1
|
Zhou Z, Zhang G, Xu Y, Yang S, Wang J, Li Z, Peng F, Lu Q. The underlying mechanism of chimeric antigen receptor (CAR)-T cell therapy triggering secondary T-cell cancers: Mystery of the Sphinx? Cancer Lett 2024; 597:217083. [PMID: 38925363 DOI: 10.1016/j.canlet.2024.217083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The U.S. Food and Drug Administration (FDA) has reported cases of T-cell malignancies, including CAR-positive lymphomas, in patients receiving B cell maturation antigen (BCMA)- or CD19-targeted autologous CAR-T cell immunotherapy. These reports were derived from clinical trials and/or post-marketing adverse event data. This finding has attracted widespread attention. Therefore, it is essential to explore the potential mechanisms by which chimeric antigen receptor (CAR)-T cell therapy triggers secondary T-cell cancers to further guarantee the safety of CAR-T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Antigens, CD19/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- B-Cell Maturation Antigen/immunology
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Dai C, Mao Z, Xu Y, Jia J, Tang H, Zhao Y, Zhou Y. Bis-tridentate Iridium(III) Complex with the N-Heterocyclic Carbene Ligand as a Novel Efficient Electrochemiluminescence Emitter for the Sandwich Immunoassay of the HHV-6A Virus. Anal Chem 2024; 96:7311-7320. [PMID: 38656817 DOI: 10.1021/acs.analchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/μL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.
Collapse
Affiliation(s)
- Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
3
|
Fracchia A, Khare D, Da’na S, Or R, Buxboim A, Nachmias B, Barkatz C, Golan-Gerstl R, Tiwari S, Stepensky P, Nevo Y, Benyamini H, Elgavish S, Almogi-Hazan O, Avni B. Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Modulate Apoptosis, TNF Alpha and Interferon Gamma Response Gene mRNA Expression in T Lymphocytes. Int J Mol Sci 2023; 24:13689. [PMID: 37761990 PMCID: PMC10530670 DOI: 10.3390/ijms241813689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies.
Collapse
Affiliation(s)
- Andrea Fracchia
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Drirh Khare
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Samar Da’na
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Reuven Or
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Amnon Buxboim
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Boaz Nachmias
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Department of Hematology, Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Claudine Barkatz
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel;
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Polina Stepensky
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Osnat Almogi-Hazan
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Batia Avni
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
4
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
5
|
Prado CADS, Fonseca DLM, Singh Y, Filgueiras IS, Baiocchi GC, Plaça DR, Marques AHC, Dantas-Komatsu RCS, Usuda JN, Freire PP, Salgado RC, Napoleao SMDS, Ramos RN, Rocha V, Zhou G, Catar R, Moll G, Camara NOS, de Miranda GC, Calich VLG, Giil LM, Mishra N, Tran F, Luchessi AD, Nakaya HI, Ochs HD, Jurisica I, Schimke LF, Cabral-Marques O. Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity. J Med Virol 2023; 95:e28450. [PMID: 36597912 PMCID: PMC10107240 DOI: 10.1002/jmv.28450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Youvika Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre H C Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Júlia N Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.,Department of Hematology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany.,Berlin Institute of Health (BIH) and Berlin Center for Regenerative Therapies (BCRT), Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, UHN, Data Science Discovery Centre, Toronto, Ontario, Canada
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
6
|
Panda M, Kalita E, Rao A, Prajapati VK. Mechanism of cell cycle regulation and cell proliferation during human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:497-525. [PMID: 37061340 DOI: 10.1016/bs.apcsb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the history of the coevolution of Host viral interaction, viruses have customized the host cellular machinery into their use for viral genome replication, causing effective infection and ultimately aiming for survival. They do so by inducing subversions to the host cellular pathways like cell cycle via dysregulation of important cell cycle checkpoints by viral encoded proteins, arresting the cell cycle machinery, blocking cytokinesis as well as targeting subnuclear bodies, thus ultimately disorienting the cell proliferation. Both DNA and RNA viruses have been active participants in such manipulation resulting in serious outcomes of cancer. They achieve this by employing different mechanisms-Protein-protein interaction, protein-phosphorylation, degradation, redistribution, viral homolog, and viral regulation of APC at different stages of cell cycle events. Several DNA viruses cause the quiescent staged cells to undergo cell cycle which increases nucleotide pools logistically significantly persuading viral replication whereas few other viruses arrest a particular stage of cell cycle. This allows the latter group to sustain the infection which allows them to escape host immune response and support viral multiplication. Mechanical study of signaling such viral mediated pathways could give insight into understanding the etiology of tumorigenesis and progression. Overall this chapter highlights the possible strategies employed by DNA/RNA viral families which impact the normal cell cycle but facilitate viral infected cell replication. Such information could contribute to comprehending viral infection-associated disorders to further depth.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India; Department of Biochemistry, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
