1
|
Ichikawa T, Hiono T, Okamatsu M, Maruyama J, Kobayashi D, Matsuno K, Kida H, Sakoda Y. Hemagglutinin and neuraminidase of a non-pathogenic H7N7 avian influenza virus coevolved during the acquisition of intranasal pathogenicity in chickens. Arch Virol 2024; 169:207. [PMID: 39307848 DOI: 10.1007/s00705-024-06118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Polybasic amino acid residues at the hemagglutinin (HA) cleavage site are insufficient to induce the highly pathogenic phenotype of avian influenza viruses in chickens. In our previous study, an H7N7 avian influenza virus named "Vac2sub-P0", which is nonpathogenic despite carrying polybasic amino acids at the HA cleavage site, was passaged in chick air sacs, and a virus with high intravenous pathogenicity, Vac2sub-P3, was obtained. Intranasal infection with Vac2sub-P3 resulted in limited lethality in chickens; therefore, in this study, this virus was further passaged in chicken lungs, and the resultant virus, Vac2sub-P3L4, acquired high intranasal pathogenicity. Experimental infection of chickens with recombinant viruses demonstrated that mutations in HA and neuraminidase (NA) found in consecutive passages were responsible for the increased pathogenicity. The HA and NA functions of Vac2sub-P3L4 were compared with those of the parental virus in vitro; the virus growth at 40 °C was faster, the binding affinity to a sialic acid receptor was lower, and the rate of release by NA from the cell surface was lower, suggesting that these changes enabled the virus to replicate efficiently in chickens with high intranasal pathogenicity. This study demonstrates that viruses that are highly pathogenic when administered intranasally require additional adaptations for increased pathogenicity to be highly lethal to intranasally infected chickens.
Collapse
Affiliation(s)
- Takaya Ichikawa
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Faculty of Medicine, Department of Microbiology and Immunology, Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Junki Maruyama
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daiki Kobayashi
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Laboratory of Microbiology, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Funk M, Spronken MI, Bestebroer TM, de Bruin AC, Gultyaev AP, Fouchier RA, te Velthuis AJ, Richard M. Transient RNA structures underlie highly pathogenic avian influenza virus genesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.574333. [PMID: 38370829 PMCID: PMC10871305 DOI: 10.1101/2024.01.11.574333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease and high fatality in poultry1. They emerge exclusively from H5 and H7 low pathogenic avian influenza viruses (LPAIVs)2. Although insertion of a furin-cleavable multibasic cleavage site (MBCS) in the hemagglutinin gene was identified decades ago as the genetic basis for LPAIV-to-HPAIV transition3,4, the exact mechanisms underlying said insertion have remained unknown. Here we used an innovative combination of bioinformatic models to predict RNA structures forming around the influenza virus RNA polymerase during replication, and circular sequencing5 to reliably detect nucleotide insertions. We show that transient H5 hemagglutinin RNA structures predicted to trap the polymerase on purine-rich sequences drive nucleotide insertions characteristic of MBCSs, providing the first strong empirical evidence of RNA structure involvement in MBCS acquisition. Insertion frequencies at the H5 cleavage site were strongly affected by substitutions in flanking genomic regions altering predicted transient RNA structures. Introduction of H5-like cleavage site sequences and structures into an H6 hemagglutinin resulted in MBCS-yielding insertions never observed before in H6 viruses. Our results demonstrate that nucleotide insertions that underlie H5 HPAIV emergence result from a previously unknown RNA-structure-driven diversity-generating mechanism, which could be shared with other RNA viruses.
Collapse
Affiliation(s)
- Mathis Funk
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Monique I. Spronken
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anja C.M. de Bruin
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alexander P. Gultyaev
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS); Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A.M. Fouchier
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology; Princeton University, 08544 New Jersey, United States
| | - Mathilde Richard
- Department of Viroscience; Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
3
|
Del Rosario JMM, da Costa KAS, Temperton NJ. Pseudotyped Viruses for Influenza. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:153-173. [PMID: 36920696 DOI: 10.1007/978-981-99-0113-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We have developed an influenza hemagglutinin (HA) pseudotype (PV) library encompassing all influenza A (IAV) subtypes from HA1-HA18, influenza B (IBV) subtypes (both lineages), representative influenza C (ICV), and influenza D (IDV) viruses. These influenza HA (or hemagglutinin-esterase fusion (HEF) for ICV and IDV) pseudotypes have been used in a pseudotype microneutralization assay (pMN), an optimized luciferase reporter assay, that is highly sensitive and specific for detecting neutralizing antibodies against influenza viruses. This has been an invaluable tool in detecting the humoral immune response against specific hemagglutinin or hemagglutinin-esterase fusion proteins for IAV to IDV in serum samples and for screening antibodies for their neutralizing abilities. Additionally, we have also produced influenza neuraminidase (NA) pseudotypes for IAV N1-N9 subtypes and IBV lineages. We have utilized these NA-PV as surrogate antigens in in vitro assays to assess vaccine immunogenicity. These NA PV have been employed as the source of neuraminidase enzyme activity in a pseudotype enzyme-linked lectin assay (pELLA) that is able to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies, and postvaccination sera. Here we show the production of influenza HA, HEF, and NA PV and their employment as substitutes for wild-type viruses in influenza serological and neutralization assays. We also introduce AutoPlate, an easily accessible web app that can analyze data from pMN and pELLA quickly and efficiently, plotting inhibition curves and calculating half-maximal concentration (IC50) neutralizing antibody titers. These serological techniques coupled with user-friendly analysis tools are faster, safer, inexpensive alternatives to classical influenza assays while also offering the reliability and reproducibility to advance influenza research and make it more accessible to laboratories around the world.
Collapse
Affiliation(s)
- Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK.
| |
Collapse
|
4
|
Duong BT, Than DD, Ankhanbaatar U, Gombo-Ochir D, Shura G, Tsolmon A, Pun Mok CK, Basan G, Yeo SJ, Park H. Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model. Emerg Microbes Infect 2022; 11:1425-1434. [PMID: 35451353 PMCID: PMC9154755 DOI: 10.1080/22221751.2022.2069515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018–2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | | | | | - Gansukh Shura
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | | | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ganzorig Basan
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | - Seon Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
5
|
de Bruin ACM, Funk M, Spronken MI, Gultyaev AP, Fouchier RAM, Richard M. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses 2022; 14:1566. [PMID: 35891546 PMCID: PMC9321182 DOI: 10.3390/v14071566] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Highly Pathogenic Avian Influenza Viruses (HPAIVs) arise from low pathogenic precursors following spillover from wild waterfowl into poultry populations. The main virulence determinant of HPAIVs is the presence of a multi-basic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein. The MBCS allows for HA cleavage and, consequently, activation by ubiquitous proteases, which results in systemic dissemination in terrestrial poultry. Since 1959, 51 independent MBCS acquisition events have been documented, virtually all in HA from the H5 and H7 subtypes. In the present article, data from natural LPAIV to HPAIV conversions and experimental in vitro and in vivo studies were reviewed in order to compile recent advances in understanding HA cleavage efficiency, protease usage, and MBCS acquisition mechanisms. Finally, recent hypotheses that might explain the unique predisposition of the H5 and H7 HA sequences to obtain an MBCS in nature are discussed.
Collapse
Affiliation(s)
- Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (A.C.M.d.B.); (M.F.); (M.I.S.); (A.P.G.); (R.A.M.F.)
| |
Collapse
|
6
|
Funk M, de Bruin ACM, Spronken MI, Gultyaev AP, Richard M. In Silico Analyses of the Role of Codon Usage at the Hemagglutinin Cleavage Site in Highly Pathogenic Avian Influenza Genesis. Viruses 2022; 14:1352. [PMID: 35891333 PMCID: PMC9316147 DOI: 10.3390/v14071352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
A vast diversity of 16 influenza hemagglutinin (HA) subtypes are found in birds. Interestingly, viruses from only two subtypes, H5 and H7, have so far evolved into highly pathogenic avian influenza viruses (HPAIVs) following insertions or substitutions at the HA cleavage site by the viral polymerase. The mechanisms underlying this striking subtype specificity are still unknown. Here, we compiled a comprehensive dataset of 20,488 avian influenza virus HA sequences to investigate differences in nucleotide and amino acid usage at the HA cleavage site between subtypes and how these might impact the genesis of HPAIVs by polymerase stuttering and realignment. We found that sequences of the H5 and H7 subtypes stand out by their high purine content at the HA cleavage site. In addition, fewer substitutions were necessary in H5 and H7 HAs than in HAs from other subtypes to acquire an insertion-prone HA cleavage site sequence, as defined based on in vitro and in vivo data from the literature. Codon usage was more favorable for HPAIV genesis in sequences of viruses isolated from species or geographical regions in which HPAIV genesis is more frequently observed in nature. The results of the present analyses suggest that the subtype restriction of HPAIV genesis to H5 and H7 influenza viruses might be due to the particular codon usage at the HA cleavage site in these subtypes.
