1
|
Park D, Chung WC, Gong S, Ravichandran S, Lee GM, Han M, Kim KK, Ahn JH. G-quadruplex as an essential structural element in cytomegalovirus replication origin. Nat Commun 2024; 15:7353. [PMID: 39191758 PMCID: PMC11350156 DOI: 10.1038/s41467-024-51797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication. G4 pull-down analysis identifies viral DNA replication factors, such as IE2, UL84, and UL44, as G4-binding proteins. In enzyme-linked immunosorbent assays, specific G4-binding ligands inhibit G4 binding by the viral proteins. The Epstein-Barr virus oriLyt core element also forms a stable G4 that could substitute for the oriLyt ER-I G4 in HCMV. These results demonstrate that viral G4s in replication origins represent an essential structural element in recruiting replication factors and might be a therapeutic target against viral infections.
Collapse
Affiliation(s)
- Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Shuang Gong
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Minji Han
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
The Human Cytomegalovirus Transmembrane Protein pUL50 Induces Loss of VCP/p97 and Is Regulated by a Small Isoform of pUL50. J Virol 2020; 94:JVI.00110-20. [PMID: 32321808 DOI: 10.1128/jvi.00110-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL50 gene encodes a transmembrane protein, pUL50, which acts as a core component of the nuclear egress complex (NEC) for nucleocapsids. Recently, pUL50 has been shown to have NEC-independent activities: downregulation of IRE1 to repress the unfolded protein response and degradation of UBE1L to inhibit the protein ISG15 modification pathway. Here, we demonstrate that a 26-kDa N-terminal truncated isoform of pUL50 (UL50-p26) is expressed from an internal methionine at amino acid position 199 and regulates the activity of pUL50 to induce the loss of valosin-containing protein (VCP/p97). A UL50(M199V) mutant virus expressing pUL50(M199V) but not UL50-p26 showed delayed growth at a low multiplicity of infection. There was also delayed accumulation of the viral immediate early 2 (IE2) protein in the mutant virus, and this correlated with the reduced expression of VCP/p97, which promotes IE2 expression. Infection with mutant virus did not significantly alter ISGylation levels. In transient expression assays, pUL50 induced VCP/p97 loss posttranscriptionally, and this was dependent on the presence of its transmembrane domain. In contrast, UL50-p26 did not destabilize VCP/p97 but, rather, inhibited pUL50-mediated VCP/p97 loss and the associated major IE gene suppression. Both pUL50 and UL50-p26 interacted with VCP/p97, although UL50-p26 did so more weakly than pUL50. UL50-p26 interacted with pUL50, and this interaction was much stronger than the pUL50 self-interaction. Furthermore, UL50-p26 was able to interfere with the pUL50-VCP/p97 interaction. Our study newly identifies UL50-p26 expression during HCMV infection and suggests a regulatory role for UL50-p26 in blocking pUL50-mediated VCP/p97 loss by associating with pUL50.IMPORTANCE Targeting the endoplasmic reticulum (ER) by viral proteins may affect ER-associated protein homeostasis. During human cytomegalovirus (HCMV) infection, pUL50 targets the ER through its transmembrane domain and moves to the inner nuclear membrane (INM) to form the nuclear egress complex (NEC), which facilitates capsid transport from the nucleus to the cytoplasm. Here, we demonstrate that pUL50 induces the loss of valosin-containing protein (VCP/p97), which promotes the expression of viral major immediate early gene products, in a manner dependent on its membrane targeting but that a small isoform of pUL50 is expressed to negatively regulate this pUL50 activity. This study reports a new NEC-independent function of pUL50 and highlights the fine regulation of pUL50 activity by a smaller isoform for efficient viral growth.
