1
|
Geoghegan EM, Zhang H, Desai PJ, Biragyn A, Markham RB. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob Agents Chemother 2015; 59:527-35. [PMID: 25385102 PMCID: PMC4291438 DOI: 10.1128/aac.03818-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/31/2014] [Indexed: 01/30/2023] Open
Abstract
Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells.
Collapse
Affiliation(s)
- Eileen M Geoghegan
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hong Zhang
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Prashant J Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, USA
| | - Richard B Markham
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jensen HL. Herpes simplex virus type 1 morphogenesis and virus-cell interactions: significance of cytoskeleton and methodological aspects. APMIS 2006:7-55. [PMID: 16930175 DOI: 10.1111/j.1600-0463.2006.apm_v114_s119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
3
|
Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res 1999; 43:79-92. [PMID: 10517310 DOI: 10.1016/s0166-3542(99)00036-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoborneol, a monoterpene and a component of several plant essential oils, showed dual viricidal activity against herpes simplex virus 1 (HSV-1). First, it inactivated HSV-1 by almost 4 log10 values within 30 min of exposure, and second, isoborneol at a concentration of 0.06% completely inhibited viral replication, without affecting viral adsorption. Isoborneol did not exhibit significant cytotoxicity at concentrations ranging between 0.016% and 0.08% when tested against human and monkey cell lines. Isoborneol specifically inhibited glycosylation of viral polypeptides based on the following data: (1) the mature fully glycosylated forms of two viral glycoproteins gB and gD were not detected when the virus was replicated in the presence of isoborneol, (2) no major changes were observed in the glycosylation pattern of cellular polypeptides between untreated and isoborneol treated Vero cells, (3) isoborneol did not affect the glycosylation of gB produced from a copy of the gB gene resident in the cellular genome, and (4) other monoterpenes such as 1,8-cineole and borneol, a stereoisomer of isoborneol, did not inhibit HSV-1 glycosylation.
Collapse
Affiliation(s)
- M Armaka
- Laboratory of General Microbiology, School of Biology, Aristotle University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
4
|
Wellington JE, Lawrence GL, Love DN, Whalley JM. Expression and characterization of equine herpesvirus 1 glycoprotein D in mammalian cell lines. Arch Virol 1996; 141:1785-93. [PMID: 8893800 DOI: 10.1007/bf01718301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Equine herpesvirus 1 glycoprotein D (EHV-1 gD) expressed constitutively in mammalian cell lines had similar electrophoretic mobility to gD produced in EHV-1 infected cells but lacked a possibly complexed higher molecular weight form seen in the latter. Recombinant gD was N-terminally cleaved at the same site as gD in EHV-1 infected cells and expression was associated with enhanced levels of cell-cell fusion, indicating a role for EHV-1 gD in cell-to-cell transmission of virus.
Collapse
Affiliation(s)
- J E Wellington
- School of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
5
|
Stannard LM, Himmelhoch S, Wynchank S. Intra-nuclear localization of two envelope proteins, gB and gD, of herpes simplex virus. Arch Virol 1996; 141:505-24. [PMID: 8645092 DOI: 10.1007/bf01718314] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The envelopes of herpes simplex virus (HSV) particles are acquired from the inner nuclear membrane (INM) of the infected cell and virus-coded glycoproteins are present in the envelope of mature virions. Our ultrastructural study examined the process of virus envelopment and the targeting of two major viral glycoproteins, gB and gD, to the INM in HSV-infected human embryonic fibroblasts. It was shown that envelopment and transport of virus particles from the nucleus is facilitated by the formation of a dynamic tubulo-reticulum arising from the INM. Capsids were assembled in the nucleus and collected within INM tubules which protruded into the perinuclear space and thence into the cisternae of the endoplasmic reticulum (ER). Envelopment occurred by constriction and fusion of the tubular channel walls, releasing enveloped virions into the ER. Transport to the cell surface took place in membrane-bound compartments and probably followed the normal secretory pathway through the Golgi apparatus. Immunogold probes, tagged with specific monoclonal antibodies, were used to localize gB and gD during the process of virus maturation. Cytoplasmic membranes were not labelled, but probes bound inside the nucleus, mainly at sites of virus assembly. Labelling occurred on the nucleoplasmic side of the INM which surrounded capsids in the process of envelopment, but not on the outside of that membrane, although characteristic gB glycoprotein spikes were labelled on the envelopes of extracellular virus particles and on virions in trans-Golgi transport vesicles just prior to their release from the infected cell. gB was not detected on the surface of enveloped virions in the perinuclear space, or the cisternae of the ER or cis-Golgi, which suggests that the specific epitope was masked during that stage of intracellular processing. gD probes bound to virion envelopes and also to the tegument region of some particles found in both perinuclear and extracellular sites. We postulate the precursor core proteins for both gB and gD are transported first to the nucleus, and then, together with maturing capsids, are targeted to the INM, and later inserted into viral envelopes at the site of budding. Post-translational glycosylation of envelope proteins could occur as virus particles exit the nucleus and travel through the ER and Golgi compartments.
Collapse
Affiliation(s)
- L M Stannard
- Department of Medical Microbiology, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
6
|
Hutchinson L, Roop-Beauchamp C, Johnson DC. Herpes simplex virus glycoprotein K is known to influence fusion of infected cells, yet is not on the cell surface. J Virol 1995; 69:4556-63. [PMID: 7769723 PMCID: PMC189205 DOI: 10.1128/jvi.69.7.4556-4563.1995] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Syncytial mutants of herpes simplex virus (HSV) cause extensive fusion of cultured cells, whereas wild-type HSV primarily causes cell rounding and aggregation. A large fraction of syncytial viruses contain mutations in the UL53 gene, which encodes glycoprotein K (gK). Previously, we demonstrated that wild-type and syncytial forms of gK are expressed at similar levels and possess identical electrophoretic mobilities. Using immunofluorescence, we show that gK is not transported to the surfaces of cells infected with either wild-type or syncytial HSV. Instead, gK accumulates in the perinuclear and nuclear membranes of cells. This finding is in contrast to the behavior of all other HSV glycoproteins described to date, which reach the cell surface. When gK was expressed in the absence of other HSV proteins, using a recombinant adenovirus vector, a similar perinuclear and nuclear pattern was observed. In addition, gK remained sensitive to endoglycosidase H, consistent with the hypothesis that gK does not reach the Golgi apparatus and is retained in the endoplasmic reticulum and nuclear envelope. Therefore, although gK mutations promote fusion between the surface membranes of HSV-infected cells, the glycoprotein does not reach the plasma membrane and, thus, must influence fusion indirectly.
