1
|
Bagga S, Krishnan A, Dar L. Revisiting live attenuated influenza vaccine efficacy among children in developing countries. Vaccine 2023; 41:1009-1017. [PMID: 36604216 DOI: 10.1016/j.vaccine.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Seasonal influenza epidemics cause significant pediatric mortality and morbidity worldwide. Live attenuated influenza vaccines (LAIVs) can be administered intranasally, induce a broad and robust immune response, demonstrate higher yields during manufacturing as compared to inactivated influenza vaccines (IIVs), and thereby represent an attractive possibility for young children in developing countries. We summarize recent pediatric studies evaluating LAIV efficacy in developing countries where a large proportion of the influenza-virus-associated respiratory disease burden occurs. Recently, two randomized controlled trials (RCTs) assessing Russian-backbone trivalent LAIV in children reported contradictory results; vaccine efficacy varied between Bangladesh (41 %) and Senegal (0.0 %) against all influenza viral strains. Prior to 2013, Ann Arbor-based LAIV demonstrated superior efficacy as compared to IIV. However, due to low effectiveness of the Ann Arbor-based LAIV against influenza A(H1N1)pdm09-like viruses, the CDC Advisory Committee on Immunization Practices (ACIP) recommended against the use of LAIV during the 2016-17 and 2017-18 influenza seasons. Reduced replicative fitness of the A(H1N1)pdm09 LAIV strains is thought to have led to the low effectiveness of the Ann-Arbor-based LAIV. Once the A(H1N1)pdm09 component was updated, the ACIP reintroduced the Ann-Arbor-based LAIV as a vaccine choice for the 2018-19 influenza season. In 2021, results from a 2-year RCT evaluating the Russian-backbone trivalent LAIV in rural north India reported that LAIV demonstrated significantly lower efficacy compared to IIV, but in Year 2, the vaccine efficacy for LAIV and IIV was comparable. A profounder understanding of the mechanisms underlying varied efficacy of LAIV in developing countries is warranted. Assessing replicative fitness, in addition to antigenicity, when selecting annual A(H1N1)pdm09 components in the Russian-backbone trivalent LAIVs is essential and may ultimately, enable widespread utility in resource-poor settings.
Collapse
Affiliation(s)
- Sumedha Bagga
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Nogales A, Steel J, Liu WC, Lowen AC, Rodriguez L, Chiem K, Cox A, García-Sastre A, Albrecht RA, Dewhurst S, Martínez-Sobrido L. Mutation L319Q in the PB1 Polymerase Subunit Improves Attenuation of a Candidate Live-Attenuated Influenza A Virus Vaccine. Microbiol Spectr 2022; 10:e0007822. [PMID: 35583364 PMCID: PMC9241597 DOI: 10.1128/spectrum.00078-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses (IAV) remain emerging threats to human public health. Live-attenuated influenza vaccines (LAIV) are one of the most effective prophylactic options to prevent disease caused by influenza infections. However, licensed LAIV remain restricted for use in 2- to 49-year-old healthy and nonpregnant people. Therefore, development of LAIV with increased safety, immunogenicity, and protective efficacy is highly desired. The U.S.-licensed LAIV is based on the master donor virus (MDV) A/Ann Arbor/6/60 H2N2 backbone, which was generated by adaptation of the virus to growth at low temperatures. Introducing the genetic signature of the U.S. MDV into the backbone of other IAV strains resulted in varying levels of attenuation. While the U.S. MDV mutations conferred an attenuated phenotype to other IAV strains, the same amino acid changes did not significantly attenuate the pandemic A/California/04/09 H1N1 (pH1N1) strain. To attenuate pH1N1, we replaced the conserved leucine at position 319 with glutamine (L319Q) in PB1 and analyzed the in vitro and in vivo properties of pH1N1 viruses containing either PB1 L319Q alone or in combination with the U.S. MDV mutations using two animal models of influenza infection and transmission, ferrets and guinea pigs. Our results demonstrated that L319Q substitution in the pH1N1 PB1 alone or in combination with the mutations of the U.S. MDV resulted in reduced pathogenicity (ferrets) and transmission (guinea pigs), and an enhanced temperature sensitive phenotype. These results demonstrate the feasibility of generating an attenuated MDV based on the backbone of a contemporary pH1N1 IAV strain. IMPORTANCE Vaccination represents the most effective strategy to reduce the impact of seasonal IAV infections. Although LAIV are superior in inducing protection and sterilizing immunity, they are not recommended for many individuals who are at high risk for severe disease. Thus, development of safer and more effective LAIV are needed. A concern with the current MDV used to generate the U.S.-licensed LAIV is that it is based on a virus isolated in 1960. Moreover, mutations that confer the temperature-sensitive, cold-adapted, and attenuated phenotype of the U.S. MDV resulted in low level of attenuation in the contemporary pandemic A/California/04/09 H1N1 (pH1N1). Here, we show that introduction of PB1 L319Q substitution, alone or in combination with the U.S. MDV mutations, resulted in pH1N1 attenuation. These findings support the development of a novel LAIV MDV based on a contemporary pH1N1 strain as a medical countermeasure against currently circulating H1N1 IAV.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Andrew Cox
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
3
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Waters K, Wan HJ, Han L, Xue J, Ykema M, Tao YJ, Wan XF. Variations outside the conserved motifs of PB1 catalytic active site may affect replication efficiency of the RNP complex of influenza A virus. Virology 2021; 559:145-155. [PMID: 33887645 PMCID: PMC8579824 DOI: 10.1016/j.virol.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Hamilton J Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Jianli Xue
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, TX, 77251, USA
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA; Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines. Viruses 2021; 13:v13071278. [PMID: 34208979 PMCID: PMC8310163 DOI: 10.3390/v13071278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann Arbor/1/1966 MDV LAIV into B/Brisbane/60/2008 to generate a new MDV LAIV. In vitro and in vivo analysis demonstrated that the mutations responsible of the ts, ca, and att phenotype of B/Ann Arbor/1/1966 MDV LAIV were able to infer the same phenotype to B/Brisbane/60/2008, demonstrating its potential as a new MDV for the development of LAIV to protect against contemporary IBV strains.
