1
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
2
|
Arora P, Zhang L, Nehlmeier I, Kempf A, Graichen L, Kreitz E, Sidarovich A, Rocha C, Gärtner S, Winkler M, Schulz S, Jäck HM, Hoffmann M, Pöhlmann S. Host cell lectins ASGR1 and DC-SIGN jointly with TMEM106B confer ACE2 independence and imdevimab resistance to SARS-CoV-2 pseudovirus with spike mutation E484D. J Virol 2025; 99:e0123024. [PMID: 39791910 PMCID: PMC11852847 DOI: 10.1128/jvi.01230-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The naturally occurring mutation E484D in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can render viral entry ACE2 independent and imdevimab resistant. Here, we investigated whether the cellular proteins ASGR1, DC-SIGN, and TMEM106B, which interact with the viral S protein, can contribute to these processes. Employing S protein-pseudotyped particles, we found that expression of ASGR1 or DC-SIGN jointly with TMEM106B allowed for robust entry of mutant E484D into otherwise non-susceptible cells, while this effect was not observed upon separate expression of the single proteins and upon infection with SARS-CoV-2 wild type (WT). Furthermore, expression of ASGR1 or DC-SIGN conferred ACE2 independence and imdevimab resistance to entry of mutant E484D but not WT, and entry under those conditions was dependent on endogenous TMEM106B. These results suggest that engagement of certain cellular lectins can direct SARS-CoV-2 mutant E484D to an ACE2-independent, TMEM106B-dependent entry pathway that is not inhibited by imdevimab.IMPORTANCEThe interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with the ACE2 receptor determines the viral cell tropism and is the key target of the neutralizing antibody response. Here, we show that SARS-CoV-2 with a single, naturally occurring mutation in the spike protein, E484D, can use the cellular lectins ASGR1 and DC-SIGN in conjunction with TMEM106B for ACE2-independent entry and evasion of therapeutic antibodies. These results suggest that engagement of cellular lectins might modulate target cell choice of SARS-CoV-2 and might allow evasion of certain neutralizing antibodies.
Collapse
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Eike Kreitz
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anzhalika Sidarovich
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Kalantari P, Shecter I, Hopkins J, Pilotta Gois A, Morales Y, Harandi BF, Sharma S, Stadecker MJ. The balance between gasdermin D and STING signaling shapes the severity of schistosome immunopathology. Proc Natl Acad Sci U S A 2023; 120:e2211047120. [PMID: 36943884 PMCID: PMC10068786 DOI: 10.1073/pnas.2211047120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
There is significant disease heterogeneity among mouse strains infected with the helminth Schistosoma mansoni. Here, we uncover a unique balance in two critical innate pathways governing the severity of disease. In the low-pathology setting, parasite egg-stimulated dendritic cells (DCs) induce robust interferon (IFN)β production, which is dependent on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) cytosolic DNA sensing pathway and results in a Th2 response with suppression of proinflammatory cytokine production and Th17 cell activation. IFNβ induces signal transducer and activator of transcription (STAT)1, which suppresses CD209a, a C-type lectin receptor associated with severe disease. In contrast, in the high-pathology setting, enhanced DC expression of the pore-forming protein gasdermin D (Gsdmd) results in reduced expression of cGAS/STING, impaired IFNβ, and enhanced pyroptosis. Our findings demonstrate that cGAS/STING signaling represents a unique mechanism inducing protective type I IFN, which is counteracted by Gsdmd.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA16802
| | - Ilana Shecter
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Jacob Hopkins
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Andrea Pilotta Gois
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Yoelkys Morales
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Bijan F. Harandi
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Miguel J. Stadecker
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
4
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
5
|
Bhatia B, Furuyama W, Hoenen T, Feldmann H, Marzi A. Ebola Virus Glycoprotein Domains Associated with Protective Efficacy. Vaccines (Basel) 2021; 9:630. [PMID: 34200548 PMCID: PMC8229685 DOI: 10.3390/vaccines9060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022] Open
Abstract
Ebola virus (EBOV) is the cause of sporadic outbreaks of human hemorrhagic disease in Africa, and the best-characterized virus in the filovirus family. The West African epidemic accelerated the clinical development of vaccines and therapeutics, leading to licensure of vaccines and antibody-based therapeutics for human use in recent years. The most widely used vaccine is based on vesicular stomatitis virus (VSV) expressing the EBOV glycoprotein (GP) (VSV-EBOV). Due to its favorable immune cell targeting, this vaccine has also been used as a base vector for the development of second generation VSV-based vaccines against Influenza, Nipah, and Zika viruses. However, in these situations, it may be beneficial if the immunogenicity against EBOV GP is minimized to induce a better protective immune response against the other foreign immunogen. Here, we analyzed if EBOV GP can be truncated to be less immunogenic, yet still able to drive replication of the vaccine vector. We found that the EBOV GP glycan cap and the mucin-like domain are both dispensable for VSV-EBOV replication. The glycan cap, however, appears critical for mediating a protective immune response against lethal EBOV challenge in mice.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (B.B.); (W.F.); (H.F.)
