1
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Herder V, Caporale M, MacLean OA, Pintus D, Huang X, Nomikou K, Palmalux N, Nichols J, Scivoli R, Boutell C, Taggart A, Allan J, Malik H, Ilia G, Gu Q, Ronchi GF, Furnon W, Zientara S, Bréard E, Antonucci D, Capista S, Giansante D, Cocco A, Mercante MT, Di Ventura M, Da Silva Filipe A, Puggioni G, Sevilla N, Stewart ME, Ligios C, Palmarini M. Correlates of disease severity in bluetongue as a model of acute arbovirus infection. PLoS Pathog 2024; 20:e1012466. [PMID: 39150989 DOI: 10.1371/journal.ppat.1012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/28/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Haris Malik
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephan Zientara
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Emmanuel Bréard
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Noemi Sevilla
- Centro de Investigación en Sanidad Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC). Valdeolmos, Madrid, Spain
| | - Meredith E Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
3
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
4
|
Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host In Vivo. J Virol 2022; 96:e0053122. [PMID: 35727032 PMCID: PMC9278112 DOI: 10.1128/jvi.00531-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.
Collapse
|
5
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
7
|
Rojas JM, Avia M, Martín V, Sevilla N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front Microbiol 2021; 12:692069. [PMID: 34168637 PMCID: PMC8217435 DOI: 10.3389/fmicb.2021.692069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bluetongue virus (BTV) is the prototypical orbivirus that belongs to the Reoviridae family. BTV infection produces a disease in ruminants, particularly in sheep, that results in economic losses through reduced productivity. BTV is transmitted by the bite of Culicoides spp. midges and is nowadays distributed globally throughout subtropical and even temperate regions. As most viruses, BTV is susceptible to the IFN response, the first line of defense employed by the immune system to combat viral infections. In turn, BTV has evolved strategies to counter the IFN response and promote its replication. The present review we will revise the works describing how BTV interferes with the IFN response.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Wang A, Du J, Feng H, Zhou J, Chen Y, Liu Y, Jiang M, Jia R, Tian Y, Zhang G. Identification of a novel bluetongue virus 1 specific B cell epitope using monoclonal antibodies against the VP2 protein. Int J Biol Macromol 2021; 183:1393-1401. [PMID: 33984384 DOI: 10.1016/j.ijbiomac.2021.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Bluetongue (BT) is a non-contact infectious disease caused by Bluetongue virus (BTV), which can be transmitted by vector insects such as Culicoides and Aedes mosquitoes. The BTV VP2 protein encoded by the L2 gene is located at the outermost layer of the virus particle, plays a key role on mediating the adsorption and entry of virus, and it is also a main antigenic protein widely used for vaccine development. In this study, the BTV1 VP2 gene was cloned into pFastBac™Dual vector, and expressed in insect Sf21 cells. Immunized mice with purified recombinant VP2 protein can induce higher levels of antibodies. Three anti BTV1 VP2 monoclonal antibodies (mAbs) were generated (17E9C6, 17E9C8, 17E9H12), and showed high specific reactivity with recombinant VP2 protein and inactivated BTV1 virus. Finally, a novel linear B-cell epitope 296-KEPAD-300 on recombinant VP2 protein was identified by using three mAbs react with a series of continue-truncated peptides. The results of this study may provide new information on the structure and function of BTV1 VP2 protein and lay a foundation for the development of BTV1 diagnostic and prophylactic methods.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinran Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Feng
- Key Laboratory of Animal Immunology of the Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Rojas JM, Barba-Moreno D, Avia M, Sevilla N, Martín V. Vaccination With Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front Vet Sci 2021; 8:645561. [PMID: 33778041 PMCID: PMC7987666 DOI: 10.3389/fvets.2021.645561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a disease that affects domestic and wild ruminants and leads to critical economic losses. BTV is an arbovirus from the Reoviridae family that is typically transmitted by the bite of infected Culicoides midges. BTV possesses multiple serotypes (up to 28 have been described), and immunity to one serotype offers little cross-protection to other serotypes. The design of vaccines that provide protection across multiple serotypes is therefore highly desirable to control this disease. We previously reported that a recombinant replication-defective human adenovirus serotype 5 (Ad5) that expresses the VP7 inner core protein of BTV serotype 8 (Ad5VP7-8) induced T-cell responses and provided protection. In the present work, we evaluated as BTV vaccine the combination of Ad5VP7-8 with another recombinant Ad5 that expresses the outer core protein VP2 from BTV-1 (Ad5VP2-1). The combination of Ad5VP2-1 and Ad5VP7-8 protected against homologous BTV challenge (BTV-1 and BTV-8) and partially against heterologous BTV-4 in a murine model. Cross-reactive anti-BTV immunoglobulin G (IgG) were detected in immunized animals, but no significant titers of neutralizing antibodies were elicited. The Ad5VP7-8 immunization induced T-cell responses that recognized all three serotypes tested in this study and primed cytotoxic T lymphocytes specific for VP7. This study further confirms that targeting antigenic determinant shared by several BTV serotypes using cellular immunity could help develop multiserotype BTV vaccines.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Diego Barba-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
10
|
Stokstad M, Coetzee P, Myrmel M, Mutowembwa P, Venter EH, Larsen S. Refined experimental design may increase the value of murine models for estimation of bluetongue virus virulence. Lab Anim 2020; 55:53-64. [PMID: 32588735 DOI: 10.1177/0023677220930056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bluetongue is a serious non-contagious vector-borne viral disease in ruminants, causing poor animal welfare and economic consequences globally. Concern has been raised about the development of novel bluetongue virus (BTV) strains and their possibly altered virulence through the process of viral reassortment. Virulence is traditionally estimated in lethal dose 50 (LD50) studies in murine models, but agreement with both in vitro and virulence in ruminants is questionable, and a refined experimental design is needed. Specific reassortants between wild-type and vaccine strains of BTV-1, -6 and -8 have previously been developed by reverse genetics. The aim of the present study was to rank the in vivo virulence of these parental and reassortant BTV strains by calculating LD50 in a murine model by using an experimental design that is new to virology: a between-patient optimised three-level response surface pathway design. The inoculation procedure was intracranial. Fifteen suckling mice were used to establish LD50 for each strain. Three parental and five reassortant virus strains were included. The LD50s varied from of 0.1 (95% confidence interval (CI) 0-0.20) to 3.3 (95% CI 2.96-3.72) tissue culture infectious dose 50/ml. The results support the hypothesis that reassortment in BTV may lead to increased virulence in mice with potential negative consequences for the natural ruminant host. The ranking showed low agreement with in vitro properties and virulence in ruminants according to existing literature. Refined design such as response surface pathway design was found suitable for use in virology, and it introduces significant ethical and scientific improvements.
