1
|
Atani ZR, Hosseini SS, Goudarzi H, Faghihloo E. Human Viral Oncoproteins and Ubiquitin-Proteasome System. Glob Med Genet 2024; 11:285-296. [PMID: 39224462 PMCID: PMC11368560 DOI: 10.1055/s-0044-1790210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Some human cancers worldwide may be related to human tumor viruses. Knowing, controlling, and managing the viruses that cause cancers remain a problem. Also, tumor viruses use ubiquitin-proteasome system (UPS) that can alter host cellular processes through UPS. Human tumor viruses cause persistent infections, due to their ability to infect their host cells without killing them. Tumor viruses such as Epstein-Barr virus, hepatitis C virus, hepatitis B virus, human papillomaviruses, human T cell leukemia virus, Kaposi's sarcoma-associated herpesvirus, and Merkel cell polyomavirus are associated with human malignancies. They interfere with the regulation of cell cycle and control of apoptosis, which are important for cellular functions. These viral oncoproteins bind directly or indirectly to the components of UPS, modifying cellular pathways and suppressor proteins like p53 and pRb. They can also cause progression of malignancy. In this review, we focused on how viral oncoproteins bind to the components of the UPS and how these interactions induce the degradation of cellular proteins for their survival.
Collapse
Affiliation(s)
- Zahra Rafiei Atani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sareh Sadat Hosseini
- Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
3
|
Gutowska A, Sarkis S, Rahman MA, Goldfarbmuren KC, Moles R, Bissa M, Doster M, Washington-Parks R, McKinnon K, Silva de Castro I, Schifanella L, Franchini G, Pise-Masison CA. Complete Rescue of HTLV-1 p12KO Infectivity by Depletion of Monocytes Together with NK and CD8 + T Cells. Pathogens 2024; 13:292. [PMID: 38668247 PMCID: PMC11054408 DOI: 10.3390/pathogens13040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
The transient depletion of monocytes alone prior to exposure of macaques to HTLV-1 enhances both HTLV-1WT (wild type) and HTLV-1p12KO (Orf-1 knockout) infectivity, but seroconversion to either virus is not sustained over time, suggesting a progressive decrease in virus expression. These results raise the hypotheses that either HTLV-1 persistence depends on a monocyte reservoir or monocyte depletion provides a transient immune evasion benefit. To test these hypotheses, we simultaneously depleted NK cells, CD8+ T cells, and monocytes (triple depletion) prior to exposure to HTLV-1WT or HTLV-1p12KO. Remarkably, triple depletion resulted in exacerbation of infection by both viruses and complete rescue of HTLV-1p12KO infectivity. Following triple depletion, we observed rapid and sustained seroconversion, high titers of antibodies against HTLV-1 p24Gag, and frequent detection of viral DNA in the blood and tissues of all animals when compared with depletion of only CD8+ and NK cells, or monocytes alone. The infection of macaques with HTLV-1WT or HTLV-1p12KO was associated with higher plasma levels of IL-10 after 21 weeks, while IL-6, IFN-γ, IL-18, and IL-1β were only elevated in animals infected with HTLV-1WT. The repeat depletion of monocytes, NK, and CD8+ cells seven months following the first exposure to HTLV-1 did not further exacerbate viral replication. These results underscore the contribution of monocytes in orchestrating anti-viral immunity. Indeed, the absence of orf-1 expression was fully compensated by the simultaneous depletion of CD8+ T cells, NK cells, and monocytes, underlining the primary role of orf-1 in hijacking host immunity.
Collapse
Affiliation(s)
- Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine C. Goldfarbmuren
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Melvin Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| |
Collapse
|
4
|
Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424. [PMID: 36546414 DOI: 10.1002/jmv.28424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus; whereas HTLV-1 mainly persists in the infected host cell as a provirus, it also causes a malignancy called adult T-cell leukemia/lymphoma (ATLL) in about 5% of infection. HTLV-1 replication is in most cases silent in vivo and viral de novo infection rarely occurs; HTLV-1 rather relies on clonal proliferation of infected T cells for viral propagation as it multiplies the number of the provirus copies. It is mechanistically elusive how leukemic clones emerge during the course of HTLV-1 infection in vivo and eventually cause the onset of ATLL. This review summarizes our current understanding of HTLV-1 persistence and oncogenesis, with the incorporation of recent cutting-edge discoveries obtained by high-throughput sequencing.
Collapse
Affiliation(s)
- Xiaorui Zuo
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruoning Zhou
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sikai Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangyong Ma
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Freitas NL, Gomes YCP, Souza FDS, Torres RC, Echevarria-Lima J, Leite ACCB, Lima MASD, Araújo AQC, Silva MTT, Espíndola ODM. Lessons from the Cerebrospinal Fluid Analysis of HTLV-1-Infected Individuals: Biomarkers of Inflammation for HAM/TSP Development. Viruses 2022; 14:v14102146. [PMID: 36298702 PMCID: PMC9609689 DOI: 10.3390/v14102146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neurodegenerative disease that leads to motor impairment due to a chronic inflammatory process in the central nervous system (CNS). However, the HAM/TSP pathogenesis is not completely clear, and biomarkers to define the disease prognosis are still necessary. Thus, we aimed to identify biomarkers for HAM/TSP and potential mechanisms involved in disease development. To that end, the concentrations of VILIP-1, BDNF, VEGF, β-NGF, TGF-β1, fractalkine/CX3CL1, IL-6, IL-18, and TNF-α, and the soluble forms of TREM-1, TREM-2, and RAGE, were assessed using a multiplex bead-based immunoassay in paired cerebrospinal fluid (CSF) and serum samples from HAM/TSP patients (n = 20), asymptomatic HTLV-1 carriers (AC) (n = 13), and HTLV-1-seronegative individuals (n = 9), with the results analyzed according to the speed of HAM/TSP progression. HAM/TSP patients had elevated fractalkine in the serum but not in the CSF, particularly those with low neuroinflammatory activity (CSF/serum ratio of neopterin <1 and of CXCL10 < 2). HAM/TSP patients with normal CSF levels of neurofilament light chain (NfL) showed elevated β-NGF in serum, and serum BDNF levels were increased in HTLV-1-infected individuals, particularly in HTLV-1 AC. Both HTLV-1 AC and HAM/TSP patients had lower TGF-β1 levels in CSF compared to uninfected individuals, and HAM/TSP patients with active CNS inflammation showed higher CSF levels of IL-18, which correlated with markers of inflammation, neuronal death, and blood−brain-barrier permeability. Although none of the factors evaluated were associated with the speed of HAM/TSP progression, reduced TGF-β1 levels in CSF suggest that suppressive responses to control subclinical and/or active neurodegeneration are impaired, while increased CSF IL-18 indicates the involvement of inflammasome-mediated mechanisms in HAM/TSP development.
