1
|
Kilgore RE, Moore BD, Sripada SA, Chu W, Shastry S, Barbieri E, Hu S, Tian W, Petersen H, Mohammadifar M, Simpson A, Brown A, Lavoie J, Elhanafi D, Goletz S, Cheng K, Daniele MA, Menegatti S. Peptide ligands for the universal purification of exosomes by affinity chromatography. Biotechnol Bioeng 2024; 121:3484-3501. [PMID: 39099106 DOI: 10.1002/bit.28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Exosomes are gaining prominence as vectors for drug delivery, vaccination, and regenerative medicine. Owing to their surface biochemistry, which reflects the parent cell membrane, these nanoscale biologics feature low immunogenicity, tunable tissue tropism, and the ability to carry a variety of payloads across biological barriers. The heterogeneity of exosomes' size and composition, however, makes their purification challenging. Traditional techniques, like ultracentrifugation and filtration, afford low product yield and purity, and jeopardizes particle integrity. Affinity chromatography represents an excellent avenue for exosome purification. Yet, current affinity media rely on antibody ligands whose selectivity grants high product purity, but mandates the customization of adsorbents for exosomes with different surface biochemistry while their binding strength imposes elution conditions that may harm product's activity. Addressing these issues, this study introduces the first peptide affinity ligands for the universal purification of exosomes from recombinant feedstocks. The peptides were designed to (1) possess promiscuous biorecognition of exosome markers, without binding process-related contaminants and (2) elute the product under conditions that safeguard product stability. Selected ligands SNGFKKHI and TAHFKKKH demonstrated the ability to capture of exosomes secreted by 14 cell sources and purified exosomes derived from HEK293, PC3, MM1, U87, and COLO1 cells with yields of up to 80% and up-to 50-fold reduction of host cell proteins (HCPs) upon eluting with pH gradient from 7.4 to 10.5, recommended for exosome stability. SNGFKKHI-Toyopearl resin was finally employed in a two-step purification process to isolate exosomes from HEK293 cell fluids, affording a yield of 68% and reducing the titer of HCPs to 68 ng/mL. The biomolecular and morphological features of the isolated exosomes were confirmed by analytical chromatography, Western blot analysis, transmission electron microscopy, nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Weihua Tian
- Department of Biotechnology and Biomedicine, Denmark Technical University, Kongens, Denmark
| | - Heidi Petersen
- National Food Institute, Denmark Technical University, Kongens, Denmark
| | | | - Aryssa Simpson
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Ashley Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Denmark Technical University, Kongens, Denmark
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
3
|
Patra T, Meyer K, Haga Y, Reagan EK, Weissman D, Ray R. Hepatitis C virus E1 and modified E2 delivered from an mRNA vaccine induces protective immunity. NPJ Vaccines 2023; 8:42. [PMID: 36934116 PMCID: PMC10024013 DOI: 10.1038/s41541-023-00635-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Hepatitis C virus (HCV) is characterized by a high number of chronic cases due to an impairment of protective innate and adaptive immune responses. Here, we examined the contribution of the individual ectodomains of E1, E2, or a modified E2 with reduced CD81 binding and an inserted N-linked glycosylation site in combination as vaccine antigen mRNA-lipid nanoparticles (LNPs). The induction of a protective immune response to surrogate recombinant vaccinia virus (VV) expressing homologous HCV glycoprotein(s) challenge infection in a BALB/c mouse model was observed. Vaccination with a mRNA-LNP expressing soluble E1 (sE1) significantly reduced vv/HCV titer in the mouse ovary. However, the addition of sE2 mRNA-LNP for immunization impaired the efficacy of the sE1 construct. Further analysis showed that Th1 related cytokine responses to the sE1 mRNA-LNP were significantly altered in the presence of sE2 following co-immunization. Evaluation of immunogenicity revealed that the use of modified sE2F442NYT nucleoside mRNA-LNP vaccine results in an improved cellular immune response, IgG2a isotype switching, enhanced total IgG, and an increase in the neutralizing antibody response against HCV pseudotype virus. HCV cross genotype specific reactivity to peptides representing conserved E2 specific linear epitopes were enhanced in modified E2 vaccinated animal sera. In the absence of a suitable immunocompetent small animal model for HCV infection, protection from surrogate HCV vaccinia challenge infection model was observed in the immunized mice as compared to sE1 alone or an unmodified sE2 mRNA-LNP vaccine. Inclusion of sE1 with modified sE2F442NYT as mRNA-LNP vaccine candidate appeared to be beneficial for protection.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Erin K Reagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA.
- Department of Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
4
|
Cowton VM, Dunlop JI, Cole SJ, Swann RE, Patel AH. The Neutralizing Antibody Responses of Individuals That Spontaneously Resolve Hepatitis C Virus Infection. Viruses 2022; 14:v14071391. [PMID: 35891372 PMCID: PMC9318067 DOI: 10.3390/v14071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major global health problem. In the majority of cases the virus is not cleared by the host immune response and progresses to chronic infection. Studies of the neutralizing antibody responses in individuals that naturally clear infection are limited. Understanding what constitutes a successful antibody response versus one that has 'failed' and resulted in chronic infection is important to understand what type of antibody response would need to be elicited by a protective vaccine. Samples from spontaneous clearers are difficult to obtain therefore studies are often limited. In our study through HCV Research UK, we had access to a cohort of over 200 samples. We identified the samples that contained HCV neutralizing antibodies using ELISA and HCV pseudoparticle (HCVpp) assays. We then utilised mutagenesis and cross-competition analysis to determine the profile of the neutralizing antibody responses. In addition, we analysed a cohort of samples from chronic infection using the same techniques to enable direct comparison of the antibody profiles observed in both cohorts. We conclude that similar profiles are present in both cohorts indicating that it is not the neutralizing antibody response per se that determines the outcome of infection. These data will provide useful information for future HCV vaccine design.
Collapse
Affiliation(s)
- Vanessa M. Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (J.I.D.); (S.J.C.); (R.E.S.); (A.H.P.)
- Correspondence: ; Tel.: +44-(0)-141-330-2988
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (J.I.D.); (S.J.C.); (R.E.S.); (A.H.P.)
| | - Sarah J. Cole
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (J.I.D.); (S.J.C.); (R.E.S.); (A.H.P.)
| | - Rachael E. Swann
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (J.I.D.); (S.J.C.); (R.E.S.); (A.H.P.)
- Department of Gastroenterology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; (J.I.D.); (S.J.C.); (R.E.S.); (A.H.P.)
| |
Collapse
|
5
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
6
|
Characterization of linear epitope specificity of antibodies potentially contributing to spontaneous clearance of hepatitis C virus. PLoS One 2021; 16:e0256816. [PMID: 34449828 PMCID: PMC8396737 DOI: 10.1371/journal.pone.0256816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. Methods We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412–423, 523–532 and 432–443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. Conclusions These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432–443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.
Collapse
|
7
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
8
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
9
|
Yi C, Xia J, He L, Ling Z, Wang X, Yan Y, Wang J, Zhao X, Fan W, Sun X, Zhang R, Ye S, Zhang R, Xu Y, Ma L, Zhang Y, Zhou H, Huang Z, Niu J, Long G, Lu J, Zhong J, Sun B. Junctional and somatic hypermutation-induced CX 4C motif is critical for the recognition of a highly conserved epitope on HCV E2 by a human broadly neutralizing antibody. Cell Mol Immunol 2020; 18:675-685. [PMID: 32235917 PMCID: PMC7222171 DOI: 10.1038/s41423-020-0403-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
Induction of broadly neutralizing monoclonal antibodies (bNAbs) that bind to the viral envelope glycoproteins is a major goal of hepatitis C virus (HCV) vaccine research. The study of bNAbs arising in natural infection is essential in this endeavor. We generated a human antibody, 8D6, recognizing the E2 protein of HCV isolated from a chronic hepatitis C patient. This antibody shows broadly neutralizing activity, which covers a pan-genotypic panel of cell culture-derived HCV virions (HCVcc). Functional and epitope analyses demonstrated that 8D6 can block the interaction between E2 and CD81 by targeting a highly conserved epitope on E2. We describe how the 8D6 lineage evolved via somatic hypermutation to achieve broad neutralization. We found that the V(D)J recombination-generated junctional and somatic hypermutation-induced disulfide bridge (C-C) motif in the CDRH3 is critical for the broad neutralization and binding activity of 8D6. This motif is conserved among a series of broadly neutralizing HCV antibodies, indicating a common binding model. Next, the 8D6 inferred germline (iGL) was reconstructed and tested for its binding affinity and neutralization activity. Interestingly, 8D6 iGL-mediated relatively strong inhibition of the 1b genotype PR79L9 strain, suggesting that PR79L9 may serve as a potential natural viral strain that provides E2 sequences that induce bNAbs. Overall, our detailed epitope mapping and genetic studies of the HCV E2-specific mAb 8D6 have allowed for further refinement of antigenic sites on E2 and reveal a new mechanism to generate a functional CDRH3, while its iGL can serve as a probe to identify potential HCV vaccine strains.