Collapse
|
6
|
Tissue Tropisms of Avian Influenza A Viruses Affect Their Spillovers from Wild Birds to Pigs. J Virol 2020; 94:JVI.00847-20. [PMID: 32967956 DOI: 10.1128/jvi.00847-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/19/2020] [Indexed: 11/20/2022] Open
Abstract
Wild aquatic birds maintain a large, genetically diverse pool of influenza A viruses (IAVs), which can be transmitted to lower mammals and, ultimately, humans. Through phenotypic analyses of viral replication efficiency, only a small set of avian IAVs were found to replicate well in epithelial cells of the swine upper respiratory tract, and these viruses were shown to infect and cause virus shedding in pigs. Such a phenotypic trait of the viral replication efficiency appears to emerge randomly and is distributed among IAVs across multiple avian species and geographic and temporal orders. It is not determined by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. This study demonstrates that phenotypic variants of viral replication efficiency exist among avian IAVs but that only a few of these may result in viral shedding in pigs upon infection, providing opportunities for these viruses to become adapted to pigs, thus posing a higher potential risk for creating novel variants or detrimental reassortants within pig populations.IMPORTANCE Swine serve as a mixing vessel for generating pandemic strains of human influenza virus. All hemagglutinin subtypes of IAVs can infect swine; however, only sporadic cases of infection with avian IAVs are reported in domestic swine. The molecular mechanisms affecting the ability of avian IAVs to infect swine are still not fully understood. From the findings of phenotypic analyses, this study suggests that the tissue tropisms (i.e., in swine upper respiratory tracts) of avian IAVs affect their spillovers from wild birds to pigs. It was found that this phenotype is determined not by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. In addition, our results show that such a phenotypic trait was sporadically and randomly distributed among IAVs across multiple avian species and geographic and temporal orders. This study suggests an efficient way for assessment of the risk posed by avian IAVs, such as in evaluating their potentials to be transmitted from birds to pigs.
Collapse
|
7
|
Cox A, Schmierer J, D’Angelo J, Smith A, Levenson D, Treanor J, Kim B, Dewhurst S. A Mutated PB1 Residue 319 Synergizes with the PB2 N265S Mutation of the Live Attenuated Influenza Vaccine to Convey Temperature Sensitivity. Viruses 2020; 12:E1246. [PMID: 33142846 PMCID: PMC7693792 DOI: 10.3390/v12111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 01/07/2023] Open
Abstract
Current influenza vaccines have modest efficacy. This is especially true for current live attenuated influenza vaccines (LAIV), which have been inferior to the inactivated versions in recent years. Therefore, a new generation of live vaccines may be needed. We previously showed that a mutation at PB1 residue 319 confers enhanced temperature sensitivity and attenuation in an LAIV constructed in the genetic background of the mouse-adapted Influenza A Virus (IAV) strain A/PR/8/34 (PR8). Here, we describe the origin/discovery of this unique mutation and demonstrate that, when combined with the PB2 N265S mutation of LAIV, it conveys an even greater level of temperature sensitivity and attenuation on PR8 than the complete set of attenuating mutations from LAIV. Furthermore, we show that the combined PB1 L319Q and PB2 N265S mutations confer temperature sensitivity on IAV polymerase activity in two different genetic backgrounds, PR8 and A/Cal/04/09. Collectively, these findings show that the PB2 LAIV mutation synergizes with a mutation in PB1 and may have potential utility for improving LAIVs.
Collapse
Affiliation(s)
- Andrew Cox
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
- Department of Pediatrics, Pediatric Residency Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jordana Schmierer
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
| | - Josephine D’Angelo
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Upstate Medical School, State University of New York, Syracuse, NY 13210, USA
| | - Andrew Smith
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
| | - Dustyn Levenson
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- M.D./Ph.D. Training Program, Wayne State University, Detroit, MI 48202, USA
| | - John Treanor
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA
- Biomedical Advanced Research and Development Authority (BARDA)/HHS/ASPR, Influenza and Emerging Diseases Division 21J14, 200 C St SW, Washington, DC 20515, USA
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA; (A.C.); (J.S.); (J.D.); (A.S.); (D.L.); (J.T.); (B.K.)
| |
Collapse
|
8
|
Cai M, Zhong R, Qin C, Yu Z, Huang J, Wen X, Ji C, Chen Y, Cai Y, Yi H, Gong L, Zhang G. Ser-Leu substitution at P2 position of the hemagglutinin cleavage site attenuates replication and pathogenicity of Eurasian avian-like H1N2 swine influenza viruses. Vet Microbiol 2020; 253:108847. [PMID: 33360319 DOI: 10.1016/j.vetmic.2020.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
Abstract
Swine influenza viruses not only constitute a potential economic problem for livestock, but also pose a substantial threat to human health. Mutation in the proteolytic cleavage site of hemagglutinin (HA) is recognized as an essential factor of tissue tropism and viral pathogenicity. However, the molecular properties of the cleavage site of Eurasian avian-like swine (EA) H1N2 virus remain largely unknown. In this study, we found a serine-leucine (Ser-Leu) substitution at the P2 position of the HA cleavage site (S328 L) in naturally occurring EA H1N2 virus. To study the effect of this substitution, we used reverse genetics to generate recombinant wild-type and mutant viruses containing a single amino acid mutation at the P2 position in A/swine/Guangdong/YJ28/2014 (YJ28) or A/swine/Guangdong/DG2/2015 (DG2) background. In vitro experiments showed that the Ser-Leu substitution at the P2 position attenuated the viral replication and HA cleavage efficiency. In vivo analyses revealed that, while all mice inoculated with r/DG2-S328 L or r/YJ28 viruses survived, the survival rates of r/DG2- and r/YJ28-L328S-inoculated animals were 20 % and 40 %, respectively. Furthermore, the Ser-Leu substitution at the P2 position attenuated the replication in nasal turbinate and lungs. In summary, this amino acid change may be useful to understand the molecular properties of the cleavage site and be valuable for vaccine development.
Collapse
Affiliation(s)
- Mengkai Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Ruting Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Chenxiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Zhiqing Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Junming Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Xiaoyan Wen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Chihai Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Yongjie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Yu Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Heyou Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China.
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510462, China.
| |
Collapse
|
9
|
Han A, Czajkowski LM, Donaldson A, Baus HA, Reed SM, Athota RS, Bristol T, Rosas LA, Cervantes-Medina A, Taubenberger JK, Memoli MJ. A Dose-finding Study of a Wild-type Influenza A(H3N2) Virus in a Healthy Volunteer Human Challenge Model. Clin Infect Dis 2020; 69:2082-2090. [PMID: 30770534 DOI: 10.1093/cid/ciz141] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The development of vaccines and therapeutics has relied on healthy volunteer influenza challenge studies. A validated human infection model with wild-type A(H1N1)pdm09 was reported previously. Our objective was to characterize a wild-type influenza A/Bethesda/MM1/H3N2 challenge virus in healthy volunteers. METHODS Participants received a single dose of a cell-based, reverse-genetics, Good Manufacturing Practices-produced wild-type influenza A(H3N2)2011 virus intranasally and were isolated at the National Institutes of Health Clinical Center for ≥9 days. Dose escalation was performed from 104 to 107 TCID50 (50% tissue culture infectious dose). Viral shedding and clinical disease were evaluated daily. RESULTS Of 37 participants challenged, 16 (43%) had viral shedding and 27 (73%) developed symptoms, with 12 (32%) participants experiencing mild to moderate influenza disease (MMID), defined as shedding and symptoms. Only participants receiving 106 and 107 TCID50 experienced MMID at 44% and 40%, respectively. Symptom severity peaked on day 3, whereas most viral shedding occurred 1-2 days after challenge. Only 10 (29%) participants had a ≥4-fold rise in hemagglutination inhibition antibody titer after challenge. CONCLUSIONS The A/Bethesda/MM1/H3N2 challenge virus safely induced MMID in healthy volunteers, but caused less MMID than the A(H1N1)pdm09 challenge virus even at the highest dose. There was less detection of shedding though the incidence of symptoms was similar to A(H1N1)pdm09. Fewer serum anti-hemagglutinin (HA) antibody responses with less MMID indicate that preexisting immunity factors other than anti-HA antibody may limit shedding in healthy volunteers. This A/Bethesda/MM1/H3N2 challenge virus can be utilized in future studies to further explore pathogenesis and immunity and to evaluate vaccine candidates. CLINICAL TRIALS REGISTRATION NCT02594189.