Collapse
Affiliation(s)
- Nicole Lardini Freitas
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Yago Côrtes Pinheiro Gomes
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Flávia dos Santos Souza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Rafael Carvalho Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, Brazil
| | - Juliana Echevarria-Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | | | | | - Abelardo Queiroz Campos Araújo
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcus Tulius Teixeira Silva
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Otávio de Melo Espíndola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Correspondence:
| |
Collapse
|
6
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
8
|
Moles R, Sarkis S, Galli V, Omsland M, Artesi M, Bissa M, McKinnon K, Brown S, Hahaut V, Washington-Parks R, Welsh J, Venzon DJ, Gutowska A, Doster MN, Breed MW, Killoran KE, Kramer J, Jones J, Moniuszko M, Van den Broeke A, Pise-Masison CA, Franchini G. NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 2022; 18:e1010416. [PMID: 35377924 PMCID: PMC9022856 DOI: 10.1371/journal.ppat.1010416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO.In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis. The immune cells that inhibit or favor HTLV-1 infection are still unknown and their identification is critical for understanding viral pathogenesis and for the development of an effective HTLV-1 vaccine. Neutralizing antibodies are produced in natural HTLV-1 infection, but their impact is likely hampered by the virus’s ability to be transmitted from cell to cell via the virological synapse, cellular conduits, and biofilms. By depleting specific immune cell subsets in blood, we found that NK cells play a critical role in the containment of early HTLV-1 infection. Moreover, transient depletion of monocytes/macrophages results in early, but not sustained seroconversion, suggesting that early engagement of monocytes may be necessary for long-term productive infection. The engulfment of apoptotic T-cells infected by HTLV-1 may represent a viral strategy to persist in the host since the viral proteins encoded by orf-I and orf-II affect the function of receptors and proteins involved in efferocytosis. These results suggest that effective HTLV-1 vaccines must also elicit durable innate responses able to promptly clear virus invasion of monocytes through engulfment of infected T-cells to avoid the establishment of a vicious cycle that leads to chronic inflammation.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Brown
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Joshua Welsh
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Kristin E. Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rocamonde B, Futsch N, Orii N, Allatif O, Penalva de Oliveira AC, Mahieux R, Casseb J, Dutartre H. Immunoprofiling of fresh HAM/TSP blood samples shows altered innate cell responsiveness. PLoS Negl Trop Dis 2021; 15:e0009940. [PMID: 34767551 PMCID: PMC8631667 DOI: 10.1371/journal.pntd.0009940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
The Human T-cell Leukemia Virus-1 (HTLV-1)-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a devastating neurodegenerative disease with no effective treatment, which affects an increasing number of people in Brazil. Immune cells from the adaptive compartment are involved in disease manifestation but whether innate cell functions participate in disease occurrence has not been evaluated. In this study, we analyzed innate cell responses at steady state and after blood cell stimulation using an agonist of the toll-like receptor (TLR)7/8-signaling pathway in blood samples from HTLV-1-infected volunteers, including asymptomatic carriers and HAM/TSP patients. We observed a lower response of IFNα+ DCs and monocytes in HAM/TSP compared to asymptomatic carriers, as a potential consequence of corticosteroid treatments. In contrast, a higher frequency of monocytes producing MIP-1α and pDC producing IL-12 was detected in HAM/TSP blood samples, together with higher IFNγ responsiveness of NK cells, suggesting an increased sensitivity to inflammatory response in HAM/TSP patients compared to asymptomatic carriers. This sustained inflammatory responsiveness could be linked or be at the origin of the neuroinflammatory status in HAM/TSP patients. Therefore, the mechanism underlying this dysregulations could shed light onto the origins of HAM/TSP disease. The infection by the Human T-cell Leukemia Virus-1 (HTLV-1) is quite frequent in Brazil. Between 1–5% of infected individuals develop a devastating neurodegenerative disease (HAM/TSP) as a result of a sustained inflammation in the central nervous system, with no effective treatment. So far, inflammation has been linked to the deregulated activation of T-cells, but the role of innate cells has not been investigated yet. In this work, we aimed to characterize the responsiveness of innate cells, as this immune population is cornerstone of efficient immune response, but also might participate in disease exacerbation found in chronic infection. Our findings suggest an impaired antiviral response and increased inflammatory responsiveness by dendritic cells and monocytes in HAM/TSP patients compared to asymptomatic carriers. This sustained inflammatory responsiveness upon innate cell activation could participate in the establishment of the HAM/TSP disease.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Noemia Orii
- Faculdade de Medicina/Instituto de Medicina Tropical de São Paulo/Universidade da São Paulo, São Paulo, SP, Brazil
| | - Omran Allatif
- International Center for Research in Infectiology, service BIBS, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Jorge Casseb
- Faculdade de Medicina/Instituto de Medicina Tropical de São Paulo/Universidade da São Paulo, São Paulo, SP, Brazil
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
- * E-mail:
| |
Collapse
|
10
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
11
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
12
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
13
|
Olindo S, Jeannin S, Lezin A. Manifestazioni neurologiche legate all’“human T-cell leukemia/lymphoma virus” tipo 1 (HTLV-1). Neurologia 2021. [DOI: 10.1016/s1634-7072(21)44999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was discovered in 1980 as the first, and to date, the only retrovirus that causes human cancer. While HTLV-1 infection is generally asymptomatic, 3-5% of infected individuals develop a T cell neoplasm known as adult T cell leukemia/lymphoma (ATL) decades after infection. Since its discovery, HTLV-1 has served as a model for understanding retroviral oncogenesis, transcriptional regulation, cellular signal transduction, and cell-associated viral infection and spread. Much of the initial research was focused on the viral trans-activator/oncoprotein, Tax. Over the past decade, the study of HTLV-1 has entered the genomic era. With the development of new systems for studying HTLV-1 infection and pathogenesis, the completion of the whole genome, exome and transcriptome sequencing analyses of ATL, and the discovery of HBZ as another HTLV-1 oncogene, many established concepts about how HTLV-1 infects, persists and causes disease have undergone substantial revision. This chapter seeks to integrate our current understanding of the mechanisms of action of Tax and HBZ with the comprehensive genomic information of ATL to provide an overview of how HTLV-1 infects, replicates and causes leukemia.
Collapse
|
15
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
16
|
Newman RA, Sastry KJ, Arav-Boger R, Cai H, Matos R, Harrod R. Antiviral Effects of Oleandrin. J Exp Pharmacol 2020; 12:503-515. [PMID: 33262663 PMCID: PMC7686471 DOI: 10.2147/jep.s273120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past 15 years, investigators have reported on the utility and safety of cardiac glycosides for numerous health benefits including those as treatments for malignant disease, stroke-mediated ischemic injury and certain neurodegenerative diseases. In addition to those, there is a growing body of evidence for novel antiviral effects of selected cardiac glycoside molecules. One unique cardiac glycoside, oleandrin derived from Nerium oleander, has been reported to have antiviral activity specifically against 'enveloped' viruses including HIV and HTLV-1. Importantly, a recent publication has presented in vitro evidence for oleandrin's ability to inhibit production of infectious virus particles when used for treatment prior to, as well as after infection by SARS-CoV-2/COVID-19. This review will highlight the known in vitro antiviral effects of oleandrin as well as present previously unpublished effects of this novel cardiac glycoside against Ebola virus, Cytomegalovirus, and Herpes simplex viruses.