| |
Collapse
|
6
|
Optimal Expression of the Envelope Glycoprotein of Orthobornaviruses Determines the Production of Mature Virus Particles. J Virol 2021; 95:JVI.02221-20. [PMID: 33268525 PMCID: PMC8092845 DOI: 10.1128/jvi.02221-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An RNA virus-based episomal vector (REVec) whose backbone is Borna disease virus 1 (BoDV-1) can provide long-term gene expression in transduced cells. To improve the transduction efficiency of REVec, we evaluated the role of the viral envelope glycoprotein (G) of the genus Orthobornavirus, including that of BoDV-1, in the production of infectious particles. By using G-pseudotype assay in which the lack of G in G-deficient REVec (ΔG-REVec) was compensated for expression of G, we found that excess expression of BoDV-1-G does not affect particle production itself but results in uncleaved and aberrant mature G expression in the cells, leading to the production of REVec particles with low transduction titers. We revealed that the expression of uncleaved G in the cells inhibits the incorporation of mature G and vgRNA into the particles. This feature of G was conserved among mammalian and avian orthobornaviruses; however, the cleavage efficacy of canary bornavirus 1 (CnBV-1)-G was exceptionally not impaired by its excess expression, which led to the production of the pseudotype ΔG-REVec with the highest titer. Chimeric G proteins between CnBV-1 and -2 revealed that the signal peptide of CnBV-1-G was responsible for the cleavage efficacy through the interaction with intracellular furin. We showed that CnBV-1 G leads to the development of pseudotyped REVec with high transduction efficiency and a high-titer recombinant REVec. Our study demonstrated that the restricted expression of orthobornavirus G contributes to the regulation of infectious particle production, the mechanism of which can improve the transduction efficiency of REVec.IMPORTANCE Most viruses causing persistent infection produce few infectious particles from the infected cells. Borna disease virus 1, a member of the genus Orthobornavirus, is an RNA virus that persistently infects the nucleus and has been applied to vectors for long-term gene expression. In this study, we showed that, common among orthobornaviruses, excessive G expression does not affect particle production itself but reduces the production of infectious particles with mature G and genomic RNA. This result suggested that limited G expression contributes to suppressing abnormal viral particle production. On the other hand, we found that canary bornavirus 1 has an exceptional G maturation mechanism and produces a high-titer virus. Our study will contribute to not only understanding the mechanism of infectious particle production but also improving the vector system of orthobornaviruses.
Collapse
|
7
|
Efficient Expression and Processing of Ebola Virus Glycoprotein Induces Morphological Changes in BmN Cells but Cannot Rescue Deficiency of Bombyx Mori Nucleopolyhedrovirus GP64. Viruses 2019; 11:v11111067. [PMID: 31731691 PMCID: PMC6893839 DOI: 10.3390/v11111067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease outbreaks have resulted in many fatalities, yet no licensed vaccines are available to prevent infection. Recombinant glycoprotein (GP) production may contribute to finding a cure for Ebola virus disease, which is the key candidate protein for vaccine preparation. To explore GP1,2 expression in BmN cells, EBOV-GP1,2 with its native signal peptide or the GP64 signal peptide was cloned and transferred into a normal or gp64 null Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid via transposition. The infectivity of the recombinant bacmids was investigated after transfection, expression and localization of EBOV-GP were investigated, and cell morphological changes were analyzed by TEM. The GP64 signal peptide, but not the GP1,2 native signal peptide, caused GP1,2 localization to the cell membrane, and the differentially localized GP1,2 proteins were cleaved into GP1 and GP2 fragments in BmN cells. GP1,2 expression resulted in dramatic morphological changes in BmN cells in the early stage of infection. However, GP1,2 expression did not rescue GP64 deficiency in BmNPV infection. This study provides a better understanding of GP expression and processing in BmN cells, which may lay a foundation for EBOV-GP expression using the BmNPV baculovirus expression system.
Collapse
|
8
|
Luczkowiak J, Lasala F, Mora-Rillo M, Arribas JR, Delgado R. Broad Neutralizing Activity Against Ebolaviruses Lacking the Mucin-Like Domain in Convalescent Plasma Specimens From Patients With Ebola Virus Disease. J Infect Dis 2019; 218:S574-S581. [PMID: 29939289 PMCID: PMC6249609 DOI: 10.1093/infdis/jiy302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background In Ebola virus (EBOV) infection, the specific neutralizing activity of convalescent plasma against other members of the Ebolavirus genus has not been extensively analyzed. Methods We measured the neutralizing activity in plasma from 3 survivors of the recent outbreak due to the Makona variant of EBOV and tested its neutralizing potency against other variants of EBOV (ie, Mayinga and Kikwit) and against Sudan virus (SUDV), Bundibugyo virus (BDBV), and Reston virus (RESTV), using a glycoprotein (GP)-pseudotyped lentiviral system both with full-length GP and in vitro-cleaved GP (GPCL). Results Convalescent plasma specimens from survivors of EBOV infection showed low neutralizing activity against full-length GPs of SUDV, BDBV, RESTV, and EBOV variants Mayinga and Kikwit. However, broad and potent neutralizing activity was observed against the GPCL forms of SUDV, BDBV, and RESTV. Discussion Removal of the mucin-like domain and glycan cap from the GP of members of the Ebolavirus genus presumably exposes conserved epitopes in or in the vicinity of the receptor binding site and internal fusion loop that are readily amenable to neutralization. These types of broad neutralizing antibodies could be induced by using immunogens mimicking GPCL.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fatima Lasala
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marta Mora-Rillo
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Jose R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz, Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
- Correspondence: R. Delgado, Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Avenida de Córdoba sn, Madrid 28041, Spain ()
| |
Collapse
|
9
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Drelich A, Judy B, He X, Chang Q, Yu S, Li X, Lu F, Wakamiya M, Popov V, Zhou J, Ksiazek T, Gong B. Exchange Protein Directly Activated by cAMP Modulates Ebola Virus Uptake into Vascular Endothelial Cells. Viruses 2018; 10:v10100563. [PMID: 30332733 PMCID: PMC6213290 DOI: 10.3390/v10100563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the family Filoviridae, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates. Given their high lethality, a comprehensive understanding of filoviral pathogenesis is urgently needed. In the present studies, we revealed that the exchange protein directly activated by cAMP 1 (EPAC1) gene deletion protects vasculature in ex vivo explants from EBOV infection. Importantly, pharmacological inhibition of EPAC1 using EPAC-specific inhibitors (ESIs) mimicked the EPAC1 knockout phenotype in the ex vivo model. ESI treatment dramatically decreased EBOV infectivity in both ex vivo vasculature and in vitro vascular endothelial cells (ECs). Furthermore, postexposure protection of ECs against EBOV infection was conferred using ESIs. Protective efficacy of ESIs in ECs was observed also in MARV infection. Additional studies using a vesicular stomatitis virus pseudotype that expresses EBOV glycoprotein (EGP-VSV) confirmed that ESIs reduced infection in ECs. Ultrastructural studies suggested that ESIs blocked EGP-VSV internalization via inhibition of macropinocytosis. The inactivation of EPAC1 affects the early stage of viral entry after viral binding to the cell surface, but before early endosome formation, in a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-dependent manner. Our study delineated a new critical role of EPAC1 during EBOV uptake into ECs.