Collapse
Affiliation(s)
- L Hutchinson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
7
|
Avitabile E, Ward PL, Di Lazzaro C, Torrisi MR, Roizman B, Campadelli-Fiume G. The herpes simplex virus UL20 protein compensates for the differential disruption of exocytosis of virions and viral membrane glycoproteins associated with fragmentation of the Golgi apparatus. J Virol 1994; 68:7397-405. [PMID: 7933123 PMCID: PMC237182 DOI: 10.1128/jvi.68.11.7397-7405.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Golgi apparatus is fragmented and dispersed in Vero cells but not in human 143TK- cells infected with wild-type herpes simplex virus 1. Moreover, a recombinant virus lacking the gene encoding the membrane protein UL20 (UL20- virus) accumulates in the space between the inner and outer nuclear membranes of Vero cells but is exported and spreads from cell to cell in 143TK- cell cultures. Here we report that in Vero cells infected with UL20- virus, the virion envelope glycoproteins were of the immature type, whereas the viral glycoproteins associated with cell membranes were fully processed up to the addition of sialic acid, a trans-Golgi function. Moreover, the amounts of viral glycoproteins accumulating in the plasma membranes were considerably smaller than those detected on the surface of Vero cells infected with wild-type virus. In contrast, the amounts of viral glycoproteins present on the plasma membranes of 143TK- cells infected with wild-type or UL20- virus were nearly identical. We conclude that (i) in Vero cells infected with UL20- virus the block in the export of virions is at the entry into the exocytic pathway, and a second block in the exocytosis of viral glycoproteins associated with cytoplasmic membranes is due to an impairment of transport beyond Golgi fragments containing trans-Golgi enzymes and not to a failure of the Golgi oligosaccharide-processing functions; (ii) these defects are manifested in cells in which the Golgi apparatus is fragmented; and (iii) the UL20 protein compensates for these defects by enabling transport to and from the fragmented Golgi apparatus.
Collapse
Affiliation(s)
- E Avitabile
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Gilbert R, Ghosh HP. Immunoelectron microscopic localization of herpes simplex virus glycoprotein gB in the nuclear envelope of infected cells. Virus Res 1993; 28:217-31. [PMID: 8394040 DOI: 10.1016/0168-1702(93)90023-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpesvirus, such as herpes simplex type 1 (HSV-1) acquire their envelope by budding through a modified inner membrane of the nuclear envelope which forms thick and dense patches at the site of budding. This suggests that some of the viral envelope glycoproteins must be transported to the nuclear envelope in order to be incorporated into the virus. In an effort to establish the localization of the HSV-1 glycoprotein gB-1 in the nuclear envelope of HSV-1 infected cells directly, we have studied the distribution of the glycoprotein gB-1 by immunoelectron microscopy using a polyclonal anti gB-1 antibody. A specific accumulation of gB-1 in the nuclear envelope, which was five times more labeled than the plasma membrane was observed. The glycoprotein gB-1 was localized in both the outer and the inner membrane of the nuclear envelope. The labeling over the nuclear envelope was distributed evenly and no preferential concentration of gB-1 around or within the patches where the virus buds was detected. The nucleocapsids were found to be labeled only when they become associated with the nuclear envelope indicating that gB-1 is incorporated into the virus at this site.
Collapse
Affiliation(s)
- R Gilbert
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
Sivropoulou A, Arsenakis M. Regulation of glycoprotein D synthesis of herpes simplex virus 1 by alpha 4 protein, the major regulatory protein of the virus, in stably transformed cell lines: effect of the relative gene copy numbers. Arch Virol 1993; 131:153-68. [PMID: 8392319 DOI: 10.1007/bf01379087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Earlier studies concerning gamma 1 gene regulation by the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1), in stably transformed cell lines, reported conflicting results, i.e., alpha 4 protein positively regulated the gamma 1 gB gene in alpha 4/gB cells, while it negatively regulated the gamma 1 gD gene in alpha 4/BJ cells. Both cell lines were derived from a common parental cell line alpha 4/c 113 that contains 1 copy of the alpha 4 gene, and the only apparent difference between them was the relative copy number of the gB and gD sequences (1 and 30-50, respectively) resident in the cell genome. We investigated this disparity by constructing a cell line (BA 4) that contains one copy each of the alpha 4 and gamma 1 gD sequences, by fusion of alpha 4/c 113 and BJt cells, containing and expressing respectively 1 copy of the alpha 4 and gD genes. BA 4 cells constitutively expressed both the alpha 4, gD genes inherited from the parental cell lines (alpha 4/c 113 and BJt). In BA 4 cells that alpha 4 protein positively regulates the gD gene as evidenced from (i) higher levels of gD expression than the parental BJt cells lacking the alpha 4 gene, and (ii) significant decrease in gD expression under conditions that render the alpha 4 protein produced in BA 4 cells non-functional. In addition the gamma 2gG gene contained within the DNA fragment encoding the gD gene, is also expressed in BA 4 cells. On the basis of these data, we propose that gamma gene regulation by the alpha 4 protein is affected by the relative copy number of these genes, resident in the cell genome.