Collapse
Affiliation(s)
- Robert A Newman
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.,Phoenix Biotechnology, Inc, San Antonio, TX 78217, USA
| | - K Jagannadha Sastry
- Departments of Thoracic, Head and Neck Medical Oncology and Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Robert Harrod
- Department of Biological Sciences, the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
17
|
Donhauser N, Socher E, Millen S, Heym S, Sticht H, Thoma-Kress AK. Transfer of HTLV-1 p8 and Gag to target T-cells depends on VASP, a novel interaction partner of p8. PLoS Pathog 2020; 16:e1008879. [PMID: 32997728 PMCID: PMC7526893 DOI: 10.1371/journal.ppat.1008879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The Human T-cell leukemia virus type 1 (HTLV-1) orf I-encoded accessory protein p8 is cleaved from its precursor p12, and both proteins contribute to viral persistence. p8 induces cellular protrusions, which are thought to facilitate transfer of p8 to target cells and virus transmission. Host factors interacting with p8 and mediating p8 transfer are unknown. Here, we report that vasodilator-stimulated phosphoprotein (VASP), which promotes actin filament elongation, is a novel interaction partner of p8 and important for p8 and HTLV-1 Gag cell-to-cell transfer. VASP contains an Ena/VASP homology 1 (EVH1) domain that targets the protein to focal adhesions. Bioinformatics identified a short stretch in p8 (amino acids (aa) 24–45) which may mediate interactions with the EVH1 domain of VASP. Co-immunoprecipitations confirmed interactions of VASP:p8 in 293T, Jurkat and HTLV-1-infected MT-2 cells. Co-precipitation of VASP:p8 could be significantly blocked by peptides mimicking aa 26–37 of p8. Mutational studies revealed that the EVH1-domain of VASP is necessary, but not sufficient for the interaction with p8. Further, deletion of the VASP G- and F-actin binding domains significantly diminished co-precipitation of p8. Imaging identified areas of partial co-localization of VASP with p8 at the plasma membrane and in protrusive structures, which was confirmed by proximity ligation assays. Co-culture experiments revealed that p8 is transferred between Jurkat T-cells via VASP-containing conduits. Imaging and flow cytometry revealed that repression of both endogenous and overexpressed VASP by RNA interference or by CRISPR/Cas9 reduced p8 transfer to the cell surface and to target Jurkat T-cells. Stable repression of VASP by RNA interference in chronically infected MT-2 cells impaired both p8 and HTLV-1 Gag transfer to target Jurkat T-cells, while virus release was unaffected. Thus, we identified VASP as a novel interaction partner of p8, which is important for transfer of HTLV-1 p8 and Gag to target T-cells. The delta-retrovirus Human T-cell leukemia virus type 1 encodes the accessory protein p8, which is generated by proteolytic cleavage from p12. Earlier work has shown that p8 enhances the formation of cellular conduits between T-cells, is transferred through these conduits to target T-cells and increases HTLV-1 transmission. It was suggested that p8 dampens T-cell responses in target T-cells, thus facilitating HTLV-1 infection. Our work sheds light on the mechanism of p8 transfer to target T-cells. We show that vasodilator-stimulated phosphoprotein (VASP), a novel interaction partner of p8, contributes to transfer of p8 to target T-cells. Mechanistically, VASP is crucial for recruitment of p8 to the cell surface. Since VASP is known to promote elongation of actin filaments by preventing them from capping, interactions of p8 with VASP are an elegant strategy to exploit the host cell machinery for being transported to the cell surface, and as a consequence, to other cells. Given that VASP is also important for cell-to-cell transfer of the HTLV-1 Gag protein, our work proposes that VASP is a new cellular target to counteract HTLV-1 cell-to-cell transmission.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Heym
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
18
|
Millen S, Meretuk L, Göttlicher T, Schmitt S, Fleckenstein B, Thoma-Kress AK. A novel positive feedback-loop between the HTLV-1 oncoprotein Tax and NF-κB activity in T-cells. Retrovirology 2020; 17:30. [PMID: 32912211 PMCID: PMC7488018 DOI: 10.1186/s12977-020-00538-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) infects primarily CD4+ T-lymphocytes and evoques severe diseases, predominantly Adult T-Cell Leukemia/ Lymphoma (ATL/L) and HTLV-1-associated Myelopathy/ Tropical Spastic Paraparesis (HAM/TSP). The viral transactivator of the pX region (Tax) is important for initiating malignant transformation, and deregulation of the major signaling pathway nuclear factor of kappa B (NF-κB) by Tax represents a hallmark of HTLV-1 driven cancer. Results Here we found that Tax mutants which are defective in NF-κB signaling showed diminished protein expression levels compared to Tax wildtype in T-cells, whereas Tax transcript levels were comparable. Strikingly, constant activation of NF-κB signaling by the constitutive active mutant of inhibitor of kappa B kinase (IKK2, IKK-β), IKK2-EE, rescued protein expression of the NF-κB defective Tax mutants M22 and K1-10R and even increased protein levels of Tax wildtype in various T-cell lines while Tax transcript levels were only slightly affected. Using several Tax expression constructs, an increase of Tax protein occurred independent of Tax transcripts and independent of the promoter used. Further, Tax and M22 protein expression were strongly enhanced by 12-O-Tetradecanoylphorbol-13-Acetate [TPA; Phorbol 12-myristate 13-acetate (PMA)]/ ionomycin, inducers of NF-κB and cytokine signaling, but not by tumor necrosis factor alpha (TNF-α). On the other hand, co-expression of Tax with a dominant negative inhibitor of κB, IκBα-DN, or specific inhibition of IKK2 by the compound ACHP, led to a vast decrease in Tax protein levels to some extent independent of Tax transcripts in transiently transfected and Tax-transformed T-cells. Cycloheximide chase experiments revealed that co-expression of IKK2-EE prolongs the half-life of M22, and constant repression of NF-κB signaling by IκBα-DN strongly reduces protein stability of Tax wildtype suggesting that NF-κB activity is required for Tax protein stability. Finally, protein expression of Tax and M22 could be recovered by NH4Cl and PYR-41, inhibitors of the lysosome and the ubiquitin-activating enzyme E1, respectively. Conclusions Together, these findings suggest that Tax’s capability to induce NF-κB is critical for protein expression and stabilization of Tax itself. Overall, identification of this novel positive feedback loop between Tax and NF-κB in T-cells improves our understanding of Tax-driven transformation.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Meretuk
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Göttlicher
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Schmitt
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
19
|
Mohanty S, Harhaj EW. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020; 9:E543. [PMID: 32645846 PMCID: PMC7399876 DOI: 10.3390/pathogens9070543] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus. Tax undergoes various post-translational modifications such as phosphorylation and ubiquitination that regulate its function and subcellular localization. Tax shuttles in different subcellular compartments for the activation of anti-apoptotic genes and deregulates the cell cycle with the induction of DNA damage for the accumulation of genomic instability that can result in cellular immortalization and malignant transformation. However, Tax is highly immunogenic and therefore HTLV-1 has evolved numerous strategies to tightly regulate Tax expression while maintaining the pool of anti-apoptotic genes through HBZ. In this review, we summarize the key findings on the oncogenic mechanisms used by Tax that set the stage for the development of ATLL, and the strategies used by HTLV-1 to tightly regulate Tax expression for immune evasion and viral persistence.