Collapse
Affiliation(s)
- Maria Stokstad
- Department of Production Animal Clinical Sciences, 56625Norwegian University of Life Sciences, Norway
| | - Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, 56410University of Pretoria, South Africa
| | - Mette Myrmel
- Virology Unit, Faculty of Veterinary Medicine, 56625Norwegian University of Life Sciences, Norway
| | - Paidamwoyo Mutowembwa
- Agricultural Research Council - 71909Onderstepoort Veterinary Institute (Transboundary Animal Diseases), South Africa
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, 56410University of Pretoria, South Africa.,College of Public Health, Medical and Veterinary Sciences, 8001James Cook University, Australia
| | - Stig Larsen
- Department of Production Animal Clinical Sciences, 56625Norwegian University of Life Sciences, Norway
| |
Collapse
|
11
|
Attenuation of Bluetongue Virus (BTV) in an in ovo Model Is Related to the Changes of Viral Genetic Diversity of Cell-Culture Passaged BTV. Viruses 2019; 11:v11050481. [PMID: 31130699 PMCID: PMC6563285 DOI: 10.3390/v11050481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
The embryonated chicken egg (ECE) is routinely used for the laboratory isolation and adaptation of Bluetongue virus (BTV) in vitro. However, its utility as an alternate animal model has not been fully explored. In this paper, we evaluated the pathogenesis of BTV in ovo using a pathogenic isolate of South African BTV serotype 3 (BTV-3) derived from the blood of an infected sheep. Endothelio- and neurotropism of BTV-3 were observed by immunohistochemistry of non-structural protein 1 (NS1), NS3, NS3/3a, and viral protein 7 (VP7) antigens. In comparing the pathogenicity of BTV from infectious sheep blood with cell-culture-passaged BTV, including virus propagated through a Culicoides-derived cell line (KC) or ECE, we found virus attenuation in ECE following cell-culture passage. Genomic analysis of the consensus sequences of segments (Seg)-2, -5, -6, -7, -8, -9, and -10 identified several nucleotide and amino-acid mutations among the cell-culture-propagated BTV-3. Deep sequencing analysis revealed changes in BTV-3 genetic diversity in various genome segments, notably a reduction of Seg-7 diversity following passage in cell culture. Using this novel approach to investigate BTV pathogenicity in ovo, our findings support the notion that pathogenic BTV becomes attenuated in cell culture and that this change is associated with virus quasispecies evolution.
Collapse
|
12
|
Modeling Arboviral Infection in Mice Lacking the Interferon Alpha/Beta Receptor. Viruses 2019; 11:v11010035. [PMID: 30625992 PMCID: PMC6356211 DOI: 10.3390/v11010035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Arboviruses are arthropod-borne viruses that exhibit worldwide distribution and are a constant threat, not only for public health but also for wildlife, domestic animals, and even plants. To study disease pathogenesis and to develop efficient and safe therapies, the use of an appropriate animal model is a critical concern. Adult mice with gene knockouts of the interferon α/β (IFN-α/β) receptor (IFNAR(-/-)) have been described as a model of arbovirus infections. Studies with the natural hosts of these viruses are limited by financial and ethical issues, and in some cases, the need to have facilities with a biosafety level 3 with sufficient space to accommodate large animals. Moreover, the number of animals in the experiments must provide results with statistical significance. Recent advances in animal models in the last decade among other gaps in knowledge have contributed to the better understanding of arbovirus infections. A tremendous advantage of the IFNAR(-/-) mouse model is the availability of a wide variety of reagents that can be used to study many aspects of the immune response to the virus. Although extrapolation of findings in mice to natural hosts must be done with care due to differences in the biology between mouse and humans, experimental infections of IFNAR(-/-) mice with several studied arboviruses closely mimics hallmarks of these viruses in their natural host. Therefore, IFNAR(-/-) mice are a good model to facilitate studies on arbovirus transmission, pathogenesis, virulence, and the protective efficacy of new vaccines. In this review article, the most important arboviruses that have been studied using the IFNAR(-/-) mouse model will be reviewed.
Collapse
|
13
|
Martinelle L, Dal Pozzo F, Thys C, De Leeuw I, Van Campe W, De Clercq K, Thiry E, Saegerman C. Assessment of cross-protection induced by a bluetongue virus (BTV) serotype 8 vaccine towards other BTV serotypes in experimental conditions. Vet Res 2018; 49:63. [PMID: 30012223 PMCID: PMC6048908 DOI: 10.1186/s13567-018-0556-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Bluetongue disease is caused by bluetongue virus (BTV) and BTV serotype 8 (BTV8) caused great economic damage in Europe during the last decade. From 1998 to 2007, in addition to BTV8, Europe had to face the emergence of BTV1, 2, 4, 9, and 16, spreading in countries where the virus has never been detected before. These unprecedented outbreaks trigger the need to evaluate and compare the clinical, virological and serological features of the European BTV serotypes in the local epidemiological context. In this study groups of calves were infected with one of the following European BTV serotypes, namely BTV1, 2, 4, 9 and 16. For each tested serotype, two groups of three male Holstein calves were used: one group vaccinated against BTV8, the other non-vaccinated. Clinical signs were quantified, viral RNA was detected in blood and organs and serological relationship was assessed. Calves were euthanized 35 days post-infection and necropsied. Most of the infected animals showed mild clinical signs. A partial serological cross reactivity has been reported between BTV8 and BTV4, and between BTV1 and BTV8. BTV2 and BTV4 viral RNA only reached low levels in blood, when compared to other serotypes, whereas in vitro growth assays could not highlight significant differences. Altogether the results of this study support the hypothesis of higher adaptation of some BTV strains to specific hosts, in this case calves. Furthermore, cross-protection resulting from a prior vaccination with BTV8 was highlighted based on cross-neutralization. However, the development of neutralizing antibodies is probably not totally explaining the mild protection induced by the heterologous vaccination.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | - Christine Thys
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | | | | | | | - Etienne Thiry
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Veterinary Virology and Animal Viral Diseases, University of Liege, Liege, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium.