Collapse
Affiliation(s)
- A Sivropoulou
- Department of Biology, Aristotelian University, Thessaloniki, Greece
| | | |
Collapse
|
10
|
Hanke T, Graham FL, Rosenthal KL, Johnson DC. Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J Virol 1991; 65:1177-86. [PMID: 1847447 PMCID: PMC239884 DOI: 10.1128/jvi.65.3.1177-1186.1991] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses to herpes simplex virus (HSV) polypeptides play an important role in recovery from infection and in preventing latency. We have previously shown that glycoprotein B (gB) is a major target recognized by HSV-specific CTLs in C57BL/6 (H-2b) and BALB/c (H-2d) mice but not in CBA/J (H-2k) mice (L. A. Witmer, K. L. Rosenthal, F. L. Graham, H. M. Friedman, A. Yee, and D. C. Johnson, J. Gen. Virol. 71:387-396, 1990). In this report, we utilize adenovirus vectors expressing gB with various deletions to localize an immunodominant site in gB, recognized by H-2b-restricted anti-HSV CTLs, to a region between residues 462 and 594. Overlapping peptides spanning this region were synthesized and used to further localize the immunodominant site to residues 489 to 515, a region highly conserved in HSV type 1 (HSV-1) and HSV-2 strains. The 11-amino-acid peptide was apparently associated exclusively with the Kb major histocompatibility complex gene product and not the Db gene product. In contrast, H-2d-restricted CTLs recognized an immunodominant site between residues 233 and 379.
Collapse
Affiliation(s)
- T Hanke
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Pettersson RF. Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol 1991; 170:67-106. [PMID: 1760931 DOI: 10.1007/978-3-642-76389-2_3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R F Pettersson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| |
Collapse
|
12
|
Sommer M, Courtney RJ. Differential rates of processing and transport of herpes simplex virus type 1 glycoproteins gB and gC. J Virol 1991; 65:520-5. [PMID: 1845906 PMCID: PMC240550 DOI: 10.1128/jvi.65.1.520-525.1991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kinetics of processing and transport of herpes simplex virus type 1 (HSV-1) glycoproteins gB and gC was investigated. The conversion of precursor to mature forms and the appearance of the glycoproteins at the infected-cell surface at different times postinfection (p.i.) were studied. gB, synthesized at 4 h p.i., was converted to the mature form with a half-time (t1/2) of 120 min and appeared at the plasma membrane with a t1/2 of 270 min. The gB synthesized at later times p.i. (6, 8, and 10.5 h) was transported less efficiently. Less than 50% of gB synthesized at later times p.i. was processed and transported to the cell surface. gB synthesized in transfected cells was transported to the plasma membrane with kinetics similar to that for gB synthesized at early times p.i. gC was processed efficiently when synthesized at both 8 and 10.5 h p.i., with t1/2 of conversion of pgC to gC of 40 and 60 min, respectively. Approximately 90 to 95% of the gC synthesized was converted to the mature form. The gC synthesized at 8 h p.i. was also transported rapidly to the cell surface, compared with the transport of gB synthesized at the same time, with a t1/2 of 240 min. Greater than 70% of the gC synthesized at 8 h p.i. appeared at the cell surface. The gC synthesized at 10.5 h was transported less efficiently to the cells surface during a 6-h chase.
Collapse
Affiliation(s)
- M Sommer
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | |
Collapse
|
13
|
Sodora DL, Cohen GH, Eisenberg RJ. Influence of asparagine-linked oligosaccharides on antigenicity, processing, and cell surface expression of herpes simplex virus type 1 glycoprotein D. J Virol 1989; 63:5184-93. [PMID: 2555549 PMCID: PMC251182 DOI: 10.1128/jvi.63.12.5184-5193.1989] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycoprotein D (gD) is an envelope component of herpes simplex virus types 1 and 2. gD-1 contains three sites for the addition of N-linked carbohydrate (N-CHO), all of which are used. Three mutants were constructed by site-directed mutagenesis, each of which altered one N-CHO addition site from Asn-X-Thr/Ser to Asn-X-Ala. A fourth mutant was altered at all three sites. The mutant genes were inserted into an expression vector, and the expressed protein was analyzed in transiently transfected COS-1 cells. The mutant protein lacking N-CHO at site 1 (Asn-94) had a reduced affinity for monoclonal antibodies (MAbs) to discontinuous epitopes, suggesting that the conformation of the protein had been altered. However, the protein was processed and transported to the cell surface. The absence of N-CHO at site 2 (Asn-121) had no apparent effect on processing or transport of gD-1 but resulted in reduced binding of two MAbs previously shown to be in group VI. Binding of other MAbs to discontinuous epitopes (including other group VI MAbs) was not affected. The absence of N-CHO at site 3 (Asn-262) had no effect on processing, transport, or conformation of the gD-1 protein. The absence of N-CHO from site 1 or from all three sites resulted in the formation of high-molecular-weight aggregates or complexes and a reduction in MAb binding. However, these proteins were modified by the addition of O-glycans and transported to the cell surface. We conclude that the absence of the first or all N-linked carbohydrates alters the native conformation of gD-1 but does not prevent its transport to the cell surface.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | |
Collapse
|
14
|
Gompels UA, Minson AC. Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 1989; 63:4744-55. [PMID: 2552150 PMCID: PMC251111 DOI: 10.1128/jvi.63.11.4744-4755.1989] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein H (HSV-1 gH) was synthesized in an inducible mammalian cell expression system, and its properties were examined. The gH coding sequence, together with the stable 5' untranslated leader sequence from xenopus beta-globin, was placed under control of the strong promoter from the human cytomegalovirus major immediate-early gene in an amplifiable plasmid which contains the simian virus 40 (SV40) virus origin for replication (ori). This expression vector was transfected into ts COS cells constitutively expressing a temperature-sensitive SV40 T antigen which allows utilization of the SV40 ori at permissive temperatures. The results of transient expression assays at the permissive temperature showed that HSV-1 gH could be synthesized in greater amounts than those produced by a high-multiplicity virus infection. The proteins produced were detected in Western blots (immunoblots) with a HSV-1 gH-specific polyclonal serum raised against a TrpE-gH fusion protein. The transfected gH had an apparent molecular weight of approximately 105,000, intermediate in size to those of the precursor (100,000) and fully processed forms (110,000) of HSV-1 gH from infections. Antigenicity was investigated by reactions with three virus-neutralizing monoclonal antibodies specific for conformational epitopes on gH. Only one of these monoclonal antibodies could immunoprecipitate the synthesized gH. However, equal recognition of the transfected gH was achieved by superinfection with virus. In addition, detectable amounts of gH were not expressed on the cell surface unless the cells were superinfected with virus. Studies with a temperature-sensitive mutant, ts1201, defective in encapsidation showed that the changes in antigenic structure and cell surface expression caused by superinfection with virus were not due simply to incorporation of gH into virions. These results suggest that gH requires additional virus gene products for cell surface localization and formation of an antigenic structure important for its function in mediating infectivity.