Collapse
Affiliation(s)
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
20
|
Omsland M, Silic-Benussi M, Moles R, Sarkis S, Purcell DFJ, Yurick D, Khoury G, D'Agostino DM, Ciminale V, Franchini G. Functional properties and sequence variation of HTLV-1 p13. Retrovirology 2020; 17:11. [PMID: 32398094 PMCID: PMC7218495 DOI: 10.1186/s12977-020-00517-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Human T cell leukemia virus type-1 (HTLV-1) was the first retrovirus found to cause cancer in humans, but the mechanisms that drive the development of leukemia and other diseases associated with HTLV-1 infection remain to be fully understood. This review describes the functional properties of p13, an 87-amino acid protein coded by HTLV-1 open reading frame II (orf-II). p13 is mainly localized in the inner membrane of the mitochondria, where it induces potassium (K+) influx and reactive oxygen species (ROS) production, which can trigger either proliferation or apoptosis, depending on the ROS setpoint of the cell. Recent evidence indicates that p13 may influence the cell’s innate immune response to viral infection and the infected cell phenotype. Association of the HTLV-1 transcriptional activator, Tax, with p13 increases p13’s stability, leads to its partial co-localization with Tax in nuclear speckles, and reduces the ability of Tax to interact with the transcription cofactor CBP/p300. Comparison of p13 sequences isolated from HTLV-1-infected individuals revealed a small number of amino acid variations in the domains controlling the subcellular localization of the protein. Disruptive mutations of p13 were found in samples obtained from asymptomatic patients with low proviral load. p13 sequences of HTLV-1 subtype C isolates from indigenous Australian patients showed a high degree of identity among each other, with all samples containing a pattern of 5 amino acids that distinguished them from other subtypes. Further characterization of p13’s functional properties and sequence variants may lead to a deeper understanding of the impact of p13 as a contributor to the clinical manifestations of HTLV-1 infection.
Collapse
Affiliation(s)
- Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Zargari R, Mahdifar M, Mohammadi A, Vahidi Z, Hassanshahi G, Rafatpanah H. The Role of Chemokines in the Pathogenesis of HTLV-1. Front Microbiol 2020; 11:421. [PMID: 32231656 PMCID: PMC7083101 DOI: 10.3389/fmicb.2020.00421] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus that is associated with two main diseases: HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma (ATL). Chemokines are highly specialized groups of cytokines that play important roles in organizing, trafficking, homing, and in the migration of immune cells to the bone marrow, lymphoid organs and sites of infection and inflammation. Aberrant expression or function of chemokines, or their receptors, has been linked to the protection against or susceptibility to specific infectious diseases, as well as increased the risk of autoimmune diseases and malignancy. Chemokines and their receptors participate in pathogenesis of HTLV-1 associated diseases from inflammation in the central nervous system (CNS) which occurs in cases of HAM/TSP to T cell immortalization and tissue infiltration observed in ATL patients. Chemokines represent viable effective prognostic biomarkers for HTLV-1-associated diseases which provide the early identification of high-risk, treatment possibilities and high-yielding clinical trials. This review focuses on the emerging roles of these molecules in the outcome of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Razieh Zargari
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zohreh Vahidi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Rocamonde B, Carcone A, Mahieux R, Dutartre H. HTLV-1 infection of myeloid cells: from transmission to immune alterations. Retrovirology 2019; 16:45. [PMID: 31870397 PMCID: PMC6929313 DOI: 10.1186/s12977-019-0506-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Auriane Carcone
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
23
|
Moles R, Sarkis S, Galli V, Omsland M, Purcell DFJ, Yurick D, Khoury G, Pise-Masison CA, Franchini G. p30 protein: a critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019; 16:42. [PMID: 31852501 PMCID: PMC6921414 DOI: 10.1186/s12977-019-0501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The extraordinarily high prevalence of HTLV-1 subtype C (HTLV-1C) in some isolated indigenous communities in Oceania and the severity of the health conditions associated with the virus impress the great need for basic and translational research to prevent and treat HTLV-1 infection. The genome of the virus’s most common subtype, HTLV-1A, encodes structural, enzymatic, and regulatory proteins that contribute to viral persistence and pathogenesis. Among these is the p30 protein encoded by the doubly spliced Tax-orf II mRNA, a nuclear/nucleolar protein with both transcriptional and post-transcriptional activity. The p30 protein inhibits the productive replication cycle via nuclear retention of the mRNA that encodes for both the viral transcriptional trans-activator Tax, and the Rex proteins that regulate the transport of incompletely spliced viral mRNA to the cytoplasm. In myeloid cells, p30 inhibits the PU-1 transcription factor that regulates interferon expression and is a critical mediator of innate and adaptive immunity. Furthermore, p30 alters gene expression, cell cycle progression, and DNA damage responses in T-cells, raising the hypothesis that p30 may directly contribute to T cell transformation. By fine-tuning viral expression while also inhibiting host innate responses, p30 is likely essential for viral infection and persistence. This concept is supported by the finding that macaques, a natural host for the closely genetically related simian T-cell leukemia virus 1 (STLV-1), exposed to an HTLV-1 knockout for p30 expression by a single point mutation do not became infected unless reversion and selection of the wild type HTLV-1 genotype occurs. All together, these data suggest that inhibition of p30 may help to curb and eventually eradicate viral infection by exposing infected cells to an effective host immune response.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Forlani G, Shallak M, Ramia E, Tedeschi A, Accolla RS. Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 2019; 16:34. [PMID: 31783769 PMCID: PMC6884849 DOI: 10.1186/s12977-019-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immunity against pathogens evolved through complex mechanisms that only for sake of simplicity are defined as innate immunity and adaptive immunity. Indeed innate and adaptive immunity are strongly intertwined each other during evolution. The complexity is further increased by intrinsic mechanisms of immunity that rely on the action of intracellular molecules defined as restriction factors (RFs) that, particularly in virus infections, counteract the action of pathogen gene products acting at different steps of virus life cycle. Main body and conclusion Here we provide an overview on the nature and the mode of action of restriction factors involved in retrovirus infection, particularly Human T Leukemia/Lymphoma Virus 1 (HTLV-1) infection. As it has been extensively studied by our group, special emphasis is given to the involvement of the MHC class II transactivator CIITA discovered in our laboratory as regulator of adaptive immunity and subsequently as restriction factor against HIV-1 and HTLV-1, a unique example of dual function linking adaptive and intrinsic immunity during evolution. We describe the multiple molecular mechanisms through which CIITA exerts its restriction on retroviruses. Of relevance, we review the unprecedented findings pointing to a concerted action of several restriction factors such as CIITA, TRIM22 and TRIM19/PML in synergizing against retroviral replication. Finally, as CIITA profoundly affects HTLV-1 replication by interacting and inhibiting the function of HTLV-1 Tax-1 molecule, the major viral product associated to the virus oncogenicity, we also put forward the hypothesis of CIITA as counteractor of HTLV-1-mediated cancer initiation.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Elise Ramia
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy.