Collapse
Affiliation(s)
- Alison Han
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lindsay M Czajkowski
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amanda Donaldson
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Holly Ann Baus
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susan M Reed
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rani S Athota
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tyler Bristol
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Luz Angela Rosas
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffery K Taubenberger
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Matthew J Memoli
- LID Clinical Studies Unit, Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Affiliation(s)
- John Treanor
- Department of Medicine, University of Rochester School of Medicine and Dentistry
| |
Collapse
|
11
|
Increasing the Safety Profile of the Master Donor Live Attenuated Influenza Vaccine. Pathogens 2020; 9:pathogens9020086. [PMID: 32013198 PMCID: PMC7168643 DOI: 10.3390/pathogens9020086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 02/02/2023] Open
Abstract
Seasonal influenza epidemics remain one of the largest public health burdens nowadays. The best and most effective strategy to date in preventing influenza infection is a worldwide vaccination campaign. Currently, two vaccines are available to the public for the treatment of influenza infection, the chemically Inactivated Influenza Vaccine (IIV) and the Live Attenuated Influenza Vaccine (LAIV). However, the LAIV is not recommended for parts of the population, such as children under the age of two, immunocompromised individuals, the elderly, and pregnant adults. In order to improve the safety of the LAIV and make it available to more of the population, we sought to further attenuate the LAIV. In this study, we demonstrate that the influenza A virus (IAV) master donor virus (MDV) A/Ann Arbor/6/60 H2N2 LAIV can inhibit host gene expression using both the PA-X and NS1 proteins. Furthermore, we show that by removing PA-X, we can limit the replication of the MDV LAIV in a mouse model, while maintaining full protective efficacy. This work demonstrates a broadly applicable strategy of tuning the amount of host antiviral responses induced by the IAV MDV for the development of newer and safer LAIVs. Moreover, our results also demonstrate, for the first time, the feasibility of genetically manipulating the backbone of the IAV MDV to improve the efficacy of the current IAV LAIV.
Collapse
|
12
|
Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses 2019; 11:v11100928. [PMID: 31658679 PMCID: PMC6832241 DOI: 10.3390/v11100928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containing the ts, ca and att mutations of the US (PR8/AA) and the Russian (PR8/Len) MDVs. Our results show that PR8/Len is more attenuated in vivo than PR8/AA, although both viruses induced similar levels of humoral and cellular responses, and protection against homologous and heterologous viral challenges. Our findings support the feasibility of using a different virus backbone as MDV for the development of improved LAIVs for the prevention of IAV infections.
Collapse
|
13
|
Martínez-Sobrido L, Peersen O, Nogales A. Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses 2018; 10:E560. [PMID: 30326610 PMCID: PMC6213772 DOI: 10.3390/v10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, CO 80523, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| |
Collapse
|
14
|
Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology 2018; 516:76-85. [PMID: 29331866 PMCID: PMC5840510 DOI: 10.1016/j.virol.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
H3N8 equine influenza virus (EIV) is an important and significant respiratory pathogen of horses. EIV is enzootic in Europe and North America, mainly due to the suboptimal efficacy of current vaccines. We describe, for the first time, the generation of a temperature sensitive (ts) H3N8 EIV live-attenuated influenza vaccine (LAIV) using reverse-genetics approaches. Our EIV LAIV was attenuated (att) in vivo and able to induce, upon a single intranasal administration, protection against H3N8 EIV wild-type (WT) challenge in both a mouse model and the natural host, the horse. Notably, since our EIV LAIV was generated using reverse genetics, the vaccine can be easily updated against drifting or emerging strains of EIV using the safety backbone of our EIV LAIV as master donor virus (MDV). These results demonstrate the feasibility of implementing a novel EIV LAIV approach for the prevention and control of currently circulating H3N8 EIVs in horse populations.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
15
|
Lee YJ, Lee JY, Jang YH, Seo SU, Chang J, Seong BL. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine. Front Microbiol 2018; 9:83. [PMID: 29445364 PMCID: PMC5797773 DOI: 10.3389/fmicb.2018.00083] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/12/2018] [Indexed: 01/21/2023] Open
Abstract
The non-specific effects (NSEs) of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV) induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV). The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3-/- TLR7-/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.