7
|
Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res 2022; 10:30. [PMID: 35550636 PMCID: PMC9102350 DOI: 10.1186/s40364-022-00374-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
8
|
Japanese Encephalitis Virus NS1' Protein Interacts with Host CDK1 Protein to Regulate Antiviral Response. Microbiol Spectr 2021; 9:e0166121. [PMID: 34756071 PMCID: PMC8579942 DOI: 10.1128/spectrum.01661-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type I interferon (IFN-I) is a key component of the host innate immune system. To establish efficient replication, viruses have developed several strategies to escape from the host IFN response. Japanese encephalitis virus (JEV) NS1', a larger NS1-related protein, is known to inhibit the mitochondrial antiviral signaling (MAVS)-mediated IFN-β induction by increasing the binding of transcription factors (CREB and c-Rel) to the microRNA 22 (miRNA-22) promoter. However, the mechanism by which NS1' induces the recruitment of CREB and c-Rel onto the miRNA-22 promoter is unknown. Here, we found that JEV NS1' protein interacts with the host cyclin-dependent kinase 1 (CDK1) protein. Mechanistically, NS1' interrupts the CDC25C phosphatase-mediated dephosphorylation of CDK1, which prolongs the phosphorylation status of CDK1 and leads to the inhibition of MAVS-mediated IFN-β induction. Furthermore, the CREB phosphorylation and c-Rel activation through the IκBα phosphorylation were observed to be enhanced upon the augmentation of CDK1 phosphorylation by NS1'. The abrogation of CDK1 activity by a small-molecule inhibitor significantly suppressed the JEV replication in vitro and in vivo. Moreover, the administration of CDK1 inhibitor protected the wild-type mice from JEV-induced lethality but showed no effect on the MAVS-/- mice challenged with JEV. In conclusion, our study provides new insight into the mechanism of JEV immune evasion, which may lead to the development of novel therapeutic options to treat JEV infection. IMPORTANCE Japanese encephalitis virus (JEV) is the main cause of acute human encephalitis in Asia. The unavailability of specific treatment for Japanese encephalitis demands a better understanding of the basic cellular mechanisms that contribute to the onset of disease. The present study identifies a novel interaction between the JEV NS1' protein and the cellular CDK1 protein, which facilitates the JEV replication by dampening the cellular antiviral response. This study sheds light on a novel mechanism of JEV replication, and thus our findings could be employed for developing new therapies against JEV infection.
Collapse
|
9
|
Kim DH, Kim JH, Hwangbo H, Kim SY, Ji SY, Kim MY, Cha HJ, Park C, Hong SH, Kim GY, Park SK, Jeong JW, Kim MY, Choi YH, Lee H. Spermidine Attenuates Oxidative Stress-Induced Apoptosis via Blocking Ca 2+ Overload in Retinal Pigment Epithelial Cells Independently of ROS. Int J Mol Sci 2021; 22:ijms22031361. [PMID: 33572992 PMCID: PMC7866386 DOI: 10.3390/ijms22031361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells occupy the outer layer of the retina and perform various biological functions. Oxidative damage to RPE cells is a major risk factor for retinal degeneration that ultimately leads to vision loss. In this study, we investigated the role of spermidine in a hydrogen peroxide (H2O2)-induced oxidative stress model using human RPE cells. Our findings showed that 300 μM H2O2 increased cytotoxicity, apoptosis, and cell cycle arrest in the G2/M phase, whereas these effects were markedly suppressed by 10 μM spermidine. Furthermore, spermidine significantly reduced H2O2-induced mitochondrial dysfunction including mitochondrial membrane potential and mitochondrial activity. Although spermidine displays antioxidant properties, the generation of intracellular reactive oxygen species (ROS) upon H2O2 insult was not regulated by spermidine. Spermidine did suppress the increase in cytosolic Ca2+ levels resulting from endoplasmic reticulum stress in H2O2-stimulated human RPE cells. Treatment with a cytosolic Ca2+ chelator markedly reversed H2O2-induced cellular dysfunction. Overall, spermidine protected against H2O2-induced cellular damage by blocking the increase of intracellular Ca2+ independently of ROS. These results suggest that spermidine protects RPE cells from oxidative stress, which could be a useful treatment for retinal diseases.
Collapse
Affiliation(s)
- Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Jeong-Hwan Kim
- Research and Development Department, BGN CARE Co., Ltd., Busan 47195, Korea; (J.-H.K.); (S.-K.P.); (M.-Y.K.)
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea;
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea;
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Seh-Kwang Park
- Research and Development Department, BGN CARE Co., Ltd., Busan 47195, Korea; (J.-H.K.); (S.-K.P.); (M.-Y.K.)
- BGN Eye Clinic, Seoul 05551, Korea
| | | | - Mi-Young Kim
- Research and Development Department, BGN CARE Co., Ltd., Busan 47195, Korea; (J.-H.K.); (S.-K.P.); (M.-Y.K.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: (Y.H.C.); (H.L.); Tel.: +82-51-890-3319 (Y.H.C.); +82-51-890-3315 (H.L.)
