Charles C Elrod
- Natural Biologics Inc., Newfield, NY, United States.,Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| |
Collapse
|
27
|
Wöhnke E, Fuchs W, Hartmann L, Blohm U, Blome S, Mettenleiter TC, Karger A. Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus. Viruses 2021; 13:v13112198. [PMID: 34835004 PMCID: PMC8620826 DOI: 10.3390/v13112198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023] Open
Abstract
African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain “Kenya1033”. The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Luise Hartmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
- Correspondence: ; Tel.: +49-38351-7-1247
| |
Collapse
|
28
|
Wang G, Xie M, Wu W, Chen Z. Structures and Functional Diversities of ASFV Proteins. Viruses 2021; 13:v13112124. [PMID: 34834930 PMCID: PMC8619059 DOI: 10.3390/v13112124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV), the causative pathogen of the recent ASF epidemic, is a highly contagious double-stranded DNA virus. Its genome is in the range of 170~193 kbp and encodes 68 structural proteins and over 100 non-structural proteins. Its high pathogenicity strains cause nearly 100% mortality in swine. Consisting of four layers of protein shells and an inner genome, its structure is obviously more complicated than many other viruses, and its multi-layered structures play different kinds of roles in ASFV replication and survival. Each layer possesses many proteins, but very few of the proteins have been investigated at a structural level. Here, we concluded all the ASFV proteins whose structures were unveiled, and explained their functions from the view of structures. Those structures include ASFV AP endonuclease, dUTPases (E165R), pS273R protease, core shell proteins p15 and p35, non-structural proteins pA151R, pNP868R (RNA guanylyltransferase), major capsid protein p72 (gene B646L), Bcl-2-like protein A179L, histone-like protein pA104R, sulfhydryl oxidase pB119L, polymerase X and ligase. These novel structural features, diverse functions, and complex molecular mechanisms promote ASFV to escape the host immune system easily and make this large virus difficult to control.
Collapse
|
29
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
30
|
Li D, Zhang J, Yang W, Li P, Ru Y, Kang W, Li L, Ran Y, Zheng H. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J Biol Chem 2021; 297:101190. [PMID: 34517008 PMCID: PMC8526981 DOI: 10.1016/j.jbc.2021.101190] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/03/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a mortality rate up to 100%. However, how ASFV suppresses JAK-STAT1 signaling to evade the immune response remains unclear. In this study, we found that the ASFV-encoded protein MGF-505-7R inhibited proinflammatory IFN-γ-mediated JAK-STAT1 signaling. Mechanistically, MGF-505-7R was found to interact with JAK1 and JAK2 and mediate their degradation. Further study indicated that MGF-505-7R promoted degradation of JAK1 and JAK2 by upregulating the E3 ubiquitin ligase RNF125 expression and inhibiting expression of Hes5, respectively. Consistently, MGF-505-7R-deficient ASFV induced high levels of IRF1 expression and displayed compromised replication both in primary porcine alveolar macrophages and pigs compared with wild-type ASFV. Furthermore, MGF-505-7R deficiency attenuated the virulence of the ASFV and pathogenesis of ASF in pigs. These findings suggest that the JAK-STAT1 axis mediates the innate immune response to the ASFV and that MGF-505-7R plays a critical role in the virulence of the ASFV and pathogenesis of ASF by antagonizing this axis. Thus, we conclude that deletion of MGF-505-7R may serve as a strategy to develop attenuated vaccines against the ASFV.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - LuLu Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yong Ran
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
31
|