Collapse
Affiliation(s)
- Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xia
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Lan He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xuesong Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Yan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jiangjun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xinhao Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Weiguo Fan
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ronghua Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ye
- National Laboratory of Biophysics, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences Beijing, Beijing, China.,Interdisciplinary Innovation Institute of Medicine & Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rongguang Zhang
- National Laboratory of Biophysics, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences Beijing, Beijing, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Honglin Zhou
- Nanjing Galaxy Biopharma Co., Ltd, Nanjing, China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Junqi Niu
- Hepatology Section, First Hospital, University of Jilin, Changchun, China
| | - Gang Long
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
| | - Junxia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Yost SA, Wang Y, Marcotrigiano J. Hepatitis C Virus Envelope Glycoproteins: A Balancing Act of Order and Disorder. Front Immunol 2018; 9:1917. [PMID: 30197646 PMCID: PMC6117417 DOI: 10.3389/fimmu.2018.01917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis C virus infection often leads to liver cirrhosis and primary liver cancer. In 2015, an estimated 71 million people were living with chronic HCV. Although infection rates have decreased in many parts of the world over the last several decades, incidence of HCV infection doubled between 2010 and 2014 in the United States mainly due to increases in intravenous drug use. The approval of direct acting antiviral treatments is a necessary component in the elimination of HCV, but inherent barriers to treatment (e.g., cost, lack of access to healthcare, adherence to treatment, resistance, etc.) prevent dramatic improvements in infection rates. An effective HCV vaccine would significantly slow the spread of the disease. Difficulties in the development of an HCV culture model system and expression of properly folded- and natively modified-HCV envelope glycoproteins E1 and E2 have hindered vaccine development efforts. The recent structural and biophysical studies of these proteins have demonstrated that the binding sites for the cellular receptor CD-81 and neutralizing antibodies are highly flexible in nature, which complicate vaccine design. Furthermore, the interactions between E1 and E2 throughout HCV infection is poorly understood, and structural flexibility may play a role in shielding antigenic epitopes during infection. Here we discuss the structural complexities of HCV E1 and E2.
Collapse
Affiliation(s)
- Samantha A Yost
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Yuanyuan Wang
- Department of Chemistry and Chemical Biology, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States.,Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Marcotrigiano
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 2018; 115:7569-7574. [PMID: 29954862 DOI: 10.1073/pnas.1802378115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) is a leading strategy in rational vaccine design against antigenically diverse pathogens. Here, we studied a panel of monoclonal antibodies (mAbs) from mice immunized with the hepatitis C virus (HCV) envelope glycoproteins E1E2. Six of the mAbs recognize the conserved E2 antigenic site 412-423 (AS412) and cross-neutralize diverse HCV genotypes. Immunogenetic and structural analysis revealed that the antibodies originated from two different germline (GL) precursors and bind AS412 in a β-hairpin conformation. Intriguingly, the anti-HCV activity of one antibody lineage is associated with maturation of the light chain (LC), whereas the other lineage is dependent on heavy-chain (HC) maturation. Crystal structures of GL precursors of the LC-dependent lineage in complex with AS412 offer critical insights into the maturation process of bnAbs to HCV, providing a scientific foundation for utilizing the mouse model to study AS412-targeting vaccine candidates.
Collapse
|
13
|
Tzarum N, Wilson IA, Law M. The Neutralizing Face of Hepatitis C Virus E2 Envelope Glycoprotein. Front Immunol 2018; 9:1315. [PMID: 29951061 PMCID: PMC6008530 DOI: 10.3389/fimmu.2018.01315] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
The high genetic variability of hepatitis C virus, together with the high level of glycosylation on the viral envelope proteins shielding potential neutralizing epitopes, pose a difficult challenge for vaccine development. An effective hepatitis C virus (HCV) vaccine must target conserved epitopes and the HCV E2 glycoprotein is the main target for such neutralizing antibodies (NAbs). Recent structural investigations highlight the presence of a highly conserved and accessible surface on E2 that is devoid of N-linked glycans and known as the E2 neutralizing face. This face is defined as a hydrophobic surface comprising the front layer (FL) and the CD81 binding loop (CD81bl) that overlap with the CD81 receptor binding site on E2. The neutralizing face consists of highly conserved residues for recognition by cross-NAbs, yet it appears to be high conformationally flexible, thereby presenting a moving target for NAbs. Three main overlapping neutralizing sites have been identified in the neutralizing face: antigenic site 412 (AS412), antigenic site 434 (AS434), and antigenic region 3 (AR3). Here, we review the structural analyses of these neutralizing sites, either as recombinant E2 or epitope-derived linear peptides in complex with bNAbs, to understand the functional and preferred conformations for neutralization, and for viral escape. Collectively, these studies provide a foundation and molecular templates to facilitate structure-based approaches for HCV vaccine development.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
14
|
Balasco N, Barone D, Iaccarino E, Sandomenico A, De Simone A, Ruvo M, Vitagliano L. Intrinsic structural versatility of the highly conserved 412-423 epitope of the Hepatitis C Virus E2 protein. Int J Biol Macromol 2018; 116:620-632. [PMID: 29758309 DOI: 10.1016/j.ijbiomac.2018.05.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
HCV infection is a major threaten for human health as it affects hundreds of million people worldwide. Here we investigated the conformational properties of the 412-423 fragment of the envelope E2 protein, one of the most immunogenic regions of the virus proteome whose characterization may provide interesting insights for anti-HCV vaccine development. The spectroscopic characterization of the polypeptide unravels its unexpected tendency to form amyloid-like aggregates. When kept in monomeric state, it shows a limited tendency to adopt regular secondary structure. Enhanced molecular dynamics simulations, starting from four distinct conformational states, highlight its structural versatility. Interestingly, all multiform conformational states of the polypeptide detected in crystallographic complexes with antibodies are present in the structural ensemble of all simulations. This observation corroborates the idea that known antibodies recognize this region through a conformational selection mechanism. Accordingly, the design of effective anti-HCV vaccines should consider the intrinsic flexibility of this region. The structural versatility of the 412-423 region is particularly puzzling if its remarkable sequence conservation is considered. It is likely that flexibility and sequence conservation are important features that endow this epitope with the ability to accomplish distinct functions such as immunity escape and interaction with host receptors.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy.
| | - Daniela Barone
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy; Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy; Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | | | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Naples I-80134, Italy.