Collapse
Affiliation(s)
- Young J. Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Y. Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yo H. Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
16
|
Wohlgemuth N, Ye Y, Fenstermacher KJ, Liu H, Lane AP, Pekosz A. The M2 protein of live, attenuated influenza vaccine encodes a mutation that reduces replication in human nasal epithelial cells. Vaccine 2017; 35:6691-6699. [PMID: 29079099 DOI: 10.1016/j.vaccine.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/31/2022]
Abstract
The influenza A virus components of the live, attenuated influenza vaccine (LAIV) encode the HA and NA gene segments from a circulating virus strain and the remaining gene segments from the cold-adapted master donor virus, A/Ann Arbor/6/1960 (H2N2). The master donor virus imparts at least three phenotypes: temperature-sensitivity (ts), attenuation (att), and cold-adaption (ca). The genetic loci responsible for the att and ts phenotypes of LAIV were mapped to PB1, PB2, and NP by reverse genetics experiments using immortalized cell lines. However, some in vivo studies have demonstrated that the M segment, which acquired an alanine (Ala) to serine (Ser) mutation at M2 position 86 during cold adaption - a mutation found in no other influenza A virus strain - contributes to the att phenotype. Prior studies have shown this region of the M2 cytoplasmic tail to be critical for influenza virus replication. Using reverse genetics, we demonstrate that certain amino acid substitutions at M2 positions 83 and 86 alter the replication of influenza A/Udorn/307/72 (H3N2). Importantly, substitution of a Ser at M2 position 86 reduces A/Udorn/307/72 replication in differentiated primary human nasal epithelial cell (hNECs) cultures, but does not considerably affect replication in MDCK cells. When a Ser was substituted for Ala at M2 86 in LAIV, the virus replicated to higher titers and with faster kinetics in hNEC cultures, implicating this amino acid change as contributing to LAIV attenuation. Increased replication also resulted in increased production of IFN-λ. These data indicate the LAIV associated Ser mutation at M2 position 86 contributes to the att phenotype and is associated with a differential regulation of interferon in LAIV infection.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yang Ye
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine J Fenstermacher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew P Lane
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Outpatient Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Forero A, Fenstermacher K, Wohlgemuth N, Nishida A, Carter V, Smith EA, Peng X, Hayes M, Francis D, Treanor J, Morrison J, Klein SL, Lane A, Katze MG, Pekosz A. Evaluation of the innate immune responses to influenza and live-attenuated influenza vaccine infection in primary differentiated human nasal epithelial cells. Vaccine 2017; 35:6112-6121. [PMID: 28967519 DOI: 10.1016/j.vaccine.2017.09.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
The host innate immune response to influenza virus is a key determinant of pathogenic outcomes and long-term protective immune responses against subsequent exposures. Here, we present a direct contrast of the host responses in primary differentiated human nasal epithelial cell (hNEC) cultures following infection with either a seasonal H3N2 influenza virus (WT) or the antigenically-matched live-attenuated vaccine (LAIV) strain. Comparison of the transcriptional profiles obtained 24 and 36h post-infection showed that the magnitude of gene expression was greater in LAIV infected relative to that observed in WT infected hNEC cultures. Functional enrichment analysis revealed that the antiviral and inflammatory responses were largely driven by type III IFN induction in both WT and LAIV infected cells. However, the enrichment of biological pathways involved in the recruitment of mononuclear leukocytes, antigen-presenting cells, and T lymphocytes was uniquely observed in LAIV infected cells. These observations were reflective of the host innate immune responses observed in individuals acutely infected with influenza viruses. These findings indicate that cell-intrinsic type III IFN-mediated innate immune responses in the nasal epithelium are not only crucial for viral clearance and attenuation, but may also play an important role in the induction of protective immune responses with live-attenuated vaccines.
Collapse
Affiliation(s)
- Adriana Forero
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Katherine Fenstermacher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Victoria Carter
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Elise A Smith
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Melissa Hayes
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Doreen Francis
- Department of Internal Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | - John Treanor
- Department of Internal Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | - Juliet Morrison
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. J Virol 2017. [PMID: 28637750 DOI: 10.1128/jvi.00720-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PAWT+/NS1MUT+) or do not have (PAMUT-/NS1WT-) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PAMUT-/NS1MUT+) presented pathogenicity similar to that of a virus containing both wild-type proteins (PAWT+/NS1WT-). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV.IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen.
Collapse
|
19
|
A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses. Vaccine 2017; 35:4374-4381. [PMID: 28709557 DOI: 10.1016/j.vaccine.2017.06.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 11/22/2022]
Abstract
Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs.
Collapse
|
20
|
Development of an Alternative Modified Live Influenza B Virus Vaccine. J Virol 2017; 91:JVI.00056-17. [PMID: 28381580 PMCID: PMC5446642 DOI: 10.1128/jvi.00056-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/31/2017] [Indexed: 12/27/2022] Open
Abstract
Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.
Collapse
|
21
|
Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 2017; 504:96-106. [PMID: 28167384 DOI: 10.1016/j.virol.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Emma C Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, US
| | - Luis Martinez Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US.
| |
Collapse
|
22
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
23
|
Nogales A, Martínez-Sobrido L. Reverse Genetics Approaches for the Development of Influenza Vaccines. Int J Mol Sci 2016; 18:E20. [PMID: 28025504 PMCID: PMC5297655 DOI: 10.3390/ijms18010020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
24
|
Cheng BYH, Nogales A, de la Torre JC, Martínez-Sobrido L. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology 2016; 501:35-46. [PMID: 27855284 DOI: 10.1016/j.virol.2016.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/18/2022]
Abstract
Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.
Collapse
Affiliation(s)
- Benson Y H Cheng
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
25
|
Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J Virol 2016; 90:8454-63. [PMID: 27440882 PMCID: PMC5021423 DOI: 10.1128/jvi.00163-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under well-controlled laboratory conditions, we found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice. The identification of the responsible substitutions and elucidation of the underlying mechanisms provide unique insights into the attenuation of influenza virus, which is important to basic research on vaccines, attenuation reversion, and replication. In addition, this study suggests that the safety of LAIVs should be closely monitored after mass vaccination and that novel strategies to continue to improve LAIV vaccine safety should be investigated.
Collapse
|
26
|
Wei Y, Qi L, Gao H, Sun H, Pu J, Sun Y, Liu J. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Sci Rep 2016; 6:30382. [PMID: 27457755 PMCID: PMC4960571 DOI: 10.1038/srep30382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022] Open
Abstract
To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.
Collapse
Affiliation(s)
- Yandi Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lu Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijie Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Rearrangement of Influenza Virus Spliced Segments for the Development of Live-Attenuated Vaccines. J Virol 2016; 90:6291-6302. [PMID: 27122587 DOI: 10.1128/jvi.00410-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease which is most effectively prevented through vaccination. Segments 7 (M) and 8 (NS) of the influenza virus genome encode mRNA transcripts that are alternatively spliced to express two different viral proteins. This study describes the generation, using reverse genetics, of three different recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing M or NS viral segments individually or modified M or NS viral segments combined in which the overlapping open reading frames of matrix 1 (M1)/M2 for the modified M segment and the open reading frames of nonstructural protein 1 (NS1)/nuclear export protein (NEP) for the modified NS segment were split by using the porcine teschovirus 1 (PTV-1) 2A autoproteolytic cleavage site. Viruses with an M split segment were impaired in replication at nonpermissive high temperatures, whereas high viral titers could be obtained at permissive low temperatures (33°C). Furthermore, viruses containing the M split segment were highly attenuated in vivo, while they retained their immunogenicity and provided protection against a lethal challenge with wild-type PR8. These results indicate that influenza viruses can be effectively attenuated by the rearrangement of spliced segments and that such attenuated viruses represent an excellent option as safe, immunogenic, and protective live-attenuated vaccines. Moreover, this is the first time in which an influenza virus containing a restructured M segment has been described. Reorganization of the M segment to encode M1 and M2 from two separate, nonoverlapping, independent open reading frames represents a useful tool to independently study mutations in the M1 and M2 viral proteins without affecting the other viral M product. IMPORTANCE Vaccination represents our best therapeutic option against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease caused by this important human respiratory pathogen. In this work, we describe a novel approach to generate safer and more efficient live-attenuated influenza virus vaccines (LAIVs) based on recombinant viruses whose genomes encode nonoverlapping and independent M1/M2 (split M segment [Ms]) or both M1/M2 and NS1/NEP (Ms and split NS segment [NSs]) open reading frames. Viruses containing a modified M segment were highly attenuated in mice but were able to confer, upon a single intranasal immunization, complete protection against a lethal homologous challenge with wild-type virus. Notably, the protection efficacy conferred by our viruses with split M segments was better than that conferred by the current temperature-sensitive LAIV. Altogether, these results open a new avenue for the development of safer and more protective LAIVs on the basis of the reorganization of spliced viral RNA segments in the genome.