Yang B, Shen C, Zhang D, Zhang T, Shi X, Yang J, Hao Y, Zhao D, Cui H, Yuan X, Chen X, Zhang K, Zheng H, Liu X. Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol J 2021; 18:170. [PMID: 34412678 PMCID: PMC8375147 DOI: 10.1186/s12985-021-01637-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a highly lethal virus that can infect porcine alveolar macrophages (PAMs). Since ASFV, China has dealt with a heavy blow to the pig industry. However, the effect of infection of ASFV strains isolated from China on PAM transcription level is not yet clarified. METHODS In this study, RNA sequencing (RNA-seq) was used to detect the differential expression of genes in PAMs at different time points after ASFV-CN/GS/2018 infection. The fluorescent quantitative polymerase chain reaction (qPCR) method was used to confirm the altered expression of related genes in PAMs infected with ASFV. RESULTS A total of 1154 differentially expressed genes were identified after ASFV-CN/GS/2018 infection, of which 816 were upregulated, and 338 were downregulated. GO and KEGG analysis showed that these genes were dynamically enriched in various biological processes, including innate immune response, inflammatory response, chemokines, and apoptosis. Furthermore, qPCR verified that the DEAD box polypeptide 58 (DDX58), Interferon-induced helicase C domain-containing protein 1 (IFIH1), Toll-like receptor 3 (TLR3), and TLR7 of PAMs were upregulated after ASFV infection, while TLR4 and TLR6 had a significant downward trend during ASFV infection. The expression of some factors related to antiviral and inflammation was altered significantly after ASFV infection, among which interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), IFIT2, Interleukin-6 (IL-6) were upregulated, and Ewing's tumor-associated antigen 1 homolog (ETAA1) and Prosaposin receptor GPR37 (GPR37) were downregulated. In addition, we discovered that ASFV infection is involved in the regulation of chemokine expression in PAMs, and the chemokines, such as C-X-C motif chemokine 8 (CXCL8) and CXCL10, were upregulated after infection. However, the expression of chemokine receptor C-X-C chemokine receptor type 2 (CXCR2) is downregulated. Also, that the transcriptional levels of pro-apoptotic and anti-apoptotic factors changed after infection. CONCLUSIONS After ASFV-CN/GS/2018 infection, the expression of some antiviral and inflammatory factors in PAMs changed significantly. The ASFV infection may activates the RLR and TLR signaling pathways. In addition, ASFV infection is involved in regulating of chemokine expression in PAMs and host cell apoptosis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| |
Collapse
|
32
|
Ferreira HCC, de Araújo EN, Rosado NCL, Fietto JLR, Santos MR, Gomes LL, Silva LMN, Bressan GC, Martins GF, Sreevatsan S, Silva-Júnior A. Apoptosis in the late replication phase of Bovine alphaherpesvirus 1 in experimentally infected calves. Braz J Microbiol 2021; 52:2529-2534. [PMID: 34355356 DOI: 10.1007/s42770-021-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) is a pathogen causing respiratory and reproductive clinical signs in cattle. Infected animals may develop rhinotracheitis, vulvovaginitis, balanoposthitis, and abortion. Viral latency is generally established in neuronal ganglia simultaneously to a decrease in both genes or genome expression and viral replication. Under stressful conditions, infection is reactivated leading to viral replication and the manifestation of clinical signs. In this study, we evaluated both viral reactivation and apoptosis in trigeminal ganglia cells as BoHV-1 progressed from the latent to the acute phase of infection after dexamethasone administration in experimentally infected calves. To test ganglia cell death as a consequence of BoHV-1 infection, we stained the BoHV-1 samples with TUNEL after the viral shedding by the calves. RT-qPCR of apoptotic genes was also performed, showing the upregulation of the caspase 8 gene in the trigeminal ganglia from cattle experimentally infected with BoHV-1. These results showed the occurrence of apoptosis in ganglion cells of calves infected by BoHV-1.