| |
Collapse
|
15
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
16
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
17
|
Desombere I, Mesalam AA, Urbanowicz RA, Van Houtte F, Verhoye L, Keck ZY, Farhoudi A, Vercauteren K, Weening KE, Baumert TF, Patel AH, Foung SKH, Ball J, Leroux-Roels G, Meuleman P. A novel neutralizing human monoclonal antibody broadly abrogates hepatitis C virus infection in vitro and in vivo. Antiviral Res 2017; 148:53-64. [PMID: 29074219 PMCID: PMC5785094 DOI: 10.1016/j.antiviral.2017.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
Infections with hepatitis C virus (HCV) represent a worldwide health burden and a prophylactic vaccine is still not available. Liver transplantation (LT) is often the only option for patients with HCV-induced end-stage liver disease. However, immediately after transplantation, the liver graft becomes infected by circulating virus, resulting in accelerated progression of liver disease. Although the efficacy of HCV treatment using direct-acting antivirals has improved significantly, immune compromised LT-patients and patients with advanced liver disease remain difficult to treat. As an alternative approach, interfering with viral entry could prevent infection of the donor liver. We generated a human monoclonal antibody (mAb), designated 2A5, which targets the HCV envelope. The neutralizing activity of mAb 2A5 was assessed using multiple prototype and patient-derived HCV pseudoparticles (HCVpp), cell culture produced HCV (HCVcc), and a human-liver chimeric mouse model. Neutralization levels observed for mAb 2A5 were generally high and mostly superior to those obtained with AP33, a well-characterized HCV-neutralizing monoclonal antibody. Using humanized mice, complete protection was observed after genotype 1a and 4a HCV challenge, while only partial protection was achieved using gt1b and 6a isolates. Epitope mapping revealed that mAb 2A5 binding is conformation-dependent and identified the E2-region spanning amino acids 434 to 446 (epitope II) as the predominant contact domain. CONCLUSION mAb 2A5 shows potent anti-HCV neutralizing activity both in vitro and in vivo and could hence represent a valuable candidate to prevent HCV recurrence in LT-patients. In addition, the detailed identification of the neutralizing epitope can be applied for the design of prophylactic HCV vaccines.
Collapse
Affiliation(s)
- Isabelle Desombere
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Therapeutic Chemistry Department, National Research Centre (NRC), Dokki, Cairo, Egypt.
| | - Richard A Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Freya Van Houtte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Lieven Verhoye
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ali Farhoudi
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Koen Vercauteren
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Karin E Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg et Pole Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jonathan Ball
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK; Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Geert Leroux-Roels
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) as a target for homologous and broadly neutralizing antibodies. Vet Microbiol 2017; 209:90-96. [PMID: 28528961 DOI: 10.1016/j.vetmic.2017.04.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023]
Abstract
Virus neutralization (VN) responses range from narrowly focused antibodies with only homologous neutralizing activity against the virus used for infection, to antibodies that can neutralize both Type 1 and Type 2 viruses, referred to as broadly neutralizing antibody (bnAb). Even though neutralizing epitopes are likely distributed among several structural glycoproteins, this paper focuses on the ectodomain region of GP5 as a model system for investigating the role for neutralizing and non-neutralizing antibodies in protection and disease. Epitope B within GP5 possesses several features common to broadly neutralizing epitopes. In the proposed model, accessibility of antibody to Epitope B is blocked by homologous neutralizing and non-neutralizing antibodies, which bind flanking hypervariable domains. Additional mechanisms for blocking the accessibility of bnAb include conformational alterations within the GP5-M heterodimer and glycan shielding. This model explains how the continuous escape from homologous neutralization provides a mechanism for persistence. The proposed mechanism for immune evasion is not unique to PRRSV, but can be found in other persistent viruses, such as hepatitis C virus (HCV).
Collapse
|
19
|
Long L, Jia M, Fan X, Liang H, Wang J, Zhu L, Xie Z, Shen T. Non-neutralizing epitopes induce robust hepatitis C virus (HCV)-specific antibody-dependent CD56 + natural killer cell responses in chronic HCV-infected patients. Clin Exp Immunol 2017; 189:92-102. [PMID: 28317093 DOI: 10.1111/cei.12962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (NK-ADCC) is of considerable interest in viral infection. However, little is known about NK-ADCC responses in chronic hepatitis C virus (HCV) infection. In this study, impaired non-specific antibody-dependent CD56+ NK cell responses were observed in chronic HCV infection, as shown by decreased degranulation (extracellular CD107a expression) and interferon (IFN)-γ production in response to antibody-bound P815 cells. A peptide pool composed of epitopes recognized by anti-HCV-E1/E2 antibodies could induce pronounced HCV-specific antibody-dependent NK cell responses in sera from approximately half the chronic HCV carriers. Additionally, HCV-specific epitopes with the capacity to induce robust NK-ADCC activity were identified. Five linear NK-ADCC epitopes (aa211-aa217, aa384-aa391, aa464-aa475, aa544-aa551 and aa648-aa659 of the HCV envelope) were identified and do not overlap with putative linear neutralizing epitopes. This study revealed the dysfunctional characteristics of antibody-dependent CD56+ NK cell responses in chronic HCV carriers. The key non-neutralizing NK-ADCC epitopes identified in this study may act as new targets for immunological intervention.
Collapse
Affiliation(s)
- L Long
- Department of Laboratory Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - M Jia
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention, China CDC, Beijing, China
| | - X Fan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - H Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention, China CDC, Beijing, China
| | - J Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - L Zhu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Z Xie
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - T Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Viral evasion and challenges of hepatitis C virus vaccine development. Curr Opin Virol 2016; 20:55-63. [PMID: 27657659 DOI: 10.1016/j.coviro.2016.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global disease burden, often leading to chronic liver diseases, cirrhosis, cancer, and death in those infected. Despite the recent approval of antiviral therapeutics, a preventative vaccine is recognized as the most effective means to control HCV globally, particularly in at-risk and developing country populations. Here we describe the efforts and challenges related to the development of an HCV vaccine, which after decades of research have not been successful. Viral sequence variability poses a major challenge, yet recent research has provided unprecedented views of the atomic structure of HCV epitopes and immune recognition by antibodies and T cell receptors. This, coupled with insights from deep sequencing, robust neutralization assays, and other technological advances, is spurring research toward rationally HCV designed vaccines that preferentially elicit responses toward conserved epitopes of interest that are associated with viral neutralization and clearance.
Collapse
|
21
|
Broad Anti-Hepatitis C Virus (HCV) Antibody Responses Are Associated with Improved Clinical Disease Parameters in Chronic HCV Infection. J Virol 2016; 90:4530-4543. [PMID: 26912610 PMCID: PMC4836347 DOI: 10.1128/jvi.02669-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED During hepatitis C virus (HCV) infection, broadly neutralizing antibody (bNAb) responses targeting E1E2 envelope glycoproteins are generated in many individuals. It is unclear if these antibodies play a protective or a pathogenic role during chronic infection. In this study, we investigated whether bNAb responses in individuals with chronic infection were associated with differences in clinical presentation. Patient-derived purified serum IgG was used to assess the breadth of HCV E1E2 binding and the neutralization activity of HCV pseudoparticles. The binding and neutralization activity results for two panels bearing viral envelope proteins representing either an intergenotype or an intragenotype 1 group were compared. We found that the HCV load was negatively associated with strong cross-genotypic E1E2 binding (P= 0.03). Overall, we observed only a modest correlation between total E1E2 binding and neutralization ability. The breadth of intergenotype neutralization did not correlate with any clinical parameters; however, analysis of individuals with genotype 1 (gt1) HCV infection (n= 20), using an intragenotype pseudoparticle panel, found a strong association between neutralization breadth and reduced liver fibrosis (P= 0.006). A broad bNAb response in our cohort with chronic infection was associated with a single nucleotide polymorphism (SNP) in theHLA-DQB1 gene (P= 0.038), as previously reported in a cohort with acute disease. Furthermore, the bNAbs in these individuals targeted more than one region of E2-neutralizing epitopes, as assessed through cross-competition of patient bNAbs with well-characterized E2 antibodies. We conclude that the bNAb responses in patients with chronic gt1 infection are associated with lower rates of fibrosis and host genetics may play a role in the ability to raise such responses. IMPORTANCE Globally, there are 130 million to 150 million people with chronic HCV infection. Typically, the disease is progressive and is a major cause of severe liver cirrhosis and hepatocellular carcinoma. While it is known that neutralizing antibodies have a role in spontaneous clearance during acute infection, little is known about their role in chronic infection. In the present work, we investigated the antibody response in a cohort of chronically infected individuals and found that a broadly neutralizing antibody response is protective and is associated with reduced levels of liver fibrosis and cirrhosis. We also found an association between SNPs in class II HLA genes and the presence of a broadly neutralizing response, indicating that antigen presentation may be important for the production of HCV-neutralizing antibodies.