| |
Collapse
|
25
|
Kjerulff B, Petersen MS, Rodrigues CM, da Silva Té D, Christiansen M, Erikstrup C, Hønge BL. HTLV infected individuals have increased B-cell activation and proinflammatory regulatory T-cells. Immunobiology 2019; 225:151878. [PMID: 31810824 DOI: 10.1016/j.imbio.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Human T-lymphotropic virus (HTLV) affects the human immune system in many ways, most notably by inducing proliferation of infected CD4 + T cells, but several other cell types are also affected. To characterize the effects of HTLV infection, we analysed blood samples from HTLV-infected individuals by flow cytometry. Samples were collected from visitors at the HIV clinic in Bissau, Guinea-Bissau. These samples were tested for HTLV and HIV, and 199 were analysed by flow cytometry using panels for B cells, T-cell maturation and activation, regulatory T cells (Tregs) and monocytes. CD80+ cell proportions were significantly higher in HTLV infected than in HTLV uninfected in all B cell subsets. Among T cells, there was no change in cell distribution between maturation stages, but a higher CD25+ proportion among Tregs (61.1 % vs 36.3 %, p < 0.001) in HTLV infected than in HTLV uninfected. The level of CD49d on individual cells was also higher (MFI 2734.5 vs 1,041, p < 0.001). In HTLV infected individuals, CD8 + T cells had a lower proportion of CTLA-4+ (2.5 % vs 3.5 %, 0.048) and higher PD1+ proportion on the CD45RO + subset (81.6 % vs 77.1 %, p < 0.001). Together, these findings point toward reduced regulation in HTLV + patients, which leads to immune activation. This study corroborates previous findings and offers new insight into the effects of HTLV by providing a broad flowcytometric analysis of immune cells in HTLV + individuals.
Collapse
Affiliation(s)
- Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark.
| | - Mikkel Steen Petersen
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark
| | | | | | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark
| | - Bo Langhoff Hønge
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark; Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau; Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Skejby, Denmark
| |
Collapse
|
26
|
de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci Signal 2019; 12:12/605/eaaw1347. [DOI: 10.1126/scisignal.aaw1347] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human blood CD14+monocytes are bone marrow–derived white blood cells that sense and respond to pathogens. Although innate immune activation by RNA viruses preferentially occurs through intracellular RIG-I–like receptors, other nucleic acid recognition receptors, such as Toll-like receptors (TLRs), play a role in finely programming the final outcome of virus infection. Here, we dissected how human monocytes respond to infection with either Coxsackie (CV), encephalomyocarditis (EMCV), influenza A (IAV), measles (MV), Sendai (SV), or vesicular stomatitis (VSV) virus. We found that in monocytes, type I interferon (IFN) and cytokine responses to infection were RNA virus specific and differentially involved TLR7 and TLR8, which sense single-stranded RNA. These TLRs activated distinct signaling cascades in monocytes, which correlated with differences in the production of cytokines involved in the polarization of CD4+T helper cells. Furthermore, we found that TLR7 signaling specifically increased expression of the transcription factor FOSL1, which reduced IL-27 and TNFα production by monocytes. TLR7, but not TLR8, activation of monocytes also stimulated Ca2+flux that prevented type I IFN responses. Our work demonstrates that in human monocytes, TLR7 and TLR8 triggered different signaling pathways that contribute to distinct phenotypes during RNA virus infection. In addition, we defined individual targets within these pathways that promoted specific T helper and antiviral responses.
Collapse
Affiliation(s)
- Marine de Marcken
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Khushwant Dhaliwal
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
27
|
Millen S, Gross C, Donhauser N, Mann MC, Péloponèse JM, Thoma-Kress AK. Collagen IV (COL4A1, COL4A2), a Component of the Viral Biofilm, Is Induced by the HTLV-1 Oncoprotein Tax and Impacts Virus Transmission. Front Microbiol 2019; 10:2439. [PMID: 31708905 PMCID: PMC6819499 DOI: 10.3389/fmicb.2019.02439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for Adult T-Cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 infects CD4+ T-cells via cell-to-cell transmission requiring reorganization of the cytoskeleton and expression of the viral transactivator and oncoprotein Tax. Viruses spread at the virological synapse (VS), a virus-induced specialized cell-cell contact, by polarized budding into synaptic clefts, and by cell surface transfer of viral biofilms (VBs). Since little is known about Tax’s role in formation of the VB, we asked which component of the VB is regulated by Tax and important for HTLV-1 transmission. Collagens are not only structural proteins of the extracellular matrix and basal membrane but also represent an important component of the VB. Here, we report that among the collagens known to be present in VBs, COL4 is specifically upregulated in the presence of HTLV-1 infection. Further, we found that transient expression of Tax is sufficient to induce COL4A1 and COL4A2 transcripts in Jurkat and CCRF-CEM T-cells, while robust induction of COL4 protein requires continuous Tax expression as shown in Tax-transformed T-cell lines. Repression of Tax led to a significant reduction of COL4A1/A2 transcripts and COL4 protein. Mechanistically, luciferase-based promoter studies indicate that Tax activates the COL4A2 and, to a less extent, the COL4A1 promoter. Imaging showing partial co-localization of COL4 with the viral Gag protein in VBs at the VS and transfer of COL4 and Gag to target cells suggests a role of COL4 in VB formation. Strikingly, in chronically infected C91-PL cells, knockout of COL4A2 impaired Gag transfer between infected T-cells and acceptor T-cells, while release of virus-like particles was unaffected. Taken together, we identified COL4 (COL4A1, COL4A2) as a component of the VB and a novel cellular target of Tax with COL4A2 appearing to impact virus transmission. Thus, this study is the first to provide a link between Tax’s activity and VB formation by hijacking COL4 protein functions.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie C Mann
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jean-Marie Péloponèse
- IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Essential Role of Human T Cell Leukemia Virus Type 1 orf-I in Lethal Proliferation of CD4 + Cells in Humanized Mice. J Virol 2019; 93:JVI.00565-19. [PMID: 31315992 DOI: 10.1128/jvi.00565-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 orf-I encodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, the in vivo requirements for orf-I expression vary in different animal models. In macaques, the ablation of orf-I expression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO In rabbits, HTLV-1p12KO is infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO We found that NOD/SCID/γC -/- c-kit+ mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+ CD25+ T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cells in vivo HTLV-1p12KO infection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of the orf-I initiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+ CD25+ T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCE Humanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+ T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+ T cell proliferation.