Collapse
Affiliation(s)
- Hanna Carolina Campos Ferreira
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Elaine Nery de Araújo
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Nívia Carolina Lopes Rosado
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Marcus Rebouças Santos
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lidiany Lopes Gomes
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Laura Morais Nascimento Silva
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Srinand Sreevatsan
- College of Veterinary Medicine, Michigan State University, F130G Veterinary Medical Center, 784 Wilson RD, Room 784 Wilson Road, Room F130G, East Lansing, MI, 48824, USA
| | - Abelardo Silva-Júnior
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
33
|
Rathakrishnan A, Reis AL, Goatley LC, Moffat K, Dixon LK. Deletion of the K145R and DP148R Genes from the Virulent ASFV Georgia 2007/1 Isolate Delays the Onset, but Does Not Reduce Severity, of Clinical Signs in Infected Pigs. Viruses 2021; 13:v13081473. [PMID: 34452339 PMCID: PMC8402900 DOI: 10.3390/v13081473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus causes a frequently fatal disease of domestic pigs and wild boar that has a high economic impact across 3 continents. The large double-stranded DNA genome codes for approximately 160 proteins. Many of these have unknown functions and this hinders our understanding of the virus and host interactions. The purpose of the study was to evaluate the role of two virus proteins, K145R and DP148R, in virus replication in macrophages and virulence in pigs. To do this, the DP148R gene, alone or in combination with the K145R gene, was deleted from the virulent genotype II Georgia 2007/1 isolate. Neither of these deletions reduced the ability of the viruses to replicate in porcine macrophages compared to the parental wild-type virus. Pigs infected with GeorgiaΔDP148R developed clinical and post-mortem signs and high viremia, typical of acute African swine fever, and were culled on day 6 post-infection. The additional deletion of the K145R gene delayed the onset of clinical signs and viremia in pigs by 3 days, but pigs showed signs of acute African swine fever and were culled on days 10 or 13 post-infection. The results show that the deletion of DP148R did not attenuate the genotype II Georgia 2007/1 isolate, contrary to the results obtained with the genotype I Benin97/1 isolate. Additional deletion of the K145R gene delayed clinical signs, but infected pigs reached the humane endpoint. The deletion of additional genes would be required to attenuate the virus.
Collapse
|
34
|
Barroso-Arévalo S, Barasona JA, Cadenas-Fernández E, Sánchez-Vizcaíno JM. The Role of Interleukine-10 and Interferon-γ as Potential Markers of the Evolution of African Swine Fever Virus Infection in Wild Boar. Pathogens 2021; 10:pathogens10060757. [PMID: 34203976 PMCID: PMC8232672 DOI: 10.3390/pathogens10060757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Jose A. Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.B.); (E.C.-F.); (J.M.S.-V.)
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
35
|
Transcriptome view of a killer: African swine fever virus. Biochem Soc Trans 2021; 48:1569-1581. [PMID: 32725217 PMCID: PMC7458399 DOI: 10.1042/bst20191108] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
African swine fever virus (ASFV) represents a severe threat to global agriculture with the world's domestic pig population reduced by a quarter following recent outbreaks in Europe and Asia. Like other nucleocytoplasmic large DNA viruses, ASFV encodes a transcription apparatus including a eukaryote-like RNA polymerase along with a combination of virus-specific, and host-related transcription factors homologous to the TATA-binding protein (TBP) and TFIIB. Despite its high impact, the molecular basis and temporal regulation of ASFV transcription is not well understood. Our lab recently applied deep sequencing approaches to characterise the viral transcriptome and gene expression during early and late ASFV infection. We have characterised the viral promoter elements and termination signatures, by mapping the RNA-5' and RNA-3' termini at single nucleotide resolution. In this review, we discuss the emerging field of ASFV transcripts, transcription, and transcriptomics.
Collapse
|
36
|
Ebwanga EJ, Ghogomu SM, Paeshuyse J. African Swine Fever in Cameroon: A Review. Pathogens 2021; 10:421. [PMID: 33916101 PMCID: PMC8066270 DOI: 10.3390/pathogens10040421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022] Open
Abstract
African swine fever (ASF) is a hemorrhagic contagious porcine disease caused by the African swine fever virus. The disease poses enormous problems to the pork industry with pig mortality ranging from 30% to 100%, depending on the virulence of the virus circulating. Cameroon, situated in Central Africa is one of the countries in which the African swine fever virus (ASFV) has been endemic since its first outbreak in 1982. The disease is a major problem to the pig industry causing huge economic losses. A clear and concise review on ASF in Cameroon relating to the entry and current genotype of the virus, epidemiology, pathogenesis and economic impact is lacking. A thorough literature search revealed: (1) The virus entered the country in 1982 and caused the death of 80% of the pigs. (2) All isolates belong to serogroup I and only Genotype I is circulating in Cameroon principally in the domestic cycle as there are neither soft ticks nor warthog in the pig production regions sampled. (3) 70% of the pig farmers are involved in the traditional system of production with local and hybrid breeds of pigs with minimal input. (4) The country is endemic to the virus with huge economic losses. (5) So far, very little research has been effected on ASFV in Cameroon. This review gives a detailed overview of the situation of African swine fever virus (ASFV) in the country along with potential avenues for future research into ASFV in Cameroon.