Collapse
|
22
|
Ferns RB, Tarr AW, Hue S, Urbanowicz RA, McClure CP, Gilson R, Ball JK, Nastouli E, Garson JA, Pillay D. Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals. Virology 2016; 492:213-24. [PMID: 26971243 DOI: 10.1016/j.virol.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization.
Collapse
Affiliation(s)
- R Bridget Ferns
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom.
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Stephane Hue
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Richard A Urbanowicz
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - C Patrick McClure
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Richard Gilson
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Jonathan K Ball
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Eleni Nastouli
- Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom
| | - Jeremy A Garson
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Deenan Pillay
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu, Natal, South Africa
| |
Collapse
|
23
|
Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus. J Virol 2016; 90:3112-22. [PMID: 26739044 DOI: 10.1128/jvi.02458-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hypervariable region 1 (HVR1) (amino acids [aa] 384 to 410) on the E2 glycoprotein of hepatitis C virus contributes to persistent infection by evolving escape mutations that attenuate binding of inhibitory antibodies and by blocking access of broadly neutralizing antibodies to their epitopes. A third proposed mechanism of immune antagonism is that poorly neutralizing antibodies binding to HVR1 interfere with binding of other superior neutralizing antibodies. Epitope mapping of human monoclonal antibodies (HMAbs) that bind to an adjacent, conserved domain on E2 encompassing aa 412 to 423 revealed two subsets, designated HC33 HMAbs. While both subsets have contact residues within aa 412 to 423, alanine-scanning mutagenesis suggested that one subset, which includes HC33.8, has an additional contact residue within HVR1. To test for interference of anti-HVR1 antibodies with binding of antibodies to aa 412 to 423 and other E2 determinants recognized by broadly neutralizing HMAbs, two murine MAbs against HVR1 (H77.16) and aa 412 to 423 (H77.39) were studied. As expected, H77.39 inhibited the binding of all HC33 HMAbs. Unexpectedly, H77.16 also inhibited the binding of both subsets of HC33 HMAbs. This inhibition also was observed against other broadly neutralizing HMAbs to epitopes outside aa 412 to 423. Combination antibody neutralization studies by the median-effect analysis method with H77.16 and broadly reactive HMAbs revealed antagonism between these antibodies. Structural studies demonstrated conformational flexibility in this antigenic region, which supports the possibility of anti-HVR1 antibodies hindering the binding of broadly neutralizing MAbs. These findings support the hypothesis that anti-HVR1 antibodies can interfere with a protective humoral response against HCV infection. IMPORTANCE HVR1 contributes to persistent infection by evolving mutations that escape from neutralizing antibodies to HVR1 and by shielding broadly neutralizing antibodies from their epitopes. This study provides insight into a new immune antagonism mechanism by which the binding of antibodies to HVR1 blocks the binding and activity of broadly neutralizing antibodies to HCV. Immunization strategies that avoid the induction of HVR1 antibodies should increase the inhibitory activity of broadly neutralizing anti-HCV antibodies elicited by candidate vaccines.
Collapse
|
24
|
Kachko A, Frey SE, Sirota L, Ray R, Wells F, Zubkova I, Zhang P, Major ME. Antibodies to an interfering epitope in hepatitis C virus E2 can mask vaccine-induced neutralizing activity. Hepatology 2015; 62:1670-82. [PMID: 26251214 PMCID: PMC4681649 DOI: 10.1002/hep.28108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) neutralization occurring at the E2 region 412-426 (EP-I) could be enhanced when antibodies directed specifically to the E2 region 434-446 (EP-II) were removed from serum samples of persistently infected patients and vaccinated chimpanzees, a phenomenon of so-called antibody interference. Here, we show that this type of interference can be observed in individuals after immunization with recombinant E1E2 proteins. One hundred twelve blinded serum samples from a phase I, placebo-controlled, dose escalation trial using recombinant HCV E1E2 with MF59C.1 adjuvant in healthy HCV-negative adults were tested in enzyme-linked immunosorbent assay for binding reactivity to peptides representing the E2 regions 412-426 (EP-I) and 434-446 (EP-II). All samples were subsequently tested for neutralizing activity using cell-culture HCV 1a(H77)/2a chimera, HCV pseudotype particles (HCVpp) H77, and HCVpp HCV-1 after treatment to remove EP-II-specific antibodies or mock treatment with a control peptide. Among the 112 serum samples, we found 22 double positive (EP-I and EP-II), 6 EP-II positive only, 14 EP-I positive only, and 70 double negative. Depleting EP-II antibodies from double-positive serum samples increased 50% inhibitory dose (ID50) neutralizing antibody titers (up to 4.9-fold) in up to 72% of samples (P ≤ 0.0005), contrasting with ID50 neutralization titer increases in 2 of 70 double-negative samples (2.9%; P > 0.5). In addition, EP-I-specific antibody levels in serum samples showed a significant correlation with ID50 neutralization titers when EP-II antibodies were removed (P < 0.0003). CONCLUSION These data show that antibodies to the region 434-446 are induced during immunization of individuals with recombinant E1E2 proteins, and that these antibodies can mask effective neutralizing activity from EP-I-specific antibodies. Elicitation of EP-II-specific antibodies with interfering capacity should be avoided in producing an effective cross-neutralizing vaccine aimed at the HCV envelope proteins.
Collapse
Affiliation(s)
- Alla Kachko
- Division of Viral ProductsCBER/FDASilver SpringMD
| | - Sharon E. Frey
- Division of Infectious Diseases, Allergy and ImmunologySaint Louis University School of MedicineSt LouisMO
| | - Lev Sirota
- Division of Biostatistics, Office of Biostatistics and EpidemiologyCBER/FDASilver SpringMD
| | - Ranjit Ray
- Division of Infectious Diseases, Allergy and ImmunologySaint Louis University School of MedicineSt LouisMO
| | | | | | - Pei Zhang
- Division of HematologyCBER/FDASilver SpringMD
| | | |
Collapse
|
25
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
26
|
Li D, Huang Z, Zhong J. Hepatitis C virus vaccine development: old challenges and new opportunities. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV), an enveloped positive-sense single-stranded RNA virus, can cause chronic and end-stage liver diseases. Approximately 185 million people worldwide are infected with HCV. Tremendous progress has been achieved in the therapeutics of chronic hepatitis C thanks to the development of direct-acting antiviral agents (DAAs), but the worldwide use of these highly effective DAAs is limited due to their high treatment cost. In addition, drug-resistance mutations remain a potential problem as DAAs are becoming a standard therapy for chronic hepatitis C. Unfortunately, no vaccine is available for preventing new HCV infection. Therefore, HCV still imposes a big threat to human public health, and the worldwide eradication of HCV is critically dependent on an effective HCV vaccine. In this review, we summarize recent progresses on HCV vaccine development and present our views on the rationale and strategy to develop an effective HCV vaccine.
Collapse
Affiliation(s)
- Dapeng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhong Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
27
|
Kong L, Jackson KN, Wilson IA, Law M. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design. Curr Opin Virol 2015; 11:148-57. [PMID: 25932568 PMCID: PMC4507806 DOI: 10.1016/j.coviro.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.
Collapse
Affiliation(s)
- Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelli N Jackson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Li Y, Pierce BG, Wang Q, Keck ZY, Fuerst TR, Foung SKH, Mariuzza RA. Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J Biol Chem 2015; 290:10117-25. [PMID: 25737449 DOI: 10.1074/jbc.m115.643528] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein. Antibodies to the E2 region comprising residues 412-423 (E2(412-423)) have broadly neutralizing activities. However, an adaptive mutation in this linear epitope, N417S, is associated with a glycosylation shift from Asn-417 to Asn-415 that enables HCV to escape neutralization by mAbs such as HCV1 and AP33. By contrast, the human mAb HC33.1 can neutralize virus bearing the N417S mutation. To understand how HC33.1 penetrates the glycan shield created by the glycosylation shift to Asn-415, we determined the structure of this broadly neutralizing mAb in complex with its E2(412-423) epitope to 2.0 Å resolution. The conformation of E2(412-423) bound to HC33.1 is distinct from the β-hairpin conformation of this peptide bound to HCV1 or AP33, because of disruption of the β-hairpin through interactions with the unusually long complementarity-determining region 3 of the HC33.1 heavy chain. Whereas Asn-415 is buried by HCV1 and AP33, it is solvent-exposed in the HC33.1-E2(412-423) complex, such that glycosylation of Asn-415 would not prevent antibody binding. Furthermore, our results highlight the structural flexibility of the E2(412-423) epitope, which may serve as an immune evasion strategy to impede induction of antibodies targeting this site by reducing its antigenicity.