Collapse
|
29
|
Haghnazari Sadaghiani N, Pirayeshfard L, Aghaie A, Sharifi Z. The Effect of TAX-1 Gene of Human T-cell Leukemia Virus Type-1 on the Expression of CCR5 in K562 Cell Line. Avicenna J Med Biotechnol 2019; 11:67-71. [PMID: 30800245 PMCID: PMC6359701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Tax-1 protein of Human T-cell Leukemia Virus type 1(HTLV-1) serves as a key transcriptional regulatory gene product and has a crucial role in transactivating genes of infected cells by employing their transcriptional factors. This modulation includes induction of genes which encode CC-chemokines and their receptors. In this study, a recombinant vector containing Tax-1 gene was made and tested for its ability to induce CCR5 (CC chemokine receptor 5) expression in K562 cell line. METHODS In order to perform this research, two blood samples of HTLV-1 positive were obtained from Urmia blood transfusion center. After DNA extraction, a complete sequence of Tax-1 gene was amplified by specific primers. Recombinant vectors carrying Tax-1 gene were synthesized and transformed into Escherichia coli (E. coli). After bacteria transformation, bacteria containing recombinant plasmid were selected and purified. Then, the recombinant shuttle vectors, pCDNA3.1-TAX, were transfected into the cell culture (K562 cell line). Expression of CCR5 was measured after 72 hr by Syber Green Real-Time PCR method compared to control cell culture. Normalization was done with GAPDH as a standard gene. RESULTS Cloning of Tax-1 gene in the vector, pCDNA3.1 was confirmed by colony PCR, restriction digestion, and sequencing methods. Expression of Tax-1 and CCR5 genes were confirmed by real time PCR and also, expression of CCR5 gene showed an 8-fold increase in comparison to mock-treated controls (p<0.05). CONCLUSION Our data suggested that recombinant Tax-1 may have the enhancing effect on CCR5 expression rate at mRNA levels in K562 cell line. Further studies are necessary to evaluate the effect of pCDNA3.1-TAX on cell surface CCR5 expression.
Collapse
Affiliation(s)
| | | | | | - Zohreh Sharifi
- Corresponding author: Zohreh Sharifi, Ph.D., Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran, Tel: +98 21 82052151, Fax: +98 21 88601555, E-mail:
| |
Collapse
|
30
|
Yaghouti N, Boostani R, Mohamamdi A, Poursina Z, Rezaee SA, Vakili V, Valizadeh N, Shams A, Rafatpanah H. Role of Receptors for Advanced Glycation End Products and High-Mobility Group Box 1 in the Outcome of Human T Cell Lymphotropic Type 1 Infection. Viral Immunol 2018; 32:89-94. [PMID: 30585773 DOI: 10.1089/vim.2018.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human T cell lymphotropic type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic viral neuroinflammatory disease, which leads to damage of the central nervous system. Inflammatory responses and mediators are both involved in the pathogenesis of the disease and in determining its outcome. High-Mobility Group Box 1 (HMGB1) is a chromatin-associated nuclear protein acting as a signaling molecule in cells after binding to its receptors. Receptor for advanced glycation end products (RAGE) is a transmembrane multiligand receptor that binds to HMGB1. HMGB1-RAGE signaling has an important role in inflammatory and infectious diseases. Inhibition of HMGB1 activity reduces the inflammation in immune-associated diseases. In the present study, we examined the gene expressions and plasma levels of HMGB1 and its receptor RAGE in HAM/TSP patients, HTLV-1-infected asymptomatic carriers (ACs), and healthy controls. Peripheral blood mononuclear cells were collected from all the groups and complementary DNA (cDNA) was synthesized. HMGB-1 messenger RNA (mRNA) expression was quantified by real-time polymerase chain reaction (PCR) TaqMan method, and plasma levels of HMGB1 and soluble RAGE (sRAGE) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of HMGB1 was the same among the groups (p > 0.05). No significant difference in the plasma levels of HMGB1 was observed between the groups (p > 0.05). The plasma levels of sRAGE were higher in ACs than HAM/TSP patients, and a significant difference was observed between the two groups (p < 0.001). Our results showed that sRAGE could play a potential role in the control of inflammatory response in HTLV-1 carriers through the inhibition of HMGB1 signaling and potentially could be used as an indicator for evaluation of HAM/TSP developing in HTLV-1-infected individuals.