| |
Collapse
|
14
|
Anjaneya A, Singh KP, Cherian S, Saminathan M, Singh R, Ramakrishnan MA, Maan S, Maan NS, Hemadri D, Rao PP, Putty K, Krishnajyothi Y, Mertens PP. Comparative Neuropathology of Major Indian Bluetongue Virus Serotypes in a Neonatal BALB/c Mouse Model. J Comp Pathol 2018; 162:18-28. [PMID: 30060839 DOI: 10.1016/j.jcpa.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 01/15/2023]
Abstract
Bluetongue virus (BTV) is neurotropic in nature, especially in ruminant fetuses and in-utero infection results in abortion and congenital brain malformations. The aim of the present study was to compare the neuropathogenicity of major Indian BTV serotypes 1, 2, 10, 16 and 23 by gross and histopathological lesions and virus distribution in experimentally infected neonatal BALB/c mice. Each BTV serotype (20 μl of inoculum containing 1 × 105 tissue culture infectious dose [TCID]50/ml of virus) was inoculated intracerebrally into 3-day-old mice, while a control group was inoculated with mock-infected cell culture medium. Infection with BTV serotypes 1, 2 and 23 led to 65-70% mortality at 7-9 days post infection (dpi) and caused severe necrotizing encephalitis with neurodegenerative changes in neurons, swelling and proliferation of vascular endothelial cells in the cerebral cortex, cerebellum, midbrain and brainstem. In contrast, infection with BTV serotypes 10 and 16 led to 25-30% mortality at 9-11 dpi and caused mild neuropathological lesions. BTV antigen was detected by immunohistochemistry, direct fluorescence antibody technique and confocal microscopy in the cytoplasm of neuronal cells of the hippocampus, grey matter of the cerebral cortex and vascular endothelial cells in the midbrain and brainstem of BTV-1, -2, -10, -16 and -23 infected groups from 3 to 20 dpi. BTV nucleic acid was detected in the infected brain tissues from as early as 24 h up to 20 dpi by VP7 gene segment-based one-step reverse transcriptase polymerase chain reaction. This study of the relative neurovirulence of BTV serotypes is likely to help design suitable vaccination and control strategies for the disease.
Collapse
Affiliation(s)
- A Anjaneya
- Centre for Animal Disease Research and Diagnosis, India
| | - K P Singh
- Centre for Animal Disease Research and Diagnosis, India.
| | - S Cherian
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - M Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - R Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, Uttar Pradesh, India
| | - M A Ramakrishnan
- ICAR-Indian Veterinary Research Institute, Regional Station, Mukteswar, Uttarkhand, India
| | - S Maan
- LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - N S Maan
- LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - D Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - P P Rao
- Ella Foundation, Hyderabad, Telangana, India
| | - K Putty
- SPVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Y Krishnajyothi
- Veterinary Biological and Research Institute, Vijayawada, Andhra Pradesh, India
| | - P P Mertens
- School of Veterinary Medicine and Science, The University of Nottingham, UK
| |
Collapse
|
15
|
Sero-epidemiology of bluetongue virus (BTV) infection in sheep and goats of Khyber Pakhtunkhwa province of Pakistan. Acta Trop 2018; 182:207-211. [PMID: 29545153 DOI: 10.1016/j.actatropica.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/01/2018] [Accepted: 03/10/2018] [Indexed: 11/21/2022]
Abstract
Bluetongue virus (BTV) infection is an emerging hazard in small ruminants having socio-economic impacts on animals and associated people. The current study was aimed to estimate the sero-prevalence and associated risk factors in sheep and goat from Khyber Pakhtunkhwa (KP) province of Pakistan. Three distinct zones (northern, central and southern) with four districts (Mansehra, Abbottabad, Swabi, and Kohat) with a higher population of small ruminants were selected. A total of n = 408 sera originating from sheep (n = 212) and goats (n = 196) were randomly collected for detection of BTV group specific antibodies through competitive ELISA (c-ELISA). Univariable and multiple logistic regressions were applied to assess the potential risk factors associated with the occurrence of this disease. Results showed an overall prevalence of 50.00% (CI = 44.17-54.83) of BTV in both sheep and goats with a significant difference (p < 0.05) among different districts. The prevalence of BTV in sheep was found higher (56.60%, CI = 49.6-63.4) than goats (42.86%, CI = 35.8-50.1). The risk factors identified based on chi-square test were; 1-2 year of animals, herd size and location in sheep while, milking status, ticks infestation, location and herd size for goats (p < 0.05). On the basis of univariable analysis, 1-2 year of animals, and location for sheep while, ticks infestation and location for goats (OR > 1). Multiple logistic regressions conferred only herd size and location as potential risk factors (OR > 1) for BTV in sheep and goats. The study concluded higher prevalence of BTV in sheep than the goats, the risk factors were significantly associated with the occurrence of disease, and together ascertaining the needs to design appropriate disease management and control strategies in sheep and goats.
Collapse
|
16
|
Bluetongue Virus NS4 Protein Is an Interferon Antagonist and a Determinant of Virus Virulence. J Virol 2016; 90:5427-39. [PMID: 27009961 PMCID: PMC4934764 DOI: 10.1128/jvi.00422-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of bluetongue, a major infectious disease of ruminants with serious consequences to both animal health and the economy. The clinical outcome of BTV infection is highly variable and dependent on a variety of factors related to both the virus and the host. In this study, we show that the BTV nonstructural protein NS4 favors viral replication in sheep, the animal species most affected by bluetongue. In addition, NS4 confers a replication advantage on the virus in interferon (IFN)-competent primary sheep endothelial cells and immortalized cell lines. We determined that in cells infected with an NS4 deletion mutant (BTV8ΔNS4), there is increased synthesis of type I IFN compared to cells infected with wild-type BTV-8. In addition, using RNA sequencing (RNA-seq), we show that NS4 modulates the host IFN response and downregulates mRNA levels of type I IFN and interferon-stimulated genes. Moreover, using reporter assays and protein synthesis assays, we show that NS4 downregulates the activities of a variety of promoters, such as the cytomegalovirus immediate-early promoter, the IFN-β promoter, and a promoter containing interferon-stimulated response elements (ISRE). We also show that the NS4 inhibitory activity on gene expression is related to its nucleolar localization. Furthermore, NS4 does not affect mRNA splicing or cellular translation. The data obtained in this study strongly suggest that BTV NS4 is an IFN antagonist and a key determinant of viral virulence.
IMPORTANCE Bluetongue is one of the main infectious diseases of ruminants and is caused by bluetongue virus (BTV), an arthropod-borne virus transmitted from infected to susceptible animals by Culicoides biting midges. Bluetongue has a variable clinical outcome that can be related to both virus and host factors. It is therefore critical to understand the interplay between BTV and the host immune responses. In this study, we show that a nonstructural protein of BTV (NS4) is critical to counteract the innate immune response of the host. Infection of cells with a BTV mutant lacking NS4 results in increased synthesis of IFN-β and upregulation of interferon-stimulated genes. In addition, we show that NS4 is a virulence factor for BTV by favoring viral replication in sheep, the animal species most susceptible to bluetongue.