Collapse
Affiliation(s)
- Mathis Funk
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (M.F.); (A.C.M.d.B.); (M.I.S.); (A.P.G.)
| | - Anja C. M. de Bruin
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (M.F.); (A.C.M.d.B.); (M.I.S.); (A.P.G.)
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (M.F.); (A.C.M.d.B.); (M.I.S.); (A.P.G.)
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (M.F.); (A.C.M.d.B.); (M.I.S.); (A.P.G.)
- Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2300 RA Leiden, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands; (M.F.); (A.C.M.d.B.); (M.I.S.); (A.P.G.)
| |
Collapse
|
7
|
Zamperin G, Bianco A, Smith J, Bortolami A, Vervelde L, Schivo A, Fortin A, Marciano S, Panzarin V, Mazzetto E, Milani A, Berhane Y, Digard P, Bonfante F, Monne I. Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field. Viruses 2021; 13:2323. [PMID: 34835129 PMCID: PMC8620788 DOI: 10.3390/v13112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered.
Collapse
Affiliation(s)
- Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Alice Bianco
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Jacqueline Smith
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Lonneke Vervelde
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Alessia Schivo
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Andrea Fortin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Sabrina Marciano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington, Winnipeg, MB R3E 3M4, Canada;
| | - Paul Digard
- Easter Bush Campus, The University of Edinburgh, Roslin EH25 9RG, UK; (J.S.); (L.V.); (P.D.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, 35020 Padua, Italy; (A.B.); (A.B.); (A.S.); (A.F.); (S.M.); (V.P.); (E.M.); (A.M.); (F.B.); (I.M.)
| |
Collapse
|
8
|
A widespread viral entry mechanism: The C-end Rule motif-neuropilin receptor interaction. Proc Natl Acad Sci U S A 2021; 118:2112457118. [PMID: 34772761 PMCID: PMC8670474 DOI: 10.1073/pnas.2112457118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
Many phylogenetically distant animal viruses, including the new coronavirus severe acute respiratory syndrome coronavirus 2, have surface proteins with polybasic sites that are cleaved by host furin and furin-like proteases. Other than priming certain viral surface proteins for fusion, cleavage generates a carboxy-terminal RXXR sequence. This C-end Rule (CendR) motif is known to bind to neuropilin (NRP) receptors on the cell surface. NRPs are ubiquitously expressed, pleiotropic cell surface receptors with important roles in growth factor signaling, vascular biology, and neurobiology, as well as immune homeostasis and activation. The CendR–NRP receptor interaction promotes endocytic internalization and tissue spreading of different cargo, including viral particles. We propose that the interaction between viral surface proteins and NRPs plays an underappreciated and prevalent role in the transmission and pathogenesis of diverse viruses and represents a promising broad-spectrum antiviral target.
Collapse
|
9
|
Song W, Huang X, Guan W, Chen P, Wang P, Zheng M, Li Z, Wang Y, Yang Z, Chen H, Wang X. Multiple basic amino acids in the cleavage site of H7N9 hemagglutinin contribute to high virulence in mice. J Thorac Dis 2021; 13:4650-4660. [PMID: 34527306 PMCID: PMC8411188 DOI: 10.21037/jtd-21-226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Background Avian influenza A (H7N9) virus has caused more than 1,500 cases of human infection since its emergence in early 2013. Displaying little or no pathogenicity in poultry, but a 40% case-fatality rate in humans, five waves of H7N9 human infections occurred in China during 2013–2017, caused solely by a low pathogenicity strain. However, avian isolates possessing a polybasic connecting peptide in the hemagglutinin (HA) protein were detected in mid-2016, indicating that a highly pathogenic virus had emerged and was co-circulating with the low pathogenicity strains. Methods Here we characterize the pathogenicity of a newly emerged human H7N9 variant with a PEVPKRKRTAR/GLF insertion motif at the cleavage site of the HA protein in vitro and in vivo. Results This variant replicates in MDCK cells independently of TPCK-trypsin, which is indicative of high pathogenicity in chickens. The 50% mouse lethal dose (MLD50) of this novel isolate was less than 10 plaque forming units (PFU), compared with 3.16×104 for an identical virus lacking the polybasic insertion, indicating a high virulence phenotype. Conclusions Our results demonstrate that the multiple basic amino acid insertion in the HA protein of the H7N9 variant confers high virulence in mammals, highlighting a potential risk to humans. Continuous viral surveillance is therefore necessary in the China region to improve pandemic preparedness.
Collapse
Affiliation(s)
- Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, and the Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Alsobaie S. Understanding the Molecular Biology of SARS-CoV-2 and the COVID-19 Pandemic: A Review. Infect Drug Resist 2021; 14:2259-2268. [PMID: 34163190 PMCID: PMC8215902 DOI: 10.2147/idr.s306441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are named after the crown-like spike proteins on their surface. In the 21st century, three coronaviruses, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome related coronavirus (MERS-CoV), have emerged in the human population, presumably evolving from pathogens infecting other animals. Coronaviruses are enveloped viruses responsible for 15-30% of the atypical pneumonia cases in humans worldwide. The current coronavirus disease 2019 (COVID-19) pandemic is caused by the newest SARS virus, SARS-CoV-2, an enveloped, positive-sense, single-stranded RNA betacoronavirus of the family Coronaviridae. As of April 2021, the World Health Organization has reported more than 3 million deaths from COVID-19 and more than 140 million people have been infected with the virus, thereby making it the worst SARS pandemic of all time. Here, I review the current understanding of the molecular biology of coronaviruses and their host interactions, bringing together knowledge of the infection process to aid in the development of therapeutic drugs and/or vaccines against SARS-CoV-2. I also briefly overview the current situation of available treatments, vaccinations, and emerging strains.
Collapse
Affiliation(s)
- Sarah Alsobaie
- Department of Clinical Laboratory Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Shahhosseini N, Wong G, Kobinger GP, Chinikar S. SARS-CoV-2 spillover transmission due to recombination event. GENE REPORTS 2021; 23:101045. [PMID: 33615041 PMCID: PMC7884226 DOI: 10.1016/j.genrep.2021.101045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
In late 2019, a novel Coronavirus emerged in China. Perceiving the modulating factors of cross-species virus transmission is critical to elucidate the nature of virus emergence. Using bioinformatics tools, we analyzed the mapping of the SARS-CoV-2 genome, modeling of protein structure, and analyze the evolutionary origin of SARS-CoV-2, as well as potential recombination events. Phylogenetic tree analysis shows that SARS-CoV-2 has the closest evolutionary relationship with Bat-SL-CoV-2 (RaTG13) at the scale of the complete virus genome, and less similarity to Pangolin-CoV. However, the Receptor Binding Domain (RBD) of SARS-CoV-2 is almost identical to Pangolin-CoV at the aa level, suggesting that spillover transmission probably occurred directly from pangolins, but not bats. Further recombination analysis revealed the pathway for spillover transmission from Bat-SL-CoV-2 and Pangolin-CoV. Here, we provide evidence for recombination event between Bat-SL-CoV-2 and Pangolin-CoV that resulted in the emergence of SARS-CoV-2. Nevertheless, the role of mutations should be noted as another influencing factor in the continuing evolution and resurgence of novel SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
| | - Gary Wong
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada.,Pasteur Institute of Shanghai, China
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sadegh Chinikar
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Pasteur Institute of Tehran, Iran
| |
Collapse
|
12
|
Parvin R, Schinkoethe J, Grund C, Ulrich R, Bönte F, Behr KP, Voss M, Samad MA, Hassan KE, Luttermann C, Beer M, Harder T. Comparison of pathogenicity of subtype H9 avian influenza wild-type viruses from a wide geographic origin expressing mono-, di-, or tri-basic hemagglutinin cleavage sites. Vet Res 2020; 51:48. [PMID: 32234073 PMCID: PMC7106749 DOI: 10.1186/s13567-020-00771-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/11/2020] [Indexed: 01/18/2023] Open
Abstract
An intravenous pathogenicity index (IVPI) of > 1.2 in chickens or, in case of subtypes H5 and H7, expression of a polybasic hemagglutinin cleavage site (HACS), signals high pathogenicity (HP). Viruses of the H9N2-G1 lineage, which spread across Asia and Africa, are classified to be of low pathogenicity although, in the field, they became associated with severe clinical signs and epizootics in chickens. Here we report on a pre-eminent trait of recent H9N2-G1 isolates from Bangladesh and India, which express a tribasic HACS (motif PAKSKR-GLF; reminiscent of an HPAIV-like polybasic HACS) and compare their features to H9Nx viruses with di- and monobasic HACS from other phylogenetic and geographic origins. In an in vitro assay, the tribasic HACS of H9N2 was processed by furin-like proteases similar to bona fide H5 HPAIV while some dibasic sites showed increased cleavability but monobasic HACS none. Yet, all viruses remained trypsin-dependent in cell culture. In ovo, only tribasic H9N2 viruses were found to replicate in a grossly extended spectrum of embryonic organs. In contrast to all subtype H5/H7 HPAI viruses, tribasic H9N2 viruses did not replicate in endothelial cells either in the chorio-allantoic membrane or in other embryonic tissues. By IVPI, all H9Nx isolates proved to be of low pathogenicity. Pathogenicity assessment of tribasic H9N2-G1 viruses remains problematic. It cannot be excluded that the formation of a third basic amino acid in the HACS forms an intermediate step towards a gain in pathogenicity. Continued observation of the evolution of these viruses in the field is recommended.