Collapse
|
3
|
Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. Molecular Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation. Viruses 2018; 10:E444. [PMID: 30127257 PMCID: PMC6116278 DOI: 10.3390/v10080444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Collapse
Affiliation(s)
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
4
|
The Human CMV IE1 Protein: An Offender of PML Nuclear Bodies. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:77-94. [PMID: 28528440 DOI: 10.1007/978-3-319-53168-7_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PML nuclear bodies (PML-NBs) are SUMOylation-dependent, highly complex protein assemblies that accumulate in the interchromosomal territories of the cell nucleus. Research of the last two decades revealed that many viruses have evolved effector proteins that modify PML-NBs. This correlates with antagonization of individual PML-NB components which act as host cell restriction factors. The multifunctional immediate-early protein IE1 of human cytomegalovirus directly interacts with the PML protein resulting in a disruption of the dot-like structure of PML-NBs. This review summarizes recent advances on the functional consequences of PML-NB modification by IE1. In particular, we describe that PML exerts a novel co-regulatory role during the interferon response which is abrogated by IE1. Via binding to PML, IE1 is able to compromise both intrinsic antiviral defense mechanisms and classical innate immune responses. These interactions of IE1 with innate host defenses are crucial for the onset of lytic replication and, consequently, may represent promising targets for antiviral strategies.
Collapse
|
5
|
Strang BL. RO0504985 is an inhibitor of CMGC kinase proteins and has anti-human cytomegalovirus activity. Antiviral Res 2017; 144:21-26. [DOI: 10.1016/j.antiviral.2017.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
|
6
|
Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus. PLoS Pathog 2016; 12:e1005717. [PMID: 27336364 PMCID: PMC4919066 DOI: 10.1371/journal.ppat.1005717] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50−40±1.72 nM, CC50−8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14 knockdown cells despite emetine treatment, confirming a unique mechanism by which emetine exploits RPS14 to disrupt MDM2-p53 interaction. Summarized, emetine may represent a promising candidate for HCMV therapy alone or in combination with ganciclovir through a novel host-dependent mechanism. Infection with human Cytomegalovirus (HCMV) is a growing and pressing problem, creating ongoing management and therapeutic challenges. Despite the availability of DNA polymerase inhibitors, development of new strategies for HCMV therapy is needed. We report for the first time on the efficacy of an old drug (emetine) against HCMV in vitro and mouse CMV in vivo, using exceedingly low drug doses. We also provide evidence for a specific host-dependent anti-CMV mechanism of emetine in vitro, thus uncovering a cellular function that can be further studied for drug development. Our work provides a novel direction for HCMV therapeutics through repurposing of an old agent, at substantially lower doses, and inhibiting HCMV indirectly through host activities critical for virus replication.
Collapse
|
7
|
Preclinical Justification of pbi-shRNA EWS/FLI1 Lipoplex (LPX) Treatment for Ewing's Sarcoma. Mol Ther 2016; 24:1412-22. [PMID: 27166877 PMCID: PMC5023384 DOI: 10.1038/mt.2016.93] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
The EWS/FLI1 fusion gene is well characterized as a driver of Ewing's sarcoma. Bi-shRNA EWS/FLI1 is a functional plasmid DNA construct that transcribes both siRNA and miRNA-like effectors each of which targets the identical type 1 translocation junction region of the EWS/FLI1 transcribed mRNA sequence. Previous preclinical and clinical studies confirm the safety of this RNA interference platform technology and consistently demonstrate designated mRNA and protein target knockdown at greater than 90% efficiency. We initiated development of pbi-shRNA EWS/FLI1 lipoplex (LPX) for the treatment of type 1 Ewing's sarcoma. Clinical-grade plasmid was manufactured and both sequence and activity verified. Target protein and RNA knockdown of 85-92% was demonstrated in vitro in type 1 human Ewing's sarcoma tumor cell lines with the optimal bi-shRNA EWS/FLI1 plasmid. This functional plasmid was placed in a clinically tested, liposomal (LP) delivery vehicle followed by in vivo verification of activity. Type 1 Ewing's sarcoma xenograft modeling confirmed dose related safety and tumor response to pbi-shRNA EWS/FLI1 LPX. Toxicology studies in mini-pigs with doses comparable to the demonstrated in vivo efficacy dose resulted in transient fever, occasional limited hypertension at low- and high-dose assessment and transient liver enzyme elevation at high dose. These results provide the justification to initiate clinical testing.
Collapse
|
8
|
Rattay S, Trilling M, Megger DA, Sitek B, Meyer HE, Hengel H, Le-Trilling VTK. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products. J Virol 2015; 89:8590-8. [PMID: 26063418 PMCID: PMC4524224 DOI: 10.1128/jvi.01234-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. IMPORTANCE Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation.