Collapse
|
17
|
Drolet BS, van Rijn P, Howerth EW, Beer M, Mertens PP. A Review of Knowledge Gaps and Tools for Orbivirus Research. Vector Borne Zoonotic Dis 2016; 15:339-47. [PMID: 26086555 DOI: 10.1089/vbz.2014.1701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although recognized as causing emerging and re-emerging disease outbreaks worldwide since the late 1800 s, there has been growing interest in the United States and Europe in recent years in orbiviruses, their insect vectors, and the diseases they cause in domestic livestock and wildlife. This is due, in part, to the emergence of bluetongue (BT) in northern Europe in 2006-2007 resulting in a devastating outbreak, as well as severe BT outbreaks in sheep and epizootic hemorrhagic disease (EHD) outbreaks in deer and cattle in the United States. Of notable concern is the isolation of as many as 10 new BT virus (BTV) serotypes in the United States since 1999 and their associated unknowns, such as route of introduction, virulence to mammals, and indigenous competent vectors. This review, based on a gap analysis workshop composed of international experts on orbiviruses conducted in 2013, gives a global perspective of current basic virological understanding of orbiviruses, with particular attention to BTV and the closely related epizootic hemorrhagic disease virus (EHDV), and identifies a multitude of basic virology research gaps, critical for predicting and preventing outbreaks.
Collapse
Affiliation(s)
- Barbara S Drolet
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Piet van Rijn
- 2 Department of Virology, Central Veterinary Institute of Wageningen University (CVI), The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University , South Africa
| | - Elizabeth W Howerth
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Martin Beer
- 4 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut , Insel Riems, Germany
| | - Peter P Mertens
- 5 Vector-Borne Diseases Programme, The Pirbright Institute , Pirbright, Woking, United Kingdom
| |
Collapse
|
18
|
Stewart M, Hardy A, Barry G, Pinto RM, Caporale M, Melzi E, Hughes J, Taggart A, Janowicz A, Varela M, Ratinier M, Palmarini M. Characterization of a second open reading frame in genome segment 10 of bluetongue virus. J Gen Virol 2015; 96:3280-3293. [PMID: 26290332 PMCID: PMC4806581 DOI: 10.1099/jgv.0.000267] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses have often evolved overlapping reading frames in order to maximize their coding capacity. Until recently, the segmented dsRNA genome of viruses of the Orbivirus genus was thought to be monocistronic, but the identification of the bluetongue virus (BTV) NS4 protein changed this assumption. A small ORF in segment 10, overlapping the NS3 ORF in the +1 position, is maintained in more than 300 strains of the 27 different BTV serotypes and in more than 200 strains of the phylogenetically related African horse sickness virus (AHSV). In BTV, this ORF (named S10-ORF2 in this study) encodes a putative protein 50–59 residues in length and appears to be under strong positive selection. HA- or GFP-tagged versions of S10-ORF2 expressed from transfected plasmids localized within the nucleoli of transfected cells, unless a putative nucleolar localization signal was mutated. S10-ORF2 inhibited gene expression, but not RNA translation, in transient transfection reporter assays. In both mammalian and insect cells, BTV S10-ORF2 deletion mutants (BTV8ΔS10-ORF2) displayed similar replication kinetics to wt virus. In vivo, S10-ORF2 deletion mutants were pathogenic in mouse models of disease. Although further evidence is required for S10-ORF2 expression during infection, the data presented provide an initial characterization of this ORF.
Collapse
Affiliation(s)
- Meredith Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Alexandra Hardy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Gerald Barry
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Rute Maria Pinto
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marco Caporale
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.,Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Teramo, Italy
| | - Eleonora Melzi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Anna Janowicz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Maxime Ratinier
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | |
Collapse
|
19
|
Nomikou K, Hughes J, Wash R, Kellam P, Breard E, Zientara S, Palmarini M, Biek R, Mertens P. Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion. PLoS Pathog 2015; 11:e1005056. [PMID: 26252219 PMCID: PMC4529188 DOI: 10.1371/journal.ppat.1005056] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Genetic exchange by a process of genome-segment ‘reassortment’ represents an important mechanism for evolutionary change in all viruses with segmented genomes, yet in many cases a detailed understanding of its frequency and biological consequences is lacking. We provide a comprehensive assessment of reassortment in bluetongue virus (BTV), a globally important insect-borne pathogen of livestock, during recent outbreaks in Europe. Full-genome sequences were generated and analysed for over 150 isolates belonging to the different BTV serotypes that have emerged in the region over the last 5 decades. Based on this novel dataset we confirm that reassortment is a frequent process that plays an important and on-going role in evolution of the virus. We found evidence for reassortment in all ten segments without a significant bias towards any particular segment. However, we observed biases in the relative frequency at which particular segments were associated with each other during reassortment. This points to selective constraints possibly caused by functional relationships between individual proteins or genome segments and genome-wide epistatic interactions. Sites under positive selection were more likely to undergo amino acid changes in newly reassorted viruses, providing additional evidence for adaptive dynamics as a consequence of reassortment. We show that the live attenuated vaccines recently used in Europe have repeatedly reassorted with field strains, contributing to their genotypic, and potentially phenotypic, variability. The high degree of plasticity seen in the BTV genome in terms of segment origin suggests that current classification schemes that are based primarily on serotype, which is determined by only a single genome segment, are inadequate. Our work highlights the need for a better understanding of the mechanisms and epidemiological consequences of reassortment in BTV, as well as other segmented RNA viruses. Segmented viruses have genomes that are separated into multiple segments, comparable to chromosomes in higher organisms. When two segmented viruses of the same species infect the same cell, their progeny may incorporate segments picked up from the “parental” viruses. This process is called “reassortment” and represents an important way for segmented viruses to evolve. Whereas reassortment has received a lot of attention in certain segmented viruses, especially influenza A, its frequency and biological consequences remain poorly understood for most of the others. Here, we present a comprehensive analysis of the reassortment patterns in bluetongue virus, an important pathogen of livestock, during its repeated emergence in Europe in recent decades. We confirm earlier reports that reassortment is common and can involve segments derived from live vaccines used to control outbreaks. However, the mixing of viral genomes is not strictly random and reassortment is commonly followed by novel adaptive changes in the progeny virus. This points to important functional links (paired associations) between certain segments. Our findings have important implications for the classification and control of segmented viruses and generate new insights and hypotheses about the biological interactions among different parts of the bluetongue virus genome.