Collapse
Affiliation(s)
- Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Xiang Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Institute of Cardiovascular Surgery, Shanghai 200433, China.
| | - Maki Wakamiya
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Fujihira H, Usami K, Matsuno K, Takeuchi H, Denda-Nagai K, Furukawa JI, Shinohara Y, Takada A, Kawaoka Y, Irimura T. A Critical Domain of Ebolavirus Envelope Glycoprotein Determines Glycoform and Infectivity. Sci Rep 2018; 8:5495. [PMID: 29615747 PMCID: PMC5882653 DOI: 10.1038/s41598-018-23357-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/09/2018] [Indexed: 11/09/2022] Open
Abstract
Ebolaviruses comprises 5 species that exert varying degrees of mortality/infectivity in humans with Reston ebolaviruses (REBOV) showing the lowest and Zaire ebolaviruses (ZEBOV) showing the highest. However, the molecular basis of this differential mortality/infectivity remains unclear. Here, we report that the structural features of ebolavirus envelope glycoproteins (GPs) and one of their counter receptors, macrophage galactose-type calcium-type lectin (MGL/CD301), play crucial roles in determining viral infectivity. The low infectivity of REBOV mediated by the interaction between GPs and MGL/CD301 dramatically increased when the N-terminal 18 amino acids (33rd through 50th) of GPs were replaced with that of ZEBOV. Furthermore, structural analysis of glycans of GPs revealed that N-glycans were more extended in REBOV than in ZEBOV. N-glycan extension was reversed by the replacement of aforementioned N-terminal 18 amino acid residues. Therefore, these data strongly suggest that extended N-glycans on GPs reduce MGL/CD301-mediated viral infectivity by hindering the interaction between GPs and MGL/CD301 preferentially binds O-glycans.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan. .,Glycometabolome Team, Systems Glycobiology Research Group, Global Research Cluster, RIKEN, Saitama, 351-0198, Japan.
| | - Katsuaki Usami
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.,Division of International Services, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan
| | - Hideyuki Takeuchi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Molecular Biochemistry, Nagoya University School of Medicine, Nagoya, 4668550, Japan
| | - Kaori Denda-Nagai
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.,Department of Advanced clinical glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.,Department of Pharmacy, Kinjo Gakuin University, Nagoya, 4638521, Japan
| | - Ayato Takada
- Division of International Services, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020, Japan.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, 001-0020, Japan
| | - Yoshihiro Kawaoka
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Tatsuro Irimura
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
12
|
|
13
|
Urbanowicz RA, McClure CP, Sakuntabhai A, Sall AA, Kobinger G, Müller MA, Holmes EC, Rey FA, Simon-Loriere E, Ball JK. Human Adaptation of Ebola Virus during the West African Outbreak. Cell 2017; 167:1079-1087.e5. [PMID: 27814505 PMCID: PMC5101188 DOI: 10.1016/j.cell.2016.10.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022]
Abstract
The 2013–2016 outbreak of Ebola virus (EBOV) in West Africa was the largest recorded. It began following the cross-species transmission of EBOV from an animal reservoir, most likely bats, into humans, with phylogenetic analysis revealing the co-circulation of several viral lineages. We hypothesized that this prolonged human circulation led to genomic changes that increased viral transmissibility in humans. We generated a synthetic glycoprotein (GP) construct based on the earliest reported isolate and introduced amino acid substitutions that defined viral lineages. Mutant GPs were used to generate a panel of pseudoviruses, which were used to infect different human and bat cell lines. These data revealed that specific amino acid substitutions in the EBOV GP have increased tropism for human cells, while reducing tropism for bat cells. Such increased infectivity may have enhanced the ability of EBOV to transmit among humans and contributed to the wide geographic distribution of some viral lineages. EBOV adapted to humans during the West African outbreak Amino acid substitutions in the EBOV glycoprotein increase human cell tropism The same glycoprotein amino acid substitutions decrease tropism for bat cells
Collapse
Affiliation(s)
- Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - C Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris, France
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fever Unit, Institut Pasteur de Dakar, BP 220 Dakar, Senegal
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, ON K1A 0K9, Canada; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R32T 2N2, Canada
| | - Marcel A Müller
- Institute of Virology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2050, Australia
| | - Félix A Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3569, 75724 Paris Cedex 15, France
| | - Etienne Simon-Loriere
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, 75724 Paris Cedex 15, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75015 Paris, France.
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK.
| |
Collapse
|
14
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. J Virol 2016; 90:11075-11086. [PMID: 27707924 DOI: 10.1128/jvi.01563-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. IMPORTANCE Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction.