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (D.H.K.); (H.H.); (S.Y.K.); (S.Y.J.); (M.Y.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: (Y.H.C.); (H.L.); Tel.: +82-51-890-3319 (Y.H.C.); +82-51-890-3315 (H.L.)
| |
Collapse
|
10
|
Wu Z, Jia J, Xu X, Xu M, Peng G, Ma J, Jiang X, Yao J, Yao K, Li L, Tang H. Human herpesvirus 6A promotes glycolysis in infected T cells by activation of mTOR signaling. PLoS Pathog 2020; 16:e1008568. [PMID: 32516328 PMCID: PMC7282626 DOI: 10.1371/journal.ppat.1008568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus worldwide. However, whether and how HHV-6 infection influences the metabolic machinery of the host cell to provide the energy and biosynthetic resources for virus propagation remains unknown. In this study, we identified that HHV-6A infection promotes glucose metabolism in infected T cells, resulting in elevated glycolytic activity with an increase of glucose uptake, glucose consumption and lactate secretion. Furthermore, we explored the mechanisms involved in HHV-6A-mediated glycolytic activation in the infected T cells. We found increased expressions of the key glucose transporters and glycolytic enzymes in HHV-6A-infected T cells. In addition, HHV-6A infection dramatically activated AKT-mTORC1 signaling in the infected T cells and pharmacological inhibition of mTORC1 blocked HHV-6A-mediated glycolytic activation. We also found that direct inhibition of glycolysis by 2-Deoxy-D-glucose (2-DG) or inhibition of mTORC1 activity in HHV-6A-infected T cells effectively reduced HHV-6 DNA replication, protein synthesis and virion production. These results not only reveal the mechanism of how HHV-6 infection affects host cell metabolism, but also suggest that targeting the metabolic pathway could be a new avenue for HHV-6 therapy.
Collapse
Affiliation(s)
- Zhisheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Xianyi Xu
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Mengyuan Xu
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jingjing Ma
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Xuefeng Jiang
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Jialin Yao
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
| | - Lingyun Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (LL); (HT)
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (LL); (HT)
| |
Collapse
|
11
|
Sepúlveda N, Carneiro J, Lacerda E, Nacul L. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome as a Hyper-Regulated Immune System Driven by an Interplay Between Regulatory T Cells and Chronic Human Herpesvirus Infections. Front Immunol 2019; 10:2684. [PMID: 31824487 PMCID: PMC6883905 DOI: 10.3389/fimmu.2019.02684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and chronic viral infections are recurrent clinical observations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a complex disease with an unknown cause. Given these observations, the regulatory CD4+ T cells (Tregs) show promise to be good candidates for the underlying pathology due to their capacity to suppress the immune responses against both self and microbial antigens. Here, we discussed the overlooked role of these cells in the chronicity of Human Herpes Virus 6 (HHV6), Herpes Simplex 1 (HSV1), and Epstein–Barr virus (EBV), as often reported as triggers of ME/CFS. Using simulations of the cross-regulation model for the dynamics of Tregs, we illustrated that mild infections might lead to a chronically activated immune responses under control of Tregs if the responding clone has a high autoimmune potential. Such infections promote persistent inflammation and possibly fatigue. We then hypothesized that ME/CFS is a condition characterized by a predominance of this type of infections under control of Tregs. In contrast, healthy individuals are hypothesized to trigger immune responses of a virus-specific clone with a low autoimmune potential. According to this hypothesis, simple model simulations of the CD4+ T-cell repertoire could reproduce the increased density and percentages of Tregs observed in patients suffering from the disease, when compared to healthy controls. A deeper analysis of Tregs in the pathogenesis of ME/CFS will help to assess the validity of this hypothesis.
Collapse
Affiliation(s)
- Nuno Sepúlveda
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Centre of Statistics and Its Applications, University of Lisbon, Lisbon, Portugal
| | - Jorge Carneiro
- Quantitative Organism Biology Group, Gulbenkian Institute of Science, Oeiras, Portugal
| | - Eliana Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Sun Z, Li Y, Wang H, Cai M, Gao S, Liu J, Tong L, Hu Z, Wang Y, Wang K, Zhang L, Cao X, Zhang S, Shi F, Zhao J. miR-181c-5p mediates simulated microgravity-induced impaired osteoblast proliferation by promoting cell cycle arrested in the G 2 phase. J Cell Mol Med 2019; 23:3302-3316. [PMID: 30761733 PMCID: PMC6484313 DOI: 10.1111/jcmm.14220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired osteoblast proliferation plays fundamental roles in microgravity‐induced bone loss, and cell cycle imbalance may result in abnormal osteoblast proliferation. However, whether microgravity exerts an influence on the cell cycle in osteoblasts or what mechanisms may underlie such an effect remains to be fully elucidated. Herein, we confirmed that simulated microgravity inhibits osteoblast proliferation. Then, we investigated the effect of mechanical unloading on the osteoblast cell cycle and found that simulated microgravity arrested the osteoblast cell cycle in the G2 phase. In addition, our data showed that cell cycle arrest in osteoblasts from simulated microgravity was mainly because of decreased cyclin B1 expression. Furthermore, miR‐181c‐5p directly inhibited cyclin B1 protein translation by binding to a target site in the 3′UTR. Lastly, we demonstrated that inhibition of miR‐181c‐5p partially counteracted cell cycle arrest and decreased the osteoblast proliferation induced by simulated microgravity. In conclusion, our study demonstrates that simulated microgravity inhibits cell proliferation and induces cell cycle arrest in the G2 phase in primary mouse osteoblasts partially through the miR‐181c‐5p/cyclin B1 pathway. This work may provide a novel mechanism of microgravity‐induced detrimental effects on osteoblasts and offer a new avenue to further investigate bone loss induced by mechanical unloading.