Collapse
Affiliation(s)
- Stephanie Rattay
- Institut für Virologie, Heinrich-Heine-Universität, Universitätsklinikum, Düsseldorf, Germany
| | - Mirko Trilling
- Institut für Virologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V., Dortmund, Germany
| | - Hartmut Hengel
- Institut für Virologie, Universitätsklinikum, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | |
Collapse
|
9
|
Spector DJ. UL84-independent replication of human cytomegalovirus strains conferred by a single codon change in UL122. Virology 2015; 476:345-354. [PMID: 25577152 DOI: 10.1016/j.virol.2014.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
The UL84 gene of human cytomegalovirus (HCMV) is thought to be involved in the initiation of viral DNA replication, and is essential for replication of strains AD169 and Towne. Hence, discovery that strain TB40-BAC4 is viable in the absence of UL84 presented an enigma requiring an explanation. Data reported here show that strain TR also tolerated loss of UL84, whereas strains FIX, Merlin, Ph, and Toledo did not. UL84-independent growth required the viral replication origin. The genetic locus in TB40 that controls UL84 dependence was mapped to codon 388 of the UL122 gene, which encodes the immediate early 2 (IE2) 86kD protein. Introduction of this TB40-BAC4 variant (H388D) into FIX and Toledo clones converted these strains to UL84 independence. These results provide genetic evidence in virus-infected cells that supports the hypothesis that UL122 participates in the initiation of viral DNA replication by a mechanism involving transcription-mediated activation of the origin.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, H107, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
10
|
The 6-Aminoquinolone WC5 inhibits different functions of the immediate-early 2 (IE2) protein of human cytomegalovirus that are essential for viral replication. Antimicrob Agents Chemother 2014; 58:6615-26. [PMID: 25155603 DOI: 10.1128/aac.03309-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional factor essential for viral replication. IE2 modulates both viral and host gene expression, deregulates cell cycle progression, acts as an immunomodulator, and antagonizes cellular antiviral responses. Based on these facts, IE2 has been proposed as an important target for the development of innovative antiviral approaches. We previously identified the 6-aminoquinolone WC5 as a promising inhibitor of HCMV replication, and here, we report the dissection of its mechanism of action against the viral IE2 protein. Using glutathione S-transferase (GST) pulldown assays, mutagenesis, cell-based assays, and electrophoretic mobility shift assays, we demonstrated that WC5 does not interfere with IE2 dimerization, its interaction with TATA-binding protein (TBP), and the expression of a set of cellular genes that are stimulated by IE2. On the contrary, WC5 targets the regulatory activity exerted by IE2 on different responsive viral promoters. Indeed, WC5 blocked the IE2-dependent negative regulation of the major immediate-early promoter by preventing IE2 binding to the crs element. Moreover, WC5 reduced the IE2-dependent transactivation of a series of indicator constructs driven by different portions of the early UL54 gene promoter, and it also inhibited the transactivation of the murine CMV early E1 promoter by the IE3 protein, the murine cytomegalovirus (MCMV) IE2 homolog. In conclusion, our results indicate that the overall anti-HCMV activity of WC5 depends on its ability to specifically interfere with the IE2-dependent regulation of viral promoters. Importantly, our results suggest that this mechanism is conserved in murine CMV, thus paving the way for further preclinical evaluation in an animal model.
Collapse
|
11
|
Scherer M, Stamminger T. The human cytomegalovirus IE1 protein: past and present developments. Future Virol 2014. [DOI: 10.2217/fvl.14.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT: Human cytomegalovirus (HCMV), a member of the β-herpesvirus subfamily, is an important pathogen that infects the majority of the human population. The evolutionary success of HCMV largely depends on its ability to evade host defense systems and establish a lifelong persistence after primary infection. In fact, HCMV has dedicated a considerable part of its gene products to manipulate or disable immune effector processes. This review focuses on the major immediate–early protein IE1 – a multifunctional key regulator that has the capacity to counteract the first host defense activities. We summarize the known structural and mechanistic features by which IE1 modulates innate immune mechanisms as well as other cellular processes, and discuss how the individual functions of IE1 contribute to the success of a lytic HCMV infection.