Collapse
|
28
|
Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture. PLoS One 2016; 11:e0156906. [PMID: 27272307 PMCID: PMC4896458 DOI: 10.1371/journal.pone.0156906] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/20/2016] [Indexed: 12/01/2022] Open
Abstract
Influenza A virus is a significant public health threat, but little is understood about the viral RNA structure and function. Current vaccines and therapeutic options to control influenza A virus infections are mostly protein-centric and of limited effectiveness. Here, we report using an ensemble defect approach to design mutations to misfold regions of conserved mRNA structures in influenza A virus segments 7 and 8. Influenza A mutant viruses inhibit pre-mRNA splicing and attenuate viral replication in cell culture, thus providing evidence for functions of the targeted regions. Targeting these influenza A viral RNA regions provides new possibilities for designing vaccines and therapeutics against this important human respiratory pathogen. The results also demonstrate that the ensemble defect approach is an efficient way to test for function of RNA sequences.
Collapse
|
29
|
Lee YJ, Jang YH, Kim P, Lee YH, Lee YJ, Byun YH, Lee KH, Kim K, Seong BL. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin. Virology 2016; 491:1-9. [PMID: 26874012 DOI: 10.1016/j.virol.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response.
Collapse
Affiliation(s)
- Yoon Jae Lee
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyusik Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
30
|
Jang YH, Jung EJ, Lee KH, Byun YH, Yang SW, Seong BL. Genetic analysis of attenuation markers of cold-adapted X-31 influenza live vaccine donor strain. Vaccine 2016; 34:1343-9. [PMID: 26851733 DOI: 10.1016/j.vaccine.2016.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 02/05/2023]
Abstract
Cold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation. Here, we analyzed the genetic mutations and their phenotypic contribution in the X-31 ca strain, a recently developed alternative CAIV donor strain. During the cold-adaptation of its parental X-31 virus, various numbers of sequence changes were accumulated in all six internal genes. Phenotypic analysis with single-gene and multiple-gene reassortant viruses suggests that NP gene makes the largest contribution to the cold-adapted (ca) and temperature-sensitive (ts) characters, while the remaining other internal genes also impart attenuation characters with varying degrees. A balanced contribution of all internal genes to the attenuation suggests that X-31 ca could serve as an ideal master donor strain for CAIVs preventing influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eun-Ju Jung
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung Won Yang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
31
|
Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res 2015; 209:23-38. [DOI: 10.1016/j.virusres.2015.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
|
32
|
Restricted replication of the live attenuated influenza A virus vaccine during infection of primary differentiated human nasal epithelial cells. Vaccine 2015. [PMID: 26196325 DOI: 10.1016/j.vaccine.2015.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Live Attenuated Influenza Vaccine (LAIV) strains are associated with cold adapted, temperature sensitive and attenuated phenotypes that have been studied in non-human or immortalized cell cultures as well as in animal models. Using a primary, differentiated human nasal epithelial cell (hNEC) culture system we compared the replication kinetics, levels of cell-associated viral proteins and virus particle release during infection with LAIV or the corresponding wild type (WT) influenza viruses. At both 33 °C and 37 °C, seasonal influenza virus and an antigenically matched LAIV replicated to similar titers in MDCK cells but seasonal influenza virus replicated to higher titers than LAIV in hNEC cultures, suggesting a greater restriction of LAIV replication in hNEC cultures. Despite the disparity in infectious virus production, the supernatants from H1N1 and LAIV infected hNEC cultures had equivalent amounts of viral proteins and hemagglutination titers, suggesting the formation of non-infectious virus particles by LAIV in hNEC cultures.
Collapse
|
33
|
Multiple genome segments determine virulence of bluetongue virus serotype 8. J Virol 2015; 89:5238-49. [PMID: 25822026 PMCID: PMC4442542 DOI: 10.1128/jvi.00395-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bluetongue virus (BTV) causes bluetongue, a major hemorrhagic disease of ruminants. In order to investigate the molecular determinants of BTV virulence, we used a BTV8 strain minimally passaged in tissue culture (termed BTV8L in this study) and a derivative strain passaged extensively in tissue culture (BTV8H) in in vitro and in vivo studies. BTV8L was pathogenic in both IFNAR(-/-) mice and in sheep, while BTV8H was attenuated in both species. To identify genetic changes which led to BTV8H attenuation, we generated 34 reassortants between BTV8L and BTV8H. We found that partial attenuation of BTV8L in IFNAR(-/-) mice was achieved by simply replacing genomic segment 2 (Seg2, encoding VP2) or Seg10 (encoding NS3) with the BTV8H homologous segments. Fully attenuated viruses required at least two genome segments from BTV8H, including Seg2 with either Seg1 (encoding VP1), Seg6 (encoding VP6 and NS4), or Seg10 (encoding NS3). Conversely, full reversion of virulence of BTV8H required at least five genomic segments of BTV8L. We also demonstrated that BTV8H acquired an increased affinity for glycosaminoglycan receptors during passaging in cell culture due to mutations in its VP2 protein. Replication of BTV8H was relatively poor in interferon (IFN)-competent primary ovine endothelial cells compared to replication of BTV8L, and this phenotype was determined by several viral genomic segments, including Seg4 and Seg9. This study demonstrated that multiple viral proteins contribute to BTV8 virulence. VP2 and NS3 are primary determinants of BTV pathogenesis, but VP1, VP5, VP4, VP6, and VP7 also contribute to virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants, and it is listed as a notifiable disease by the World Organization for Animal Health (OIE). The clinical outcome of BTV infection varies considerably and depends on environmental and host- and virus-specific factors. Over the years, BTV serotypes/strains with various degrees of virulence (including nonpathogenic strains) have been described in different geographical locations. However, no data are available to correlate the BTV genotype to virulence. This study shows that BTV virulence is determined by different viral genomic segments. The data obtained will help to characterize thoroughly the pathogenesis of bluetongue. The possibility to determine the pathogenicity of virus isolates on the basis of their genome sequences will help in the design of control strategies that fit the risk posed by new emerging BTV strains.