Collapse
Affiliation(s)
- Rokshana Parvin
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Suedufer 10, 17493, Greifswald-Insel Riems, Germany.,Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jan Schinkoethe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, 04103, Leipzig, Germany
| | - Franziska Bönte
- University of Applied Sciences Wedel, Feldstraße 143, 22880, Wedel, Germany
| | - Klaus P Behr
- AniCon Labor GmbH, Mühlenstraße, 49685, Höltinghausen, Germany
| | - Matthias Voss
- Lohmann Tierzucht GmbH, Veterinär-Labor, Abschnede 64, 27472, Cuxhaven, Germany
| | - Mohammed A Samad
- NRL-AI, Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka, Bangladesh
| | - Kareem E Hassan
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Suedufer 10, 17493, Greifswald-Insel Riems, Germany.,Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Christine Luttermann
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute (FLI), Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
13
|
Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV)-Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV. Int J Mol Sci 2020; 21:ijms21072353. [PMID: 32231159 PMCID: PMC7178042 DOI: 10.3390/ijms21072353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/02/2023] Open
Abstract
Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.
Collapse
|
14
|
Chan M, Leung A, Hisanaga T, Pickering B, Griffin BD, Vendramelli R, Tailor N, Wong G, Bi Y, Babiuk S, Berhane Y, Kobasa D. H7N9 Influenza Virus Containing a Polybasic HA Cleavage Site Requires Minimal Host Adaptation to Obtain a Highly Pathogenic Disease Phenotype in Mice. Viruses 2020; 12:v12010065. [PMID: 31948040 PMCID: PMC7020020 DOI: 10.3390/v12010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Low pathogenic avian influenza (LPAI) H7N9 viruses have recently evolved to gain a polybasic cleavage site in the hemagglutinin (HA) protein, resulting in variants with increased lethality in poultry that meet the criteria for highly pathogenic avian influenza (HPAI) viruses. Both LPAI and HPAI variants can cause severe disease in humans (case fatality rate of ~40%). Here, we investigated the virulence of HPAI H7N9 viruses containing a polybasic HA cleavage site (H7N9-PBC) in mice. Inoculation of mice with H7N9-PBC did not result in observable disease; however, mice inoculated with a mouse-adapted version of this virus, generated by a single passage in mice, caused uniformly lethal disease. In addition to the PBC site, we identified three other mutations that are important for host-adaptation and virulence in mice: HA (A452T), PA (D347G), and PB2 (M483K). Using reverse genetics, we confirmed that the HA mutation was the most critical for increased virulence in mice. Our study identifies additional disease determinants in a mammalian model for HPAI H7N9 virus. Furthermore, the ease displayed by the virus to adapt to a new host highlights the potential for H7N9-PBC viruses to rapidly acquire mutations that may enhance their risk to humans or other animal species.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Brad Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Robert Vendramelli
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320 Yueyang Road, Xuhui District, Shanghai 200031, China;
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, 1050 avenue de la Médecine, QC G1V 0A6, Canada
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China;
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (T.H.); (B.P.); (S.B.); (Y.B.)
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada; (M.C.); (A.L.); (B.D.G.); (R.V.); (N.T.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
15
|
Long GS, Hussen M, Dench J, Aris-Brosou S. Identifying genetic determinants of complex phenotypes from whole genome sequence data. BMC Genomics 2019; 20:470. [PMID: 31182025 PMCID: PMC6558885 DOI: 10.1186/s12864-019-5820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A critical goal in biology is to relate the phenotype to the genotype, that is, to find the genetic determinants of various traits. However, while simple monofactorial determinants are relatively easy to identify, the underpinnings of complex phenotypes are harder to predict. While traditional approaches rely on genome-wide association studies based on Single Nucleotide Polymorphism data, the ability of machine learning algorithms to find these determinants in whole proteome data is still not well known. RESULTS To better understand the applicability of machine learning in this case, we implemented two such algorithms, adaptive boosting (AB) and repeated random forest (RRF), and developed a chunking layer that facilitates the analysis of whole proteome data. We first assessed the performance of these algorithms and tuned them on an influenza data set, for which the determinants of three complex phenotypes (infectivity, transmissibility, and pathogenicity) are known based on experimental evidence. This allowed us to show that chunking improves runtimes by an order of magnitude. Based on simulations, we showed that chunking also increases sensitivity of the predictions, reaching 100% with as few as 20 sequences in a small proteome as in the influenza case (5k sites), but may require at least 30 sequences to reach 90% on larger alignments (500k sites). While RRF has less specificity than random forest, it was never <50%, and RRF sensitivity was significantly higher at smaller chunk sizes. We then used these algorithms to predict the determinants of three types of drug resistance (to Ciprofloxacin, Ceftazidime, and Gentamicin) in a bacterium, Pseudomonas aeruginosa. While both algorithms performed well in the case of the influenza data, results were more nuanced in the bacterial case, with RRF making more sensible predictions, with smaller errors rates, than AB. CONCLUSIONS Altogether, we demonstrated that ML algorithms can be used to identify genetic determinants in small proteomes (viruses), even when trained on small numbers of individuals. We further showed that our RRF algorithm may deserve more scrutiny, which should be facilitated by the decreasing costs of both sequencing and phenotyping of large cohorts of individuals.
Collapse
Affiliation(s)
- George S Long
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammed Hussen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jonathan Dench
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. .,Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. J Virol 2018; 92:JVI.00778-18. [PMID: 29899102 DOI: 10.1128/jvi.00778-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.
Collapse
|
17
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
18
|
Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens. Sci Rep 2018; 8:11518. [PMID: 30068964 PMCID: PMC6070550 DOI: 10.1038/s41598-018-29944-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023] Open
Abstract
Low pathogenicity avian influenza viruses (LPAIVs) are generally asymptomatic in their natural avian hosts. LPAIVs can evolve into highly pathogenic forms, which can affect avian and human populations with devastating consequences. The switch to highly pathogenic avian influenza virus (HPAIV) from LPAIV precursors requires the acquisition of multiple basic amino acids in the haemagglutinin cleavage site (HACS) motif. Through reverse genetics of an H5N1 HPAIV, and experimental infection of chickens, we determined that viruses containing five or more basic amino acids in the HACS motif were preferentially selected over those with three to four basic amino acids, leading to rapid replacement with virus types containing extended HACS motifs. Conversely, viruses harbouring low pathogenicity motifs containing two basic amino acids did not readily evolve to extended forms, suggesting that a single insertion of a basic amino acid into the cleavage site motif of low-pathogenic viruses may lead to escalating selection for extended motifs. Our results may explain why mid-length forms are rarely detected in nature. The stability of the short motif suggests that pathogenicity switching may require specific conditions of intense selection pressure (such as with high host density) to boost selection of the initial mid-length HACS forms.