Collapse
Affiliation(s)
- Myriam Scherer
- Institute for Clinical & Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical & Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
12
|
RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J Virol 2012; 86:5660-73. [PMID: 22438545 DOI: 10.1128/jvi.06338-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.
Collapse
|
13
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
14
|
Phadke AP, Jay CM, Wang Z, Chen S, Liu S, Haddock C, Kumar P, Pappen BO, Rao DD, Templeton NS, Daniels EQ, Webb C, Monsma D, Scott S, Dylewski D, Frieboes HB, Brunicardi FC, Senzer N, Maples PB, Nemunaitis J, Tong AW. In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 2011; 30:715-26. [PMID: 21612405 DOI: 10.1089/dna.2011.1240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bifunctional small hairpin RNAs (bi-shRNAs) are functional miRNA/siRNA composites that are optimized for posttranscriptional gene silencing through concurrent mRNA cleavage-dependent and -independent mechanisms (Rao et al., 2010 ). We have generated a novel bi-shRNA using the miR30 scaffold that is highly effective for knockdown of human stathmin (STMN1) mRNA. STMN1 overexpression well documented in human solid cancers correlates with their poor prognosis. Transfection with the bi-shSTMN1-encoding expression plasmid (pbi-shSTMN1) markedly reduced CCL-247 human colorectal cancer and SK-Mel-28 melanoma cell growth in vitro (Rao et al., 2010 ). We now examine in vivo the antitumor efficacy of this RNA interference-based approach with human tumor xenografted athymic mice. A single intratumoral (IT) injection of pbi-shSTMN1 (8 μg) reduced CCL-247 tumor xenograft growth by 44% at 7 days when delivered as a 1,2-dioleoyl-3-trimethyl-ammoniopropane:cholesterol liposomal complex. Extended growth reductions (57% at day 15; p < 0.05) were achieved with three daily treatments of the same construct. STMN1 protein reduction was confirmed by immunoblot analysis. IT treatments with pbi-shSTMN1 similarly inhibited the growth of tumorgrafts derived from low-passage primary melanoma (≥70% reduction for 2 weeks) and abrogated osteosarcoma tumorgraft growth, with the mature bi-shRNA effector molecule detectable for up to 16 days after last injection. Antitumor efficacy was evident for up to 25 days posttreatment in the melanoma tumorgraft model. The maximum tolerated dose by IT injection of >92 μg (Human equivalent dose [HED] of >0.3 mg/kg) in CCL-247 tumor xenograft-bearing athymic mice was ∼10-fold higher than the extrapolated IC(50) of 9 μg (HED of 0.03 mg/kg). Healthy, immunocompetent rats were used as biorelevant models for systemic safety assessments. The observed maximum tolerated dose of <100 μg for intravenously injected pbi-shSTMN1 (mouse equivalent of <26.5 μg; HED of <0.09 mg/kg) confirmed systemic safety of the therapeutic dose, hence supporting early-phase assessments of clinical safety and preliminary efficacy.
Collapse
|
15
|
Human cytomegalovirus activates glucose transporter 4 expression to increase glucose uptake during infection. J Virol 2010; 85:1573-80. [PMID: 21147915 DOI: 10.1128/jvi.01967-10] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose transport into mammalian cells is mediated by a group of glucose transporters (GLUTs) on the plasma membrane. Human cytomegalovirus (HCMV)-infected human fibroblasts (HFs) demonstrate significantly increased glucose consumption compared to mock-infected cells, suggesting a possible alteration in glucose transport during infection. Inhibition of GLUTs by using cytochalasin B indicated that infected cells utilize GLUT4, whereas normal HFs use GLUT1. Quantitative reverse transcription-PCR and Western analysis confirmed that GLUT4 levels are greatly increased in infected cells. In contrast, GLUT1 was eliminated by a mechanism involving the HCMV major immediate-early protein IE72. The HCMV-mediated induction of GLUT4 circumvents characterized controls of GLUT4 expression that involve serum stimulation, glucose concentration, and nuclear functions of ATP-citrate lyase (ACL). In infected cells the well-characterized Akt-mediated translocation of GLUT4 to the cell surface is also circumvented; GLUT4 localized on the surface of infected cells that were serum starved and had Akt activity inhibited. The significance of GLUT4 induction for the success of HCMV infection was indicated using indinavir, a drug that specifically inhibits glucose uptake by GLUT4. The addition of the drug inhibited glucose uptake in infected cells as well as viral production. Our data show that HCMV-specific mechanisms are used to replace GLUT1, the normal HF GLUT, with GLUT4, the major glucose transporter in adipose tissue, which has a 3-fold-higher glucose transport capacity.