Collapse
|
34
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
35
|
Influenza hemagglutinin (HA) stem region mutations that stabilize or destabilize the structure of multiple HA subtypes. J Virol 2015; 89:4504-16. [PMID: 25653452 DOI: 10.1128/jvi.00057-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A viruses enter host cells through endosomes, where acidification induces irreversible conformational changes of the viral hemagglutinin (HA) that drive the membrane fusion process. The prefusion conformation of the HA is metastable, and the pH of fusion can vary significantly among HA strains and subtypes. Furthermore, an accumulating body of evidence implicates HA stability properties as partial determinants of influenza host range, transmission phenotype, and pathogenic potential. Although previous studies have identified HA mutations that can affect HA stability, these have been limited to a small selection of HA strains and subtypes. Here we report a mutational analysis of HA stability utilizing a panel of expressed HAs representing a broad range of HA subtypes and strains, including avian representatives across the phylogenetic spectrum and several human strains. We focused on two highly conserved residues in the HA stem region: HA2 position 58, located at the membrane distal tip of the short helix of the hairpin loop structure, and HA2 position 112, located in the long helix in proximity to the fusion peptide. We demonstrate that a K58I mutation confers an acid-stable phenotype for nearly all HAs examined, whereas a D112G mutation consistently leads to elevated fusion pH. The results enhance our understanding of HA stability across multiple subtypes and provide an additional tool for risk assessment for circulating strains that may have other hallmarks of human adaptation. Furthermore, the K58I mutants, in particular, may be of interest for potential use in the development of vaccines with improved stability profiles. IMPORTANCE The influenza A hemagglutinin glycoprotein (HA) mediates the receptor binding and membrane fusion functions that are essential for virus entry into host cells. While receptor binding has long been recognized for its role in host species specificity and transmission, membrane fusion and associated properties of HA stability have only recently been appreciated as potential determinants. We show here that mutations can be introduced at highly conserved positions to stabilize or destabilize the HA structure of multiple HA subtypes, expanding our knowledge base for this important phenotype. The practical implications of these findings extend to the field of vaccine design, since the HA mutations characterized here could potentially be utilized across a broad spectrum of influenza virus subtypes to improve the stability of vaccine strains or components.
Collapse
|
36
|
Development of a mouse-adapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine. J Virol 2014; 89:3421-6. [PMID: 25552727 DOI: 10.1128/jvi.02636-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs.
Collapse
|
37
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
38
|
Fischer WA, Chason KD, Brighton M, Jaspers I. Live attenuated influenza vaccine strains elicit a greater innate immune response than antigenically-matched seasonal influenza viruses during infection of human nasal epithelial cell cultures. Vaccine 2014; 32:1761-7. [PMID: 24486351 DOI: 10.1016/j.vaccine.2013.12.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/08/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses are global pathogens that infect approximately 10-20% of the world's population each year. Vaccines, including the live attenuated influenza vaccine (LAIV), are the best defense against influenza infections. The LAIV is a novel vaccine that actively replicates in the human nasal epithelium and elicits both mucosal and systemic protective immune responses. The differences in replication and innate immune responses following infection of human nasal epithelium with influenza seasonal wild type (WT) and LAIV viruses remain unknown. Using a model of primary differentiated human nasal epithelial cell (hNECs) cultures, we compared influenza WT and antigenically-matched cold adapted (CA) LAIV virus replication and the subsequent innate immune response including host cellular pattern recognition protein expression, host innate immune gene expression, secreted pro-inflammatory cytokine production, and intracellular viral RNA levels. Growth curves comparing virus replication between WT and LAIV strains revealed significantly less infectious virus production during LAIV compared with WT infection. Despite this disparity in infectious virus production the LAIV strains elicited a more robust innate immune response with increased expression of RIG-I, TLR-3, IFNβ, STAT-1, IRF-7, MxA, and IP-10. There were no differences in cytotoxicity between hNEC cultures infected with WT and LAIV strains as measured by basolateral levels of LDH. Elevated levels of intracellular viral RNA during LAIV as compared with WT virus infection of hNEC cultures at 33°C may explain the augmented innate immune response via the up-regulation of pattern recognition receptors and down-stream type I IFN expression. Taken together our results suggest that the decreased replication of LAIV strains in human nasal epithelial cells is associated with a robust innate immune response that differs from infection with seasonal influenza viruses, limits LAIV shedding and plays a role in the silent clinical phenotype seen in human LAIV inoculation.
Collapse
Affiliation(s)
- William A Fischer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Kelly D Chason
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, 8033 Burnett-Womack, Chapel Hill, NC 27599-7219, USA
| | - Missy Brighton
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pediatrics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Specific residues of PB2 and PA influenza virus polymerase subunits confer the ability for RNA polymerase II degradation and virus pathogenicity in mice. J Virol 2014; 88:3455-63. [PMID: 24403580 DOI: 10.1128/jvi.02263-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza virus transcription requires functional coupling with cellular transcription for the cap-snatching process. Despite this fact, RNA polymerase II (RNAP II) is degraded during infection in a process triggered by the viral polymerase. Reassortant viruses from the A/PR/8/34 (PR8) strain that induce (hvPR8) or do not induce (lvPR8) RNAP II degradation led to the identification of PA and PB2 subunits as responsible for the degradation process. Three changes in the PB2 sequence (I105M, N456D, and I504V) and two in PA (Q193H and I550L) differentiate PA and PB2 of lvPR8 from those of hvPR8. Using recombinant viruses, we observed that changes at position 504 of PB2, together with 550 of PA, confer the ability on lvPR8 for RNAP II degradation and, conversely, abolish hvPR8 degradation capacity. Since hvPR8 is more pathogenic than lvPR8 in mice, we tested the potential contribution of RNAP II degradation in a distant viral strain, the 2009 pandemic A/California/04/09 (CAL) virus, whose PA and PB2 subunits are of avian origin. As in the hvPR8 virus, mutations at positions 504 of PB2 and 550 of PA in CAL virus abolished its RNAP II degradation capacity. Moreover, in an in vivo model, the CAL-infected mice lost more body weight, and 75% lethality was observed in this situation compared with 100% survival in mutant-CAL- or mock-infected animals. These results confirm the involvement of specific PB2 and PA residues in RNAP II degradation, which correlates with pathogenicity in mice of viruses containing human or avian polymerase PB2 and PA subunits. IMPORTANCE The influenza virus polymerase induces the degradation of RNAP II, which probably cooperates to avoid the antiviral response. Here, we have characterized two specific residues located in the PA and PB2 polymerase subunits that mediate this degradation in different influenza viruses. Moreover, a clear correlation between RNAP II degradation and in vivo pathogenicity in mice was observed, indicating that the degradative process constitutes a viral pathogenicity factor.