Collapse
Affiliation(s)
- Yili Li
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Brian G Pierce
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850
| | - Qian Wang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Zhen-Yong Keck
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Thomas R Fuerst
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Steven K H Foung
- the Department of Pathology, Stanford University School of Medicine, Stanford, California 94304
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
29
|
Gededzha MP, Mphahlele MJ, Selabe SG. Characterization of HCV genotype 5a envelope proteins: implications for vaccine development and therapeutic entry target. HEPATITIS MONTHLY 2014; 14:e23660. [PMID: 25598792 PMCID: PMC4286708 DOI: 10.5812/hepatmon.23660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is one of the major causes of cirrhosis and hepatocellular carcinoma with an estimation of 185 million people with infection. The E2 is the main target for neutralizing antibody responses and the variation of this region is related to maintenance of persistent infection by emerging escape variants and subsequent development of chronic infection. While both E1 and E2 are hypervariable in nature, it is difficult to design vaccines or therapeutic drugs against them. OBJECTIVES The objective of this study was to characterize genotype 5a E1 and E2 sequences to determine possible glycosylation sites, conserved B-cell epitopes and peptides in HCV that could be useful targets in design of vaccine and entry inhibitors. PATIENTS AND METHODS This study was conducted through PCR amplification of E1 and E2 regions, sequencing, prediction of B-cell epitopes, analysis of N-linked glycosylation and peptide design in 18 samples of HCV genotype 5a from South African. RESULTS Differences in the probability of glycosylation in E1 and E2 regions were observed in this study. Three conserved antigenic B-cell epitopes were predicted in the E2 regions and also 11 short peptides were designed from the highly conserved residues. CONCLUSIONS This study provided conserved B-cell epitopes and peptides that can be useful for designing entry inhibitors and vaccines able to cover a global population, especially where genotype 5a is common.
Collapse
Affiliation(s)
- Maemu Petronella Gededzha
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
- Corresponding Author: Maemu Petronella Gededzha, Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa. Tel: +27-125213631, Fax: +27-125215794, E-mail:
| | - Maphahlanganye Jeffrey Mphahlele
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
| | - Selokela Gloria Selabe
- Department of Virology, HIV and Hepatitis Research Unit, University of Limpopo, Medunsa Campus/National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
30
|
Cashman SB, Marsden BD, Dustin LB. The Humoral Immune Response to HCV: Understanding is Key to Vaccine Development. Front Immunol 2014; 5:550. [PMID: 25426115 PMCID: PMC4226226 DOI: 10.3389/fimmu.2014.00550] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) remains a global problem, despite advances in treatment. The low cost and high benefit of vaccines have made them the backbone of modern public health strategies, and the fight against HCV will not be won without an effective vaccine. Achievement of this goal will benefit from a robust understanding of virus-host interactions and protective immunity in HCV infection. In this review, we summarize recent findings on HCV-specific antibody responses associated with chronic and spontaneously resolving human infection. In addition, we discuss specific epitopes within HCV's envelope glycoproteins that are targeted by neutralizing antibodies. Understanding what prompts or prevents a successful immune response leading to viral clearance or persistence is essential to designing a successful vaccine.
Collapse
Affiliation(s)
- Siobhán B Cashman
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| | - Brian D Marsden
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK ; Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford , Oxford , UK
| | - Lynn B Dustin
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford , Oxford , UK
| |
Collapse
|
31
|
Ruwona TB, Giang E, Nieusma T, Law M. Fine mapping of murine antibody responses to immunization with a novel soluble form of hepatitis C virus envelope glycoprotein complex. J Virol 2014; 88:10459-71. [PMID: 24965471 PMCID: PMC4178869 DOI: 10.1128/jvi.01584-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼ 12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Travis Nieusma
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
32
|
Keck ZY, Angus AGN, Wang W, Lau P, Wang Y, Gatherer D, Patel AH, Foung SKH. Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423. PLoS Pathog 2014; 10:e1004297. [PMID: 25122476 PMCID: PMC4133389 DOI: 10.1371/journal.ppat.1004297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
A challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423. To determine whether HCV escapes from these antibodies, we analyzed variants that emerged when cell culture infectious HCV virions (HCVcc) were passaged under increasing concentrations of a specific HMAb, HC33.1. Multiple nonrandom escape pathways were identified. Two pathways occurred in the context of an N-glycan shift mutation at N417T. At low antibody concentrations, substitutions of two residues outside of the epitope, N434D and K610R, led to variants having improved in vitro viral fitness and reduced sensitivity to HC33.1 binding and neutralization. At moderate concentrations, a S419N mutation occurred within 412-423 in escape variants that have greatly reduced sensitivity to HC33.1 but compromised viral fitness. Importantly, the variants generated from these pathways differed in their stability. N434D and K610R-associated variants were stable and became dominant as the virions were passaged. The S419N mutation reverted back to N419S when immune pressure was reduced by removing HC33.1. At high antibody concentrations, a mutation at L413I was observed in variants that were resistant to HC33.1 neutralization. Collectively, the combination of multiple escape pathways enabled the virus to persist under a wide range of antibody concentrations. Moreover, these findings pose a different challenge to vaccine development beyond the identification of highly conserved epitopes. It will be necessary for a vaccine to induce high potency antibodies that prevent the formation of escape variants, which can co-exist with lower potency or levels of neutralizing activities.
Collapse
Affiliation(s)
- Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Allan G. N. Angus
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wenyan Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Arvind H. Patel
- MRC – University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (AHP); (SKHF)
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AHP); (SKHF)
| |
Collapse
|
33
|
Osburn WO, Snider AE, Wells BL, Latanich R, Bailey JR, Thomas DL, Cox AL, Ray SC. Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 2014; 59:2140-51. [PMID: 24425349 PMCID: PMC4043926 DOI: 10.1002/hep.27013] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED The contribution of humoral immune responses to spontaneous control of hepatitis C virus (HCV) infection remains unclear. We assessed neutralizing antibody (nAb) responses during acute HCV infection to determine whether infection outcome is associated with the nAb response, specifically, its timing or breadth (neutralization of multiple genotype-matched variants). A representative genotype 1 HCV pseudoparticle (HCVpp) library, consisting of 19 genetically distinct genotype 1 HCVpp that comprise the natural variability of genotype 1 E1E2 sequences, was used to assess anti-genotype 1 nAb responses during acute infection in at-risk persons followed prospectively. Neutralization of individual library HCVpp by the last viremic plasma sample obtained before clearance was compared to either 1-year post-initial viremia or clearance time-matched specimens obtained from subjects developing persistent infection. In persistently infected persons nAb responses were delayed then progressively broadened, whereas in persons who controlled viremia broader responses were detected early and contracted after clearance of viremia. Surprisingly, the breadth of anti-genotype 1 nAb responses was not dependent on subjects' infection genotype. Also, individual library HCVpp neutralization sensitivity was not associated with any known E2 sequence determinants. Interestingly, two single nucleotide polymorphisms in the HLA-DQ locus were associated with nAb breadth. CONCLUSION Control of HCV infection is associated with more rapid development of a broad nAb response, independent of the infection viral genotype, providing further evidence for the role of nAb in controlling HCV infection and the potential benefit of generating broad anti-HCV nAb responses by vaccination.