Collapse
|
19
|
Dietze K, Graaf A, Homeier-Bachmann T, Grund C, Forth L, Pohlmann A, Jeske C, Wintermann M, Beer M, Conraths FJ, Harder T. From low to high pathogenicity-Characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transbound Emerg Dis 2018; 65:1576-1587. [PMID: 29790657 DOI: 10.1111/tbed.12906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
The ability of low pathogenic (LP) avian influenza viruses (AIV) of the subtypes H5 and H7 to mutate spontaneously to highly pathogenic (HP) variants is the main reason for their stringent control. On-the-spot evidence from the field of mutations in LPAIV to render the virus into nascent HP variants is scarce. Epidemiological investigations and molecular characterization of two spatiotemporally linked outbreaks caused by LP, and subsequently, HPAIV H7N7 in two-layer farms in Germany yielded such evidence. The outbreaks occurred within 45 days on farms 400 m apart. The LP progenitor virus was identified on both farms, with its putative HP inheritor cocirculating and then dominating on the second farm. As postulated before, mutations in the hemagglutinin cleavage site (HACS) proved to be the most decisive change in the genome of HPAIV, in this case, it was mutated from monobasic (LP) PEIPKGR*GLF into polybasic (HP) PEIPKRKRR*GLF. The full-length genome sequences of both viruses were nearly identical with only ten coding mutations outside the HACS scattered along six genome segments in the HPAIV. Five of these were already present as minor variants in the LPAIV quasispecies of the LPAI-only affected farm. H7-specific seroconversion of part of the chicken population together with the codetection of LPAIV HACS sequences in swab samples of the HPAI outbreak farm suggested an initial introduction of the LP progenitor and a subsequent switch to HPAIV H7N7 after the incursion. The findings provide rare field evidence for a shift in pathogenicity of a notifiable AIV infection and re-inforce the validity of current approaches of control measures to curtail low pathogenic H5 and H7 virus circulation in poultry.
Collapse
Affiliation(s)
- Klaas Dietze
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Annika Graaf
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | - Leonie Forth
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Christa Jeske
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Wardenburg, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Timm Harder
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
20
|
A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza. J Virol 2017; 91:JVI.01340-17. [PMID: 28931687 PMCID: PMC5686743 DOI: 10.1128/jvi.01340-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 01/19/2023] Open
Abstract
Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full protection against a lethal challenge with H7N1 influenza in mice. Vaccine efficacy was contingent on targeting of the secreted vaccine protein to antigen-presenting cells.
Collapse
|
21
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
22
|
Richard M, Herfst S, van den Brand JMA, de Meulder D, Lexmond P, Bestebroer TM, Fouchier RAM. Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Sci Rep 2017; 7:7187. [PMID: 28775271 PMCID: PMC5543172 DOI: 10.1038/s41598-017-07000-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
A/H5N1 influenza viruses pose a threat to human and animal health. A fully avian A/H5N1 influenza virus was previously shown to acquire airborne transmissibility between ferrets upon accumulation of five or six substitutions that affected three traits: polymerase activity, hemagglutinin stability and receptor binding. Here, the impact of these traits on A/H5N1 virus replication, tissue tropism, pathogenesis and transmission was investigated in chickens. The virus containing all substitutions associated with transmission in mammals was highly attenuated in chickens. However, single substitutions that affect polymerase activity, hemagglutinin stability and receptor binding generally had a small or negligible impact on virus replication, morbidity and mortality. A virus carrying two substitutions in the receptor-binding site was attenuated, although its tissue tropism in chickens was not affected. This data indicate that an A/H5N1 virus that is airborne-transmissible between mammals is unlikely to emerge in chickens, although individual mammalian adaptive substitutions have limited impact on viral fitness in chickens.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Taye B, Chen H, Myaing MZ, Tan BH, Maurer-Stroh S, Sugrue RJ. Systems-based approach to examine the cytokine responses in primary mouse lung macrophages infected with low pathogenic avian Influenza virus circulating in South East Asia. BMC Genomics 2017; 18:420. [PMID: 28558796 PMCID: PMC5450074 DOI: 10.1186/s12864-017-3803-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Background Influenza A virus (IAV) is a major public health concern, being responsible for the death of approximately half a million people each year. Zoonotic transmissions of the virus from swine and avian origin have occurred in the past, and can potentially lead to the emgergence of new IAV stains in future pandemics. Pulmonary macrophages have been implicated in disease severity in the lower airway, and understanding the host response of macrophages infected with avian influenza viruses should provide new therapeutic strategies. Results We used a systems-based approach to investigate the transcriptome response of primary murine lung macrophages (PMФ) infected with the mouse-adapted H1N1/WSN virus and low pathogenic avian influenza (LPAI) viruses H5N2 and H5N3. The results showed that the LPAI viruses H5N2 and H5N3 can infect PMФ with similar efficiency to the H1N1/WSN virus. While all viruses induced antiviral responses, the H5N3 virus infection resulted in higher expression levels of cytokines and chemokines associated with inflammatory responses. Conclusions The LPAI H5N2 and H5N3 viruses are able to infect murine lung macrophages. However, the H5N3 virus was associated with increased expression of pro-inflammatory mediators. Although the H5N3 virus it is capable of inducing high levels of cytokines that are associated with inflammation, this property is distinct from its inability to efficiently replicate in a mammalian host. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3803-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biruhalem Taye
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, P.O.BOX 1176, Ethiopia
| | - Hui Chen
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.,Current address Genome Institute of Singapore, A*STAR, 60 Biopolis Street, #02-01, Genome, Singapore, 138672, Republic of Singapore
| | - Myint Zu Myaing
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, Defence Science Organisation National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.,LKC School of Medicine, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Republic of Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Republic of Singapore.,National Public Health Laboratory, Ministry of Health, Singapore, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
24
|
Abolnik C. Evolution of H5 highly pathogenic avian influenza: sequence data indicate stepwise changes in the cleavage site. Arch Virol 2017; 162:2219-2230. [PMID: 28361288 DOI: 10.1007/s00705-017-3337-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
The genetic composition of an H5 subtype hemagglutinin gene quasispecies, obtained from ostrich tissues that had been infected with H5 subtype influenza virus was analysed using a next generation sequencing approach. The first evidence for the reiterative copying of a poly (U) stretch in the connecting peptide region in the haemagglutinin cleavage site (HACS) by the viral RNA-dependent RNA polymerase (RdRp) is provided. Multiple non-consensus species of RNA were detected in the infected host, corresponding to likely intermediate sequences between the putative low pathogenic precursor nucleotide sequence of the H5 influenza strain and the highly pathogenic avian influenza virus gene sequence. In silico analysis of the identified RNA sequences predicted that the intermediary H5 sequence PQREKRGLF plays an important role in subsequent mutational events that relocate the HACS coding region from stable base-paired RNA regions to a single-stranded bulge, thereby priming the connecting peptide coding region for RdRp slippage.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| |
Collapse
|
25
|
Composition of the Hemagglutinin Polybasic Proteolytic Cleavage Motif Mediates Variable Virulence of H7N7 Avian Influenza Viruses. Sci Rep 2016; 6:39505. [PMID: 28004772 PMCID: PMC5177941 DOI: 10.1038/srep39505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Acquisition of a polybasic cleavage site (pCS) in the hemagglutinin (HA) is a prerequisite for the shift of low pathogenic (LP) avian influenza virus (AIV) to the highly pathogenic (HP) form in chickens. Whereas presence of a pCS is required for high pathogenicity, less is known about the effect of composition of pCS on virulence of AIV particularly H7N7. Here, we investigated the virulence of four avian H7N7 viruses after insertion of different naturally occurring pCS from two HPAIV H7N7 (designated pCSGE and pCSUK) or from H7N1 (pCSIT). In vitro, the different pCS motifs modulated viral replication and the HA cleavability independent on the HA background. However, in vivo, the level of virulence conferred by the different pCS varied significantly. Within the respective viral backgrounds viruses with pCSIT and pCSGE were more virulent than those coding for pCSUK. The latter showed also the most restricted spread in inoculated birds. Besides the pCS, other gene segments modulated virulence of these H7N7 viruses. Together, the specific composition of the pCS significantly influences virulence of H7N7 viruses. Eurasian LPAIV H7N7 may shift to high pathogenicity after acquisition of “specific” pCS motifs and/or other gene segments from HPAIV.