Collapse
|
40
|
Jang YH, Jung EJ, Byun YH, Lee KH, Lee EY, Lee YJ, Seong BL. Immunogenicity and protective efficacy of cold-adapted X-31 live attenuated pre-pandemic H5N1 influenza vaccines. Vaccine 2013; 31:3339-46. [PMID: 23742997 DOI: 10.1016/j.vaccine.2013.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
Despite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.1) and A/chicken/Korea/ES/2003 (clade 2.5) strains, in the genetic background of the cold-adapted donor strain of X-31. In mice, a single dose of immunization with each of the two vaccines was highly immunogenic inducing high titers of serum viral-neutralizing and hemagglutinin-inhibiting antibodies against the homologous H5N1 strain. Furthermore, significant levels of cross-clade antibody responses were induced by the vaccines, suggesting a broad-spectrum cross-reactivity against the heterologous H5N1 strains. The immunizations provided solid protections against heterologous lethal challenges with H5N2 virus, significantly reducing the morbidity and challenge virus replications in the respiratory tracts. The robustness of the antibody responses against both the homologous and heterologous strains, together with efficient protection against the lethal H5N2 challenge, strongly support the protection against wild type H5N1 infections. These results could serve as an experimental basis for the development of safe and effective H5N1 pre-pandemic vaccines while further addressing the biosecurity concerns associated with H5N1 HPAI.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Galloway SE, Reed ML, Russell CJ, Steinhauer DA. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog 2013; 9:e1003151. [PMID: 23459660 PMCID: PMC3573126 DOI: 10.1371/journal.ppat.1003151] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species. IAV is associated with significant morbidity and mortality, and represents a challenging public health threat that affects social and economic welfare each year, particularly during IAV pandemics. Although we know that all human strains derive, either directly or via intermediate hosts, from avian viral sources, we know very little about the phenotypic characteristics of the 16 HA subtypes that circulate in aquatic birds and have potential to infect mammals. HA membrane fusion properties, in conjunction with the characteristics for protease activation of HA, a requirement for fusion, are critical factors involved in the ecology and transmission of IAVs, and need to be understood if we are to derive explanations for how pandemic viruses emerge in humans. We examined the cleavage-activation and membrane fusion characteristics for the 16 HA subtypes by transiently expressing HA proteins in cells. Our findings show that the cleavability of the HAs vary considerably between subtypes and depending on the protease. Additionally, analysis of the pH of fusion for each subtype showed that HA stability varied significantly among the subtypes, as well as within subtypes from viruses isolated from different species. Overall, these data have implications for host range, potential for adaptation, and persistence in natural environments.
Collapse
Affiliation(s)
- Summer E. Galloway
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SEG); (DAS)
| | - Mark L. Reed
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SEG); (DAS)
| |
Collapse
|
42
|
Jang YH, Seong BL. Principles underlying rational design of live attenuated influenza vaccines. Clin Exp Vaccine Res 2012; 1:35-49. [PMID: 23596576 PMCID: PMC3623510 DOI: 10.7774/cevr.2012.1.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/23/2012] [Accepted: 06/10/2012] [Indexed: 12/18/2022] Open
Abstract
Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | |
Collapse
|
43
|
Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine 2012; 30:3691-702. [PMID: 22449422 DOI: 10.1016/j.vaccine.2012.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
The licensed live attenuated influenza A vaccine (LAIV) in the United States is created by making a reassortant containing six internal genes from a cold-adapted master donor strain (ca A/AA/6/60) and two surface glycoprotein genes from a circulating/emerging strain (e.g., A/CA/7/09 for the 2009/2010 H1N1 pandemic). Technologies to rapidly create recombinant viruses directly from patient specimens were used to engineer alternative LAIV candidates that have genomes composed entirely of vRNAs from pandemic or seasonal strains. Multiple mutations involved in the temperature-sensitive (ts) phenotype of the ca A/AA/6/60 master donor strain were introduced into a 2009 H1N1 pandemic strain rA/New York/1682/2009 (rNY1682-WT) to create rNY1682-TS1, and additional mutations identified in other ts viruses were added to rNY1682-TS1 to create rNY1682-TS2. Both rNY1682-TS1 and rNY1682-TS2 replicated efficiently at 30°C and 33°C. However, rNY1682-TS1 was partially restricted, and rNY1682-TS2 was completely restricted at 39°C. Additionally, engineering the TS1 or TS2 mutations into a distantly related human seasonal H1N1 influenza A virus also resulted pronounced restriction of replication in vitro. Clinical symptoms and virus replication in the lungs of mice showed that although rNY1682-TS2 and the licensed FluMist(®)-H1N1pdm LAIV that was used to combat the 2009/2010 pandemic were similarly attenuated, the rNY1682-TS2 was more protective upon challenge with a virulent mutant of pandemic H1N1 virus or a heterologous H1N1 (A/PR/8/1934) virus. This study demonstrates that engineering key temperature sensitive mutations (PB1-K391E, D581G, A661T; PB2-P112S, N265S, N556D, Y658H) into the genomes of influenza A viruses attenuates divergent human virus lineages and provides an alternative strategy for the generation of LAIVs.
Collapse
|
44
|
Isakova-Sivak I, Chen LM, Matsuoka Y, Voeten JTM, Kiseleva I, Heldens JGM, den Bosch HV, Klimov A, Rudenko L, Cox NJ, Donis RO. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology 2011; 412:297-305. [PMID: 21315402 DOI: 10.1016/j.virol.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/28/2010] [Accepted: 01/05/2011] [Indexed: 11/27/2022]
Abstract
Trivalent live attenuated influenza vaccines whose type A components are based on cold-adapted A/Leningrad/134/17/57 (H2N2) (caLen17) master donor virus (MDV) have been successfully used in Russia for decades to control influenza. The vaccine virus comprises hemagglutinin and neuraminidase genes from the circulating viruses and the remaining six genes from the MDV. The latter confer temperature-sensitive (ts) and attenuated (att) phenotypes. The ts phenotype of the vaccine virus is a critical biological determinant of attenuation of virulence. We developed a plasmid-based reverse genetics system for MDV caLen17 to study the genetic basis of its ts phenotype. Mutations in the polymerase proteins PB1 and PB2 played a crucial role in the ts phenotype of MDV caLen17. In addition, we show that caLen17-specific ts mutations could impart the ts phenotype to the divergent PR8 virus, suggesting the feasibility of transferring the ts phenotype to new viruses of interest for vaccine development.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Influenza Division, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jackson D, Elderfield RA, Barclay WS. Molecular studies of influenza B virus in the reverse genetics era. J Gen Virol 2010; 92:1-17. [PMID: 20926635 DOI: 10.1099/vir.0.026187-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recovery of an infectious virus of defined genetic structure entirely from cDNA and the deduction of information about the virus resulting from phenotypic characterization of the mutant is the process of reverse genetics. This approach has been possible for a number of negative-strand RNA viruses since the recovery of rabies virus in 1994. However, the recovery of recombinant orthomyxoviruses posed a greater challenge due to the segmented nature of the genome. It was not until 1999 that such a system was reported for influenza A viruses, but since that time our knowledge of influenza A virus biology has grown dramatically. Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. In 2002, two groups reported the successful recovery of influenza B virus entirely from cDNA. This has allowed greater depth of study into the biology of these viruses. This review will highlight the advances made in various areas of influenza B virus biology as a result of the development of reverse genetics techniques for these viruses, including (i) the importance of the non-coding regions of the influenza B virus genome; (ii) the generation of novel vaccine strains; (iii) studies into the mechanisms of drug resistance; (iv) the function(s) of viral proteins, both those analogous to influenza A virus proteins and those unique to influenza B viruses. The information generated by the application of influenza B virus reverse genetics systems will continue to contribute to our improved surveillance and control of human influenza.