Collapse
Affiliation(s)
- Ebanja Joseph Ebwanga
- Laboratory of Host-Pathogen Interaction in Livestock, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven University, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon;
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon;
| | - Jan Paeshuyse
- Laboratory of Host-Pathogen Interaction in Livestock, Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven University, 3000 Leuven, Belgium;
| |
Collapse
|
37
|
Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021; 13:v13040579. [PMID: 33808073 PMCID: PMC8103240 DOI: 10.3390/v13040579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family. Despite its agricultural importance, little is known about the fundamental molecular mechanisms of this pathogen. Short-read sequencing (SRS) can produce a huge amount of high-precision sequencing reads for transcriptomic profiling, but it is inefficient for comprehensively annotating transcriptomes. Long-read sequencing (LRS) can overcome some of SRS's limitations, but it also has drawbacks, such as low-coverage and high error rate. The limitations of the two approaches can be surmounted by the combined use of these techniques. In this study, we used Illumina SRS and Oxford Nanopore Technologies LRS platforms with multiple library preparation methods (amplified and direct cDNA sequencings and native RNA sequencing) for constructing the ASFV transcriptomic atlas. This work identified many novel transcripts and transcript isoforms and annotated the precise termini of previously described RNAs. This study identified a novel species of ASFV transcripts, the replication origin-associated RNAs. Additionally, we discovered several nested genes embedded into larger canonical genes. In contrast to the current view that the ASFV transcripts are monocistronic, we detected a significant extent of polycistronism. A multifaceted meshwork of transcriptional overlaps was also discovered.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
- Correspondence:
| |
Collapse
|
38
|
Shen Z, Chen C, Yang Y, Xie Z, Ao Q, Lv L, Zhang S, Chen H, Hu R, Chen H, Peng G. A novel function of African Swine Fever Virus pE66L in inhibition of host translation by the PKR/eIF2α pathway. J Virol 2021; 95:JVI.01872-20. [PMID: 33328305 PMCID: PMC8092821 DOI: 10.1128/jvi.01872-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) is one of the most contagious and lethal viruses infecting pigs. This virus is endemic in many countries and has very recently spread to China, but no licensed vaccines or treatments are currently available. Despite extensive research, the basic question of how ASFV-encoded proteins inhibit host translation remains. Here, we examined how ASFV interfered with host translation and optimized viral gene expression. We found that 14 ASFV proteins inhibited Renilla luciferase (Rluc) activity greater than 5-fold, and the protein with the strongest inhibitory effect was pE66L, which was not previously reported. Combined with bioinformatical analysis and biochemical experiment, we determined that the transmembrane (TM) domain (amino acids 13-34) of pE66L was required for the inhibition of host gene expression. Notably, we constructed a recombinant plasmid with the TM domain linked to enhanced green fluorescent protein (EGFP) and further demonstrated that this domain broadly inhibited protein synthesis. Confocal and biochemical analyses indicated that the TM domain might help proteins locate to the endoplasmic reticulum (ER) to suppress translation though the PKR/eIF2α pathway. Deletion of the E66L gene had little effect on virus replication in macrophages, but significantly recovered host gene expression. Taken together, our findings complement studies on the host translation of ASFV proteins and suggest that ASFV pE66L induces host translation shutoff, which is dependent on activation of the PKR/eIF2α pathway.Importance African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA virus superfamily that predominantly replicates in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from approximately 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs), of which half the encoded proteins have not been explored. Our study showed that 14 proteins had an obvious inhibitory effect on Renilla luciferase (Rluc) gene synthesis, with pE66L showing the most significant effect. Furthermore, the transmembrane (TM) domain of pE66L broadly inhibited host protein synthesis in a PKR/eIF2a pathway-dependent manner. Loss of pE66L during ASFV infection had little effect on virus replication, but significantly recovered host protein synthetic. Based on the above results, our findings expand our view of ASFV in determining the fate of host-pathogen interactions.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Xie
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Qingying Ao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Lu Lv
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Shoufeng Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
39
|
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem 2021; 296:100015. [PMID: 33139328 PMCID: PMC7948977 DOI: 10.1074/jbc.ra120.014005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal β-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 μM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China.