Collapse
|
16
|
Affiliation(s)
- Angela L. Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington 98109;
| |
Collapse
|
17
|
Hoffmann M, González Hernández M, Berger E, Marzi A, Pöhlmann S. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent. PLoS One 2016; 11:e0149651. [PMID: 26901159 PMCID: PMC4762945 DOI: 10.1371/journal.pone.0149651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| | | | - Elisabeth Berger
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- * E-mail: (SP); (MH)
| |
Collapse
|
18
|
Miao C, Li M, Zheng YM, Cohen FS, Liu SL. Cell-cell contact promotes Ebola virus GP-mediated infection. Virology 2015; 488:202-15. [PMID: 26655238 DOI: 10.1016/j.virol.2015.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Here we provide evidence that cell-cell contact promotes infection mediated by the glycoprotein (GP) of EBOV. Interestingly, expression of EBOV GP alone, even in the absence of retroviral Gag-Pol, is sufficient to transfer a retroviral vector encoding Tet-off from cell to cell. Cell-to-cell infection mediated by EBOV GP is blocked by inhibitors of actin polymerization, but appears to be less sensitive to KZ52 neutralization. Treatment of co-cultured cells with cathepsin B/L inhibitors, or an entry inhibitor 3.47 that targets the receptor NPC1 for virus binding, also blocks cell-to-cell infection. Cell-cell contact also enhances spread of rVSV bearing GP in monocytes and macrophages, the primary targets of natural EBOV infection. Altogether, our study reveals that cell-cell contact promotes EBOV GP-mediated infection, and provides new insight into understanding EBOV spread and viral pathogenesis.
Collapse
Affiliation(s)
- Chunhui Miao
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Minghua Li
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yi-Min Zheng
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Fredric S Cohen
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Shan-Lu Liu
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Rhein BA, Maury WJ. Ebola virus entry into host cells: identifying therapeutic strategies. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:115-124. [PMID: 26509109 PMCID: PMC4617201 DOI: 10.1007/s40588-015-0021-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Filoviruses cause severe hemorrhagic fever in humans. The archetypal virus of this group, Ebola virus, is responsible for the current filovirus epidemic in West Africa. Filoviruses infect most mammalian cells, resulting in broad species tropism and likely contributing to rapid spread of virus throughout the body. A thorough understanding of filovirus entry events will facilitate the development of therapeutics against these critical steps in the viral life cycle. This review summarizes the current understanding of filovirus entry and discusses some of the recent advancements in therapeutic strategies that target entry.
Collapse
Affiliation(s)
- Bethany A. Rhein
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| | - Wendy J. Maury
- Department of Microbiology, University of Iowa, 3-701 Bowen Science Building, 51 Newton Rd, Iowa City, IA 52242 USA
| |
Collapse
|
20
|
Dahlmann F, Biedenkopf N, Babler A, Jahnen-Dechent W, Karsten CB, Gnirß K, Schneider H, Wrensch F, O'Callaghan CA, Bertram S, Herrler G, Becker S, Pöhlmann S, Hofmann-Winkler H. Analysis of Ebola Virus Entry Into Macrophages. J Infect Dis 2015; 212 Suppl 2:S247-57. [PMID: 25877552 PMCID: PMC4564540 DOI: 10.1093/infdis/jiv140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.
Collapse
Affiliation(s)
| | | | - Anne Babler
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University
| | | | - Christina B Karsten
- Infection Biology Unit, German Primate Center, Göttingen Institutes for Cellular Chemistry
| | - Kerstin Gnirß
- Infection Biology Unit, German Primate Center, Göttingen
| | | | | | | | | | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | | | | | | |
Collapse
|
21
|
Hofmann-Winkler H, Gnirß K, Wrensch F, Pöhlmann S. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976. J Infect Dis 2015; 212 Suppl 2:S172-80. [PMID: 25840443 PMCID: PMC4564534 DOI: 10.1093/infdis/jiv101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors.
Collapse
Affiliation(s)
| | - Kerstin Gnirß
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Florian Wrensch
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|
22
|
Less is more: Ebola virus surface glycoprotein expression levels regulate virus production and infectivity. J Virol 2014; 89:1205-17. [PMID: 25392212 DOI: 10.1128/jvi.01810-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The Ebola virus (EBOV) surface glycoprotein (GP1,2) mediates host cell attachment and fusion and is the primary target for host neutralizing antibodies. Expression of GP1,2 at high levels disrupts normal cell physiology, and EBOV uses an RNA-editing mechanism to regulate expression of the GP gene. In this study, we demonstrate that high levels of GP1,2 expression impair production and release of EBOV virus-like particles (VLPs) as well as infectivity of GP1,2-pseudotyped viruses. We further show that this effect is mediated through two mechanisms. First, high levels of GP1,2 expression reduce synthesis of other proteins needed for virus assembly. Second, viruses containing high levels of GP1,2 are intrinsically less infectious, possibly due to impaired receptor binding or endosomal processing. Importantly, proteolysis can rescue the infectivity of high-GP1,2-containing viruses. Taken together, our findings indicate that GP1,2 expression levels have a profound effect on factors that contribute to virus fitness and that RNA editing may be an important mechanism employed by EBOV to regulate GP1,2 expression in order to optimize virus production and infectivity. IMPORTANCE The Ebola virus (EBOV), as well as other members of the Filoviridae family, causes severe hemorrhagic fever that is highly lethal, with up to 90% mortality. The EBOV surface glycoprotein (GP1,2) plays important roles in virus infection and pathogenesis, and its expression is tightly regulated by an RNA-editing mechanism during virus replication. Our study demonstrates that the level of GP1,2 expression profoundly affects virus particle production and release and uncovers a new mechanism by which Ebola virus infectivity is regulated by the level of GP1,2 expression. These findings extend our understanding of EBOV infection and replication in adaptation of host environments, which will aid the development of countermeasures against EBOV infection.
Collapse
|
23
|
Abstract
The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. Several members of the Arenaviridae family are neglected human pathogens capable of causing illness ranging from a nondescript flu-like syndrome to fulminant hemorrhagic fever. Infections by arenaviruses are mediated by attachment of the virus glycoprotein to receptors on host cells and virion internalization by fusion within an acidified endosome. SSP plays a critical role in the fusion of the virus with the host cell membrane. Within infected cells, the retained glycoprotein SSP plays a neglected yet essential role in glycoprotein biosynthesis. Without this 6-kDa polypeptide, the glycoprotein precursor is retained within the endoplasmic reticulum, and trafficking to the plasma membrane where SSP, GP1, and GP2 localize for glycoprotein assembly into infectious virions is inhibited. To investigate SSP contributions to glycoprotein maturation and function, we created an SSP-tagged glycoprotein to directly detect and manipulate this subunit. This resource will aid future studies to identify host factors that mediate glycoprotein maturation.