Collapse
Affiliation(s)
- Nafise Yaghouti
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Boostani
- 2 Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohamamdi
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Veda Vakili
- 4 Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shams
- 1 Department of Immunology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Houshang Rafatpanah
- 3 Immunology Research Centre, Inflammation and Inflammatory Diseases Division, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Echevarria-Lima J, de Abreu Pereira D, de Oliveira TS, de Melo Espíndola O, Lima MA, Celestino Leite AC, Sandim V, Rodrigues Nascimento C, E Kalume D, B Zingali R. Protein Profile of Blood Monocytes is Altered in HTLV-1 Infected Patients: Implications for HAM/TSP Disease. Sci Rep 2018; 8:14354. [PMID: 30254298 PMCID: PMC6156329 DOI: 10.1038/s41598-018-32324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/12/2018] [Indexed: 12/27/2022] Open
Abstract
Human T-cell lymphotropic virus type-1 (HTLV-1) is the etiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The endothelial breakdown and migration of leukocytes, including monocytes, to the spinal cord are involved in HAM/TSP development. Monocytes from HTLV-1-infected individuals exhibit important functional differences when compared to cells from uninfected donors. Using proteomic shot gun strategy, performed by nanoACQUITY-UPLC system, we analyzed monocytes isolated from peripheral blood of asymptomatic carriers (AC), HAM/TSP and uninfected individuals. 534 proteins were identified among which 376 were quantified by ExpressionE software. Our study revealed a panel of changes in protein expression linked to HTLV-1 infection. Upregulation of heat shock proteins and downregulation of canonical histone expression were observed in monocytes from HTLV-1-infected patients. Moreover, expression of cytoskeleton proteins was increased in monocytes from HTLV-1-infected patients, mainly in those from HAM/TSP, which was confirmed by flow cytometry and fluorescence microscopy. Importantly, functional assays demonstrated that monocytes from HAM/TSP patients present higher ability for adhesion and transmigration thought endothelium than those from AC and uninfected individuals. The major changes on monocyte protein profile were detected in HAM/TSP patients, suggesting that these alterations exert a relevant role in the establishment of HAM/TSP.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Lab. de Imunologia Básica e Aplicada, Depto. of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Denise de Abreu Pereira
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis and Instituto Nacional de Biologia Estrutural e Bioimagem (INBEB), UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Oncobiologia Celular e Molecular, Coordenação Geral de Ensino e Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Thais Silva de Oliveira
- Lab. de Imunologia Básica e Aplicada, Depto. of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Otávio de Melo Espíndola
- Lab. de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Marco Antonio Lima
- Lab. de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Ana Cláudia Celestino Leite
- Lab. de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vanessa Sandim
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis and Instituto Nacional de Biologia Estrutural e Bioimagem (INBEB), UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Dario E Kalume
- Lab. Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Russolina B Zingali
- Unidade de Espectrometria de Massas e Proteômica (UEMP), Instituto de Bioquímica Médica Leopoldo de Meis and Instituto Nacional de Biologia Estrutural e Bioimagem (INBEB), UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Kanzaki LIB. HTLV-1: A real pathogen or a runaway guest of a diseased cell? J Biosci 2018; 43:785-795. [PMID: 30207322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus claimed to be aetiologically linked to the adult T-cell leukaemia/lymphoma (ATLL) and associated myelopathy/tropical spastic paraparesis (HAM/TSP) besides other minor pathologies. HTLV-1 infection is worldwide distributed, despite its heterogeneous prevalence. Environmental factors and host-genetic background are very likely to determine the epidemiological profile of HTLV-1 prevalence and related disease confinement in distinct human ethnic populations and geographical coordinates, which raises the question if the virus is a real pathogen or a runaway well-organized packed genome of a burden host cell near death process. New methodological approaches need to be proposed and applied in order to prove or discard the hypotheses emerged in the present review.
Collapse
Affiliation(s)
- L I B Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, University of Brasilia, Brası´lia, DF CEP 70.910-900, Brazil,
| |
Collapse
|
33
|
Anderson MR, Pleet ML, Enose-Akahata Y, Erickson J, Monaco MC, Akpamagbo Y, Velluci A, Tanaka Y, Azodi S, Lepene B, Jones J, Kashanchi F, Jacobson S. Viral antigens detectable in CSF exosomes from patients with retrovirus associated neurologic disease: functional role of exosomes. Clin Transl Med 2018; 7:24. [PMID: 30146667 PMCID: PMC6110307 DOI: 10.1186/s40169-018-0204-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND HTLV-1 infects over 20 million people worldwide and causes a progressive neuroinflammatory disorder in a subset of infected individuals called HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The detection of HTLV-1 specific T cells in the cerebrospinal fluid (CSF) suggests this disease is immunopathologically mediated and that it may be driven by viral antigens. Exosomes are microvesicles originating from the endosomal compartment that are shed into the extracellular space by various cell types. It is now understood that several viruses take advantage of this mode of intercellular communication for packaging of viral components as well. We sought to understand if this is the case in HTLV-1 infection, and specifically if HTLV-1 proteins can be found in the CSF of HAM/TSP patients where we know free virus is absent, and furthermore, if exosomes containing HTLV-1 Tax have functional consequences. RESULTS Exosomes that were positive for HTLV-1 Tax by Western blot were isolated from HAM/TSP patient PBMCs (25/36) in ex vivo cultures by trapping exosomes from culture supernatants. HTLV-1 seronegative PBMCs did not have exosomes with Tax (0/12), (Fisher exact test, p = 0.0001). We were able to observe HAM/TSP patient CSF (12/20) containing Tax+ exosomes but not in HTLV-1 seronegative MS donors (0/5), despite the absence of viral detection in the CSF supernatant (Fisher exact test p = 0.0391). Furthermore, exosomes cultivated from HAM/TSP PBMCs were capable of sensitizing target cells for HTLV-1 specific CTL lysis. CONCLUSION Cumulatively, these results show that there are HTLV-1 proteins present in exosomes found in virus-free CSF. HAM/TSP PBMCs, particularly CD4+CD25+ T cells, can excrete these exosomes containing HTLV-1 Tax and may be a source of the exosomes found in patient CSF. Importantly, these exosomes are capable of sensitizing an HTLV-1 specific immune response, suggesting that they may play a role in the immunopathology observed in HAM/TSP. Given the infiltration of HTLV-1 Tax-specific CTLs into the CNS of HAM/TSP patients, it is likely that exosomes may also contribute to the continuous activation and inflammation observed in HAM/TSP, and may suggest future targeted therapies in this disorder.
Collapse
Affiliation(s)
- Monique R Anderson
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22901, USA.,Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Michelle L Pleet
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - James Erickson
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Maria Chiara Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institutes for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yao Akpamagbo
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Ashley Velluci
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Yuetsu Tanaka
- Department of Immunology, University of the Ryukyus Graduate School of Medicine, Okinawa, 903-0125, Japan
| | - Shila Azodi
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA
| | - Ben Lepene
- Ceres Nanosciences, Manassas, VA, 20109, USA
| | - Jennifer Jones
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, 10 Center Drive Rm 5C103, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
|
35
|
Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Leukemia Virus Type 1 (HTLV-1) Transmission by Cytarabine. Sci Rep 2018; 8:11118. [PMID: 30042514 PMCID: PMC6057998 DOI: 10.1038/s41598-018-29391-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is highly dependent on cell-to-cell interaction for transmission and productive infection. Cell-to-cell interactions through the virological synapse, biofilm-like structures and cellular conduits have been reported, but the relative contribution of each mechanism on HTLV-1 transmission still remains vastly unknown. The HTLV-1 protein p8 has been found to increase viral transmission and cellular conduits. Here we show that HTLV-1 expressing cells are interconnected by tunneling nanotubes (TNTs) defined as thin structures containing F-actin and lack of tubulin connecting two cells. TNTs connected HTLV-1 expressing cells and uninfected T-cells and monocytes and the viral proteins Tax and Gag localized to these TNTs. The HTLV-1 expressing protein p8 was found to induce TNT formation. Treatment of MT-2 cells with the nucleoside analog cytarabine (cytosine arabinoside, AraC) reduced number of TNTs and furthermore reduced TNT formation induced by the p8 protein. Intercellular transmission of HTLV-1 through TNTs provides a means of escape from recognition by the immune system. Cytarabine could represent a novel anti-HTLV-1 drug interfering with viral transmission.
Collapse
|
36
|
Harhaj EW, Giam CZ. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J 2018; 285:3324-3336. [PMID: 29722927 DOI: 10.1111/febs.14492] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4 + malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1-infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and -independent mechanisms of NF-κB activation during the multistep process leading to ATLL.