Collapse
Affiliation(s)
- William O. Osburn
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Anna E. Snider
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Brittany L. Wells
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Rachel Latanich
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Justin R. Bailey
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - David L. Thomas
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| |
Collapse
|
34
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
35
|
Ruwona TB, Mcbride R, Chappel R, Head SR, Ordoukhanian P, Burton DR, Law M. Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes. J Immunol Methods 2013; 402:35-42. [PMID: 24269751 DOI: 10.1016/j.jim.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/22/2013] [Accepted: 11/12/2013] [Indexed: 02/02/2023]
Abstract
Accurate and in-depth mapping of antibody responses is of great value in vaccine and antibody research. Using hepatitis C virus (HCV) as a model, we developed an affordable and high-throughput microarray-based assay for mapping antibody specificities to continuous antibody epitopes of HCV at high resolution. Important parameters in the chemistry for conjugating peptides/antigens to the array surface, the array layout, fluorophore choice and the methods for data analysis were investigated. Microscopic glass slide pre-coated with N-Hydroxysuccinimide (NHS)-ester (Slide H) was the preferred surface for conjugation of aminooxy-tagged peptides. This combination provides a simple chemical means to orient the peptides to the conjugation surface via an orthogonal covalent linkage at the N- or C-terminus of each peptide. The addition of polyvinyl alcohol to printing buffer gave uniform spot morphology and improved sensitivity and specificity of binding signals. Libraries of overlapping peptides covering the HCV E1 and E2 glycoprotein polypeptides (15-mer, 10 amino acids overlap) of 6 major HCV genotypes and the entire polypeptide sequence of the prototypic strain H77 were synthesized and printed in quadruplets in the assays. The utility of the peptide arrays was confirmed using HCV monoclonal antibodies (mAbs) specific to known continuous epitopes and immune sera of rabbits immunized with HCV antigens. The methods developed here can be easily adapted to studying antibody responses to antigens relevant in vaccine and autoimmune research.
Collapse
Affiliation(s)
- Tinashe B Ruwona
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Mcbride
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Rebecca Chappel
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Steven R Head
- Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Phillip Ordoukhanian
- Center for Protein and Nucleic Acids Research, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
36
|
Pedersen J, Carlsen THR, Prentoe J, Ramirez S, Jensen TB, Forns X, Alter H, Foung SKH, Law M, Gottwein J, Weis N, Bukh J. Neutralization resistance of hepatitis C virus can be overcome by recombinant human monoclonal antibodies. Hepatology 2013; 58:1587-97. [PMID: 23729237 PMCID: PMC4415732 DOI: 10.1002/hep.26524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Immunotherapy and vaccine development for hepatitis C virus (HCV) will depend on broadly reactive neutralizing antibodies (NAbs). However, studies in infectious strain JFH1-based culture systems expressing patient-derived Core-NS2 proteins have suggested neutralization resistance for specific HCV strains, in particular, of genotype 2. To further examine this phenomenon, we developed a panel of HCV genotype 2 recombinants for testing of sensitivity to neutralization by chronic-phase patient sera and lead human monoclonal antibodies (HMAbs). The novel Core-NS2 recombinants, with patient-derived genotype 2a (strain T9), 2b (strains DH8 and DH10), and 2c (strain S83) consensus sequences, were viable in Huh7.5 hepatoma cells without requirement for adaptive mutations, reaching HCV infectivity titers of 3.9-4.5 log10 focus-forming units per milliliter. In in vitro neutralization assays, we demonstrated that the novel genotype 2 viruses as well as prototype strains J6/JFH1(2a) and J8/JFH1(2b), all with authentic envelope proteins, were resistant to neutralization by genotype 2a, 2b, 2c, 2j, 2i, and 2q patient sera. However, these patient sera had high titers of HCV-specific NAbs, because they efficiently reduced the infectivity of J6(2a) and J8(2b) with deleted hypervariable region 1. The genotype 2a, 2b, and 2c viruses, found resistant to polyclonal patient sera neutralization, were efficiently neutralized by two lead HMAbs (AR4A and HC84.26). CONCLUSION Using novel 2a, 2b, and 2c cell-culture systems, expressing authentic envelope proteins, we demonstrated resistance of HCV to patient-derived polyclonal high-titer NAbs. However, the same genotype 2 culture viruses were all sensitive to HMAbs recognizing conformational epitopes, indicating that neutralization resistance of HCV can be overcome by applying recombinant antibodies. These findings have important implications for HCV immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Jannie Pedersen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas H. R. Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja B. Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Forns
- Liver Unit, Hospital Clinic, IDIBAPS, Ciberehd, and University of Barcelona, Barcelona, Spain
| | - Harvey Alter
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K. H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Judith Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, and Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Corresponding author: Jens Bukh, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Kettegaard Allé 30, DK-2650 Hvidovre, Denmark. Phone: +45 38626380; Fax: +45 36474979;
| |
Collapse
|
37
|
Lavie M, Dubuisson J. Structural knowledge of HCV envelope protein region recognized by broadly neutralizing antibodies. Future Virol 2013. [DOI: 10.2217/fvl.13.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Krey T, Meola A, Keck Z, Damier-Piolle L, Foung S, Rey F. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog. 9(5), e1003364 (2013). HCV infects 3% of the world’s population. In approximately 80% of infected individuals the infection becomes chronic, which is a major risk factor for liver cirrhosis and cancer. One important hurdle in HCV therapy is the high mutation rate of the virus. Indeed, the efficacy of current HCV therapy is notably limited by its dependency on the virus genotype and the potential emergence of resistant viruses. Nevertheless, some viral envelope epitopes cannot tolerate high variability without affecting viral fitness and thus constitute an interesting target for neutralizing antibodies. In this paper, Krey and colleagues report the crystal structure of the Fab fragments from two broadly reactive human neutralizing monoclonal antibodies in contact with their cognate epitopes that are resistant to viral escape. They identified the main contact residues that form a hydrophobic protrusion at the surface of the HCV envelope glycoprotein E2 and are involved in interactions with the HCV coreceptor CD81. Thus, this structural motif that contains these residues represents an interesting target for vaccine design.
Collapse
Affiliation(s)
- Muriel Lavie
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University Lille Nord de France, F-59021 Lille, France
| | - Jean Dubuisson
- Center for Infection & Immunity of Lille, Institut Pasteur of Lille, Inserm U1019, CNRS UMR-8204, University Lille Nord de France, F-59021 Lille, France
| |
Collapse
|
38
|
Structural and antigenic definition of hepatitis C virus E2 glycoprotein epitopes targeted by monoclonal antibodies. Clin Dev Immunol 2013; 2013:450963. [PMID: 23935648 PMCID: PMC3722892 DOI: 10.1155/2013/450963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2) is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs) directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.
Collapse
|
39
|
Liu R, Rao H, Wang J, Xie X, Jiang D, Pan X, Zhao P, Zhang H, Wei L. Determination of the human antibody response to the neutralization epitopes encompassing amino acids 313-327 and 432-443 of hepatitis C virus E1E2 glycoproteins. PLoS One 2013; 8:e66872. [PMID: 23826163 PMCID: PMC3691243 DOI: 10.1371/journal.pone.0066872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/13/2013] [Indexed: 12/28/2022] Open
Abstract
It has been reported that monoclonal antibodies (MAbs) to the E1E2 glycoproteins may have the potential to prevent hepatitis C virus (HCV) infection. The protective epitopes targeted by these MAbs have been mapped to the regionsencompassing amino acids 313–327 and 432–443. In this study, we synthesized these two peptides and tested the reactivity of serum samples from 336 patients, 210 of whichwere from Chronic Hepatitis C (CHC) patients infected with diverse HCV genotypes.The remaining 126 samples were isolated from patients who had spontaneously clearedHCV infection.In the chronic HCV-infected group (CHC group), the prevalence of human serum antibodies reactive to epitopes 313–327 and 432–443was 24.29%(51 of 210) and4.76%(10 of 210),respectively. In thespontaneousclearance group (SC group),the prevalence was 0.79%(1 of 126) and 12.70%(16 of 126), respectively.The positive serum samples that contained antibodies reactive to epitope 313–327 neutralizedHCV pseudoparticles (HCVpp) bearing the envelope glycoproteins of genotypes 1a or 1b and/or 4, but genotypes 2a, 3a, 5 and 6 were not neutralized. The neutralizing activity of these serum samples could not be inhibited by peptide 313–327. Six samples (SC17, SC38, SC86, SC92, CHC75 and CHC198) containing antibodies reactive to epitope 432–443 had cross-genotype neutralizing activities. Theneutralizing activityof SC38, SC86, SC92 and CHC75waspartiallyinhibited by peptide 432–443. However,the neutralizing activity of sample SC17 for genotype 4HCVpp and sample CHC198 for genotype 1b HCVppwere notinhibited by the peptide.This study identifies the neutralizing ability of endogenous anti-HCV antibodies and warrants the exploration of antibodies reactive to epitope432–443as sources for future antibody therapies.