Collapse
|
24
|
Gnirß K, Fiedler M, Krämer-Kühl A, Bolduan S, Mittler E, Becker S, Schindler M, Pöhlmann S. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism. Viruses 2014; 6:1654-71. [PMID: 24721789 PMCID: PMC4014715 DOI: 10.3390/v6041654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/06/2023] Open
Abstract
The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs) of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.
Collapse
Affiliation(s)
- Kerstin Gnirß
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
| | - Marie Fiedler
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
| | - Annika Krämer-Kühl
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
| | - Sebastian Bolduan
- Institute of Virology, Helmholtz Center Munich, 85764 Neuherberg, Germany.
| | - Eva Mittler
- Institute of Virology, Philipps-University-Marburg, 35043 Marburg, Germany.
| | - Stephan Becker
- Institute of Virology, Philipps-University-Marburg, 35043 Marburg, Germany.
| | - Michael Schindler
- Institute of Virology, Helmholtz Center Munich, 85764 Neuherberg, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
| |
Collapse
|
25
|
Cellular factors implicated in filovirus entry. Adv Virol 2013; 2013:487585. [PMID: 23365575 PMCID: PMC3556833 DOI: 10.1155/2013/487585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.
Collapse
|
26
|
A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species- and cell-type-specific manner. J Virol 2013; 87:3324-34. [PMID: 23302883 DOI: 10.1128/jvi.01598-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a zoonotic pathogen that causes severe hemorrhagic fever in humans. A single viral glycoprotein (GP) mediates viral attachment and entry. Here, virus-like particle (VLP)-based entry assays demonstrate that a GP mutant, GP-F88A, which is defective for entry into a variety of human cell types, including antigen-presenting cells (APCs), such as macrophages and dendritic cells, can mediate viral entry into mouse CD11b(+) APCs. Like that of wild-type GP (GP-wt), GP-F88A-mediated entry occurs via a macropinocytosis-related pathway and requires endosomal cysteine proteases and an intact fusion peptide. Several additional hydrophobic residues lie in close proximity to GP-F88, including L111, I113, L122, and F225. GP mutants in which these residues are mutated to alanine displayed preferential and often impaired entry into several cell types, although not in a species-specific manner. Niemann-Pick C1 (NPC1) protein is an essential filovirus receptor that binds directly to GP. Overexpression of NPC1 was recently demonstrated to rescue GP-F88A-mediated entry. A quantitative enzyme-linked immunosorbent assay (ELISA) demonstrated that while the F88A mutation impairs GP binding to human NPC1 by 10-fold, it has little impact on GP binding to mouse NPC1. Interestingly, not all mouse macrophage cell lines permit GP-F88A entry. The IC-21 cell line was permissive, whereas RAW 264.7 cells were not. Quantitative reverse transcription (RT)-PCR assays demonstrate higher NPC1 levels in GP-F88A permissive IC-21 cells and mouse peritoneal macrophages than in RAW 264.7 cells. Cumulatively, these studies suggest an important role for NPC1 in the differential entry of GP-F88A into mouse versus human APCs.
Collapse
|
27
|
Koellhoffer JF, Malashkevich VN, Harrison JS, Toro R, Bhosle RC, Chandran K, Almo SC, Lai JR. Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation. Biochemistry 2012; 51:7665-75. [PMID: 22935026 DOI: 10.1021/bi300976m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) are members of the family Filoviridae ("filoviruses") and cause severe hemorrhagic fever with human case fatality rates of up to 90%. Filovirus infection requires fusion of the host cell and virus membranes, a process that is mediated by the envelope glycoprotein (GP). GP contains two subunits, the surface subunit (GP1), which is responsible for cell attachment, and the transmembrane subunit (GP2), which catalyzes membrane fusion. The GP2 ectodomain contains two heptad repeat regions, N-terminal and C-terminal (NHR and CHR, respectively), that adopt a six-helix bundle during the fusion process. The refolding of this six-helix bundle provides the thermodynamic driving force to overcome barriers associated with membrane fusion. Here we report the crystal structure of the MARV GP2 core domain in its postfusion (six-helix bundle) conformation at 1.9 Å resolution. The MARV GP2 core domain backbone conformation is virtually identical to that of EBOV GP2 (reported previously), and consists of a central NHR core trimeric coiled coil packed against peripheral CHR α-helices and an intervening loop and helix-turn-helix segments. We previously reported that the stability of the MARV GP2 postfusion structure is highly pH-dependent, with increasing stability at lower pH [Harrison, J. S., Koellhoffer, J. K., Chandran, K., and Lai, J. R. (2012) Biochemistry51, 2515-2525]. We hypothesized that this pH-dependent stability provides a mechanism for conformational control such that the postfusion six-helix bundle is promoted in the environments of appropriately mature endosomes. In this report, a structural rationale for this pH-dependent stability is described and involves a high-density array of core and surface acidic side chains at the midsection of the structure, termed the "anion stripe". In addition, many surface-exposed salt bridges likely contribute to the stabilization of the postfusion structure at low pH. These results provide structural insights into the mechanism of MARV GP2-mediated membrane fusion.
Collapse
Affiliation(s)
- Jayne F Koellhoffer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells. PLoS One 2012; 7:e43337. [PMID: 22952667 PMCID: PMC3428345 DOI: 10.1371/journal.pone.0043337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/19/2012] [Indexed: 12/24/2022] Open
Abstract
The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV) from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV) also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN) response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.