Collapse
Affiliation(s)
- U A Gompels
- Department of Pathology, University of Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Shibata M, Puga A, Salata KF, Bachurski CJ, Lerman MI, Notkins AL. Expression of a viral gene in insulin-producing cell lines renders them susceptible to immunological destruction. Diabetologia 1989; 32:709-15. [PMID: 2556307 DOI: 10.1007/bf00274529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gene coding for the glycoprotein D of herpes simplex virus type 1 was cloned into plasmids under the transcriptional control of the SV40 promoter-enhancer or the rat insulin 1 promoter-enhancer sequences. These plasmids were transfected into rat insulinoma cells (RINm5F) and mouse NIH/3T3 cells and the expression of glycoprotein D was examined using cell surface immunofluoresence. The rat insulin 1 promoter-enhancer sequences directed efficient expression in RINm5F cells, but not in NIH/3T3 cells. In contrast, the SV40 promoter-enhancer sequences worked well in NIH/3T3 cells, but not in RINm5F cells. Expression of glycoprotein D did not interfere with insulin production by RINm5F cells. When stable cel lines expressing glycoprotein D were exposed to anti-herpes simplex virus type 1 antibodies and complement, they were destroyed. These studies provide additional evidence that specific promoter-enhancer elements are required for efficient gene expression in certain cell types and demonstrate that the expression of foreign antigens on the surface of insulin-producing cells can lead to their immunological destruction.
Collapse
Affiliation(s)
- M Shibata
- Laboratory of Oral Medicine, National Institute of Dental Research, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
16
|
Johnson RM, Spear PG. Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. J Virol 1989; 63:819-27. [PMID: 2536105 PMCID: PMC247755 DOI: 10.1128/jvi.63.2.819-827.1989] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We showed that the expression of a single protein, glycoprotein D (gD-1), specified by herpes simplex virus type 1 (HSV-1) renders cells resistant to infection by HSV but not to infection by other viruses. Mouse (LMtk-) and human (HEp-2) cell lines containing the gene for gD-1 under control of the human metallothionein promoter II expressed various levels of gD-1 constitutively and could be induced to express higher levels with heavy metal ions. Radiolabeled viruses bound equally well to gD-1-expressing and control cell lines. Adsorbed viruses were unable to penetrate cells expressing sufficient levels of gD-1, based on lack of any cytopathic effects of the challenge virus and on failure to detect either the induction of viral protein synthesis or the shutoff of host protein synthesis normally mediated by a virion-associated factor. The resistance to HSV infection conferred by gD-1 expression was not absolute and depended on several variables, including the amount of gD-1 expressed, the dosage of the challenge virus, the serotype of the challenge virus, and the properties of the cells themselves. The interference activity of gD-1 is discussed in relation to the role of gD-1 in virion infectivity and its possible role in permitting escape of progeny HSV from infected cells.
Collapse
Affiliation(s)
- R M Johnson
- Department of Molecular, Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
17
|
Chatterjee S, Whitley RJ. Effect of recombinant hybrid human interferon on replication and morphogenesis of HSV-1 in monkey cells. Virus Res 1989; 12:33-41. [PMID: 2541580 DOI: 10.1016/0168-1702(89)90051-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human recombinant alpha interferon, A/D, significantly reduced the replication and cell fusion induced by herpes simplex virus type 1 in monkey cells. Thin-section electron microscopy of interferon-treated monkey cells showed distinct assembly of nucleocapsids within the nucleus. Analysis of virus-specific proteins by the immunoblot technique confirmed that A/D interferon had no significant effect on the expression of major nucleocapsid proteins, although the expression of glycoproteins B and D was reduced in interferon-treated cells. The possibility of an interferon-induced block at a late stage in virus morphogenesis is discussed.
Collapse
Affiliation(s)
- S Chatterjee
- Department of Pediatrics, University of Alabama, Birmingham 35294
| | | |
Collapse
|
18
|
Seidel-Dugan C, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Cohen GH, Eisenberg RJ. C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol 1988; 62:4027-36. [PMID: 2845122 PMCID: PMC253832 DOI: 10.1128/jvi.62.11.4027-4036.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycoprotein C from herpes simplex virus type 1 (gC-1 from HSV-1) acts as a receptor for the C3b fragment of the third component of complement on HSV-1-infected cell surfaces. Direct binding assays with purified gC-1 and C3b demonstrate that other viral and cellular proteins are not required for this interaction. Although C3b receptor activity is not expressed on HSV-2-infected cell surfaces, purified gC-2 specifically binds C3b in direct binding assays, suggesting that gC-1 and gC-2 are functionally similar. Here, we used a transient transfection system to further characterize the role of gC-1 and gC-2 as C3b receptors and to localize the site(s) on gC involved in C3b binding. The genes for gC-1 and gC-2 were each cloned into a eucaryotic expression vector containing the Rous sarcoma virus long terminal repeat as the promoter and transfected into NIH 3T3 cells. The expressed proteins were similar in molecular size, extent of carbohydrate processing, and antigenic properties to gC-1 and gC-2 purified from infected cells. Using a double-label immunofluorescence assay, we found that both gC-1 and gC-2 were expressed on the surfaces of transfected cells and bound C3b. These results suggest that other proteins expressed during HSV-2 infection prevent receptor activity. We constructed three in-frame deletion mutants of gC-2 to identify domains on the protein important for C3b receptor activity. These mutants lacked amino acids 26 to 73, 219 to 244, or 318 to 346. The mutant protein lacking residues 26 to 73 was reactive with two monoclonal antibodies recognizing distinct epitopes, showed a wild-type pattern of carbohydrate processing, and bound C3b on the transfected cell surface. These results suggest that residues 26 to 73 are not involved in C3b binding. The other two mutant proteins were present on the cell surface, but did not bind C3b. In addition, these mutant proteins showed altered patterns of carbohydrate processing, formed aggregates, and were no longer recognized by the monoclonal antibodies. These properties indicate that removal of residues 219 to 244 or 318 to 346 disrupted the native conformation of gC-2, possibly owing to an alteration in the spacing between critical cysteine residues.