Collapse
Affiliation(s)
- Ruyu Liu
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Jianghua Wang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Dong Jiang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xiaoben Pan
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Henghui Zhang
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University HepatologyInstitute, Beijing, China
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Wahid A, Dubuisson J. Virus-neutralizing antibodies to hepatitis C virus. J Viral Hepat 2013; 20:369-76. [PMID: 23647953 DOI: 10.1111/jvh.12094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023]
Abstract
For a long time, the lack of an appropriate cell culture system has hampered the study of neutralizing antibody responses against hepatitis C virus (HCV). However, the last decade has seen the development of several model systems that have significantly advanced our understanding of viral entry and antibody neutralization. Studies of acutely infected patients suggest that a strong and early production of neutralizing antibodies may contribute to control the virus during the acute phase of HCV infection and facilitate viral elimination by cellular immune responses. It also emerges that the early antibody response mainly targets hypervariable region 1 (HVR1) of the envelope glycoprotein E2. This host response can lead to viral escape from neutralization by rapid amino acid changes in this hypervariable region. In contrast, cross-reactive neutralizing antibodies seem to appear later during HCV infection, and several mechanisms contribute to reduce their accessibility to their cognate epitopes. These include the masking of major conserved neutralizing epitopes by HVR1, specific N-linked glycans and the lipid moiety of the viral particle. Other potential mechanisms of evasion from the neutralizing antibody response include a modulation by high-density lipoproteins and interfering antibodies as well as the capacity of the virus to be transferred by cell-to-cell contacts. Finally, the recent identification of several highly conserved neutralizing epitopes provides some opportunities for the design and development of vaccine candidates that elicit a protective humoral immune response.
Collapse
Affiliation(s)
- A Wahid
- Center for Infection & Immunity of Lille CIIL, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Univ Lille Nord de France, Lille, France
| | | |
Collapse
|
41
|
Krey T, Meola A, Keck ZY, Damier-Piolle L, Foung SKH, Rey FA. Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape. PLoS Pathog 2013; 9:e1003364. [PMID: 23696737 PMCID: PMC3656090 DOI: 10.1371/journal.ppat.1003364] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/02/2013] [Indexed: 01/27/2023] Open
Abstract
The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434-446 and aa610-619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434-446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F⁴⁴² and Y⁴⁴³ forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development.
Collapse
Affiliation(s)
- Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, Departement Virologie, Paris, France.
| | | | | | | | | | | |
Collapse
|
42
|
Clementi N, Mancini N, Castelli M, Clementi M, Burioni R. Characterization of epitopes recognized by monoclonal antibodies: experimental approaches supported by freely accessible bioinformatic tools. Drug Discov Today 2012. [PMID: 23178804 DOI: 10.1016/j.drudis.2012.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Monoclonal antibodies (mAbs) have been used successfully both in research and for clinical purposes. The possible use of protective mAbs directed against different microbial pathogens is currently being considered. The fine definition of the epitope recognized by a protective mAb is an important aspect to be considered for possible development in epitope-based vaccinology. The most accurate approach to this is the X-ray resolution of mAb/antigen crystal complex. Unfortunately, this approach is not always feasible. Under this perspective, several surrogate epitope mapping strategies based on the use of bioinformatics have been developed. In this article, we review the most common, freely accessible, bioinformatic tools used for epitope characterization and provide some basic examples of molecular visualization, editing and computational analysis.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | | | | | | | | |
Collapse
|
43
|
Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein. J Virol 2012; 87:37-51. [PMID: 23097455 DOI: 10.1128/jvi.01941-12] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A challenge for hepatitis C virus (HCV) vaccine development is defining conserved epitopes that induce protective antibodies against this highly diverse virus. An envelope glycoprotein (E2) segment located at amino acids (aa) 412 to 423 contains highly conserved neutralizing epitopes. While polyclonal antibodies to aa 412 to 423 from HCV-infected individuals confirmed broad neutralization, conflicting findings have been reported on polyclonal antibodies to an adjacent region, aa 434 to 446, that may or may not interfere with neutralization by antibodies to aa 412 to 423. To define the interplay between these antibodies, we isolated human monoclonal antibodies (HMAbs) to aa 412 to 423, designated HC33-related HMAbs (HC33 HMAbs), and characterized their interactions with other HMAbs to aa 434 to 446. A subset of the HC33 HMAbs neutralized genotype 1 to 6 infectious cell culture-derived HCV virions (HCVcc) with various activities. Although nonneutralizing HC33 HMAbs were isolated, they had lower binding affinities than neutralizing HC33 HMAbs. These antibodies could be converted to neutralizing antibodies by affinity maturation. Unidirectional competition for binding to E2 was observed between HC33 HMAbs and HMAbs to aa 434 to 446. When HMAbs to aa 434 to 446, which mediated neutralization, were combined with neutralizing HC33 HMAbs, biphasic patterns in neutralization were observed. A modest degree of antagonism was observed at lower concentrations, and a modest degree of synergism was observed at higher concentrations. However, the overall effect was additive neutralization. A similar pattern was observed when these antibodies were combined to block E2 binding to the HCV coreceptor, CD81. These findings demonstrate that both of these E2 regions participate in epitopes mediating virus neutralization and that the antibodies to aa 412 to 423 and aa 434 to 446 do not hinder their respective virus-neutralizing activities.
Collapse
|
44
|
Fafi-Kremer S, Fauvelle C, Felmlee DJ, Zeisel MB, Lepiller Q, Fofana I, Heydmann L, Stoll-Keller F, Baumert TF. Neutralizing antibodies and pathogenesis of hepatitis C virus infection. Viruses 2012. [PMID: 23202451 PMCID: PMC3497039 DOI: 10.3390/v4102016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Samira Fafi-Kremer
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
| | - Daniel J. Felmlee
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
| | - Quentin Lepiller
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Isabel Fofana
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
| | - Françoise Stoll-Keller
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U748, Strasbourg, France ; (S.F.-K.); (C.F.); (D.J.F.); (M.B.Z.); (Q.L.); (I.F.); (L.H.); (F.S.-K.)
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Author to whom correspondence should be addressed; ; Tel.: +33 3 68 85 37 03; Fax: +33 3 68 85 37 50
| |
Collapse
|
45
|
Nicasio M, Sautto G, Clementi N, Diotti RA, Criscuolo E, Castelli M, Solforosi L, Clementi M, Burioni R. Neutralization interfering antibodies: a "novel" example of humoral immune dysfunction facilitating viral escape? Viruses 2012; 4:1731-52. [PMID: 23170181 PMCID: PMC3499828 DOI: 10.3390/v4091731] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/01/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The immune response against some viral pathogens, in particular those causing chronic infections, is often ineffective notwithstanding a robust humoral neutralizing response. Several evasion mechanisms capable of subverting the activity of neutralizing antibodies (nAbs) have been described. Among them, the elicitation of non-neutralizing and interfering Abs has been hypothesized. Recently, this evasion mechanism has acquired an increasing interest given its possible impact on novel nAb-based antiviral therapeutic and prophylactic approaches. In this review, we illustrate the mechanisms of Ab-mediated interference and the viral pathogens described in literature as able to adopt this "novel" evasion strategy.