Collapse
|
29
|
Takada A. Filovirus tropism: cellular molecules for viral entry. Front Microbiol 2012; 3:34. [PMID: 22363323 PMCID: PMC3277274 DOI: 10.3389/fmicb.2012.00034] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/19/2012] [Indexed: 11/13/2022] Open
Abstract
In human and non-human primates, filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever. Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP) is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/co-receptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR) on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.
Collapse
Affiliation(s)
- Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| |
Collapse
|
30
|
Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol 2012; 86:3284-92. [PMID: 22238307 DOI: 10.1128/jvi.06346-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filoviruses are enveloped viruses that cause sporadic outbreaks of severe hemorrhagic fever [CDC, MMWR Morb. Mortal. Wkly. Rep. 50:73-77, 2001; Colebunders and Borchert, J. Infect. 40:16-20, 2000; Colebunders et al., J. Infect. Dis. 196(Suppl. 2):S148-S153, 2007; Geisbert and Jahrling, Nat. Med. 10:S110-S121, 2004]. Previous studies revealed that endosomal cysteine proteases are host factors for ebolavirus Zaire (Chandran et al., Science 308:1643-1645, 2005; Schornberg et al., J. Virol. 80:4174-4178, 2006). In this report, we show that infection mediated by glycoproteins from other phylogenetically diverse filoviruses are also dependent on these proteases and provide additional evidence indicating that they cleave GP1 and expose the binding domain for the critical host factor Niemann-Pick C1. Using selective inhibitors and knockout-derived cell lines, we show that the ebolaviruses Zaire and Cote d'Ivoire are strongly dependent on cathepsin B, while the ebolaviruses Sudan and Reston and Marburg virus are not. Taking advantage of previous studies of cathepsin B inhibitor-resistant viruses (Wong et al., J. Virol. 84:163-175, 2010), we found that virus-specific differences in the requirement for cathepsin B are correlated with sequence polymorphisms at residues 47 in GP1 and 584 in GP2. We applied these findings to the analysis of additional ebolavirus isolates and correctly predicted that the newly identified ebolavirus species Bundibugyo, containing D47 and I584, is cathepsin B dependent and that ebolavirus Zaire-1995, the single known isolate of ebolavirus Zaire that lacks D47, is not. We also obtained evidence for virus-specific differences in the role of cathepsin L, including cooperation with cathepsin B. These studies strongly suggest that the use of endosomal cysteine proteases as host factors for entry is a general property of members of the family Filoviridae.
Collapse
|
31
|
Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology 2012; 424:3-10. [PMID: 22222211 PMCID: PMC7111950 DOI: 10.1016/j.virol.2011.11.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022]
Abstract
Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.
Collapse
|
32
|
Kühl A, Banning C, Marzi A, Votteler J, Steffen I, Bertram S, Glowacka I, Konrad A, Stürzl M, Guo JT, Schubert U, Feldmann H, Behrens G, Schindler M, Pöhlmann S. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J Infect Dis 2011; 204 Suppl 3:S850-60. [PMID: 21987761 PMCID: PMC3189996 DOI: 10.1093/infdis/jir378] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The antiviral protein tetherin/BST2/CD317/HM1.24 restricts cellular egress of human immunodeficiency virus (HIV) and of particles mimicking the Ebola virus (EBOV), a hemorrhagic fever virus. The HIV-1 viral protein U (Vpu) and the EBOV-glycoprotein (EBOV-GP) both inhibit tetherin. Here, we compared tetherin counteraction by EBOV-GP and Vpu. We found that EBOV-GP but not Vpu counteracted tetherin from different primate species, indicating that EBOV-GP and Vpu target tetherin differentially. Tetherin interacted with the GP2 subunit of EBOV-GP, which might encode the determinants for tetherin counteraction. Vpu reduced cell surface expression of tetherin while EBOV-GP did not, suggesting that both proteins employ different mechanisms to counteract tetherin. Finally, Marburg virus (MARV)–GP also inhibited tetherin and downregulated tetherin in a cell type–dependent fashion, indicating that tetherin antagonism depends on the cellular source of tetherin. Collectively, our results indicate that EBOV-GP counteracts tetherin by a novel mechanism and that tetherin inhibition is conserved between EBOV-GP and MARV-GP.
Collapse
Affiliation(s)
- Annika Kühl
- Institute of Virology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martinez O, Tantral L, Mulherkar N, Chandran K, Basler CF. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles. J Infect Dis 2011; 204 Suppl 3:S825-32. [PMID: 21987758 PMCID: PMC3189980 DOI: 10.1093/infdis/jir295] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Department of Microbiology, Mount Sinai School of Medicine, New York
| | - Lee Tantral
- Department of Microbiology, Mount Sinai School of Medicine, New York
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | | |
Collapse
|
34
|
Bhattacharyya S, Hope TJ, Young JAT. Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 2011; 419:1-9. [PMID: 21855102 DOI: 10.1016/j.virol.2011.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Clathrin-mediated endocytosis was previously implicated as one of the cellular pathways involved in filoviral glycoprotein mediated viral entry into target cells. Here we have further dissected the requirements for different components of this pathway in Ebola versus Marburg virus glycoprotein (GP) mediated viral infection. Although a number of these components were involved in both cases; Ebola GP-dependent viral entry specifically required the cargo recognition proteins Eps15 and DAB2 as well as the clathrin adaptor protein AP-2. In contrast, Marburg GP-mediated infection was independent of these three proteins and instead required beta-arrestin 1 (ARRB1). These findings have revealed an unexpected difference between the clathrin pathway requirements for Ebola GP versus Marburg GP pseudovirion infection. Anthrax toxin also uses a clathrin-, and ARRB1-dependent pathway for cellular entry, indicating that the mechanism used by Marburg GP pseudovirions may be more generally important for pathogen entry.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
35
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
36
|
Matsuno K, Nakayama E, Noyori O, Marzi A, Ebihara H, Irimura T, Feldmann H, Takada A. C-type lectins do not act as functional receptors for filovirus entry into cells. Biochem Biophys Res Commun 2010; 403:144-8. [PMID: 21056544 PMCID: PMC3393133 DOI: 10.1016/j.bbrc.2010.10.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/30/2010] [Indexed: 11/26/2022]
Abstract
Cellular C-type lectins have been reported to facilitate filovirus infection by binding to glycans on filovirus glycoprotein (GP). However, it is not clearly known whether interaction between C-type lectins and GP mediates all the steps of virus entry (i.e., attachment, internalization, and membrane fusion). In this study, we generated vesicular stomatitis viruses pseudotyped with mutant GPs that have impaired structures of the putative receptor binding regions and thus reduced ability to infect the monkey kidney cells that are routinely used for virus propagation. We found that infectivities of viruses with the mutant GPs dropped in C-type lectin-expressing cells, parallel with those in the monkey kidney cells, whereas binding activities of these GPs to the C-type lectins were not correlated with the reduced infectivities. These results suggest that C-type lectin-mediated entry of filoviruses requires other cellular molecule(s) that may be involved in virion internalization or membrane fusion.