Collapse
|
16
|
Dimitropoulou P, Caswell R, McSharry BP, Greaves RF, Spandidos DA, Wilkinson GWG, Sourvinos G. Differential relocation and stability of PML-body components during productive human cytomegalovirus infection: detailed characterization by live-cell imaging. Eur J Cell Biol 2010; 89:757-68. [PMID: 20599291 DOI: 10.1016/j.ejcb.2010.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/14/2010] [Accepted: 05/26/2010] [Indexed: 01/30/2023] Open
Abstract
In controlling the switch from latency to lytic infection, the immediate early (IE) genes lie at the core of herpesvirus pathogenesis. To image the 72kDa human cytomegalovirus (HCMV) major IE protein (IE1-72K), a recombinant virus encoding IE1 fused with EGFP was constructed. Using this construct, the IE1-EGFP fusion was detected at ND10 (PML-bodies) within 2h post infection (p.i.) and the complete disruption of ND10 imaged through to 6h p.i. HCMV genomes and IE2-86K protein could be detected adjacent to the slowly degrading IE1-72K/ND10 foci. IE1-72K associates with metaphase chromatin, recruiting both PML and STAT2. hDaxx, STAT1 and IE2-86K did not re-locate to metaphase chromatin; the fate of hDaxx is particularly important as this protein contributes to an intrinsic barrier to HCMV infection. While IE1-72K participates in a complex with chromatin, PML, STAT2 and Sp100, IE1-72K releases hDaxx from ND10 yet does not appear to remain associated with it.
Collapse
Affiliation(s)
- Panagiota Dimitropoulou
- Department of Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Human cytomegalovirus induces the endoplasmic reticulum chaperone BiP through increased transcription and activation of translation by using the BiP internal ribosome entry site. J Virol 2010; 84:11479-86. [PMID: 20739513 DOI: 10.1128/jvi.01330-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The endoplasmic reticulum (ER) chaperone BiP (immunoglobulin binding protein) plays a major role in the control of the unfolded protein response. We have previously shown that BiP levels are dramatically increased during human cytomegalovirus (HCMV) infection, where BiP performs unique roles in viral assembly and egress. We show that BiP mRNA levels increase during infection due to activation of the BiP promoter by the major immediate-early (MIE) proteins. The BiP promoter, like other ER stress-activated promoters, contains endoplasmic reticulum stress elements (ERSEs), which are activated by unfolded protein response (UPR)-induced transcription factors. However, these elements are not needed for MIE protein-mediated transcriptional activation; thus, a virus-specific transcriptional activation mechanism is used. Transcriptional activation results in only a 3- to 4-fold increase in BiP mRNA, suggesting that additional mechanisms for BiP production are utilized. The BiP mRNA contains an internal ribosome entry site (IRES) which increases the level of BiP mRNA translation. We show that utilization of the BiP IRES is dramatically increased in HCMV-infected cells. Utilization of the BiP IRES can be activated by the La autoantigen, also called Sjögren's syndrome antigen B (SSB). We show that SSB/La levels are significantly increased during HCMV infection, and SSB/La depletion causes the loss of BiP IRES utilization and lowers endogenous BiP levels in infected cells. Our data show that BiP levels increase in HCMV-infected cells through the combination of increased BiP gene transcription mediated by the MIE proteins and increased BiP mRNA translation due to SSB/La-induced utilization of the BiP IRES.