| |
Collapse
|
40
|
Teklue T, Wang T, Luo Y, Hu R, Sun Y, Qiu HJ. Generation and Evaluation of an African Swine Fever Virus Mutant with Deletion of the CD2v and UK Genes. Vaccines (Basel) 2020; 8:E763. [PMID: 33327488 PMCID: PMC7768475 DOI: 10.3390/vaccines8040763] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV). ASF emerged in China in August 2018 and has since rapidly spread into many areas of the country. The disease has caused a significant impact on China's pig and related industries. A safe and effective vaccine is needed to prevent and control the disease. Several gene-deleted ASFVs have been reported; however, none of them is safe enough and commercially available. In this study, we report the generation of a double gene-deleted ASFV mutant, ASFV-SY18-∆CD2v/UK, from a highly virulent field strain ASFV-SY18 isolated in China. The results showed that ASFV-SY18-∆CD2v/UK lost hemadsorption properties, and the simultaneous deletion of the two genes did not significantly affect the in vitro replication of the virus in primary porcine alveolar macrophages. Furthermore, ASFV-SY18-∆CD2v/UK was attenuated in pigs. All the ASFV-SY18-∆CD2v/UK-inoculated pigs remained healthy, and none of them developed ASF-associated clinical signs. Additionally, the ASFV-SY18-∆CD2v/UK-infected pigs developed ASFV-specific antibodies, and no virus genome was detected in blood and nasal discharges at 21 and 28 days post-inoculation. More importantly, we found that all the pigs inoculated with 104 TCID50 of ASFV-SY18-∆CD2v/UK were protected against the challenge with the parental ASFV-SY18. However, low-level ASFV DNA was detected in blood, nasal swabs, and lymphoid tissue after the challenge. The results demonstrate that ASFV-SY18-∆CD2v/UK is safe and able to elicit protective immune response in pigs and can be a potential vaccine candidate to control ASF.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130000, China;
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.T.); (T.W.); (Y.L.)
| |
Collapse
|
41
|
Dunn LEM, Ivens A, Netherton CL, Chapman DAG, Beard PM. Identification of a Functional Small Noncoding RNA of African Swine Fever Virus. J Virol 2020; 94:e01515-20. [PMID: 32796064 PMCID: PMC7565616 DOI: 10.1128/jvi.01515-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.
Collapse
Affiliation(s)
- Laura E M Dunn
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Philippa M Beard
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| |
Collapse
|
42
|
Moise L, Gutiérrez AH, Khan S, Tan S, Ardito M, Martin WD, De Groot AS. New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Front Immunol 2020; 11:563362. [PMID: 33123135 PMCID: PMC7571332 DOI: 10.3389/fimmu.2020.563362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Novel computational tools for swine vaccine development can expand the range of immunization approaches available to prevent economically devastating swine diseases and spillover events between pigs and humans. PigMatrix and EpiCC are two new tools for swine T cell epitope identification and vaccine efficacy analysis that have been integrated into an existing computational vaccine design platform named iVAX. The iVAX platform is already in use for the development of human vaccines, thus integration of these tools into iVAX improves and expands the utility of the platform overall by making previously validated immunoinformatics tools, developed for humans, available for use in the design and analysis of swine vaccines. PigMatrix predicts T cell epitopes for a broad array of class I and class II swine leukocyte antigen (SLA) using matrices that enable the scoring of sequences for likelihood of binding to SLA. PigMatrix facilitates the prospective selection of T cell epitopes from the sequences of swine pathogens for vaccines and permits the comparison of those predicted epitopes with "self" (the swine proteome) and with sequences from other strains. Use of PigMatrix with additional tools in the iVAX toolkit also enables the computational design of vaccines in silico, for testing in vivo. EpiCC uses PigMatrix to analyze existing or proposed vaccines for their potential to protect, based on a comparison between T cell epitopes in the vaccine and circulating strains of the same pathogen. Performing an analysis of T cell epitope relatedness analysis using EpiCC may facilitate vaccine selection when a novel strain emerges in a herd and also permits analysis of evolutionary drift as a means of immune escape. This review of novel computational immunology tools for swine describes the application of PigMatrix and EpiCC in case studies, such as the design of cross-conserved T cell epitopes for swine influenza vaccine or for African Swine Fever. We also describe the application of EpiCC for determination of the best vaccine strains to use against circulating viral variants of swine influenza, swine rotavirus, and porcine circovirus type 2. The availability of these computational tools accelerates infectious disease research for swine and enable swine vaccine developers to strategically advance their vaccines to market.