Collapse
Affiliation(s)
- Keita Matsuno
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Eri Nakayama
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Osamu Noyori
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tatsuro Irimura
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ayato Takada
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| |
Collapse
|
37
|
Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2. Retrovirology 2010; 7:47. [PMID: 20482880 PMCID: PMC2885308 DOI: 10.1186/1742-4690-7-47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/19/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. RESULTS Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC). Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. CONCLUSIONS Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that podoplanin expression is connected to apoptosis, a finding that deserves further investigation.
Collapse
|
38
|
Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors. J Virol 2009; 83:10176-86. [PMID: 19625394 DOI: 10.1128/jvi.00422-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.
Collapse
|
39
|
Ruggieri A, Maldener E, Sauter M, Mueller-Lantzsch N, Meese E, Fackler OT, Mayer J. Human endogenous retrovirus HERV-K(HML-2) encodes a stable signal peptide with biological properties distinct from Rec. Retrovirology 2009; 6:17. [PMID: 19220907 PMCID: PMC2649029 DOI: 10.1186/1742-4690-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/16/2009] [Indexed: 11/26/2022] Open
Abstract
Background The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec. Results We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity. Conclusion SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis.
Collapse
Affiliation(s)
- Alessia Ruggieri
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI. Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 2008; 82:11628-36. [PMID: 18815311 PMCID: PMC2583688 DOI: 10.1128/jvi.01344-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/05/2008] [Indexed: 12/24/2022] Open
Abstract
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-A resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.
Collapse
Affiliation(s)
- Thomas A Bowden
- Division of Structural Biology, University of Oxford, Henry Wellcome Building of Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 2008; 196 Suppl 2:S237-46. [PMID: 17940955 PMCID: PMC7110133 DOI: 10.1086/520607] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) augments Ebola virus (EBOV) infection. However, it its unclear whether DC-SIGN promotes only EBOV attachment (attachment factor function, nonessential) or actively facilitates EBOV entry (receptor function, essential). METHODS We investigated whether DC-SIGN on B cell lines and dendritic cells acts as an EBOV attachment factor or receptor. RESULTS Engineered DC-SIGN expression rendered some B cell lines susceptible to EBOV glycoprotein (EBOV GP)-driven infection, whereas others remained refractory, suggesting that cellular factors other than DC-SIGN are also required for susceptibility to EBOV infection. Augmentation of entry was independent of efficient DC-SIGN internalization and might not involve lectin-mediated endocytic uptake of virions. Therefore, DC-SIGN is unlikely to function as an EBOV receptor on B cell lines; instead, it might concentrate virions onto cells, thereby allowing entry into cell lines expressing low levels of endogenous receptor(s). Indeed, artificial concentration of virions onto cells mirrored DC-SIGN expression, confirming that optimization of viral attachment is sufficient for EBOV GP-driven entry into some B cell lines. Finally, EBOV infection of dendritic cells was only partially dependent on mannose-specific lectins, such as DC-SIGN, suggesting an important contribution of other factors. CONCLUSIONS Our results indicate that DC-SIGN is not an EBOV receptor but, rather, is an attachment-promoting factor that boosts entry into B cell lines susceptible to low levels of EBOV GP-mediated infection.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute of Virology, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Powlesland AS, Fisch T, Taylor ME, Smith DF, Tissot B, Dell A, Pöhlmann S, Drickamer K. A novel mechanism for LSECtin binding to Ebola virus surface glycoprotein through truncated glycans. J Biol Chem 2008; 283:593-602. [PMID: 17984090 PMCID: PMC2275798 DOI: 10.1074/jbc.m706292200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LSECtin is a member of the C-type lectin family of glycan-binding receptors that is expressed on sinusoidal endothelial cells of the liver and lymph nodes. To compare the sugar and pathogen binding properties of LSECtin with those of related but more extensively characterized receptors, such as DC-SIGN, a soluble fragment of LSECtin consisting of the C-terminal carbohydrate-recognition domain has been expressed in bacteria. A biotin-tagged version of the protein was also generated and complexed with streptavidin to create tetramers. These forms of the carbohydrate-recognition domain were used to probe a glycan array and to characterize binding to oligosaccharide and glycoprotein ligands. LSECtin binds with high selectivity to glycoproteins terminating in GlcNAcbeta1-2Man. The inhibition constant for this disaccharide is 3.5 microm, making it one of the best low molecular weight ligands known for any C-type lectin. As a result of the selective binding of this disaccharide unit, the receptor recognizes glycoproteins with a truncated complex and hybrid N-linked glycans on glycoproteins. Glycan analysis of the surface glycoprotein of Ebola virus reveals the presence of such truncated glycans, explaining the ability of LSECtin to facilitate infection by Ebola virus. High mannose glycans are also present on the viral glycoprotein, which explains why DC-SIGN also binds to this virus. Thus, multiple receptors interact with surface glycoproteins of enveloped viruses that bear different types of relatively poorly processed glycans.