Collapse
Affiliation(s)
- Kyriaki Nomikou
- Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Joseph Hughes
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rachael Wash
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Division of Infection and Immunity, Research Department of Infection, University College London, London, United Kingdom
| | - Emmanuel Breard
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Stéphan Zientara
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Massimo Palmarini
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (RB); (PM)
| | - Peter Mertens
- Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking, United Kingdom
- * E-mail: (RB); (PM)
| |
Collapse
|
20
|
Turnover Rate of NS3 Proteins Modulates Bluetongue Virus Replication Kinetics in a Host-Specific Manner. J Virol 2015; 89:10467-81. [PMID: 26246581 DOI: 10.1128/jvi.01541-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate. IMPORTANCE BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.
Collapse
|
21
|
Maan S, Maan NS, Belaganahalli MN, Rao PP, Singh KP, Hemadri D, Putty K, Kumar A, Batra K, Krishnajyothi Y, Chandel BS, Reddy GH, Nomikou K, Reddy YN, Attoui H, Hegde NR, Mertens PPC. Full-Genome Sequencing as a Basis for Molecular Epidemiology Studies of Bluetongue Virus in India. PLoS One 2015; 10:e0131257. [PMID: 26121128 PMCID: PMC4488075 DOI: 10.1371/journal.pone.0131257] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023] Open
Abstract
Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV 'topotype'. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of 'live' South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.
Collapse
Affiliation(s)
- Sushila Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
- * E-mail: (SM); (PPCM)
| | - Narender S. Maan
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Manjunatha N. Belaganahalli
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Karam Pal Singh
- Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Divakar Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, K.A, India
| | - Kalyani Putty
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Aman Kumar
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Kanisht Batra
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, 125 004, Haryana, India
| | - Yadlapati Krishnajyothi
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Bharat S. Chandel
- College of Veterinary Science and AH, S.D. Agricultural University, Sardarkrushinagar-385 506, B.K., Gujarat, India
| | - G. Hanmanth Reddy
- Veterinary Biological & Research Institute, Govt. of Andhra Pradesh, Hyderabad, 500028, T.S, India
| | - Kyriaki Nomikou
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Yella Narasimha Reddy
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad, 500 030, T.S, India
| | - Houssam Attoui
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | | | - Peter P. C. Mertens
- Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
- * E-mail: (SM); (PPCM)
| |
Collapse
|
22
|
Genome Sequence of Bluetongue Virus Type 2 from India: Evidence for Reassortment between Outer Capsid Protein Genes. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00045-15. [PMID: 25858823 PMCID: PMC4392135 DOI: 10.1128/genomea.00045-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Southern Indian isolate IND1994/01 of bluetongue virus serotype 2 (BTV-2), from the Orbivirus Reference Collection at the Pirbright Institute (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1994/01), was sequenced. Its genome segment 6 (Seg-6) [encoding VP5(OCP2)] is identical to that of the Indian BTV-1 isolate (IND2003/05), while Seg-5 and Seg-9 are closely related to isolates from South Africa and the United States, respectively.
Collapse
|
23
|
Legisa DM, Perez Aguirreburualde MS, Gonzalez FN, Marin-Lopez A, Ruiz V, Wigdorovitz A, Martinez-Escribano JA, Ortego J, Dus Santos MJ. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice. Vaccine 2015; 33:2614-9. [PMID: 25858859 DOI: 10.1016/j.vaccine.2015.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (BTV), the causative agent of bluetongue disease (BT) in domestic and wild ruminants, is worldwide distributed. A total of 27 serotypes have been described so far, and several outbreaks have been reported. Vaccination is critical for controlling the spread of BTV. In the last years, subunit vaccines, viral vector vaccines and reverse genetic-based vaccines have emerged as new alternatives to conventional ones. In this study, we developed an experimental subunit vaccine against BTV4, with the benefit of targeting the recombinant protein to antigen-presenting cells. The VP2 protein from an Argentine BTV4 isolate was expressed alone or fused to the antigen presenting cell homing (APCH) molecule, in the baculovirus insect cell expression system. The immunogenicity of both proteins was evaluated in guinea pigs and cattle. Titers of specific neutralizing antibodies in guinea pigs and cattle immunized with VP2 or APCH-VP2 were high and similar to those induced by a conventional inactivated vaccine. The immunogenicity of recombinant proteins was further studied in the IFNAR(-/-) mouse model where the fusion of VP2 to APCH enhanced the cellular immune response and the neutralizing activity induced by VP2.
Collapse
Affiliation(s)
- D M Legisa
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| | | | - F N Gonzalez
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Marin-Lopez
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - V Ruiz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Wigdorovitz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | | | - J Ortego
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - M J Dus Santos
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Seroepidemiology of bluetongue disease in small ruminants of north-east of Iran. Asian Pac J Trop Biomed 2015; 3:492-5. [PMID: 23730564 DOI: 10.1016/s2221-1691(13)60102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/10/2013] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To estimate the prevalence and distribution of bluetongue virus antibody in sheep and goats in 25 townships of Khorasan Razavi. Bluetongue is an infectious, non-contagious, arthropod born viral disease of ruminants and has been reported from most of the tropical and subtropical regions of the world. METHODS A total number of 1 034 serum samples from sheep and goats were collected and transmitted to Serological Laboratory of Veterinary Council of Khorasan Razavi. Serums were screened for the presence of group-specific bluetongue virus antibody using competitive Enzyme Linked Immuno Sorbent Assay (c-ELISA). RESULTS The seropositivity of sheep and goats for bluetongue was found to be 89.2%. The highest prevalence rate was seen in Taybad, Khalil-abad and Torbat-jam (100%) and the least prevalence rate was seen in Jovein (55%). CONCLUSIONS The results showed that the majority of animals in the north-east of Iran are infected with bluetongue virus. High correlation between abortion history and seroposivity emphasize the economical importance of bluetongue virus in the sheep herds of the region.