Collapse
Affiliation(s)
- Lenny Moise
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | | | - Swan Tan
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
43
|
The African Swine Fever Virus (ASFV) Topoisomerase II as a Target for Viral Prevention and Control. Vaccines (Basel) 2020; 8:vaccines8020312. [PMID: 32560397 PMCID: PMC7350233 DOI: 10.3390/vaccines8020312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022] Open
Abstract
African swine fever (ASF) is, once more, spreading throughout the world. After its recent reintroduction in Georgia, it quickly reached many neighboring countries in Eastern Europe. It was also detected in Asia, infecting China, the world's biggest pig producer, and spreading to many of the surrounding countries. Without any vaccine or effective treatment currently available, new strategies for the control of the disease are mandatory. Its etiological agent, the African swine fever virus (ASFV), has been shown to code for a type II DNA topoisomerase. These are enzymes capable of modulating the topology of DNA molecules, known to be essential in unicellular and multicellular organisms, and constitute targets in antibacterial and anti-cancer treatments. In this review, we summarize most of what is known about this viral enzyme, pP1192R, and discuss about its possible role(s) during infection. Given the essential role of type II topoisomerases in cells, the data so far suggest that pP1192R is likely to be equally essential for the virus and thus a promising target for the elaboration of a replication-defective virus, which could provide the basis for an effective vaccine. Furthermore, the use of inhibitors could be considered to control the spread of the infection during outbreaks and therefore limit the spreading of the disease.
Collapse
|
44
|
Fan W, Jiao P, Zhang H, Chen T, Zhou X, Qi Y, Sun L, Shang Y, Zhu H, Hu R, Liu W, Li J. Inhibition of African Swine Fever Virus Replication by Porcine Type I and Type II Interferons. Front Microbiol 2020; 11:1203. [PMID: 32655518 PMCID: PMC7325991 DOI: 10.3389/fmicb.2020.01203] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Interferons (IFNs) are proteins produced by a variety of cells during the process of virus infection. It can activate the transcription of multiple functional genes in cells, regulate the synergistic effect of multiple signaling pathways, and mediate a variety of biological functions such as antiviral activity and immune regulation. The symptoms of hosts infected with African swine fever virus (ASFV) depend on the combined interaction between viruses and the host. However, it is unclear whether IFNs can be used as an emergency preventive treatment for ASFV. This study focused on the use of recombinant porcine IFNs, produced by Escherichia coli, to inhibit the replication of ASFV. The activity of IFN against ASFV was detected using primary alveolar macrophages at different doses through immunofluorescence assays and quantitative real-time PCR. We found that both 1000 and 100 U/mL doses significantly inhibited the replication of ASFV. Meanwhile, we found that IFNs could significantly trigger the production of a variety of IFN-induced genes (IFIT1, IFITM3, Mx-1, OASL, ISG15, PKR, GBP1, Viperin, BST2, IRF-1, and CXCL10) and MHC molecules, which play key roles in resistance to virus infection. Peripheral blood samples were also obtained from surviving pigs treated with IFNs, and the viral load was determined. Consistent with in vitro tests, low-dose (105 U/kg) recombinant porcine IFNs (PoIFN-α and PoIFN-γ) significantly reduced viral load compared to that with high-dose (106 U/kg) treatment. Our results suggest that recombinant porcine IFNs have high antiviral activity against ASFV, providing a new strategy for the prevention of African swine fever.