Collapse
Affiliation(s)
- Alex S Powlesland
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Tanja Fisch
- Institute of Virology and Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maureen E Taylor
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Bérangère Tissot
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Stefan Pöhlmann
- Institute of Virology and Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, 91054 Erlangen, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Kurt Drickamer
- Division of Molecular Biosciences, Imperial College, London SW7 2AZ, United Kingdom.
| |
Collapse
|
43
|
Ascenzi P, Bocedi A, Heptonstall J, Capobianchi MR, Di Caro A, Mastrangelo E, Bolognesi M, Ippolito G. Ebolavirus and Marburgvirus: insight the Filoviridae family. Mol Aspects Med 2007; 29:151-85. [PMID: 18063023 DOI: 10.1016/j.mam.2007.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/28/2007] [Indexed: 11/26/2022]
Abstract
Ebolavirus and Marburgvirus (belonging to the Filoviridae family) emerged four decades ago and cause epidemics of haemorrhagic fever with high case-fatality rates. The genome of filoviruses encodes seven proteins. No significant homology is observed between filovirus proteins and any known macromolecule. Moreover, Marburgvirus and Ebolavirus show significant differences in protein homology. The natural maintenance cycle of filoviruses is unknown, the natural reservoir, the mode of transmission, the epidemic disease generation, and temporal dynamics are unclear. Lastly, Ebolavirus and Marburgvirus are considered as potential biological weapons. Vaccine appears the unique therapeutic frontier. Here, molecular and clinical aspects of filoviral haemorrhagic fevers are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Via Portuense 292, I-00149 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Marzi A, Mitchell DA, Chaipan C, Fisch T, Doms RW, Carrington M, Desrosiers RC, Pöhlmann S. Modulation of HIV and SIV neutralization sensitivity by DC-SIGN and mannose-binding lectin. Virology 2007; 368:322-30. [PMID: 17659761 DOI: 10.1016/j.virol.2007.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/01/2007] [Accepted: 07/03/2007] [Indexed: 12/17/2022]
Abstract
The C-type lectin DC-SIGN binds to oligosaccharides on the human and simian immunodeficiency virus (HIV, SIV) envelope glycoproteins and promotes infection of susceptible cells. Here, we show that DC-SIGN recognizes glycans involved in SIV sensitivity to neutralizing antibodies and that binding to DC-SIGN confers neutralization resistance to an otherwise sensitive SIV variant. Moreover, we provide evidence that mannose-binding lectin (MBL) can interfere with HIV-1 neutralization by the carbohydrate-specific antibody 2G12.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Vigerust DJ, Shepherd VL. Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 2007; 15:211-8. [PMID: 17398101 PMCID: PMC7127133 DOI: 10.1016/j.tim.2007.03.003] [Citation(s) in RCA: 459] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/02/2007] [Accepted: 03/19/2007] [Indexed: 12/22/2022]
Abstract
The study of N-linked glycosylation as it relates to virus biology has become an area of intense interest in recent years due to its ability to impart various advantages to virus survival and virulence. HIV and influenza, two clear threats to human health, have been shown to rely on expression of specific oligosaccharides to evade detection by the host immune system. Additionally, other viruses such as Hendra, SARS-CoV, influenza, hepatitis and West Nile rely on N-linked glycosylation for crucial functions such as entry into host cells, proteolytic processing and protein trafficking. This review focuses on recent findings on the importance of glycosylation to viral virulence and immune evasion for several prominent human pathogens.
Collapse
Affiliation(s)
- David J Vigerust
- Department of Pediatrics, Program in Vaccine Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
46
|
Marzi A, Wegele A, Pöhlmann S. Modulation of virion incorporation of Ebolavirus glycoprotein: effects on attachment, cellular entry and neutralization. Virology 2006; 352:345-56. [PMID: 16777170 DOI: 10.1016/j.virol.2006.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/23/2006] [Accepted: 04/27/2006] [Indexed: 01/09/2023]
Abstract
The filoviruses Ebolavirus (EBOV) and Marburgvirus (MARV) cause severe hemorrhagic fever in humans and are potential agents of biological warfare. The envelope glycoprotein (GP) of filoviruses mediates viral entry into cells and is an attractive target for therapeutic intervention and vaccine design. Here, we asked if the efficiency of virion incorporation of EBOV-GP impacts attachment and entry into target cells and modulates susceptibility to neutralizing antibodies. In order to control the level of EBOV-GP expression, we generated cell lines expressing the GPs of the four known EBOV subspecies in an inducible fashion. Regulated expression of GP on the cell surface allowed production of reporter viruses harboring different amounts of GP. A pronounced reduction of virion incorporation of EBOV-GP had relatively little effect on virion infectivity, suggesting that only a few copies of GP might be sufficient for efficient engagement of cellular receptors. In contrast, optimal interactions with cellular attachment factors like the DC-SIGN protein required incorporation of high amounts of GP. Antibody-mediated neutralization of virions bearing high amounts of GP was slightly more efficient than neutralization of virions harboring low amounts of GP, suggesting that the efficiency of GP incorporation into virions might modulate susceptibility to neutralizing antibodies. Finally, regulated expression of GP in permissive 293 cells did not reduce EBOV-GP-driven infection but diminished vesicular stomatitis virus GP (VSV-G) and amphotropic murine leukemia virus (A-MLV) GP mediated entry in a dose-dependent manner. Therefore, intracellular GP does not seem to downmodulate expression of its receptor(s) but might alter expression and/or function of molecules involved in VSV-G and A-MLV-GP-dependent entry. Our results suggest that the efficiency of virion incorporation of GP could impact EBOV attachment to target cells and might modulate control of viral spread by the humoral immune response.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | |
Collapse
|