Collapse
|
26
|
Harder T, Stech J, Abdelwhab ESM, Veits J, Conraths FJ, Beer M, Mettenleiter TC. A pallid rainbow: toward improved understanding of avian influenza biology. Future Virol 2016. [DOI: 10.2217/fvl-2016-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly pathogenic avian influenza (‘fowl plague’) has been known since the late 19th century as a devastating infection in poultry but of concern primarily to farmers and veterinarians. Mostly sporadic outbreaks occurred and, except for one episode, wild birds were unaffected. This situation changed drastically by the recognition that avian influenza viruses exhibit zoonotic potential leading to fatal infections in mammals including humans. Moreover, highly pathogenic avian influenza gained access to highly mobile, migratory wild bird populations resulting in unprecedented intercontinental spread. The rapid evolution of avian influenza viruses, their adaption to novel hosts and the resulting change in epidemiology are of major concern. Recent advances in understanding influenza virus biology at the interface between wild birds-terrestrial poultry-livestock and humans are highlighted here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - El-Sayed M Abdelwhab
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
27
|
Abdelwhab ESM, Veits J, Breithaupt A, Gohrbandt S, Ziller M, Teifke JP, Stech J, Mettenleiter TC. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens. Virulence 2016; 7:546-57. [PMID: 26981790 DOI: 10.1080/21505594.2016.1159367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic (HP) avian influenza viruses (AIV) evolve from low pathogenic (LP) precursors after circulation in poultry by reassortment and/or single mutations in different gene segments including that encoding NS1. The carboxyl terminal end (CTE) of NS1 exhibits deletions between amino acid 202 and 230 with still unknown impact on virulence of AIV in chickens. In this study, NS1 protein sequences of all AIV subtypes in birds from 1902 to 2015 were analyzed to study the prevalence and distribution of CTE truncation (ΔCTE). Thirteen different ΔCTE forms were observed in NS1 proteins from 11 HA and 8 NA subtypes with high prevalences in H9, H7, H6 and H10 and N9, N2, N6 and N1 subtypes particularly in chickens and minor poultry species. With 88% NS217 lacking amino acids 218-230 was the most common ΔCTE form followed by NS224 (3.6%). NS217 was found in 10 and 8 different HA and NA subtypes, respectively, whereas NS224 was detected exclusively in the Italian HPAIV H7N1 suggesting relevance for virulence. To test this assumption, 3 recombinant HPAIV H7N1 were constructed carrying wild-type HP NS1 (Hp-NS224), NS1 with extended CTE (Hp-NS230) or NS1 from LPAIV H7N1 (Hp-NSLp), and tested in-vitro and in-vivo. Extension of CTE in Hp NS1 significantly decreased virus replication in chicken embryo kidney cells. Truncation in the NS1 decreased the tropism of Hp-NS224 to the endothelium, central nervous system and respiratory tract epithelium without significant difference in virulence in chickens. This study described the variable forms of ΔCTE in NS1 and indicated that CTE is not an essential virulence determinant particularly for the Italian HPAIV H7N1 but may be a host-adaptation marker required for efficient virus replication.
Collapse
Affiliation(s)
- El-Sayed M Abdelwhab
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jutta Veits
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Angele Breithaupt
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Sandra Gohrbandt
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Mario Ziller
- c Biomathematics Working Group, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jens P Teifke
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jürgen Stech
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Thomas C Mettenleiter
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| |
Collapse
|
28
|
Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian Influenza Virus and DIVA Strategies. Viral Immunol 2016; 29:198-211. [PMID: 26900835 DOI: 10.1089/vim.2015.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
Collapse
Affiliation(s)
- Noor Haliza Hasan
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia .,2 Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah , Sabah, Malaysia
| | - Jagoda Ignjatovic
- 3 School of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
| | - Anne Peaston
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| | - Farhid Hemmatzadeh
- 1 School of Animal and Veterinary Sciences, The University of Adelaide , Adelaide, Australia
| |
Collapse
|
29
|
Rohaim MA, El-Naggar RF, Hamoud MM, Nasr SA, Ismael E, Laban SE, Ahmed HA, Munir M. Re-Emergence of a Novel H5N1 Avian Influenza Virus Variant Subclade 2.2.1.1 in Egypt During 2014. Transbound Emerg Dis 2016; 64:1306-1312. [DOI: 10.1111/tbed.12472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. A. Rohaim
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - R. F. El-Naggar
- Department of Virology; Faculty of Veterinary Medicine; University of Sadat City; Giza Egypt
| | - M. M. Hamoud
- Department of Poultry and Rabbit Diseases; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. A. Nasr
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - E. Ismael
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - S. E. Laban
- Department of Animal Hygiene and Veterinary Management; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - H. A. Ahmed
- Department of Virology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
| | - M. Munir
- Avian Viral Diseases Programme; The Pirbright Institute; Woking Surrey UK
| |
Collapse
|
30
|
A Unique Multibasic Proteolytic Cleavage Site and Three Mutations in the HA2 Domain Confer High Virulence of H7N1 Avian Influenza Virus in Chickens. J Virol 2015; 90:400-11. [PMID: 26491158 DOI: 10.1128/jvi.02082-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/11/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED In 1999, after circulation for a few months in poultry in Italy, low-pathogenic (LP) avian influenza (AI) H7N1 virus mutated into a highly pathogenic (HP) form by acquisition of a unique multibasic cleavage site (mCS), PEIPKGSRVRR*GLF (asterisk indicates the cleavage site), in the hemagglutinin (HA) and additional alterations with hitherto unknown biological function. To elucidate these virulence-determining alterations, recombinant H7N1 viruses carrying specific mutations in the HA of LPAI A/chicken/Italy/473/1999 virus (Lp) and HPAI A/chicken/Italy/445/1999 virus (Hp) were generated. Hp with a monobasic CS or carrying the HA of Lp induced only mild or no disease in chickens, thus resembling Lp. Conversely, Lp with the HA of Hp was as virulent and transmissible as Hp. While Lp with a multibasic cleavage site (Lp_CS445) was less virulent than Hp, full virulence was exhibited when HA2 was replaced by that of Hp. In HA2, three amino acid differences consistently detected between LP and HP H7N1 viruses were successively introduced into Lp_CS445. Q450L in the HA2 stem domain increased virulence and transmission but was detrimental to replication in cell culture, probably due to low-pH activation of HA. A436T and/or K536R restored viral replication in vitro and in vivo. Viruses possessing A436T and K536R were observed early in the HPAI outbreak but were later superseded by viruses carrying all three mutations. Together, besides the mCS, stepwise mutations in HA2 increased the fitness of the Italian H7N1 virus in vivo. The shift toward higher virulence in the field was most likely gradual with rapid optimization. IMPORTANCE In 1999, after 9 months of circulation of low-pathogenic (LP) avian influenza virus (AIV), a devastating highly pathogenic (HP) H7N1 AIV emerged in poultry, marking the largest epidemic of AIV reported in a Western country. The HPAIV possessed a unique multibasic cleavage site (mCS) complying with the minimum motif for HPAIV. The main finding in this report is the identification of three mutations in the HA2 domain that are required for replication and stability, as well as for virulence, transmission, and tropism of H7N1 in chickens. In addition to the mCS, Q450L was required for full virulence and transmissibility of the virus. Nonetheless, it was detrimental to virus replication and required A436T and/or K536R to restore replication, systemic spread, and stability. These results are important for better understanding of the evolution of highly pathogenic avian influenza viruses from low-pathogenic precursors.