Collapse
|
25
|
Multiple genome segments determine virulence of bluetongue virus serotype 8. J Virol 2015; 89:5238-49. [PMID: 25822026 PMCID: PMC4442542 DOI: 10.1128/jvi.00395-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bluetongue virus (BTV) causes bluetongue, a major hemorrhagic disease of ruminants. In order to investigate the molecular determinants of BTV virulence, we used a BTV8 strain minimally passaged in tissue culture (termed BTV8L in this study) and a derivative strain passaged extensively in tissue culture (BTV8H) in in vitro and in vivo studies. BTV8L was pathogenic in both IFNAR(-/-) mice and in sheep, while BTV8H was attenuated in both species. To identify genetic changes which led to BTV8H attenuation, we generated 34 reassortants between BTV8L and BTV8H. We found that partial attenuation of BTV8L in IFNAR(-/-) mice was achieved by simply replacing genomic segment 2 (Seg2, encoding VP2) or Seg10 (encoding NS3) with the BTV8H homologous segments. Fully attenuated viruses required at least two genome segments from BTV8H, including Seg2 with either Seg1 (encoding VP1), Seg6 (encoding VP6 and NS4), or Seg10 (encoding NS3). Conversely, full reversion of virulence of BTV8H required at least five genomic segments of BTV8L. We also demonstrated that BTV8H acquired an increased affinity for glycosaminoglycan receptors during passaging in cell culture due to mutations in its VP2 protein. Replication of BTV8H was relatively poor in interferon (IFN)-competent primary ovine endothelial cells compared to replication of BTV8L, and this phenotype was determined by several viral genomic segments, including Seg4 and Seg9. This study demonstrated that multiple viral proteins contribute to BTV8 virulence. VP2 and NS3 are primary determinants of BTV pathogenesis, but VP1, VP5, VP4, VP6, and VP7 also contribute to virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants, and it is listed as a notifiable disease by the World Organization for Animal Health (OIE). The clinical outcome of BTV infection varies considerably and depends on environmental and host- and virus-specific factors. Over the years, BTV serotypes/strains with various degrees of virulence (including nonpathogenic strains) have been described in different geographical locations. However, no data are available to correlate the BTV genotype to virulence. This study shows that BTV virulence is determined by different viral genomic segments. The data obtained will help to characterize thoroughly the pathogenesis of bluetongue. The possibility to determine the pathogenicity of virus isolates on the basis of their genome sequences will help in the design of control strategies that fit the risk posed by new emerging BTV strains.
Collapse
|
26
|
Abstract
Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an arbovirus transmitted by Culicoides. Here, we assessed virus and host factors influencing the clinical outcome of BTV infection using a single experimental framework. We investigated how mammalian host species, breed, age, BTV serotypes, and strains within a serotype affect the clinical course of bluetongue. Results obtained indicate that in small ruminants, there is a marked difference in the susceptibility to clinical disease induced by BTV at the host species level but less so at the breed level. No major differences in virulence were found between divergent serotypes (BTV-8 and BTV-2). However, we observed striking differences in virulence between closely related strains of the same serotype collected toward the beginning and the end of the European BTV-8 outbreak. As observed previously, differences in disease severity were also observed when animals were infected with either blood from a BTV-infected animal or from the same virus isolated in cell culture. Interestingly, with the exception of two silent mutations, full viral genome sequencing showed identical consensus sequences of the virus before and after cell culture isolation. However, deep sequencing analysis revealed a marked decrease in the genetic diversity of the viral population after passaging in mammalian cells. In contrast, passaging in Culicoides cells increased the overall number of low-frequency variants compared to virus never passaged in cell culture. Thus, Culicoides might be a source of new viral variants, and viral population diversity can be another factor influencing BTV virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants. It is caused by an arbovirus known as bluetongue virus (BTV). The clinical outcome of BTV infection is extremely variable. We show that there are clear links between the severity of bluetongue and the mammalian host species infected, while at the breed level differences were less evident. No differences were observed in the virulence of two different BTV serotypes (BTV-8 and BTV-2). In contrast, we show that the European BTV-8 strain isolated at the beginning of the bluetongue outbreak in 2006 was more virulent than a strain isolated toward the end of the outbreak. In addition, we show that there is a link between the variability of the BTV population as a whole and virulence, and our data also suggest that Culicoides cells might function as an “incubator” of viral variants.
Collapse
|
27
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, van Gennip RGP, van Rijn PA, Venter EH. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8. Vet Microbiol 2014; 171:53-65. [PMID: 24685608 DOI: 10.1016/j.vetmic.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 01/16/2023]
Abstract
Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the virus. This process, may potentially give rise to the generation of novel reassortant strains that may differ from parental strains in regards to their phenotypic characteristics. To investigate the potential effects of reassortment on the virus' phenotype, parental as well as reassortant strains of BTV serotype 1, 6, 8, that were derived from attenuated and wild type strains by reverse genetics, were studied in vitro for their virus replication kinetics and cytopathogenicity in mammalian (Vero) cell cultures. The results indicate that genetic reassortment can affect viral replication kinetics, the cytopathogenicity and extent/mechanism of cell death in infected cell cultures. In particular, some reassortants of non-virulent vaccine (BTV-1 and BTV-6) and virulent field origin (BTV-8) demonstrate more pronounced cytopathic effects compared to their parental strains. Some reassortant strains in addition replicated to high titres in vitro despite being composed of genome segments from slow and fast replicating parental strains. The latter result may have implications for the level of viraemia in the mammalian host and subsequent uptake and transmission of reassortant strains (and their genome segments) by Culicoides vectors. Increased rates of CPE induction could further suggest a higher virulence for reassortant strains in vivo. Overall, these findings raise questions in regards to the use of modified-live virus (MLV) vaccines and risk of reassortment in the field. To further address these questions, additional experimental infection studies using insects and/or animal models should be conducted, to determine whether these results have significant implications in vivo.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Moritz Van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| |
Collapse
|
28
|
Coetzee P, van Vuuren M, Venter EH, Stokstad M. A review of experimental infections with bluetongue virus in the mammalian host. Virus Res 2014; 182:21-34. [PMID: 24462840 PMCID: PMC7132480 DOI: 10.1016/j.virusres.2013.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 11/23/2022]
Abstract
Experimental infection studies with bluetongue virus (BTV) in the mammalian host have a history that stretches back to the late 18th century. Studies in a wide range of ruminant and camelid species as well as mice have been instrumental in understanding BTV transmission, bluetongue (BT) pathogenicity/pathogenesis, viral virulence, the induced immune response, as well as reproductive failures associated with BTV infection. These studies have in many cases been complemented by in vitro studies with BTV in different cell types in tissue culture. Together these studies have formed the basis for the understanding of BTV-host interaction and have contributed to the design of successful control strategies, including the development of effective vaccines. This review describes some of the fundamental and contemporary infection studies that have been conducted with BTV in the mammalian host and provides an overview of the principal animal welfare issues that should be considered when designing experimental infection studies with BTV in in vivo infection models. Examples are provided from the authors' own laboratory where the three Rs (replacement, reduction and refinement) have been implemented in the design of experimental infection studies with BTV in mice and goats. The use of the ARRIVE guidelines for the reporting of data from animal infection studies is emphasized.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| | - Moritz van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| |
Collapse
|
29
|
Vitour D, Doceul V, Ruscanu S, Chauveau E, Schwartz-Cornil I, Zientara S. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res 2013; 182:59-70. [PMID: 24211608 PMCID: PMC7114367 DOI: 10.1016/j.virusres.2013.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
A general review describing the current knowledge on the type I IFN pathway. Description of several mechanisms evolved by viruses to counteract this antiviral response. An up-to-date review on the interaction of BTV and the type I IFN pathway in vivo and in vitro. Description of the cellular sensors involved in the induction of IFN-α/β synthesis upon BTV infection in haematopoietic and non-haematopoietic cells. Description of the strategies evolved by BTV to counteract this cellular antiviral response.