Collapse
Affiliation(s)
- Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
37
|
Bangham CRM, Matsuoka M. Human T-cell leukaemia virus type 1: parasitism and pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0272. [PMID: 28893939 PMCID: PMC5597739 DOI: 10.1098/rstb.2016.0272] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Human T-cell leukaemia virus type 1 (HTLV-1) causes not only adult T-cell leukaemia-lymphoma (ATL), but also inflammatory diseases including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 transmits primarily through cell-to-cell contact, and generates abundant infected cells in the host in order to survive and transmit to a new host. The resulting high proviral load is closely associated with the development of ATL and inflammatory diseases. To increase the number of infected cells, HTLV-1 changes the immunophenotype of infected cells, induces proliferation and inhibits apoptosis through the cooperative actions of two viral genes, tax and HTLV-1 bZIP factor (HBZ). As a result, infected cells survive, proliferate and infiltrate into the tissues, which is critical for transmission of the virus. Thus, the strategy of this virus is indivisibly linked with its pathogenesis, providing a clue for prevention and treatment of HTLV-1-induced diseases. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Kumamoto University Faculty of Life Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan .,Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
38
|
Donhauser N, Heym S, Thoma-Kress AK. Quantitating the Transfer of the HTLV-1 p8 Protein Between T-Cells by Flow Cytometry. Front Microbiol 2018; 9:400. [PMID: 29563906 PMCID: PMC5850991 DOI: 10.3389/fmicb.2018.00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023] Open
Abstract
The Human T-cell leukemia virus type 1 (HTLV-1)-encoded accessory protein p8 is cleaved from the precursor protein p12 encoded by the HTLV-1 open reading frame I. Both p12 and p8 are thought to contribute to efficient viral persistence. Mechanistically, p8 induces T-cell conjugates and cellular conduits. The latter are considered to facilitate transfer of p8 to target cells and virus transmission. Transfer of p8 between p8-expressing T-cells and recipient cells has been analyzed by immunofluorescence and live imaging. However, automatic quantitation of p8-transfer between cells has not been studied yet. Here we developed a novel method allowing time saving quantitation of p8 transfer between cells by flow cytometry. After establishing a protocol for the detection of intracellular p8 by flow cytometry and validation of p8 protein expression by western blot and immunofluorescence, we set up a co-culture assay between p8-expressing donor Jurkat T-cells and recipient Jurkat T-cells that had been prestained with a well-retained live cell dye. Upon quantitating the amount of p8 positive recipient cells with regard to the percentage of p8 expressing donor cells, time course experiments confirmed that p8 is rapidly transferred between Jurkat T-cells. We found that p8 enters approximately 5% of recipient T-cells immediately upon co-culture for 5 min. Prolonged co-culture for up to 24 h revealed an increase of relative p8 transfer to approximately 23% of the recipient cells. Immunofluorescence analysis of co-culture experiments and manual quantitation of p8 expression in fluorescence images confirmed the validity of the flow cytometry based assay. Application of the new assay revealed that manipulation of actin polymerization significantly decreased p8 transfer between Jurkat T-cells suggesting an important role of actin dynamics contributing to p8 transfer. Further, transfer of p8 to co-cultured T-cells varies between different donor cell types since p8 transfer could hardly been detected in co-cultures of 293T donor cells with Jurkat acceptor cells. In summary, our novel assay allows automatic and rapid quantitation of p8 transfer to target cells and might thus contribute to a better understanding of cellular processes and dynamics regulating p8 transfer and HTLV-1 transmission.
Collapse
Affiliation(s)
- Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Heym
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Furuta R, Yasunaga JI, Miura M, Sugata K, Saito A, Akari H, Ueno T, Takenouchi N, Fujisawa JI, Koh KR, Higuchi Y, Mahgoub M, Shimizu M, Matsuda F, Melamed A, Bangham CR, Matsuoka M. Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo. PLoS Pathog 2017; 13:e1006722. [PMID: 29186194 PMCID: PMC5724899 DOI: 10.1371/journal.ppat.1006722] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/11/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo.
Collapse
Affiliation(s)
- Rie Furuta
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Michi Miura
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akatsuki Saito
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aich, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aich, Japan
- Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Jun-ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Yusuke Higuchi
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed Mahgoub
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
40
|
Positive and Negative Regulation of Type I Interferons by the Human T Cell Leukemia Virus Antisense Protein HBZ. J Virol 2017; 91:JVI.00853-17. [PMID: 28768861 DOI: 10.1128/jvi.00853-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of human T cell leukemia virus type 1 (HTLV-1) is strongly linked to the viral regulatory proteins Tax1 and HBZ, whose opposing functions contribute to the clinical outcome of infection. Type I interferons alpha and beta (IFN-α and IFN-β) are key cytokines involved in innate immunity, and IFN-α, in combination with other antivirals, is extensively used in the treatment of HTLV-1 infection. The relationship between HTLV-1 and IFN signaling is unclear, and to date the effect of HBZ on this pathway has not been examined. Here we report that HBZ significantly enhances interferon regulatory factor 7 (IRF7)-induced IFN-α- and IFN-stimulated response element (ISRE) promoter activities and IFN-α production and can counteract the inhibitory effect of Tax1. In contrast to this, we show that HBZ and Tax1 cooperate to inhibit the induction of IFN-β and ISRE promoters by IRF3 and IFN-β production. In addition, we reveal that HBZ enhances ISRE activation by IFN-α. We further show that HBZ enhances IRF7 and suppresses IRF3 activation by TBK1 and IKKε. We demonstrate that HBZ has no effect on virus-induced nuclear accumulation of IRF3, suggesting that it may inhibit IRF3 activity at a transcriptional level. We show that HBZ physically interacts with IRF7 and IKKε but not with IRF3 or TBK1. Overall, our findings suggest that both HBZ and Tax1 are negative regulators of immediate early IFN-β innate immune responses, while HBZ but not Tax1 positively regulates the induction of IFN-α and downstream IFN-α signaling.IMPORTANCE Type I interferons are powerful antiviral cytokines and are used extensively in the treatment of HTLV-1-induced adult T cell leukemia (ATL). To date, the relationship between HTLV-1 and the IFN pathway is poorly understood, and studies so far have focused on Tax1. Our study is unique in that it examined the effect of HBZ, alone or in combination with Tax1, on type I IFN signaling. This is important because HBZ is frequently the only viral protein expressed in infected cells, particularly at later stages of infection. A better understanding of the how HBZ regulates IFN signaling may lead to the development of therapeutics that can modify such responses and improve the clinical outcome for infected individuals.
Collapse
|
41
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
42
|
Kubota R. Pathogenesis of human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryuji Kubota
- Division of Molecular Pathology; Center for Chronic Viral Diseases; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima Japan
| |
Collapse
|
43
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
44
|
Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission. Viruses 2016; 8:74. [PMID: 27005656 PMCID: PMC4810264 DOI: 10.3390/v8030074] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/20/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.
Collapse
|