Collapse
Affiliation(s)
- C Seidel-Dugan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
19
|
Lopez-Iglesias C, Puvion-Dutilleul F. Visualization of glycoproteins after tunicamycin and monensin treatment of herpes simplex virus infected cells. JOURNAL OF ULTRASTRUCTURE AND MOLECULAR STRUCTURE RESEARCH 1988; 101:75-91. [PMID: 3249040 DOI: 10.1016/0889-1605(88)90083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of tunicamycin and monensin on the morphogenesis of herpes simplex virus type 1 and on the ultrastructure and function of host cell membranes was investigated by conventional technics of electron microscopy and cytochemical localization of glycoproteins with thiocarbohydrazide-SO2. Infected RS 537 rabbit fibroblasts were treated with tunicamycin, which inhibits the glycosylation of many glycoproteins, or monensin, which inhibits the transport of proteins to the cell surface, and were compared with untreated infected cells. Tunicamycin treatment almost entirely suppresses the perinuclear envelopment of viral capsids, induces the nuclear export of unusually numerous naked viral capsids, and prevents the proliferation of the Golgi apparatus. On the other hand, perinuclear envelopment of viral capsids still occurs following a monensin treatment; however, enveloped viral capsids are not released into the extracellular space; in addition this treatment induces the proliferation of the rough endoplasmic reticulum (RER). The number of structures stained for glycoproteins in tunicamycin-treated cells is markedly lower than that in nontreated infected cells, whereas an unusual additional staining of the entire outer nuclear membrane and of the RER occurs following monensin treatment.
Collapse
Affiliation(s)
- C Lopez-Iglesias
- Groupe de Laboratoires de l'Institut de Recherches Scientifiques sur le Cancer, ER272 CNRS, Villejuif, France
| | | |
Collapse
|
20
|
Cohen GH, Wilcox WC, Sodora DL, Long D, Levin JZ, Eisenberg RJ. Expression of herpes simplex virus type 1 glycoprotein D deletion mutants in mammalian cells. J Virol 1988; 62:1932-40. [PMID: 2452897 PMCID: PMC253276 DOI: 10.1128/jvi.62.6.1932-1940.1988] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycoprotein D (gD) is a viron envelope component of herpes simplex virus types 1 and 2. We have previously defined seven monoclonal antibody (MAb) groups which recognize distinct epitopes on the mature gD-1 protein of 369 amino acids. MAb groups VII, II, and V recognize continuous epitopes at residues 11-19, 272-279, and 340-356, respectively. MAb groups I, III, IV, and VI recognize discontinuous epitopes. Recent studies have focused on epitopes I, III, and VI. Using truncated forms of gD generated by recombinant DNA methods and proteolysis, epitopes III, IV, and VI were located within amino acids 1-233. A portion of discontinuous epitope I was located in a region within residues 233-275. For this study, we used recombinant DNA methods to create mutations in the gD-1 gene and studied the effects of those mutations on gD as expressed in mammalian cells. Plasmid pRE4, containing the coding sequence of gD-1 and the Rous sarcoma virus long terminal repeat promoter, was transfected into mammalian cells. The expressed protein, gD-1-(pRE4), was identical in size and antigenic properties to gD-1 from infected cells. Six in-frame deletion mutations were subsequently constructed by using restriction enzymes to excise portions of the gD-1 gene. Plasmids carrying these mutated forms were transfected into cells, and the corresponding proteins were examined at 48 h posttransfection for antigenicity and glycosylation patterns. Three deletions of varying size were located downstream of residue 233. Analysis of these mutants showed that amino acids within the region 234-244 were critical for binding of DL11 (group I), but not for other MAb groups. Three other deletion mutants lost all ability to bind MAbs which recognize discontinuous epitopes. In addition, much of the gD expressed by these mutants was observed to migrate as high-molecular-weight aggregated forms in nondenaturing gels. Each of these mutations involved the loss of a cysteine residue, suggesting that disulfide linkages play an essential role in the formation of discontinuous epitopes. The extent of glycosylation of the mutant gD molecules accumulated at 48 h posttransfection suggested altered carbohydrate processing. In one case, there was evidence for increased O-linked glycosylation. Those proteins which had lost a cysteine residue as part of the deletion did not accumulate molecules processed beyond the high-mannose stage. The results suggest that carbohydrate processing during synthesis of gD is very sensitive to alterations in structure, particularly changes involving cysteine residues.