Collapse
|
18
|
Rao DD, Maples PB, Senzer N, Kumar P, Wang Z, Pappen BO, Yu Y, Haddock C, Jay C, Phadke AP, Chen S, Kuhn J, Dylewski D, Scott S, Monsma D, Webb C, Tong A, Shanahan D, Nemunaitis J. Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther 2010; 17:780-91. [PMID: 20596090 DOI: 10.1038/cgt.2010.35] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) is a natural cellular regulatory process that inhibits gene expression by transcriptional, post-transcriptional and translational mechanisms. Synthetic approaches that emulate this process (small interfering RNA (siRNA), short hairpin RNA (shRNA)) have been shown to be similarly effective in this regard. We developed a novel 'bifunctional' RNAi strategy, which further optimizes target gene knockdown outcome. A bifunctional construct (bi-sh-STMN1) was generated against Stathmin1, a critical tubulin modulator that is overexpressed in human cancers. The bifunctional construct is postulated to concurrently repress the translation of the target mRNA (cleavage-independent, mRNA sequestration and degradation) and degrade (through RNase H-like cleavage) post-transcriptional mRNA through cleavage-dependent activities. Bi-sh-STMN1 showed enhanced potency and durability in parallel comparisons with conventional shRNA and siRNAs targeting the same sequence. Enhanced STMN1 protein knockdown by bi-sh-STMN1 was accompanied by target site cleavage at the mRNA level showed by the rapid amplification of complementary DNA ends (RACE) assay. Bi-sh-STMN1 also showed knockdown kinetics at the mRNA level consistent with its multieffector silencing mechanisms. The bifunctional shRNA is a highly effective and advantageous approach mediating RNAi at concentrations significantly lower than conventional shRNA or siRNA. These results support further evaluations.
Collapse
Affiliation(s)
- D D Rao
- Gradalis, Inc., Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
20
|
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J Virol 2010; 84:8111-23. [PMID: 20519406 DOI: 10.1128/jvi.00459-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Collapse
|
21
|
Herbein G, Wendling D. Histone deacetylases in viral infections. Clin Epigenetics 2010; 1:13-24. [PMID: 22704086 PMCID: PMC3365363 DOI: 10.1007/s13148-010-0003-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/10/2010] [Indexed: 02/07/2023] Open
Abstract
Chromatin remodeling and gene expression are regulated by histone deacetylases (HDACs) that condense the chromatin structure by deacetylating histones. HDACs comprise a group of enzymes that are responsible for the regulation of both cellular and viral genes at the transcriptional level. In mammals, a total of 18 HDACs have been identified and grouped into four classes, i.e., class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10), class III (Sirt1–Sirt7), and class IV (HDAC11). We review here the role of HDACs on viral replication and how HDAC inhibitors could potentially be used as new therapeutic tools in several viral infections.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES EA 4266, IFR 133 INSERM, Franche-Comte University, CHU Besançon, 2 place Saint-Jacques, 25030 Besancon, France
| | - Daniel Wendling
- Department of Rheumatology, UPRES EA4266, IFR 133 INSERM, Franche-Comte University, CHU Besançon, 25030 Besancon, France
| |
Collapse
|
22
|
Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol 2010; 84:7803-14. [PMID: 20504932 DOI: 10.1128/jvi.00139-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion protein pUL83 (also termed pp65) inhibits the expression of interferon-inducible cellular genes. In this work we demonstrate that pUL83 is also important for efficient induction of transcription from the viral major immediate-early promoter. Infection with a mutant virus containing a premature translation termination codon in the UL83 open reading frame (ORF) (UL83Stop) resulted in decreased transcription from the major immediate-early promoter in a time- and multiplicity-dependent manner. Expression of pUL83 alone is capable of transactivating the promoter in a reporter assay, and pUL83 associates with the promoter in infected cells. To investigate the mechanism by which the protein regulates the major immediate-early promoter, we utilized a mutant virus expressing an epitope-tagged pUL83 from its own promoter to identify protein binding partners for pUL83 during infection. We identified and confirmed the interaction of pUL83 with cellular IFI16 family members throughout the course of HCMV infection. pUL83 recruits IFI16 to the major immediate-early promoter, and IFI16 binding at the promoter is dependent upon the presence of pUL83. Consistent with the results obtained with the UL83Stop virus, infection of IFI16 knockdown cells with wild-type virus resulted in decreased levels of immediate-early transcripts compared to those of control cells. These data identify a previously unknown role for pUL83 in the initiation of the human cytomegalovirus gene expression cascade.