Collapse
|
31
|
Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev Med Virol 2015; 25:406-30. [PMID: 26467906 PMCID: PMC5057330 DOI: 10.1002/rmv.1846] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/22/2022]
Abstract
The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Jasmina M Luczo
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia.,School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Peter A Durr
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - Wojtek P Michalski
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| | - John Bingham
- Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Geelong, Victoria, Australia
| |
Collapse
|
32
|
Stech O, Veits J, Abdelwhab ESM, Wessels U, Mettenleiter TC, Stech J. The Neuraminidase Stalk Deletion Serves as Major Virulence Determinant of H5N1 Highly Pathogenic Avian Influenza Viruses in Chicken. Sci Rep 2015; 5:13493. [PMID: 26306544 PMCID: PMC4549673 DOI: 10.1038/srep13493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/22/2015] [Indexed: 11/25/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) cause devastating losses in gallinaceous poultry world-wide and raised concerns of a novel pandemic. HPAIV develop from low-pathogenic precursors by acquisition of a polybasic HA cleavage site (HACS), the prime virulence determinant. Beside that HACS, other adaptive changes accumulate in those precursors prior to transformation into an HPAIV. Here, we aimed to unravel such virulence determinants in addition to the HA gene. Stepwise reduction of HPAIV genes revealed that the HPAIV HA and NA form a minimum set of virulence determinants, sufficient for a lethal phenotype in chicken. Abolishing the NA stalk deletion considerably reduced lethality and prevented transmission. Conversely, the analogous stalk deletion reconstructed in the NA of an LPAIV reassortant carrying only the HPAIV HA resulted in 100% lethality both after primary and contact infection. Remarkably, the unmodified LPAIV NA with its long stalk, when exclusively introduced into the H5N1 HPAIV, still enabled high virulence and efficient transmission. Therefore, irrespective of an NA stalk deletion, minor virulence determinants in addition to the essential polybasic HACS contribute to high virulence, whereas the NA stalk deletion alone may serve as major virulence determinant.
Collapse
Affiliation(s)
- Olga Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - El-Sayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ute Wessels
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
33
|
Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site. J Virol 2015; 89:10724-34. [PMID: 26246579 DOI: 10.1128/jvi.01238-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although a polybasic HA0 cleavage site is considered the dominant virulence determinant for highly pathogenic avian influenza (HPAI) H5 and H7 viruses, naturally occurring virus isolates possessing a polybasic HA0 cleavage site have been identified that are low pathogenic in chickens. In this study, we generated a reassortant H5N3 virus that possessed the hemagglutinin (HA) gene from H5N1 HPAI A/swan/Germany/R65/2006 and the remaining gene segments from low pathogenic A/chicken/British Columbia/CN0006/2004 (H7N3). Despite possessing the HA0 cleavage site GERRRKKR/GLF, this rH5N3 virus exhibited a low pathogenic phenotype in chickens. Although rH5N3-inoculated birds replicated and shed virus and seroconverted, transmission to naive contacts did not occur. To determine whether this virus could evolve into a HPAI form, it underwent six serial passages in chickens. A progressive increase in virulence was observed with the virus from passage number six being highly transmissible. Whole-genome sequencing demonstrated the fixation of 12 nonsynonymous mutations involving all eight gene segments during passaging. One of these involved the catalytic site of the neuraminidase (NA; R293K) and is associated with decreased neuraminidase activity and resistance to oseltamivir. Although introducing the R293K mutation into the original low-pathogenicity rH5N3 increased its virulence, transmission to naive contact birds was inefficient, suggesting that one or more of the remaining changes that had accumulated in the passage number six virus also play an important role in transmissibility. Our findings show that the functional linkage and balance between HA and NA proteins contributes to expression of the HPAI phenotype. IMPORTANCE To date, the contribution that hemagglutinin-neuraminidase balance can have on the expression of a highly pathogenic avian influenza virus phenotype has not been thoroughly examined. Reassortment, which can result in new hemagglutinin-neuraminidase combinations, may have unpredictable effects on virulence and transmission characteristics of a virus. Our data show the importance of the neuraminidase in complementing a polybasic HA0 cleavage site. Furthermore, it demonstrates that adaptive changes selected for during the course of virus evolution can result in unexpected traits such as antiviral drug resistance.
Collapse
|
34
|
Serial passage in ducks of a low-pathogenic avian influenza virus isolated from a chicken reveals a high mutation rate in the hemagglutinin that is likely due to selection in the host. Arch Virol 2015; 160:2455-70. [PMID: 26179620 DOI: 10.1007/s00705-015-2504-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
A comparative study of the ability of three low-pathogenic avian influenza virus (LPAIV) isolates to be transmitted from duck to duck was performed. Pekin ducks were inoculated with two LPAIV isolates from chickens (A/Ck/PA/13609/93 [H5N2], H5N2-Ck; A/Ck/TX/167280-4/02 [H5N3], H5N3-Ck) and one isolate from a wild bird (A/Mute Swan/ MI/451072/06 [H5N1], H5N1-WB). During the establishment of the passage model, only two viruses (H5N1, H5N2) were able to be transmitted from duck to duck. Transmission of these isolates was dependent on the inoculation dose and route of infection. Analysis of swab samples taken from ducks revealed that the wild-bird isolate, H5N1-WB, was primarily shed via the cloacal route. The chicken isolate, H5N2-Ck, was isolated from cloacal as well as oro-pharyngeal swabs. Analysis of the amino acid sequences of the viral surface glycoproteins showed that the hemagglutinin (HA) of the H5N2-Ck isolate was under a stronger evolutionary pressure than the HA of the H5N1-WB isolate, as indicated by the presence of a larger number of amino acid changes observed during passage. The neuraminidase (NA) of both viruses showed either no (in the case of H5N1-WB) or very few amino acid changes.
Collapse
|
35
|
Khaliq Z, Leijon M, Belák S, Komorowski J. A complete map of potential pathogenicity markers of avian influenza virus subtype H5 predicted from 11 expressed proteins. BMC Microbiol 2015; 15:128. [PMID: 26112351 PMCID: PMC4482282 DOI: 10.1186/s12866-015-0465-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/12/2015] [Indexed: 01/18/2023] Open
Abstract
Background Polybasic cleavage sites of the hemagglutinin (HA) proteins are considered to be the most important determinants indicating virulence of the avian influenza viruses (AIV). However, evidence is accumulating that these sites alone are not sufficient to establish high pathogenicity. There need to exist other sites located on the HA protein outside the cleavage site or on the other proteins expressed by AIV that contribute to the pathogenicity. Results We employed rule-based computational modeling to construct a map, with high statistical significance, of amino acid (AA) residues associated to pathogenicity in 11 proteins of the H5 type viruses. We found potential markers of pathogenicity in all of the 11 proteins expressed by the H5 type of AIV. AA mutations S-43HA1-D, D-83HA1-A in HA; S-269-D, E-41-H in NA; S-48-N, K-212-N in NS1; V-166-A in M1; G-14-E in M2; K-77-R, S-377-N in NP; and Q-48-P in PB1-F2 were identified as having a potential to shift the pathogenicity from low to high. Our results suggest that the low pathogenicity is common to most of the subtypes of the H5 AIV while the high pathogenicity is specific to each subtype. The models were developed using public data and validated on new, unseen sequences. Conclusions Our models explicitly define a viral genetic background required for the virus to be highly pathogenic and thus confirm the hypothesis of the presence of pathogenicity markers beyond the cleavage site. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0465-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeeshan Khaliq
- Department of Cell and Molecular Biology, Computational and Systems Biology, Science for Life Laboratory, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Mikael Leijon
- Department of Virology, Parasitology and Immunobiology (VIP), National Veterinary Institute (SVA), Uppsala, Sweden. .,OIE Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine, Ulls väg 2B and 26, SE-756 89, Uppsala, Sweden.
| | - Sándor Belák
- OIE Collaborating Centre for the Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine, Ulls väg 2B and 26, SE-756 89, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Computational and Systems Biology, Science for Life Laboratory, Uppsala University, SE-751 24, Uppsala, Sweden. .,Institute of Computer Science, Polish Academy of Sciences, 01-248, Warszawa, Poland.
| |
Collapse
|
36
|
An infected chicken kidney cell co-culture ELISpot for enhanced detection of T cell responses to avian influenza and vaccination. J Immunol Methods 2014; 416:40-8. [PMID: 25450002 PMCID: PMC4334094 DOI: 10.1016/j.jim.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/25/2014] [Accepted: 10/24/2014] [Indexed: 11/23/2022]
Abstract
A better understanding of the immune responses of chickens to the influenza virus is essential for the development of new strategies of vaccination and control. We have developed a method incorporating infected chicken kidney cells (CKC) in culture with splenocytes in an IFNγ ELISpot assay to enumerate ex vivo responses against influenza virus antigens. Splenocytes from birds challenged with influenza showed specific responses to the influenza virus, with responding cells being mainly CD8 positive. The utility of the assay was also demonstrated in the detection of an antigen specific enhancement of IFNγ producing cells from birds vaccinated with recombinant Fowlpox vectored influenza nucleoprotein and matrix protein. Chickens infected with avian influenza developed IFNγ responses. The use of infected CKC in ELISpot overcomes limitations at detection of responses. This methods allows the quantification of influenza specific CD8 T cells. The use of recombinant virus to infect CKC can further define antigen specificity.