Collapse
Affiliation(s)
- Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China.,The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ying Li
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Han Wang
- Department of Orthopedics, Affiliated Hospital of Air Force Aviation Medicine Research Institute, Fourth Military Medical University, Beijing, China
| | - Min Cai
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China.,Medical Services Section, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Shanshan Gao
- Medical Services Section, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Jing Liu
- Department of Pharmacy, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Liangcheng Tong
- Department of Orthopedics, Junxie Hospital, Anhui Medical University, Nanjing, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Chinese Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Cell Cycle Arrest in G 2/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J Virol 2019; 93:JVI.01885-18. [PMID: 30487274 PMCID: PMC6364032 DOI: 10.1128/jvi.01885-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.
Collapse
|
14
|
Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol 2018; 8:396. [PMID: 30510918 PMCID: PMC6252338 DOI: 10.3389/fcimb.2018.00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between the host and viruses during the course of their co-evolution have not only shaped cellular function and the immune system, but also the counter measures employed by viruses. Relatively small genomes and high replication rates allow viruses to accumulate mutations and continuously present the host with new challenges. It is therefore, no surprise that they either escape detection or modulate host physiology, often by redirecting normal cellular pathways to their own advantage. Viruses utilize a diverse array of strategies and molecular targets to subvert host cellular processes, while evading detection. These include cell-cycle regulation, major histocompatibility complex-restricted antigen presentation, intracellular protein transport, apoptosis, cytokine-mediated signaling, and humoral immune responses. Moreover, viruses routinely manipulate the host cell cycle to create a favorable environment for replication, largely by deregulating cell cycle checkpoints. This review focuses on our current understanding of the molecular aspects of cell cycle regulation that are often targeted by viruses. Further study of their interactions should provide fundamental insights into cell cycle regulation and improve our ability to exploit these viruses.
Collapse
Affiliation(s)
- Ying Fan
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Song L, Han X, Jia C, Zhang X, Jiao Y, Du T, Xiao S, Hiscox JA, Zhou EM, Mu Y. Porcine reproductive and respiratory syndrome virus inhibits MARC-145 proliferation via inducing apoptosis and G2/M arrest by activation of Chk/Cdc25C and p53/p21 pathway. Virol J 2018; 15:169. [PMID: 30400903 PMCID: PMC6219034 DOI: 10.1186/s12985-018-1081-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus(PRRSV) is an important immunosuppressive virus which can suppresses infected cells proliferation. In this work, we examined PRRSV ability to manipulate cell cycle progression of MARC-145 cells and explored the potential molecular mechanisms. The results showed that PRRSV infection imposed a growth-inhibitory effect on MARC-145 cells by inducing cell cycle arrest at G2/M phase. This arrest was due to the significant decrease of Cdc2-cyclinB1 complex activity in PRRSV-infected cells and the activity reduction was a result of Cdc2 Tyr15 phosphorylation and the accumulation of Cdc2 and cyclinB1 in the nucleus. Not only elevated Wee1 and Myt1 expression and inactivated Cdc25C, but also increase of p21 and 14–3-3σ in a p53-dependent manner caused the inhibitory Tyr15 phosphorylation of Cdc2. PRRSV infection also activated Chk1. Our data suggest PRRSV infection induces G2/M arrest via various molecular regulatory mechanisms. These results provide a new insights for PRRSV pathogenesis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ximeng Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Cunyu Jia
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xin Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yunjie Jiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Shuqi Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Julian A Hiscox
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Marsico S, Caccuri F, Mazzuca P, Apostoli P, Roversi S, Lorenzin G, Zani A, Fiorentini S, Giagulli C, Caruso A. Human lung epithelial cells support human metapneumovirus persistence by overcoming apoptosis. Pathog Dis 2018; 76:4923026. [PMID: 29617859 DOI: 10.1093/femspd/fty013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/05/2018] [Indexed: 11/12/2022] Open
Abstract
Human metapneumovirus (hMPV) has been identified as a major cause of lower respiratory tract infection in children. Epidemiological and molecular evidence has highlighted an association between severe childhood respiratory viral infection and chronic lung diseases, such as asthma and chronic obstructive pulmonary disease. Currently, animal models have demonstrated the ability of hMPV to persist in vivo suggesting a role of the virus in asthma development in children. However, mechanisms involved in hMPV persistence in the respiratory tract are not yet understood. In the present study we monitored hMPV infection in human alveolar epithelial A549 cells in order to understand if the virus is able to persist in these cells upon acute infection. Our data show that hMPV initially induces an apoptotic process in A549 cells through poly (ADP-ribose) polymerase 1 cleavage, caspase-3/7 activation and Wee1 activity. The hMPV-infected cells were then able to overcome the apoptotic pathway and cell cycle arrest in G2/M by expressing B-cell lymphoma 2 and to acquire a reservoir cell phenotype with constant production of infectious virus. These findings provide evidence of the ability of hMPV to persist in alveolar epithelial cells and help in understanding the mechanisms responsible for hMPV persistence in the human respiratory tract.
Collapse
Affiliation(s)
- Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Apostoli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Lorenzin
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
17
|
Shao Q, Lin Z, Wu X, Tang J, Lu S, Feng D, Cheng C, Qing L, Yao K, Chen Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget 2018; 7:48070-48080. [PMID: 27344170 PMCID: PMC5217001 DOI: 10.18632/oncotarget.10127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/01/2016] [Indexed: 01/21/2023] Open
Abstract
Human Herpesvirus 6 (HHV-6) has been involved in the development of several central nervous system (CNS) diseases, such as Alzheimer's disease, multiple sclerosis and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A GS cells, we identified 249 differentially expressed genes. After investigating these candidate genes, we found seven genes associated with two or more CNS diseases: CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome sequencing study which showed the significant association of these genes between HHV-6A infection and neurologic diseases. We believe that our findings can provide a new perspective to understand the pathogenic mechanism of HHV-6A infection and neurologic diseases.