The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.
Collapse
Affiliation(s)
- Damien Vitour
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Virginie Doceul
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Jouy-en-Josas, France.
| | - Emilie Chauveau
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | - Stéphan Zientara
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| |
Collapse
|
30
|
Vandenbussche F, Sailleau C, Rosseel T, Desprat A, Viarouge C, Richardson J, Eschbaumer M, Hoffmann B, De Clercq K, Bréard E, Zientara S. Full-Genome Sequencing of Four Bluetongue Virus Serotype 11 Viruses. Transbound Emerg Dis 2013; 62:565-71. [PMID: 24750582 DOI: 10.1111/tbed.12178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 11/29/2022]
Abstract
Recently, a contamination incident was described in which the challenge inoculum used in a bluetongue virus serotype 8 (BTV-8) vaccination trial was contaminated with a BTV-11 virus that was closely related to the Belgian BTV-11 virus from 2008. This study reports the first complete genome sequences of four BTV-11 viruses: the BTV-11 contaminant, BTV-11 reference strain, BTV-11 vaccine strain and a recently isolated BTV-11 field strain from Martinique. Full-genome analysis showed that these viruses belong to serotype 11/nucleotype A and cluster together with other western topotype bluetongue viruses. Detailed comparisons of the genomes further indicated that the contaminant was derived from the BTV-11 reference strain, as they were distinguished by a single synonymous nucleotide substitution. The previously reported partial sequence of genome segment 2 of the Belgian BTV-11 was found to be identical to that of the BTV-11 vaccine strain, indicating that it most likely was the BTV-11 vaccine strain. These findings also suggest that the BTV-11 contaminant and the Belgian BTV-11 are not the same viruses. Finally, comparison of the reference and vaccine strain did not allow determining the amino acid substitutions that contribute to the attenuated phenotype.
Collapse
Affiliation(s)
- F Vandenbussche
- Operational Directorate of Viral Diseases, Molecular Platform, Veterinary and Agrochemical Research Centre, Ukkel, Belgium
| | - C Sailleau
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| | - T Rosseel
- Operational Directorate of Viral Diseases, Molecular Platform, Veterinary and Agrochemical Research Centre, Ukkel, Belgium
| | - A Desprat
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| | - C Viarouge
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| | - J Richardson
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| | - M Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - B Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - K De Clercq
- Operational Directorate of Viral Diseases, Vesicular and Exotic Diseases, Veterinary and Agrochemical Research Centre, Ukkel, Belgium
| | - E Bréard
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| | - S Zientara
- ANSES, LSA (Animal Health Laboratory) UMR 1161 ANSES/INRA/ENVA, Maisons-Alfort, France
| |
Collapse
|
31
|
Ortego J, de la Poza F, Marín-López A. Interferon α/β receptor knockout mice as a model to study bluetongue virus infection. Virus Res 2013; 182:35-42. [PMID: 24100234 DOI: 10.1016/j.virusres.2013.09.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
Abstract
Bluetongue is an arthropod-borne disease caused by a virus of the genus Orbivirus, the bluetongue virus (BTV), which affects ruminant livestock such as cattle, sheep, and goats and wild ruminants such as deer, and camelids. Recently, adult mice with gene knockouts of the interferon α/β receptor (IFNAR-/-) have been described as a model of lethal BTV infection. IFNAR(-/-) mice are highly susceptible to BTV-1, BTV-4 and BTV-8 infection when the virus is administered intravenously or subcutaneosuly. Disease progression and pathogenesis closely mimics signs of bluetongue disease in ruminants. In the present paper we review the studies where IFNAR(-/-) mice have been used as an animal model to study BTV transmission, pathogenesis, virulence, and protective efficacy of inactivated and new recombinant marker BTV vaccines. Furthermore, we report new data on protective efficacy of different strategies of BTV vaccination and also on induction of interferon α/β and proinflammatory immune responses in IFNAR(-/-) mice infected with BTV.
Collapse
Affiliation(s)
- Javier Ortego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain.
| | | | | |
Collapse
|
32
|
Rasmussen LD, Savini G, Lorusso A, Bellacicco A, Palmarini M, Caporale M, Rasmussen TB, Belsham GJ, Bøtner A. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep. Vet Res 2013; 44:75. [PMID: 24007601 PMCID: PMC3848766 DOI: 10.1186/1297-9716-44-75] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/27/2013] [Indexed: 11/10/2022] Open
Abstract
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought.
Collapse
Affiliation(s)
- Lasse Dam Rasmussen
- National Veterinary Institute, Technical University of Denmark, 4771 Kalvehave, Lindholm, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maclachlan NJ, Mayo CE. Potential strategies for control of bluetongue, a globally emerging, Culicoides-transmitted viral disease of ruminant livestock and wildlife. Antiviral Res 2013; 99:79-90. [DOI: 10.1016/j.antiviral.2013.04.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
|
34
|
Abstract
The complete genomic sequence of a bluetongue virus serotype 4 (BTV-4) strain (strain YTS-4), isolated from sentinel cattle in Yunnan Province, China, is reported here. This work is the first to document the complete genomic sequence of a BTV-4 strain from China. The sequence information will help determine the geographic origin of Chinese BTV-4 and provide data to facilitate future analyses of the genetic diversity and phylogenetic relationships of BTV strains.
Collapse
|
35
|
Identification of a novel bluetongue virus 1-specific B-cell epitope using a monoclonal antibody against the VP2 protein. Arch Virol 2013; 158:1099-104. [DOI: 10.1007/s00705-012-1590-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/28/2012] [Indexed: 11/24/2022]
|
36
|
Varela M, Schnettler E, Caporale M, Murgia C, Barry G, McFarlane M, McGregor E, Piras IM, Shaw A, Lamm C, Janowicz A, Beer M, Glass M, Herder V, Hahn K, Baumgärtner W, Kohl A, Palmarini M. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog 2013; 9:e1003133. [PMID: 23326235 PMCID: PMC3542112 DOI: 10.1371/journal.ppat.1003133] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/01/2012] [Indexed: 12/27/2022] Open
Abstract
Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and "synthetic" SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV.