Collapse
Affiliation(s)
- G H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | | | | | |
Collapse
|
21
|
Johnson DC, Ghosh-Choudhury G, Smiley JR, Fallis L, Graham FL. Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 1988; 164:1-14. [PMID: 2834864 DOI: 10.1016/0042-6822(88)90613-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is a major component of infected cell membranes and virion envelopes. Glycoprotein B is known to be essential for entry of viruses into cells and may play important roles in virus-induced cell fusion and other alterations in cell morphology. In order to study the biochemical and immunological properties of gB in isolation from other HSV-1 polypeptides we have constructed human adenovirus vectors capable of expressing high levels of gB. The gB gene was coupled to the SV40 early promoter and inserted into the E3 region of two adenovirus vectors, one in which the E1 region was deleted (AdgB-1) and another which contained E1 sequences (AdgB-2). In AdgB-1 the orientation of the chimeric gB-SV40 gene was right to left, i.e., opposite to the direction of late and E3 mRNA transcription, whereas in AdgB-2 the orientation was left to right. Human 293 cells which express E1 functions supported replication of AdgB-1 and gB was expressed in these cells but not in mouse cells and only at very low levels in human cells other than 293. Replication of AdgB-2 was not limited to 293 cells and the virus was able to induce synthesis of gB at levels equal to or higher than those expressed in HSV-1-infected human or mouse cells. Microscopic examination of AdgB-2-infected cells revealed extensive vacuolization in a manner completely uncharacteristic of adenovirus-infected cells, and fluorescent antibody staining indicated that gB was not only present at the cell surface but also concentrated in the cytoplasmic vacuoles.
Collapse
Affiliation(s)
- D C Johnson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Johnson DC, Frame MC, Ligas MW, Cross AM, Stow ND. Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol 1988; 62:1347-54. [PMID: 2831396 PMCID: PMC253147 DOI: 10.1128/jvi.62.4.1347-1354.1988] [Citation(s) in RCA: 253] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70 (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987). Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, we have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI (R. Longnecker, S. Chatterjee, R. J. Whitley, and B. Roizman, Proc. Natl. Acad. Sci. USA 84:147-151, 1987). Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.
Collapse
Affiliation(s)
- D C Johnson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
23
|
Campadelli-Fiume G, Lombardo MT, Foà-Tomasi L, Avitabile E, Serafini-Cessi F. Individual herpes simplex virus 1 glycoproteins display characteristic rates of maturation from precursor to mature form both in infected cells and in cells that constitutively express the glycoproteins. Virus Res 1988; 10:29-40. [PMID: 2837011 DOI: 10.1016/0168-1702(88)90055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulse-chase experiments in conjunction with quantitative immunoprecipitation have been used to study the time-course of conversion from precursor to mature form of herpes simplex virus 1 glycoproteins C, D and B (gC, gD, and gB). The experimental systems employed were two infected cell lines and cells that constitutively express gD or gB. The relative rates of conversion among the glycoproteins did not vary in the systems used; the rate of maturation of gC was about two-fold higher than that of gD which, in turn, was about one and a half-fold higher than that of gB. Treatment with phosphonoacetate which inhibits viral DNA synthesis and hence virion morphogenesis induced a striking increase in the time course of conversion of immature gC, gD, and gB to fully glycosylated forms when measured late in the infection. The model of HSV glycoproteins maturation as integral components of the virion envelope is discussed.
Collapse
|
24
|
Cranage MP, Smith GL, Bell SE, Hart H, Brown C, Bankier AT, Tomlinson P, Barrell BG, Minson TC. Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J Virol 1988; 62:1416-22. [PMID: 2831402 PMCID: PMC253155 DOI: 10.1128/jvi.62.4.1416-1422.1988] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.
Collapse
Affiliation(s)
- M P Cranage
- Department of Pathology, University of Cambridge, England
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Campadelli-Fiume G, Arsenakis M, Farabegoli F, Roizman B. Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. J Virol 1988; 62:159-67. [PMID: 2824844 PMCID: PMC250514 DOI: 10.1128/jvi.62.1.159-167.1988] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The BJ cell line which constitutively expresses herpes simplex virus 1 glycoprotein D is resistant to infection with herpes simplex viruses. Analysis of clonal lines indicated that resistance to superinfecting virus correlates with the expression of glycoprotein D. Resistance was not due to a failure of attachment to cells, since the superinfecting virus absorbed to the BJ cells. Electron microscopic studies showed that the virions are juxtaposed to coated pits and are then taken up into endocytic vesicles. The virus particles contained in the vesicles were in various stages of degradation. Viral DNA that reached the nucleus was present in fewer copies per BJ cell than that in the parental BHKtk- cells infected at the same multiplicity. Moreover, unlike the viral DNA in BHKtk- cells which was amplified, that in BJ cells decreased in copy number. The results suggest that the glycoprotein D expressed in the BJ cell line interfered with fusion of the virion envelope with the plasma membrane but not with the adsorption of the virus to cells and that the viral proteins that mediate adsorption to and fusion of membranes appear to be distinct.
Collapse
|
26
|
Arsenakis M, Campadelli-Fiume G, Roizman B. Regulation of glycoprotein D synthesis: does alpha 4, the major regulatory protein of herpes simplex virus 1, regulate late genes both positively and negatively? J Virol 1988; 62:148-58. [PMID: 2824843 PMCID: PMC250513 DOI: 10.1128/jvi.62.1.148-158.1988] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ cells reflects the expression of the alpha 4 protein in these cells.
Collapse
Affiliation(s)
- M Arsenakis
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637
| | | | | |
Collapse
|
27
|
Patick AK, Hinze HC. Characterization of herpesvirus sylvilagus glycoproteins released into the culture medium of infected cells: antisera to gp13 and gp32 neutralize viral infectivity in vitro and identify antigens on plasma membranes of infected cells. J Virol 1987; 61:3580-8. [PMID: 3312635 PMCID: PMC255958 DOI: 10.1128/jvi.61.11.3580-3588.1987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polypeptides released into the culture medium of herpesvirus sylvilagus-infected cells were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracellular fluid from [35S]methionine- and [3H]glucosamine-labeled cell cultures. Virus-induced glycoproteins 31, 32, and 33 (molecular weights of 62,000, 59,000, and 54,000, respectively) were the most abundant species and appeared predominantly in the culture medium. This observation, together with the known cell-associated nature of herpesvirus sylvilagus, suggested that virus-induced glycoproteins 31, 32, and 33 were specifically released. Immunization of rabbits with virus-induced glycoproteins 13 (molecular weight of 130,000) and 32 resulted in the production of antibodies that neutralized viral infectivity in vitro. Both antiserum to gp13 and antiserum to gp32 immunoprecipitated gp13, gp26, gp33a, gp45, and virus-induced polypeptide 39 (molecular weights of 130,000, 77,000, 49,000, 27,000, and 36,000, respectively) from [35S]methionine-labeled cell extracts as well as virus-induced glycoproteins 31, 32, and 33 from the culture medium. In addition, membrane immunofluorescence assays indicate that an antigen(s) reactive with anti-gp13/32 serum was located on the plasma membrane of infected cells.