Collapse
Affiliation(s)
- Qing Shao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhe Lin
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaohui Wu
- Genetic Data Analysis Group, Shanghai Biotechnology Corporation, Shanghai, People's Republic of China
| | - Junwei Tang
- Liver Transplantation Center of The First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shuai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Dongju Feng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ci Cheng
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lanqun Qing
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
18
|
Activation of ATR-Chk1 pathway facilitates EBV-mediated transformation of primary tonsillar B-cells. Oncotarget 2018; 8:6461-6474. [PMID: 28031537 PMCID: PMC5351645 DOI: 10.18632/oncotarget.14120] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Primary infection of the immunocompromised host with the oncovirus Epstein-Barr virus (EBV) that targets mainly B-cells is associated with an increased risk for EBV-associated tumors. The early events subsequent to primary infection with potential for B-cell transformation are poorly studied. Here, we modeled in vitro the primary infection by using B-cells isolated from tonsils, the portal of entry of EBV, since species specificity of EBV hampers modeling in experimental animals. Increasing evidence indicates that the host DNA damage response (DDR) can influence and be influenced by EBV infection. Thus, we inoculated tonsillar B-cells (TBCs) with EBV-B95.8 and investigated cell proliferation and the DDR during the first 96 hours thereafter. We identified for the first time that EBV infection of TBCs induces a period of hyperproliferation 48-96 hours post infection characterized by the activation of ataxia telangiectasia and Rad3-releated (ATR) and checkpoint kinase-1 (Chk1). Whereas inhibition of Chk1 did not affect B-cell transformation, the specific inhibition of ATR robustly decreased the transformation efficiency of EBV. Our results suggest that activation of ATR is key for EBV-induced B-cell transformation. Thus, targeting the interaction between ATR/Chk1 and EBV could offer new options for the treatment of EBV-associated malignancies.
Collapse
|
19
|
Liu H, Liu W, Zhou X, Long C, Kuang X, Hu J, Tang Y, Liu L, He J, Huang Z, Fan Y, Jin G, Zhang Q, Shen H. Protective effect of lutein on ARPE-19 cells upon H2O2-induced G2/M arrest. Mol Med Rep 2017; 16:2069-2074. [PMID: 28656238 DOI: 10.3892/mmr.2017.6838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/23/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative damage is a key factor for the pathogenesis of age‑related macular degeneration (AMD), therefore, anti-oxidative stress is a valuable method for the prevention or treatment of AMD. The aim of the present study was to reveal the protective mechanism of lutein on retinal pigment epithelium (RPE) cells subjected to oxidative stress. Acute retinal pigment epithelial 19 (ARPE‑19) cells were exposed to oxidative stress induced by H2O2 following lutein pretreatment. The activities of caspases, level of intracellular reactive oxygen species (ROS) and cell cycle were analyzed using flow cytometry. The expression levels of cell cycle regulatory proteins and inflammation‑associated genes were detected using western blot and reverse transcription‑polymerase chain reaction analyses, respectively. The data showed that oxidative stress reduced cell viability, and increased total apoptosis and ROS generation, however, lutein prevented cells from oxidative stress‑induced damage. In addition, oxidative damage triggered G2/M phase arrest of the ARPE‑19 cells, which was reversed by lutein in a concentration‑dependent manner, through the activation of cyclin‑dependent kinase 1 and cell division cycle 25C, and degradation of cyclin B1. These results demonstrated that lutein may be an effective antioxidant, which can be applied in the prevention of AMD, or other age-related diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Huijun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Weiwei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jie Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lanying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jia He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zixin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yuting Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Guorong Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
20
|
Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y. Human Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular Protein, EDD. PLoS One 2015; 10:e0137420. [PMID: 26340541 PMCID: PMC4560387 DOI: 10.1371/journal.pone.0137420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
The human herpesvirus-6 (HHV-6) infection induces cell-cycle arrest. In this study, we found that the HHV-6-encoded U14 protein induced cell-cycle arrest at G2/M phase via an association with the cellular protein EDD, a mediator of DNA-damage signal transduction. In the early phase of HHV-6 infection, U14 colocalized with EDD dots in the nucleus, and similar colocalization was also observed in cells transfected with a U14 expression vector. When the carboxyl-terminal region of U14 was deleted, no association of U14 and EDD was observed, and the percentage of cells in G2/M decreased relative to that in cells expressing wild-type U14, indicating that the C-terminal region of U14 and the U14-EDD association are critical for the cell-cycle arrest induced by U14. These results indicate that U14 is a G2/M checkpoint regulator encoded by HHV-6.