Collapse
|
37
|
Karlsson EA, Ip HS, Hall JS, Yoon SW, Johnson J, Beck MA, Webby RJ, Schultz-Cherry S. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal. Nat Commun 2014; 5:4791. [PMID: 25183346 PMCID: PMC4801029 DOI: 10.1038/ncomms5791] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 07/25/2014] [Indexed: 12/15/2022] Open
Abstract
The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Base Sequence
- Birds
- Epithelial Cells/immunology
- Epithelial Cells/virology
- Ferrets
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Host Specificity
- Humans
- Immune Sera/chemistry
- Immunologic Surveillance
- Influenza A Virus, H3N8 Subtype/classification
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/immunology
- Influenza A Virus, H3N8 Subtype/pathogenicity
- Models, Molecular
- Molecular Sequence Data
- Orthomyxoviridae Infections/epidemiology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/veterinary
- Phoca
- Phylogeny
- Protein Binding
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/virology
- Respiratory System/immunology
- Respiratory System/virology
- Sialic Acids/chemistry
- Sialic Acids/immunology
- Swine
- United States/epidemiology
- Viral Tropism
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Hon S Ip
- United States Geological Survey, National Wildlife Health Center, Madison, Wisconsin 53711, USA
| | - Jeffrey S Hall
- United States Geological Survey, National Wildlife Health Center, Madison, Wisconsin 53711, USA
| | - Sun Woo Yoon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jordan Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Melinda A Beck
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
38
|
Romero-Tejeda A, Capua I. Virus-specific factors associated with zoonotic and pandemic potential. Influenza Other Respir Viruses 2014; 7 Suppl 2:4-14. [PMID: 24034478 DOI: 10.1111/irv.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Influenza A is a highly contagious respiratory virus in constant evolution and represents a threat to both veterinary and human public health. IA viruses (IAVs) originate in avian reservoirs but may adapt to humans, either directly or through the spillover to another mammalian species, to the point of becoming pandemic. IAVs must successfully be able to (i) transmit from animal to human, (ii) interact with host cells, and (iii) transmit from human to human. The mechanisms by which viruses evolve, cause zoonotic infections, and adapt to a new host species are indeed complex and appear to be a heterogeneous collection of viral evolutionary events rather than a single phenomenon. Progress has been made in identifying some of the genetic markers mainly associated with virulence and transmission; this achievement has improved our knowledge of how to manage a pandemic event and of how to identify IAVs with pandemic potential. Early evidence of emerging viruses and surveillance of animal IAVs is made possible only by strengthening the collaboration between the public and veterinary health sectors.
Collapse
Affiliation(s)
- Aurora Romero-Tejeda
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
39
|
Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J Virol 2014; 88:4375-88. [PMID: 24501401 DOI: 10.1128/jvi.03181-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Avian influenza (AI) viruses of the H7 subtype have the potential to evolve into highly pathogenic (HP) viruses that represent a major economic problem for the poultry industry and a threat to global health. However, the emergence of HPAI viruses from low-pathogenic (LPAI) progenitor viruses currently is poorly understood. To investigate the origin and evolution of one of the most important avian influenza epidemics described in Europe, we investigated the evolutionary and spatial dynamics of the entire genome of 109 H7N1 (46 LPAI and 63 HPAI) viruses collected during Italian H7N1 outbreaks between March 1999 and February 2001. Phylogenetic analysis revealed that the LPAI and HPAI epidemics shared a single ancestor, that the HPAI strains evolved from the LPAI viruses in the absence of reassortment, and that there was a parallel emergence of mutations among HPAI and later LPAI lineages. Notably, an ultradeep-sequencing analysis demonstrated that some of the amino acid changes characterizing the HPAI virus cluster were already present with low frequency within several individual viral populations from the beginning of the LPAI H7N1 epidemic. A Bayesian phylogeographic analysis revealed stronger spatial structure during the LPAI outbreak, reflecting the more rapid spread of the virus following the emergence of HPAI. The data generated in this study provide the most complete evolutionary and phylogeographic analysis of epidemiologically intertwined high- and low-pathogenicity viruses undertaken to date and highlight the importance of implementing prompt eradication measures against LPAI to prevent the appearance of viruses with fitness advantages and unpredictable pathogenic properties. IMPORTANCE The Italian H7 AI epidemic of 1999 to 2001 was one of the most important AI outbreaks described in Europe. H7 viruses have the ability to evolve into HP forms from LP precursors, although the mechanisms underlying this evolutionary transition are only poorly understood. We combined epidemiological information, whole-genome sequence data, and ultradeep sequencing approaches to provide the most complete characterization of the evolution of HPAI from LPAI viruses undertaken to date. Our analysis revealed that the LPAI viruses were the direct ancestors of the HPAI strains and identified low-frequency minority variants with HPAI mutations that were present in the LPAI samples. Spatial analysis provided key information for the design of effective control strategies for AI at both local and global scales. Overall, this work highlights the importance of implementing rapid eradication measures to prevent the emergence of novel influenza viruses with severe pathogenic properties.
Collapse
|
40
|
Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 2014; 385:3-34. [PMID: 25031010 DOI: 10.1007/82_2014_384] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.
Collapse
|
41
|
Böttcher-Friebertshäuser E, Klenk HD, Garten W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis 2013; 69:87-100. [PMID: 23821437 PMCID: PMC7108517 DOI: 10.1111/2049-632x.12053] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/03/2013] [Indexed: 11/28/2022] Open
Abstract
Influenza is an acute infection of the respiratory tract, which affects each year millions of people. Influenza virus infection is initiated by the surface glycoprotein hemagglutinin (HA) through receptor binding and fusion of viral and endosomal membranes. HA is synthesized as a precursor protein and requires cleavage by host cell proteases to gain its fusion capacity. Although cleavage of HA is crucial for virus infectivity, little was known about relevant proteases in the human airways for a long time. Recent progress in the identification and characterization of HA‐activating host cell proteases has been considerable however and supports the idea of targeting HA cleavage as a novel approach for influenza treatment. Interestingly, certain bacteria have been demonstrated to support HA activation either by secreting proteases that cleave HA or due to activation of cellular proteases and thereby may contribute to virus spread and enhanced pathogenicity. In this review, we give an overview on activation of influenza viruses by proteases from host cells and bacteria with the main focus on recent progress on HA cleavage by proteases HAT and TMPRSS2 in the human airway epithelium. In addition, we outline investigations of HA‐activating proteases as potential drug targets for influenza treatment. The authors, who are leading experts in this field, present a timely, authoritative review on the proteolytic cleavage of the influenza hemagglutinin (HA), an activation mechanism that is essential for the infectivity of influenza viruses, including the recently emerged H7N9. They also address the potential of host proteases as targets for developing new influenza drugs. This review will be of considerable interest to virologists, microbiologists and pharmaceutical companies alike.
Collapse
|
42
|
Maruyama J, Okamatsu M, Soda K, Sakoda Y, Kida H. Factors responsible for pathogenicity in chickens of a low-pathogenic H7N7 avian influenza virus isolated from a feral duck. Arch Virol 2013; 158:2473-8. [PMID: 23779115 DOI: 10.1007/s00705-013-1762-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
Highly pathogenic avian influenza viruses have poly-basic amino acid sequences at the cleavage site in their hemagglutinin (HA). Although this poly-basic region is a prerequisite factor for pathogenicity in chickens, not much is known about additional factors responsible for the acquisition of pathogenicity of the duck influenza virus in chickens. Here, we introduced multiple basic amino acid residues into the HA cleavage site of the A/duck/Hokkaido/Vac-2/2004 (H7N7) strain of avian influenza virus, which has low pathogenicity in chickens; the resultant Vac2sub-P0 strain was not intravenously pathogenic in chickens. In contrast, the Vac2sub-P3 strain, which was recovered from three consecutive passages of Vac2sub-P0 in chicks, was intravenously pathogenic in chickens. Six amino acid substitutions were identified by comparison of the Vac2sub-P3 and Vac2sub-P0 genomic sequences: Lys123Glu in PB2, Asn16Asp in PB1, Glu227Gly and Ile388Thr in HA, Gly228Arg in M1, and Leu46Pro in M2. The results of intravenous inoculations of chickens with recombinant virus indicated that all six amino acid substitutions were required to varying degrees for Vac2sub-P3 pathogenicity, with Glu227Gly and Ile388Thr in HA being particularly essential. These results reveal the roles of additional viral factors in the acquisition of pathogenicity in addition to the previously characterized role of the poly-basic amino acid sequences at the HA cleavage site.