Collapse
Affiliation(s)
- Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Teng Chen
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xintao Zhou
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yu Qi
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hongfei Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Woźniakowski G, Mazur-Panasiuk N, Walczak M, Juszkiewicz M, Frant M, Niemczuk K. Attempts at the Development of a Recombinant African Swine Fever Virus Strain with Abrogated EP402R, 9GL, and A238L Gene Structure using the CRISPR/Cas9 System. J Vet Res 2020; 64:197-205. [PMID: 32587905 PMCID: PMC7305649 DOI: 10.2478/jvetres-2020-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION African swine fever (ASF) is a pressing economic problem in a number of Eastern European countries. It has also depleted the Chinese sow population by 50%. Managing the disease relies on culling infected pigs or hunting wild boars as sanitary zone creation. The constraints on the development of an efficient vaccine are mainly the virus' mechanisms of host immune response evasion. The study aimed to adapt a field ASFV strain to established cell lines and to construct recombinant African swine fever virus (ASFV) strain. MATERIAL AND METHODS The host immune response modulation genes A238L, EP402R, and 9GL were deleted using the clustered regularly interspaced short palindromic repeats/caspase 9 (CRISPR/Cas9) mutagenesis system. A representative virus isolate (Pol18/28298/Out111) from Poland was isolated in porcine primary pulmonary alveolar macrophage (PPAM) cells. Adaptation of the virus to a few established cell lines was attempted. The plasmids encoding CRISPR/Cas9 genes along with gRNA complementary to the target sequences were designed, synthesised, and transfected into ASFV-infected PPAM cells. RESULTS The reconstituted virus showed similar kinetics of replication in comparison to the parent virus isolate. CONCLUSION Taking into account the usefulness of the developed CRISPR/Cas9 system it has been shown that modification of the A238L, EP402R, and 9GL genes might occur with low frequency, resulting in difficulties in separation of various virus populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Krzysztof Niemczuk
- Director General National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
46
|
African Swine Fever Virus - The Possible Role of Flies and Other Insects in Virus Transmission. J Vet Res 2020; 64:1-7. [PMID: 32258793 PMCID: PMC7106000 DOI: 10.2478/jvetres-2020-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022] Open
Abstract
African swine fever (ASF) is an acute viral haemorrhagic disease of pigs and wild boars. It presents a serious threat to pig production worldwide, and since 2007, ASF outbreaks have been recorded in the Caucasus, Eastern Europe, and the Baltic States. In 2014, the disease was detected in Poland. ASF is on the list of notifiable diseases of the World Organisation for Animal Health (OIE). Due to the lack of an available vaccine and treatment, the countermeasures against the disease consist in early detection of the virus in the pig population and control of its spread through the elimination of herds affected by disease outbreaks. Knowledge of the potential vectors of the virus and its persistence in the environment is crucial to prevent further disease spread and to understand the new epidemiology for how it compares to the previous experience in Spain gathered in the 1970s and 1980s.
Collapse
|
47
|
Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF. Cryo-EM Structure of the African Swine Fever Virus. Cell Host Microbe 2019; 26:836-843.e3. [PMID: 31787524 DOI: 10.1016/j.chom.2019.11.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus with an icosahedral multilayered structure. ASFV causes a lethal swine hemorrhagic disease and is currently responsible for widespread damage to the pork industry in Asia. Neither vaccines nor antivirals are available and the molecular characterization of the ASFV particle is outstanding. Here, we describe the cryogenic electron microscopy (cryo-EM) structure of the icosahedral capsid of ASFV at 4.6-Å. The ASFV particle consists of 8,280 copies of the major capsid protein p72, 60 copies of the penton protein, and at least 8,340 minor capsid proteins, of which there might be 3 different types. Like other nucleocytoplasmic large DNA viruses, the minor capsid proteins form a hexagonal network below the outer capsid shell, functioning as stabilizers by "gluing" neighboring capsomers together. Our findings provide a comprehensive molecular model of the ASFV capsid architecture that will contribute to the future development of countermeasures, including vaccines.