Collapse
Affiliation(s)
- David Jackson
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | |
Collapse
|
46
|
Treanor JJ. Viral infections of the respiratory tract: prevention and treatment. Int J Antimicrob Agents 2010; 4:1-22. [PMID: 18611586 DOI: 10.1016/0924-8579(94)90060-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/1993] [Indexed: 10/27/2022]
Abstract
The rapid discovery of specific viral agents as the cause of many acute respiratory diseases was accompanied by considerable optimism that vaccines or other control measures could be developed quickly. Subsequent experience has demonstrated that effective control of these important public health problems has been an elusive goal. However, recent exciting developments in our understanding of the molecular biology and immunology of these viruses may provide the basis for more effective strategies in the future.
Collapse
Affiliation(s)
- J J Treanor
- Infectious Diseases Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Attenuated strains of influenza A viruses do not induce degradation of RNA polymerase II. J Virol 2009; 83:11166-74. [PMID: 19692472 DOI: 10.1128/jvi.01439-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We have previously shown that infection with laboratory-passaged strains of influenza virus causes both specific degradation of the largest subunit of the RNA polymerase II complex (RNAP II) and inhibition of host cell transcription. When infection with natural human and avian isolates belonging to different antigenic subtypes was examined, we observed that all of these viruses efficiently induce the proteolytic process. To evaluate whether this process is a general feature of nonattenuated viruses, we studied the behavior of the influenza virus strains A/PR8/8/34 (PR8) and the cold-adapted A/Ann Arbor/6/60 (AA), which are currently used as the donor strains for vaccine seeds due to their attenuated phenotype. We have observed that upon infection with these strains, degradation of the RNAP II does not occur. Moreover, by runoff experiments we observe that PR8 has a reduced ability to inhibit cellular mRNA transcription. In addition, a hypervirulent PR8 (hvPR8) variant that multiplies much faster than standard PR8 (lvPR8) in infected cells and is more virulent in mice than the parental PR8 virus, efficiently induces RNAP II degradation. Studies with reassortant viruses containing defined genome segments of both hvPR8 and lvPR8 indicate that PA and PB2 subunits individually contribute to the ability of influenza virus to degrade the RNAP II. In addition, recently it has been reported that the inclusion of PA or PB2 from hvPR8 in lvPR8 recombinant viruses, highly increases their pathogenicity. Together, the data indicate that the capacity of the influenza virus to degrade RNAP II and inhibit the host cell transcription machinery is a feature of influenza A viruses that might contribute to their virulence.
Collapse
|
48
|
Lee JS, Kim HS, Seo SH. Genetic characterization and protective immunity of cold-adapted attenuated avian H9N2 influenza vaccine. Vaccine 2009; 26:6569-76. [PMID: 18838096 DOI: 10.1016/j.vaccine.2008.09.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 09/11/2008] [Accepted: 09/16/2008] [Indexed: 11/17/2022]
Abstract
H9N2 influenza viruses are endemic in many Asian countries including China and Korea, and cause a considerable economic loss to chicken industry by reduction in egg production and about 30% mortality. Here we developed live cold-adapted attenuated H9N2 influenza vaccine by adaptation of viruses in hen's eggs at 25 degrees C. Genetic analysis shows that the cold-adapted H9N2 (A/Chicken/Korea/S1/03) viruses contain a total of 44 amino acid substitutions, of which 7 amino acids are identical to the loci identified in the cold-adapted H2N2 (A/Ann Arbor/6/60) vaccine strain compared to genes in wild-type H9N2 (A/Chicken/Korea/S1/03) influenza viruses. When cold-adapted H9N2 (A/Chicken/Korea/S1/03) influenza viruses were inoculated in layers viruses were detectable in the tracheas, not in the lungs, no reduction of egg production and mortality was observed in contrast to the infection of wild-type H9N2 influenza viruses, and CD8+ T lymphocytes expressing IFN-gamma were induced. When layers vaccinated with cold-adapted attenuated H9N2 (A/Chicken/Korea/S1/03) influenza viruses were challenged with wild-type H9N2 (A/Chicken/Korea/521/04) influenza viruses, they were protected from the loss of egg production and mortality. Our results suggest that cold-adapted attenuated H9N2 vaccine can be used for controlling the infection of H9N2 influenza viruses in chickens.
Collapse
Affiliation(s)
- Joo Sub Lee
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, 220 Gung Dong, Yuseong-Gu, Daejeon 305-764, Republic of Korea
| | | | | |
Collapse
|
49
|
Liebowitz D, Lu B. Making improvements in influenza vaccines: incremental change or transformational evolution? Future Virol 2009. [DOI: 10.2217/17460794.4.2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza is one of the leading causes of morbidity and mortality, with 36,000 deaths and 226,000 hospitalizations occurring annually in the USA, primarily in the elderly. The currently licensed influenza vaccines, trivalent inactivated influenza vaccine and live, attenuated influenza vaccine, although effective in many respects, need to be more efficacious for the elderly and the very young. They can also be improved upon to induce broader immunity and cross-protection against drifted or variant strains. Additionally, there is room for improvement in manufacturing technologies. Increased antigen dose, adjuvants, virus-like particles and virosomes, novel live, attenuated influenza vaccines, and universal vaccines are all being developed or have been developed to address the unmet need in the elderly. Many of these approaches may provide incremental improvements in efficacy, where transformative improvement is necessary.
Collapse
Affiliation(s)
- David Liebowitz
- Chief Scientific & Medical Officer, Vivaldi Biosciences Inc., Bellevue Hospital Center, 462 First Avenue, Building A, 9th Floor, New York, NY 10016, USA
| | - Bin Lu
- Vivaldi Biosciences Inc., Bellevue Hospital Center, 462 First Avenue, Building A, 9th Floor, New York, NY 10016, USA
| |
Collapse
|
50
|
|