Collapse
Affiliation(s)
- Junki Maruyama
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | | | | | | | | |
Collapse
|
43
|
Stech J, Mettenleiter TC. Virulence determinants of high-pathogenic avian influenza viruses in gallinaceous poultry. Future Virol 2013. [DOI: 10.2217/fvl.13.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-pathogenic avian influenza viruses (HPAIV) cause devastating outbreaks in domestic poultry worldwide. Moreover, they repeatedly lead to severe, even fatal disease in humans, raising concerns about their pandemic potential. HPAIV have evolved from circulating low-pathogenic precursors in several independent events by spontaneous acquisition of a polybasic cleavage site in the hemagglutinin (HA) envelope protein. Remarkably, in nature, HPAIV are confined to the HA serotypes H5 and H7 from the 16 HA serotypes known in birds. However, experimental introduction of a polybasic cleavage site into non-H5/H7 HA may result in a highly pathogenic phenotype, indicating that emergence of HPAIV with novel serotypes is conceivable, but requires further adaptation to the chicken host.
Collapse
Affiliation(s)
- Jürgen Stech
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
44
|
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. INFECTION GENETICS AND EVOLUTION 2013; 17:162-87. [PMID: 23541413 DOI: 10.1016/j.meegid.2013.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4-5years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.
Collapse
|
45
|
Protease activation mutants elicit protective immunity against highly pathogenic avian influenza viruses of subtype H7 in chickens and mice. Emerg Microbes Infect 2013; 2:e7. [PMID: 26038453 PMCID: PMC3630491 DOI: 10.1038/emi2013.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 11/09/2022]
Abstract
Protease activation mutants of the highly pathogenic avian influenza virus A/FPV/Rostock/34 (H7N1) have been generated that are fully dependent on the presence of trypsin for growth in cell culture. Unlike wild-type virus, the mutants do not induce systemic infection in chicken embryos and show low pathogenicity in both chicken embryos and adult chickens. Inactivated vaccines prepared from the mutants protected chickens and mice very efficiently against infection with highly pathogenic wild-type virus in a cross-reactive manner. The potential of these mutants to be used as veterinary and prepandemic vaccines will be discussed.
Collapse
|
46
|
Yamamoto N, Soda K, Sakoda Y, Okamatsu M, Kida H. Proteins of duck influenza virus responsible for acquisition of pathogenicity in chickens. Virus Res 2013; 173:294-8. [PMID: 23434880 DOI: 10.1016/j.virusres.2013.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/13/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Influenza virus rgVac1sub-P0 (H5N1) (rgVac1-P0), in which a pair of dibasic amino acid residues was introduced at the cleavage site of the HA of a reassortant of H5N2 and H7N1 viruses of duck origin, was low pathogenic in chickens. Vac1sub-P3 (H5N1) (Vac1-P3) was selected as a highly pathogenic avian influenza virus by 3 consecutive passages in chickens from low pathogenic strain rgVac1-P0. Comparison of amino acid sequences of the virus proteins and experimental infection of chickens with a series of recombinant viruses demonstrated that in addition to the HA, each of the PA, NP, M1, and M2 of Vac1-P3 are responsible for the acquisition of pathogenicity in chickens. These 4 proteins of Vac1-P3 synergistically contributed to efficient virus replication in chickens.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | |
Collapse
|
47
|
Janies DA, Pomeroy LW, Aaronson JM, Handelman S, Hardman J, Kawalec K, Bitterman T, Wheeler WC. Analysis and visualization of H7 influenza using genomic, evolutionary and geographic information in a modular web service. Cladistics 2012; 28:483-488. [PMID: 32313365 PMCID: PMC7162197 DOI: 10.1111/j.1096-0031.2012.00401.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2012] [Indexed: 11/28/2022] Open
Abstract
We have reported previously on use of a web-based application, Supramap (http://supramap.org) for the study of biogeographic, genotypic, and phenotypic evolution. Using Supramap we have developed maps of the spread of drug-resistant influenza and host shifts in H1N1 and H5N1 influenza and coronaviruses such as SARS. Here we report on another zoonotic pathogen, H7 influenza, and provide an update on the implementation of Supramap as a web service. We find that the emergence of pathogenic strains of H7 is labile with many transitions from high to low pathogenicity, and from low to high pathogenicity. We use Supramap to put these events in a temporal and geospatial context. We identify several lineages of H7 influenza with biomarkers of high pathogenicity in regions that have not been reported in the scientific literature. The original implementation of Supramap was built with tightly coupled client and server software. Now we have decoupled the components to provide a modular web service for POY (http://poyws.org) that can be consumed by a data provider to create a novel application. To demonstrate the web service, we have produced an application, Geogenes (http://geogenes.org). Unlike in Supramap, in which the user is required to create and upload data files, in Geogenes the user works from a graphical interface to query an underlying dataset. Geogenes demonstrates how the web service can provide underlying processing for any sequence and metadata database. © The Willi Hennig Society 2012.
Collapse
Affiliation(s)
- Daniel A Janies
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210 USA
| | - Laura W Pomeroy
- Department of Veterinary Preventative Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Jacob M Aaronson
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210 USA
| | - Samuel Handelman
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210 USA
| | - Jori Hardman
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210 USA
| | - Kevin Kawalec
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210 USA
| | | | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
48
|
Lee SMY, Yen HL. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res 2012; 96:391-404. [PMID: 23022351 PMCID: PMC7132421 DOI: 10.1016/j.antiviral.2012.09.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.
Collapse
Affiliation(s)
- Suki Man-Yan Lee
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
49
|
Arafa A, Suarez D, Kholosy SG, Hassan MK, Nasef S, Selim A, Dauphin G, Kim M, Yilma J, Swayne D, Aly MM. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation. Arch Virol 2012; 157:1931-47. [PMID: 22760662 DOI: 10.1007/s00705-012-1385-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/13/2012] [Indexed: 12/20/2022]
Abstract
Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country, affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used as a part of the control strategy to help to control the disease. Epidemiological data with sequence analysis of H5N1 viruses is important to link the mechanism of virus evolution in Egypt. This study describes the evolutionary pattern of Egyptian H5N1 viruses based on molecular characterization for the isolates collected from commercial poultry farms and village poultry from 2006 to 2011. Genetic analysis of the hemagglutinin (HA) gene was done by sequencing of the full-length H5 gene. The epidemiological pattern of disease outbreaks in Egyptian poultry farms seems to be seasonal with no specific geographic distribution across the country. The molecular epidemiological data revealed that there are two major groups of viruses: the classic group of subclade 2.2.1 and a variant group of 2.2.1.1. The classic group is prevailing mainly in village poultry and had fewer mutations compared to the originally introduced virus in 2006. Since 2009, this group has started to be transmitted back to commercial sectors. The variant group emerged by late 2007, was prevalent mainly in vaccinated commercial poultry, mutated continuously at a higher rate until 2010, and started to decline in 2011. Genetic analysis of the neuraminidase (NA) gene and the other six internal genes indicates a grouping of the Egyptian viruses similar to that obtained using the HA gene, with no obvious reassortments. The results of this study indicate that HPAI-H5N1 viruses are progressively evolving and adapting in Egypt and continue to acquire new mutations every season.
Collapse
Affiliation(s)
- A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Post J, Burt DW, Cornelissen JBWJ, Broks V, van Zoelen D, Peeters B, Rebel JMJ. Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus. Virol J 2012; 9:61. [PMID: 22390870 PMCID: PMC3314540 DOI: 10.1186/1743-422x-9-61] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses. METHODS To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains. RESULTS Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection. CONCLUSIONS Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.
Collapse
Affiliation(s)
- Jacob Post
- Central Veterinary Institute of Wageningen UR. P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|