Collapse
|
23
|
Human cytomegalovirus IE1-72 protein interacts with p53 and inhibits p53-dependent transactivation by a mechanism different from that of IE2-86 protein. J Virol 2009; 83:12388-98. [PMID: 19776115 DOI: 10.1128/jvi.00304-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infection of host cells with human cytomegalovirus (HCMV) induces cell cycle dysregulation. Two HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, are promiscuous transactivators that have been implicated in the dysregulatory events. Cellular p53 protein is accumulated to high levels in HCMV-infected cells, but the indicative marker of p53 transcriptional activity, p21, is markedly decreased. Both IE1-72 and IE2-86 were able to transactivate the p53 promoter and interact with p53 protein in DNA-transfected or HCMV-infected cells. HCMV UL84, a multiregulatory protein expressed in early periods of HCMV infection, also interacted with p53. HCMV IE1-72 prevented or disrupted p53 binding to p53-specific DNA sequences, while IE2-86 and/or UL84 enhanced p53 binding and induced supershift of this DNA-protein complex. Both HCMV IE1-72 and IE2-86 were able to inhibit p53-dependent transcriptional activation in plasmid-transfected cells. IE1-72, rather than IE2-86, was found to be responsible for p21 downregulation in HCMV-infected HEL cells. DNA transfection analysis using IE1-72 mutants revealed that exon 2/3 and the zinc finger region of IE1-72 are essential for IE1-72's effect on the repression of p53-dependent transcriptional activation. These data suggest that HCMV IE1-72 and/or IE2-86 transactivates the p53 promoter and induces p53 accumulation, but HCMV IE1-72 represses the p53 transactivation activity by a unique binding hindrance mechanism different from that of IE2-86. Thus, various modes of viral IE proteins and p53 interactions might result in multiple outcomes, such as stimulation of cellular DNA synthesis, cell cycle progression and cell cycle arrest, and prevention of program cell death.
Collapse
|
24
|
Kitagawa R, Takahashi Y, Takahashi M, Imazu H, Yasuda M, Sadanari H, Tanaka J. Hexamethylene bisacetamide can convert nonpermissive human cells to a permissive state for expressing the major immediate-early genes of human cytomegalovirus by up-regulating NF-kappaB activity. Virology 2008; 383:195-206. [PMID: 19027925 DOI: 10.1016/j.virol.2008.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/05/2008] [Accepted: 10/17/2008] [Indexed: 11/26/2022]
Abstract
Expression of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV) in the human thyroid papillary carcinoma cell line TPC-1 is repressed at the transcriptional level. However, treatment of these cells with hexamethylene bisacetamide (HMBA), a chemical inducer of differentiation, for 12 to 24 h before infection enabled the cells to support IE1 and IE2 gene expression and consequently HCMV replication. In HMBA-treated cells the transcription factor NF-kappaB was induced and the MIE promoter (MIEP) was activated. The presence of a NF-kappaB inhibitory peptide SN-50 or expression of a dominant negative IkappaBalpha protein during the HMBA pretreatment period efficiently prevented the HMBA-induced MIEP activation and MIE protein synthesis. Moreover, introduction of mutations into the NF-kappaB binding sites in the MIEP in a plasmid expressing the IE1 protein diminished its ability to express the protein in HMBA-treated cells. Therefore, the NF-kappaB activity previously induced in HMBA-treated cells and the NF-kappaB sites in the MIEP were shown to be essential for HCMV to respond to HMBA action and to express the MIE genes. Investigation of the mechanisms by which HMBA activates NF-kappaB revealed that degradation of IkappaBalpha and translocation of the phosphorylated NF-kappaB p65 subunit to the nucleus, both of which are known to be critical steps in NF-kappaB activation, are stimulated in the HMBA-treated cells. These results indicate that treatment of nonpermissive TPC-1 cells with HMBA induces MIE gene permissiveness by up-regulating NF-kappaB activity.