Collapse
Affiliation(s)
- Junko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Akiko Kawabata
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Huamin Tang
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Department of Immunology, Nanjing Medical University, Nanjing, 210029, China
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 6028566, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 5650871, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 1738610, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
- Laboratory of Virology and Vaccinology, National Institute of Biomedical Innovation, Osaka, 5670085, Japan
- * E-mail:
| |
Collapse
|
21
|
Hu X, Qin A, Xu W, Wu G, Li D, Qian K, Shao H, Ye J. Transcriptional analysis of host responses to Marek's disease virus infection in chicken thymus. Intervirology 2015; 58:95-105. [PMID: 25677615 DOI: 10.1159/000370069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Marek's disease virus (MDV) is a cell-associated alpha-herpesvirus that causes T-cell lymphomas and nervous disorders in chickens. Different from other lymphoid organs, the thymus is the site of T-cell maturation and differentiation. However, the transcriptional response to MDV infection in the chicken thymus is still not known. In this study, we performed genome-wide expression analysis in thymus tissues of RB1B-infected chickens at different time points to investigate the molecular mechanisms of MDV pathogenesis. The number of differentially expressed genes with 2-fold or higher changes (>2) are as follows: 1,250 genes (7 dpi), 834 genes (14 dpi), 1,958 genes (21 dpi), and 2,306 genes (28 dpi). Gene ontology enrichment analysis revealed that the upregulated genes were involved in immune and inflammatory response at 7 dpi; angiogenesis, cytoskeleton organization, cell adhesion, and signal transduction showed different expressions at 21 and 28 dpi. The expression pattern of 18 randomly selected genes was confirmed by real-time RT-PCR. Several differently expressed host genes associated with tumor development are discussed. We identified the global host-gene expression pattern in the thymus of chickens that responded to MDV infection. The present data may provide groundwork for future investigation in the biology and pathogenesis of MDV.
Collapse
Affiliation(s)
- Xuming Hu
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Frenkel N, Sharon E, Zeigerman H. Roseoloviruses manipulate host cell cycle. Curr Opin Virol 2014; 9:162-6. [PMID: 25462449 DOI: 10.1016/j.coviro.2014.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
During lytic infections HHV-6A and HHV-6B disrupt E2F1-Rb complexes by Rb degradation, releasing E2F1 and driving the infected cells toward the S-phase. Whereas upon infection E2F1 and its cofactor DP1 were up-regulated, additional E2F responsive genes were expressed differentially in various cells. E2F binding sites were identified in promoters of several HHV-6 genes, including the U27 and U79 associated with viral DNA replication, revealing high dependence on the binding site and the effect of the E2F1 transcription factor. Viral genes regulation by E2F1 can synchronize viral replication with the optimal cell cycle phase, enabling utilization of host resources for successful viral replication. Furthermore, it was found that infection by roseoloviruses leads to cell cycle arrest, mostly in the G2/M-phase.
Collapse
Affiliation(s)
- Niza Frenkel
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Eyal Sharon
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Zeigerman
- Department of Cell Research and Immunology and the S. Daniel Abraham Institute for Molecular Virology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Becerra A, Gibson L, Stern LJ, Calvo-Calle JM. Immune response to HHV-6 and implications for immunotherapy. Curr Opin Virol 2014; 9:154-61. [PMID: 25462448 DOI: 10.1016/j.coviro.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
Abstract
Most adults remain chronically infected with HHV-6 after resolution of a primary infection in childhood, with the latent virus held in check by the immune system. Iatrogenic immunosuppression following solid organ transplantation (SOT) or hematopoetic stem cell transplantation (HSCT) can allow latent viruses to reactivate. HHV-6 reactivation has been associated with increased morbidity, graft rejection, and neurological complications post-transplantation. Recent work has identified HHV-6 antigens that are targeted by the CD4+ and CD8+ T cell response in chronically infected adults. T cell populations recognizing these targets can be expanded in vitro and are being developed for use in autologous immunotherapy to control post-transplantation HHV-6 reaction.
Collapse
Affiliation(s)
- Aniuska Becerra
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, United States
| | - Laura Gibson
- Department of Medicine, University of Massachusetts, Medical School, Worcester, MA, United States
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, United States; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Worcester, MA, United States.
| | - J Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, United States
| |
Collapse
|
24
|
Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, Flamand L, Frenkel N, Gallo R, Gompels UA, Höllsberg P, Jacobson S, Luppi M, Lusso P, Malnati M, Medveczky P, Mori Y, Pellett PE, Pritchett JC, Yamanishi K, Yoshikawa T. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 2014; 159:863-70. [PMID: 24193951 PMCID: PMC4750402 DOI: 10.1007/s00705-013-1902-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/18/2013] [Indexed: 12/18/2022]
Abstract
Shortly after the discovery of human herpesvirus 6 (HHV-6), two distinct variants, HHV-6A and HHV-6B, were identified. In 2012, the International Committee on Taxonomy of Viruses (ICTV) classified HHV-6A and HHV-6B as separate viruses. This review outlines several of the documented epidemiological, biological, and immunological distinctions between HHV-6A and HHV-6B, which support the ICTV classification. The utilization of virus-specific clinical and laboratory assays for distinguishing HHV-6A and HHV-6B is now required for further classification. For clarity in biological and clinical distinctions between HHV-6A and HHV-6B, scientists and physicians are herein urged, where possible, to differentiate carefully between HHV-6A and HHV-6B in all future publications.