Collapse
Affiliation(s)
- Mariana Varela
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Esther Schnettler
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marco Caporale
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Claudio Murgia
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gerald Barry
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melanie McFarlane
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Eva McGregor
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ilaria M. Piras
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Andrew Shaw
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine Lamm
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Janowicz
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mandy Glass
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vanessa Herder
- Department of Pathology and Center of Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Hahn
- Department of Pathology and Center of Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology and Center of Systems Neuroscience, University of Veterinary Medicine, Hannover, Germany
| | - Alain Kohl
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
37
|
Shaw AE, Ratinier M, Nunes SF, Nomikou K, Caporale M, Golder M, Allan K, Hamers C, Hudelet P, Zientara S, Breard E, Mertens P, Palmarini M. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J Virol 2013; 87:543-57. [PMID: 23097432 PMCID: PMC3536370 DOI: 10.1128/jvi.02266-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022] Open
Abstract
Coinfection of a cell by two different strains of a segmented virus can give rise to a "reassortant" with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous "backbone." To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maxime Ratinier
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandro Filipe Nunes
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Marco Caporale
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Matthew Golder
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Allan
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stéphan Zientara
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Emmanuel Breard
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Massimo Palmarini
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Chauveau E, Doceul V, Lara E, Adam M, Breard E, Sailleau C, Viarouge C, Desprat A, Meyer G, Schwartz-Cornil I, Ruscanu S, Charley B, Zientara S, Vitour D. Sensing and control of bluetongue virus infection in epithelial cells via RIG-I and MDA5 helicases. J Virol 2012; 86:11789-99. [PMID: 22915805 PMCID: PMC3486277 DOI: 10.1128/jvi.00430-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/12/2012] [Indexed: 12/24/2022] Open
Abstract
Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-β in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-β and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-β. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-β was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-β induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.
Collapse
Affiliation(s)
- Emilie Chauveau
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Virginie Doceul
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Estelle Lara
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Micheline Adam
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Emmanuel Breard
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Corinne Sailleau
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Cyril Viarouge
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Alexandra Desprat
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Gilles Meyer
- Université de Toulouse, INP, ENVT, INRA, UMR1225 IHAP, Toulouse, France
| | | | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - Bernard Charley
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphan Zientara
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Damien Vitour
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| |
Collapse
|
39
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|
40
|
The genome sequence of bluetongue virus type 2 from India: evidence for reassortment between eastern and western topotype field strains. J Virol 2012; 86:5967-8. [PMID: 22532533 DOI: 10.1128/jvi.00536-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bluetongue virus type 2, isolated in India in 1982 (IND1982/01), was obtained from the Orbivirus Reference Collection at IAH Pirbright (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1982/01). Full genome sequencing and phylogenetic analyses show that IND1982/01 is a reassortant virus containing genome segments derived from both eastern and western topotypes. These data will help to identify further reassortment events involving this or other virus lineages in the subcontinent.
Collapse
|
41
|
Drosophila melanogaster as a model organism for bluetongue virus replication and tropism. J Virol 2012; 86:9015-24. [PMID: 22674991 DOI: 10.1128/jvi.00131-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.
Collapse
|
42
|
Genomic sequences of Australian bluetongue virus prototype serotypes reveal global relationships and possible routes of entry into Australia. J Virol 2012; 86:6724-31. [PMID: 22514341 DOI: 10.1128/jvi.00182-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bluetongue virus (BTV) is transmitted by biting midges (Culicoides spp.). It causes disease mainly in sheep and occasionally in cattle and other species. BTV has spread into northern Europe, causing disease in sheep and cattle. The introduction of new serotypes, changes in vector species, and climate change have contributed to these changes. Ten BTV serotypes have been isolated in Australia without apparent associated disease. Simplified methods for preferential isolation of double-stranded RNA (dsRNA) and template preparation enabled high-throughput sequencing of the 10 genome segments of all Australian BTV prototype serotypes. Phylogenetic analysis reinforced the Western and Eastern topotypes previously characterized but revealed unique features of several Australian BTVs. Many of the Australian BTV genome segments (Seg-) were closely related, clustering together within the Eastern topotypes. A novel Australian topotype for Seg-5 (NS1) was identified, with taxa spread across several serotypes and over time. Seg-1, -2, -3, -4, -6, -7, -9, and -10 of BTV_2_AUS_2008 were most closely related to the cognate segments of viruses from Taiwan and Asia and not other Australian viruses, supporting the conclusion that BTV_2 entered Australia recently. The Australian BTV_15_AUS_1982 prototype was revealed to be unusual among the Australian BTV isolates, with Seg-3 and -8 distantly related to other BTV sequences from all serotypes.
Collapse
|
43
|
Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus. PLoS One 2012; 7:e34735. [PMID: 22514660 PMCID: PMC3326038 DOI: 10.1371/journal.pone.0034735] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
Bluetongue virus (BTV) belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR(−/−) mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.
Collapse
|
44
|
Ratinier M, Caporale M, Golder M, Franzoni G, Allan K, Nunes SF, Armezzani A, Bayoumy A, Rixon F, Shaw A, Palmarini M. Identification and characterization of a novel non-structural protein of bluetongue virus. PLoS Pathog 2011; 7:e1002477. [PMID: 22241985 PMCID: PMC3248566 DOI: 10.1371/journal.ppat.1002477] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/26/2011] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell. Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an “arbovirus” transmitted from infected to susceptible hosts by biting midges. Historically, bluetongue has been endemic almost exclusively in temperate and tropical areas of the world. However, in the last decade BTV has spread extensively in several geographical areas causing a serious burden to both animal health and the economy. BTV possesses a double-stranded RNA segmented genome. For over two decades, it has been widely accepted that the 10 segments of BTV genome encode for 7 structural and 3 non-structural proteins. In this study we discovered that BTV expresses a previously uncharacterized non-structural protein that we designated NS4. Although BTV replicates exclusively in the cytoplasm, we found NS4 to localize in the nucleoli of the infected cells. Our study shows that NS4 is not needed for viral replication both in mammalian and insect cells, and in mice. However, NS4 confers a replication advantage to BTV in cells in an antiviral state induced by interferon. In conclusion, we have elucidated a possible route by which BTV can counteract the defences of the host.
Collapse
Affiliation(s)
- Maxime Ratinier
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|