Collapse
Affiliation(s)
- A K Patick
- Department of Medical Microbiology, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
28
|
Ryan JP, Whealy ME, Robbins AK, Enquist LW. Analysis of pseudorabies virus glycoprotein gIII localization and modification by using novel infectious viral mutants carrying unique EcoRI sites. J Virol 1987; 61:2962-72. [PMID: 3041015 PMCID: PMC255868 DOI: 10.1128/jvi.61.10.2962-2972.1987] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have constructed two pseudorabies virus (PRV) mutants, each with a unique EcoRI restriction site in the nonessential gIII envelope glycoprotein gene. Since no natural PRV isolate has been reported to contain EcoRI sites, the isolation and single-step growth curve analysis of these mutants established that PRV can carry such a site with little ill effect in tissue culture. Virus carrying these defined mutations produced novel gIII proteins that enabled us to begin functional assignment of protein localization information within the gIII gene. Specifically, one viral mutant contained an in-frame synthetic EcoRI linker sequence that was flanked on one side by the first one-third of the gIII gene and on the other side by the last one-third of the gene. The resulting protein lacked the middle one-third of the parental species, including five of eight putative N-linked glycosylation signals, but was still glycosylated and found in enveloped virions; it was not secreted into the medium. A second viral mutant contained an in-frame synthetic EcoRI linker sequence that additionally specified a nonsense codon at position 158, producing a gIII protein that was glycosylated and secreted into the medium; the fragment was not found in enveloped virions. By endoglycosidase and pulse-chase analyses, we established a precursor-product relationship between the various forms of gIII expressed in the parental and mutant strains, and perhaps determined certain features of the gIII protein that are required for its efficient export within the cell.
Collapse
|
29
|
Rosenthal KL, Smiley JR, South S, Johnson DC. Cells expressing herpes simplex virus glycoprotein gC but not gB, gD, or gE are recognized by murine virus-specific cytotoxic T lymphocytes. J Virol 1987; 61:2438-47. [PMID: 3037106 PMCID: PMC255665 DOI: 10.1128/jvi.61.8.2438-2447.1987] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To determine which viral molecule(s) is recognized by herpes simplex virus (HSV)-specific cytotoxic T lymphocytes (CTL), target cells were constructed which express individual HSV glycoproteins. A mouse L cell line, Z4/6, which constitutively expressed high levels of HSV type 2 (HSV-2) gD (gD-2) was isolated and characterized previously (D. C. Johnson and J. R. Smiley, J. Virol. 54:682-689, 1985). Despite the expression of gD on the surface of Z4/6 cells, these cells were not killed by anti-HSV-2 CTL generated following intravaginal infection of syngeneic mice. In contrast, parental Z4 or Z4/6 cells infected with HSV-2 were lysed. Furthermore, unlabeled Z4/6 cells were unable to block the lysis of HSV-2-infected labeled target cells. Cells which express HSV-1 gB (gB-1) were isolated by transfecting L cells with the recombinant plasmid pSV2gBneo, which contains the HSV-1 gB structural sequences and the neomycin resistance gene coupled to the simian virus 40 early promoter and selecting G418-resistant cell lines. One such cell line, Lta/gB15, expressed gB which was detected by immunoprecipitation and at the cell surface by immunofluorescence. Additionally, cells expressing HSV-1 gC (gC-1) or gE (gE-1) were isolated by transfecting Z4 cells, which are L cells expressing ICP4 and ICP47, with either the recombinant plasmid pGE15neo, which contains the gE structural sequences and the neomycin resistance gene, or pDC17, which contains the gC structural gene coupled to the gD-1 promoter. A number of G418-resistant cell lines were isolated which expressed gC-1 or gE-1 at the cell surface. Anti-HSV-1 CTL generated following footpad infection of syngeneic mice were unable to lyse target cells expressing gB-1 or gE-1. In contrast, target cells expressing very low levels of gC-1 were killed as well as HSV-1-infected target cells. Furthermore, infection of gC-1-transformed target cells with wild-type HSV-1 or a strain of HSV-1 that does not express gC did not result in a marked increase in susceptibility to lysis. These results suggest that murine class I major histocompatibility complex-restricted anti-HSV CTL recognize gC-1 but do not recognize gB, gD, or gE as these molecules are expressed in transfected syngeneic target cells. The results are discussed in terms of recent evidence concerning the specificity of antiviral CTL.