Collapse
|
25
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
26
|
Schleimann MH, Hoberg S, Solhøj Hansen A, Bundgaard B, Witt CT, Kofod-Olsen E, Höllsberg P. The DR6 protein from human herpesvirus-6B induces p53-independent cell cycle arrest in G2/M. Virology 2014; 452-453:254-63. [PMID: 24606703 DOI: 10.1016/j.virol.2014.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/09/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
HHV-6B infection inhibits cell proliferation in G2/M, but no protein has so far been recognized to exert this function. Here we identify the protein product of direct repeat 6, DR6, as an inhibitor of G2/M cell-cycle progression. Transfection of DR6 reduced the total number of cells compared with mock-transfected cells. Lentiviral transduction of DR6 inhibited host cell DNA synthesis in a p53-independent manner, and this inhibition was DR6 dose-dependent. A deletion of 66 amino acids from the N-terminal part of DR6 prevented efficient nuclear translocation and the ability to inhibit DNA synthesis. DR6-induced accumulation of cells in G2/M was accompanied by an enhanced expression of cyclin B1 that accumulated predominantly in the cytoplasm. Pull-down of cyclin B1 brought down pCdk1 with the inactivating phosphorylation at Tyr15. Together, DR6 delays cell cycle with an accumulation of cells in G2/M and thus might be involved in HHV-6B-induced cell-cycle arrest.
Collapse
Affiliation(s)
| | - Søren Hoberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | | | | | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
28
|
Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line. PLoS One 2013; 8:e85046. [PMID: 24391984 PMCID: PMC3877357 DOI: 10.1371/journal.pone.0085046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/25/2013] [Indexed: 01/07/2023] Open
Abstract
Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.
Collapse
|
29
|
Development of virus-specific CD4+ and CD8+ regulatory T cells induced by human herpesvirus 6 infection. J Virol 2013; 88:1011-24. [PMID: 24198406 DOI: 10.1128/jvi.02586-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4(+) and CD8(+) HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4(+) and CD8(+) Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4(+) effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts.
Collapse
|
30
|
Ding L, Huang Y, Dai M, Zhao X, Du Q, Dong F, Wang L, Huo R, Zhang W, Xu X, Tong D. Transmissible gastroenteritis virus infection induces cell cycle arrest at S and G2/M phases via p53-dependent pathway. Virus Res 2013; 178:241-51. [PMID: 24095767 PMCID: PMC7114465 DOI: 10.1016/j.virusres.2013.09.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022]
Abstract
TGEV induced cell cycle arrest at S and G2/M phase in PK-15 and ST cells. p53 might play key roles in mediation of TGEV-induced cell cycle arrest. The host cells staying at S or G2/M phase is beneficial for TGEV replication.
p53 signaling pathway plays an important role in the regulation of cell cycle. Our previous studies have demonstrated that TGEV infection induces the activation of p53 signaling pathway. In this study we investigated the effects of TGEV infection on the cell cycle of host cells and the roles of p53 activation in this process. The results showed that TGEV infection induced cell cycle arrest at S and G2/M phases in both asynchronous and synchronized PK-15 and ST cells, while UV-inactivated TGEV lost the ability of induction of cell cycle arrest. TGEV infection promoted p21 accumulation, down-regulated cell cycle-regulatory proteins cyclins B1, cdc2, cdk2 and PCNA. Further studies showed that inhibition of p53 signaling could attenuate the TGEV-induced S- and G2/M-phase arrest by reversing the expression of p21 and corresponding cyclin/cdk. In addition, TGEV infection of the cells synchronized in various stages of cell cycle showed that viral genomic RNA and subgenomic RNA, and virus titer were higher in the cells released from S-phase- or G2/M phase-synchronized cells than that in the cells released from the G0/G1 phase-synchronized or asynchronous cells after 18 h p.i. Taken together, our data suggested that TGEV infection induced S and G2/M phase arrest in host cells, which might provide a favorable condition for viral replication.
Collapse
Affiliation(s)
- Li Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Gu B, Zhou F, Chi J, Feng D, Xie F, Wang F, Ma C, Li M, Wang J, Yao K. Cell cycle perturbations induced by human herpesvirus 6 infection and their effect on virus replication. Arch Virol 2013; 159:365-70. [PMID: 24013234 PMCID: PMC7086940 DOI: 10.1007/s00705-013-1826-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrate that infection of HSB-2 cells with human herpesvirus 6 (HHV-6) resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell-cycle-regulatory proteins indicated that the levels of cyclins A2, B1, and E1 were increased in HHV-6-infected cells, but there was no difference in cyclin D1 levels between mock-infected and HHV-6-infected cells. Our data also showed that inducing G2/M phase arrest in cells infected by HHV-6 provided favorable conditions for viral replication.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Human herpesvirus (HHV-) 6A and HHV-6B are two distinct β-herpesviruses which have been associated with various neurological diseases, including encephalitis, meningitis, epilepsy, and multiple sclerosis. Although the reactivation of both viruses is recognized as the cause of some neurological complications in conditions of immunosuppression, their involvement in neuroinflammatory diseases in immunocompetent people is still unclear, and the mechanisms involved have not been completely elucidated. Here, we review the available data providing evidence for the capacity of HHV-6A and -6B to infect the central nervous system and to induce proinflammatory responses by infected cells. We discuss the potential role of both viruses in neuroinflammatory pathologies and the mechanisms which could explain virus-induced neuropathogenesis.