Collapse
Affiliation(s)
- Sheng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yajuan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Junqing Sun
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongjie Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Zhang
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wei Wang
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peiyi Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology and National High-Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
48
|
Avian Flavivirus Infection of Monocytes/Macrophages by Extensive Subversion of Host Antiviral Innate Immune Responses. J Virol 2019; 93:JVI.00978-19. [PMID: 31462573 DOI: 10.1128/jvi.00978-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Avian Tembusu virus (TMUV) is a newly emerging avian pathogenic flavivirus in China and Southeast Asia with features of rapid spread, an expanding host range, and cross-species transmission. The mechanisms of its infection and pathogenesis remain largely unclear. Here, we investigated the tropism of this arbovirus in peripheral blood mononuclear cells of specific-pathogen-free (SPF) ducks and SPF chickens and identified monocytes/macrophages as the key targets of TMUV infection. In vivo studies in SPF ducks and SPF chickens with monocyte/macrophage clearance demonstrated that the infection of monocytes/macrophages was crucial for viral replication, transmission, and pathogenesis. Further genome-wide transcriptome analyses of TMUV-infected chicken macrophages revealed that host antiviral innate immune barriers were the major targets of TMUV in macrophages. Despite the activation of major pattern recognition receptor signaling, the inductions of alpha interferon (IFN-α) and IFN-β were blocked by TMUV infection on transcription and translation levels, respectively. Meanwhile, TMUV inhibited host redox responses by repressing the transcription of genes encoding NADPH oxidase subunits and promoting Nrf2-mediated antioxidant responses. The recovery of either of the above-mentioned innate immune barriers was sufficient to suppress TMUV infection. Collectively, we identify an essential step of TMUV infection and reveal extensive subversion of host antiviral innate immune responses.IMPORTANCE Mosquito-borne flaviviruses include a group of pathogenic viruses that cause serious diseases in humans and animals, including dengue, West Nile, and Japanese encephalitis viruses. These flaviviruses are zoonotic and use animals, including birds, as amplifying and reservoir hosts. Avian Tembusu virus (TMUV) is an emerging mosquito-borne flavivirus that is pathogenic for many avian species and can infect cells derived from mammals and humans in vitro Although not currently pathogenic for primates, the infection of duck industry workers and the potential risk of TMUV infection in immunocompromised individuals have been highlighted. Thus, the prevention of TMUV in flocks is important for both avian and mammalian health. Our study reveals the escape of TMUV from the first line of the host defense system in the arthropod-borne transmission route of arboviruses, possibly helping to extend our understanding of flavivirus infection in birds and refine the design of anti-TMUV therapeutics.
Collapse
|
49
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
50
|
A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol 2018; 92:JVI.01293-18. [PMID: 30185597 DOI: 10.1128/jvi.01293-18] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal swine disease for which there is no vaccine available. The ASFV particle, with an icosahedral multilayered structure, contains multiple polypeptides whose identity is largely unknown. Here, we analyzed by mass spectroscopy the protein composition of highly purified extracellular ASFV particles and performed immunoelectron microscopy to localize several of the detected proteins. The proteomic analysis identified 68 viral proteins, which account for 39% of the genome coding capacity. The ASFV proteome includes essentially all the previously described virion proteins and, interestingly, 44 newly identified virus-packaged polypeptides, half of which have an unknown function. A great proportion of the virion proteins are committed to the virus architecture, including two newly identified structural proteins, p5 and p8, which are derived from the core polyproteins pp220 and pp62, respectively. In addition, the virion contains a full complement of enzymes and factors involved in viral transcription, various enzymes implicated in DNA repair and protein modification, and some proteins concerned with virus entry and host defense evasion. Finally, 21 host proteins, many of them localized at the cell surface and related to the cortical actin cytoskeleton, were reproducibly detected in the ASFV particle. Immunoelectron microscopy strongly supports the suggestion that these host membrane-associated proteins are recruited during virus budding at actin-dependent membrane protrusions. Altogether, the results of this study provide a comprehensive model of the ASFV architecture that integrates both compositional and structural information.IMPORTANCE African swine fever virus causes a highly contagious and lethal disease of swine that currently affects many countries of sub-Saharan Africa, the Caucasus, the Russian Federation, and Eastern Europe and has very recently spread to China. Despite extensive research, effective vaccines or antiviral strategies are still lacking, and many basic questions on the molecular mechanisms underlying the infective cycle remain. One such gap regards the composition and structure of the infectious virus particle. In the study described in this report, we identified the set of viral and host proteins that compose the virion and determined or inferred the localization of many of them. This information significantly increases our understanding of the biological and structural features of an infectious African swine fever virus particle and will help direct future research efforts.
Collapse
|