Collapse
|
30
|
Persson RH, Bacchetti S. In cell lines constitutively synthesizing a temperature-sensitive ICP4 protein of herpes simplex virus type 1, amount and function of ICP4 are both regulated by temperature. Virology 1987; 158:285-93. [PMID: 3035785 DOI: 10.1016/0042-6822(87)90200-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have established two cell lines that constitutively synthesize a temperature-sensitive form of ICP4, the herpes simplex virus immediate-early protein that activates early and late transcription. ICP4 in both cell lines was confirmed to be functionally temperature sensitive when tested by complementation of an ICP4 deletion mutant virus for expression of viral early and late genes. When grown at the permissive temperature the two cell lines contained approximately 5 and 25%, respectively, of the ICP4 present in control HSV-infected cells. If the cells were grown at the nonpermissive temperature, ICP4 levels were reduced by approximately fourfold; a twofold reduction was observed in control cells synthesizing the wild-type protein. The lower levels of ICP4 at the nonpermissive temperature were the result of two effects: a decrease in mRNA which was similar in cells producing the mutant or wild-type form of ICP4 and a more rapid turnover of the protein which was greater for the mutant than for the wild-type form. Our observations of lower levels of ICP4 in producer cells differ from published reports of overproduction of immediate-early proteins at the nonpermissive temperature in human or hamster cells infected with ICP4 temperature-sensitive mutant viruses. This discrepancy may be related to cell species differences since we observed only a modest twofold overproduction of immediate-early proteins at the nonpermissive temperature in infections of mouse cell lines with an ICP4 temperature-sensitive mutant virus.
Collapse
|
31
|
Rhee SS, Hunter E. Myristylation is required for intracellular transport but not for assembly of D-type retrovirus capsids. J Virol 1987; 61:1045-53. [PMID: 3493352 PMCID: PMC254061 DOI: 10.1128/jvi.61.4.1045-1053.1987] [Citation(s) in RCA: 219] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The role of myristylation, a fatty acid modification of nascent polypeptides, in the assembly and intracellular transport of D-type retroviral capsids was investigated through the use of oligonucleotide-directed mutagenesis. Myristic acid is normally esterified through an amide linkage to a glycine residue at the amino terminus of the Mason-Pfizer monkey virus gag gene products. Mutant pA-1, which has a codon for valine substituted for that of the normally myristylated glycine, is completely noninfectious. While the mutant gag polyprotein precursors are synthesized at normal levels, they are not myristylated and are not cleaved to the mature virion proteins. No extracellular virus particles are released from mutant pA-1-infected cells, but intracytoplasmic A-type particles (capsids) accumulate in the cytoplasm. Since none of the intracellular capsids can be found associated with the plasma membrane, these results strongly suggest that myristylation is a critical signal for intracytoplasmic transport of completed viral capsids to their normal site of budding and release.
Collapse
|
32
|
Bennett LM, Timmins JG, Thomsen DR, Post LE. The processing of pseudorabies virus glycoprotein gX in infected cells and in an uninfected cell line. Virology 1986; 155:707-15. [PMID: 3024408 DOI: 10.1016/0042-6822(86)90230-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudorabies virus (PRV) produces a glycoprotein, gX, that accumulates in the medium of infected cells. The gX gene was expressed in Chinese hamster ovary cells (CHOgX cells) using the cytomegalovirus Towne major immediate early promoter. Like PRV-infected cells, CHOgX cells produced gX and exported it into the medium. Tunicamycin reduced the molecular weight of the gX in the medium to 89 kDa, compared with 99 kDa for gX made in the absence of drug. In the presence of tunicamycin gX produced by both PRV-infected cells and CHOgX cells was still glycosylated, as indicated by incorporation of [14C]glucosamine. The most likely form of this glycosylation is O-linked. In a pulse-chase experiment, gX first appeared in a 90-kDa form, then a 115-kDa form. This 115-kDa form is probably cleaved to give the 99-kDa form of gX that is released into the medium. The 115-kDa form was much more persistent in the PRV-infected Vero cells than in the CHOgX cells. In both cell types, gX was labeled by [35S]sulfate in the presence and absence of tunicamycin.
Collapse
|
33
|
Srinivas RV, Balachandran N, Alonso-Caplen FV, Compans RW. Expression of herpes simplex virus glycoproteins in polarized epithelial cells. J Virol 1986; 58:689-93. [PMID: 3009881 PMCID: PMC252965 DOI: 10.1128/jvi.58.2.689-693.1986] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Members of the herpesvirus family mature at inner nuclear membranes, although a fraction of the viral glycoproteins is expressed on the cell surface. In this study, we investigated the localization of herpes simplex virus type 2 (HSV-2) glycoproteins in virus-infected epithelial cells by using a panel of monoclonal antibodies directed against each of the major viral glycoproteins. All of the HSV-2 glycoproteins were localized exclusively on the basolateral membranes of Vero C1008, Madin-Darby bovine kidney, and mouse mammary epithelial cells. Using a monoclonal antibody to HSV-2 gD which cross-reacts with HSV-1 strains, we could also localize HSV-1 gD on the basolateral membranes of Madin-Darby bovine kidney cells. These results indicate that these molecules contain putative sorting signals that direct them to basolateral membrane domains.
Collapse
|
34
|
Arsenakis M, Tomasi LF, Speziali V, Roizman B, Campadelli-Fiume G. Expression and regulation of glycoprotein C gene of herpes simplex virus 1 resident in a clonal L-cell line. J Virol 1986; 58:367-76. [PMID: 3009854 PMCID: PMC252921 DOI: 10.1128/jvi.58.2.367-376.1986] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody.
Collapse
|
35
|
Johnson DC, McDermott MR, Chrisp C, Glorioso JC. Pathogenicity in mice of herpes simplex virus type 2 mutants unable to express glycoprotein C. J Virol 1986; 58:36-42. [PMID: 3005656 PMCID: PMC252873 DOI: 10.1128/jvi.58.1.36-42.1986] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) mutants that were unable to express glycoprotein C (gC-2) were isolated. Deletions were made in a cloned copy of the gC-2 gene, and recombinant viruses containing these deletions were screened by using an immunoreactive plaque selection protocol. The viruses did not display a syncytial phenotype. Intravaginal inoculation of BALB/cJ mice with one of the HSV-2 gC-2- viruses produced local inflammation followed by a lethal spread of the viral infection into the nervous system in a manner identical to that produced by parental HSV-2 strain 333. Similarly, intracerebral inoculation of DBA-2 mice with the gC-2- virus produced a lethal neurological disease paralleling that caused by HSV-2 strain 333. These results indicate that gC-2 is not required for the spread of HSV-2 infections in mice.
Collapse
|