Collapse
Affiliation(s)
- Mancini Nicasio
- Microbiology and Virology Unit, Vita-Salute San Raffaele University, via Olgettina 58, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Amino acid residue-specific neutralization and nonneutralization of hepatitis C virus by monoclonal antibodies to the E2 protein. J Virol 2012; 86:12686-94. [PMID: 22973024 DOI: 10.1128/jvi.00994-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibodies to epitopes in the E2 protein of hepatitis C virus (HCV) reduce the viral infectivity in vivo and in vitro. However, the virus can persist in patients in the presence of neutralizing antibodies. In this study, we generated a panel of monoclonal antibodies that bound specifically to the region between residues 427 and 446 of the E2 protein of HCV genotype 1a, and we examined their capacity to neutralize HCV in a cell culture system. Of the four monoclonal antibodies described here, two were able to neutralize the virus in a genotype 1a-specific manner. The other two failed to neutralize the virus. Moreover, one of the nonneutralizing antibodies could interfere with the neutralizing activity of a chimpanzee polyclonal antibody at E2 residues 412 to 426, as it did with an HCV-specific immune globulin preparation, which was derived from the pooled plasma of chronic hepatitis C patients. Mapping the epitope-paratope contact interfaces revealed that these functionally distinct antibodies shared binding specificity for key amino acid residues, including W(437), L(438), L(441), and F(442), within the same epitope of the E2 protein. These data suggest that the effectiveness of antibody-mediated neutralization of HCV could be deduced from the interplay between an antibody and a specific set of amino acid residues. Further understanding of the molecular mechanisms of antibody-mediated neutralization and nonneutralization should provide insights for designing a vaccine to control HCV infection in vivo.
Collapse
|
47
|
Morin TJ, Broering TJ, Leav BA, Blair BM, Rowley KJ, Boucher EN, Wang Y, Cheslock PS, Knauber M, Olsen DB, Ludmerer SW, Szabo G, Finberg RW, Purcell RH, Lanford RE, Ambrosino DM, Molrine DC, Babcock GJ. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog 2012; 8:e1002895. [PMID: 22952447 PMCID: PMC3431327 DOI: 10.1371/journal.ppat.1002895] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver transplantation and there is an urgent need to develop therapies to reduce rates of HCV infection of transplanted livers. Approved therapeutics for HCV are poorly tolerated and are of limited efficacy in this patient population. Human monoclonal antibody HCV1 recognizes a highly-conserved linear epitope of the HCV E2 envelope glycoprotein (amino acids 412–423) and neutralizes a broad range of HCV genotypes. In a chimpanzee model, a single dose of 250 mg/kg HCV1 delivered 30 minutes prior to infusion with genotype 1a H77 HCV provided complete protection from HCV infection, whereas a dose of 50 mg/kg HCV1 did not protect. In addition, an acutely-infected chimpanzee given 250 mg/kg HCV1 42 days following exposure to virus had a rapid reduction in viral load to below the limit of detection before rebounding 14 days later. The emergent virus displayed an E2 mutation (N415K/D) conferring resistance to HCV1 neutralization. Finally, three chronically HCV-infected chimpanzees were treated with a single dose of 40 mg/kg HCV1 and viral load was reduced to below the limit of detection for 21 days in one chimpanzee with rebounding virus displaying a resistance mutation (N417S). The other two chimpanzees had 0.5–1.0 log10 reductions in viral load without evidence of viral resistance to HCV1. In vitro testing using HCV pseudovirus (HCVpp) demonstrated that the sera from the poorly-responding chimpanzees inhibited the ability of HCV1 to neutralize HCVpp. Measurement of antibody responses in the chronically-infected chimpanzees implicated endogenous antibody to E2 and interference with HCV1 neutralization although other factors may also be responsible. These data suggest that human monoclonal antibody HCV1 may be an effective therapeutic for the prevention of graft infection in HCV-infected patients undergoing liver transplantation. The majority of individuals infected with hepatitis C virus (HCV) become chronically infected and many go on to develop liver failure requiring liver transplantation. Unfortunately, the transplanted liver becomes infected with HCV in nearly 100% of transplant patients. Current treatments for HCV are poorly tolerated after liver transplantation and graft health is compromised by infection. We have developed a monoclonal antibody called HCV1 that blocks HCV from infecting liver cells in culture. Using chimpanzees as a model for HCV infection, we demonstrate that HCV1 has the ability to prevent HCV infection. We also show that HCV1 can treat chimpanzees chronically infected with HCV and reduce plasma viral load to below the level of detection for a period of 7 to 21 days. The virus that reemerges in the treated chimpanzees was resistant to HCV1 neutralization demonstrating target engagement. Given the ability of HCV1 to protect chimpanzees from HCV infection, we speculate that HCV1 may be beneficial in HCV- infected patients undergoing liver transplant.
Collapse
Affiliation(s)
- Trevor J. Morin
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Teresa J. Broering
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Brett A. Leav
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Barbra M. Blair
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Kirk J. Rowley
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Elisabeth N. Boucher
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Yang Wang
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Peter S. Cheslock
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Michael Knauber
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - David B. Olsen
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Steve W. Ludmerer
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robert H. Purcell
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert E. Lanford
- Department of Virology and Immunology, Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Donna M. Ambrosino
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Deborah C. Molrine
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Gregory J. Babcock
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sautto G, Mancini N, Diotti RA, Solforosi L, Clementi M, Burioni R. Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference. Antiviral Res 2012; 96:82-9. [PMID: 22898087 DOI: 10.1016/j.antiviral.2012.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 01/06/2023]
Abstract
The suggested HCV escape mechanism consisting in the elicitation of antibody (Ab) subpopulations interfering with the neutralizing activity of other Abs has recently been questioned. In particular, it was originally reported that Abs directed against the 436-447 region (epitope II) of HCV/E2 glycoprotein may interfere with the neutralizing Abs directed against the 412-423 region (epitope I) involved in the binding to CD81. In this paper, we investigate on the molecular features of this phenomenon describing an anti-HCV/E2 monoclonal Ab (mAb) (e509) endowed with a weak neutralizing activity, and whose epitope is centered on epitope II. Interestingly, e509 influenced the potent neutralizing activity of AP33, one of the best characterized anti-HCV/E2 mAb, whereas it did not show any interfering activity against two other broadly neutralizing mAbs (e20 and e137), whose epitopes partially overlap with that of e509 and which possibly displace it from the antigen. These data may give a possible clue to interpret the conflicting studies published to date on the mechanism of interference, suggesting the existence of at least two groups of broadly neutralizing anti-HCV/E2 Abs: (i) those whose epitope is focused on the 412-423 CD81-binding region and whose activity may be hampered by other Abs directed against the 436-447 region, and (ii) those directed against CD81-binding regions but whose epitope contains also residues within the 436-447 region recognized by interfering mAbs, thus competing with them for binding. The conflicting results of previous studies may therefore depend on the relative amount of each of these two populations in the polyclonal preparations used. Overall, a better comprehension of this phenomenon may be of importance in the set up of novel mAb-based anti-HCV therapeutic strategies.
Collapse
Affiliation(s)
- Giuseppe Sautto
- Laboratorio di Microbiologia e Virologia, Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Shimazaki Y, Kohno Y, Fukui I, Koyashiki T. Epitope analysis using membrane-immobilized avidin and protein A. Protein Expr Purif 2012; 83:177-81. [DOI: 10.1016/j.pep.2012.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
50
|
Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A 2012; 109:9499-504. [PMID: 22623528 DOI: 10.1073/pnas.1202924109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infects more than 2% of the global population and is a leading cause of liver cirrhosis, hepatocellular carcinoma, and end-stage liver diseases. Circulating HCV is genetically diverse, and therefore a broadly effective vaccine must target conserved T- and B-cell epitopes of the virus. Human mAb HCV1 has broad neutralizing activity against HCV isolates from at least four major genotypes and protects in the chimpanzee model from primary HCV challenge. The antibody targets a conserved antigenic site (residues 412-423) on the virus E2 envelope glycoprotein. Two crystal structures of HCV1 Fab in complex with an epitope peptide at 1.8-Å resolution reveal that the epitope is a β-hairpin displaying a hydrophilic face and a hydrophobic face on opposing sides of the hairpin. The antibody predominantly interacts with E2 residues Leu(413) and Trp(420) on the hydrophobic face of the epitope, thus providing an explanation for how HCV isolates bearing mutations at Asn(415) on the same binding face escape neutralization by this antibody. The results provide structural information for a neutralizing epitope on the HCV E2 glycoprotein and should help guide rational design of HCV immunogens to elicit similar broadly neutralizing antibodies through vaccination.
Collapse
|