Collapse
Affiliation(s)
- Joséphine M. Reynaud
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, University of Lyon 1, ENS-Lyon, 21 Avenue T. Garnier, 69365 Lyon, France
| |
Collapse
|
33
|
Dagna L, Pritchett JC, Lusso P. Immunomodulation and immunosuppression by human herpesvirus 6A and 6B. Future Virol 2013; 8:273-287. [PMID: 24163703 PMCID: PMC3806647 DOI: 10.2217/fvl.13.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Like other members of the Herpesviridae family, human herpesvirus (HHV)-6A and HHV-6B have developed a wide variety of strategies to modulate or suppress host immune responses and, thereby, facilitate their own spread and persistence in vivo. Long considered two variants of the same virus, HHV-6A and HHV-6B have recently been reclassified as distinct viral species, although the established nomenclature has been maintained. In this review, we summarize the distinctive profiles of interaction of these two viruses with the human immune system. Both HHV-6A and HHV-6B display a tropism for CD4+ T lymphocytes, but they can also infect, in a productive or nonproductive fashion, other cells of the immune system. However, there are important differences regarding the ability of each virus to infect cytotoxic effector cells, as HHV-6A has been shown to productively infect several of these cells, whereas HHV-6B infects them inefficiently at best. In addition to direct cytopathic effects, both HHV-6A and HHV-6B can interfere with immunologic functions to varying degrees via cytokine modulation, including blockade of IL-12 production by professional antigen-presenting cells, modulation of cell-surface molecules essential for T-cell activation, and expression of viral chemokines and chemokine receptors. Some of these effects are related to signaling through and downregulation of the viral receptor, CD46, a key molecule linking innate and adaptive immune responses. Increasing attention has recently been focused on the importance of viral interactions with dendritic cells, which may serve both as targets of virus-mediated immunosuppression and as vehicles for viral transfer to CD4+ T cells. Our deepening knowledge of the mechanisms developed by HHV-6A and HHV-6B to evade immunologic control may lead to new strategies for the prevention and treatment of the diseases associated with these viruses. Moreover, elucidation of these viral mechanisms may uncover new avenues to therapeutically manipulate or modulate the immune system in immunologically mediated human diseases.
Collapse
Affiliation(s)
- Lorenzo Dagna
- Department of Medicine & Clinical Immunology, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Chi J, Gu B, Zhang C, Peng G, Zhou F, Chen Y, Zhang G, Guo Y, Guo D, Qin J, Wang J, Li L, Wang F, Liu G, Xie F, Feng D, Zhou H, Huang X, Lu S, Liu Y, Hu W, Yao K. Human herpesvirus 6 latent infection in patients with glioma. J Infect Dis 2012; 206:1394-8. [PMID: 22962688 DOI: 10.1093/infdis/jis513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The etiology of glioma remains unclear so far. Human herpesvirus 6 (HHV-6) might be associated with glioma, but there is no direct evidence to support this. High percentages of HHV-6 DNA and protein were detected in tissue from gliomas, compared with normal brain tissue. In addition, a strain of HHV-6A was isolated from the fluid specimens from glioma cysts. High levels of interleukin 6 (IL-6), interleukin 8 (IL-8), tumor necrosis factor α, and transforming growth factor β (TGF-β) were detected in the cyst fluid specimens from HHV-6-positive patients with glioma. Furthermore, HHV-6A infection promoted IL-6, IL-8, and TGF-β production in astrocyte cultures. Our studies strongly suggest the involvement of HHV-6 infection in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Jing Chi
- Department of Microbiology and Immunology, Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang MC, Chan CP, Wang WT, Chang BE, Lee JJ, Tseng SK, Yeung SY, Hahn LJ, Jeng JH. Toxicity of areca nut ingredients: Activation of CHK1/CHK2, induction of cell cycle arrest, and regulation of MMP-9 and TIMPs production in SAS epithelial cells. Head Neck 2012; 35:1295-302. [DOI: 10.1002/hed.23119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2012] [Indexed: 12/12/2022] Open
|
36
|
Nascimento R, Costa H, Parkhouse RME. Virus manipulation of cell cycle. PROTOPLASMA 2012; 249:519-528. [PMID: 21986922 DOI: 10.1007/s00709-011-0327-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.
Collapse
Affiliation(s)
- R Nascimento
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal.
| | | | | |
Collapse
|
37
|
Gu B, Zhang GF, Li LY, Zhou F, Feng DJ, Ding CL, Chi J, Zhang C, Guo DD, Wang JF, Zhou H, Yao K, Hu WX. Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways. Virol J 2011; 8:530. [PMID: 22152093 PMCID: PMC3253131 DOI: 10.1186/1743-422x-8-530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human herpesvirus 6 (HHV-6) is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS) diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS) and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs) during productive HHV-6A infection and the underlying mechanisms. RESULTS HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP), which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs. CONCLUSION This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.
Collapse
Affiliation(s)
- Bin Gu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chi J, Wang F, Li L, Feng D, Qin J, Xie F, Zhou F, Chen Y, Wang J, Yao K. The role of MAPK in CD4(+) T cells toll-like receptor 9-mediated signaling following HHV-6 infection. Virology 2011; 422:92-8. [PMID: 22055432 DOI: 10.1016/j.virol.2011.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/28/2011] [Indexed: 10/15/2022]
Abstract
Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4(+) T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4(+) T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4(+) T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-α also induced by HHV-6A infection.
Collapse
Affiliation(s)
- Jing Chi
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|