Collapse
Affiliation(s)
- Ryoko Kitagawa
- Department of Clinical Laboratory Science, School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kodatsuno, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Dutt K, Ezeonu I. Human retinal and brain cell lines: A model of HCMV retinitis and encephalitis. DNA Cell Biol 2006; 25:581-96. [PMID: 17132089 DOI: 10.1089/dna.2006.25.581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although HIV is accepted as the etiologic agent in AIDS, other factors have been implicated in accelerating the disease. Human cytomegalovirus (HCMV) in particular has been implicated as a cofactor in the progression from AIDS-related complex (ARC) to AIDS. HCMV infection of the central nervous system (CNS) (brain, retina) has been reported in at least 50% of AIDS patients, and has been implicated in producing encephalitis and sight-threatening retinitis. HCMV exhibits strict species specificity and animal models for human HCMV are conspicuous by their absence. We have developed a human brain cell line (mixed glial/neuronal) and a multipotential human retinal precursor cell line (neuronal in nature). We have tested the suitability of these cell lines as models for the study of HCMV infectibility. In this study, we report that these cell lines are optimal for the study of HCMV infectibility and pathogenesis in tissues of neural origin and appropriate to study HIV-HCMV interaction. Immortalized human brain and retinal cell lines were infected with a laboratory strain of HCMV (AD 169, Towne) at a multiplicity of infection moi (1-5) and viral infectibility and cell specificity monitored by: (a) phenotypic analysis (multinucleate cells, syncytium formation, etc.), (b) antigen expression (IE, E, late) by immunohistochemistry, Western blot analysis, (c) presence of viral particles by TEM, and (d) expression of indicator plasmids (HIV-LTR-CAT). We report that both human retinal and brain cell lines are permissive for HCMV infectibility. Cell specificity was not seen; both cells expressing glial/neuronal cell markers were positive for the presence of HCMV early/late antigens. Formation of multinucleate giant cells with nuclear inclusion bodies and syncytia were seen. Productive viral infection was confirmed by the ability of cell-free supernatant from the third passage of infected cells to produce pathogenicity and express viral particles, when added to fresh cultures. Using indicator plasmids, HIV-LTR, and CAT, we have shown that HIV and HCMV interact at the cellular level. We have also shown that HIV production in retinal and brain cell lines transfected with cloned HIV was enhanced by HCMV-IE genes. We did not see any differences in HCMV. AD 169, Towne isolate, and data from both strains is presented in this paper. This model could prove extremely useful for the study of cell specificity/cellular and molecular interaction between HIV/HCMV and to test antiviral therapies.
Collapse
Affiliation(s)
- Kamla Dutt
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA.
| | | |
Collapse
|
26
|
Tomoiu A, Gravel A, Tanguay RM, Flamand L. Functional interaction between human herpesvirus 6 immediate-early 2 protein and ubiquitin-conjugating enzyme 9 in the absence of sumoylation. J Virol 2006; 80:10218-28. [PMID: 17005699 PMCID: PMC1617313 DOI: 10.1128/jvi.00375-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 is a potent transactivator of cellular and viral promoters. To better understand the biology of IE2, we generated a LexA-IE2 fusion protein and screened, using the yeast two-hybrid system, a Jurkat T-cell cDNA library for proteins that could interact with IE2. The most frequently isolated IE2-interacting protein was the human ubiquitin-conjugating enzyme 9 (Ubc9), a protein involved in the small ubiquitin-like modifier (SUMO) conjugation pathway. Using deletion mutants of IE2, we mapped the IE2-Ubc9-interacting region to residues 989 to 1037 of IE2. The interaction was found to be of functional significance to IE2, as Ubc9 overexpression significantly repressed promoter activation by IE2. The C93S Ubc9 mutant exhibited a similar effect on IE2, indicating that the E2 SUMO-conjugating function of Ubc9 is not required for its repressive action on IE2. No consensus sumoylation sites or evidence of IE2 conjugation to SUMO could be demonstrated under in vivo or in vitro conditions. Moreover, expression levels and nuclear localization of IE2 were not altered by Ubc9 overexpression, suggesting that Ubc9's repressive function likely occurs at the transcriptional complex level. Overall, our results indicate that Ubc9 influences IE2's function and provide new information on the complex interactions that occur between herpesviruses and the sumoylation pathway.
Collapse
Affiliation(s)
- Andru Tomoiu
- Centre de Recherche du CHUL, 2705 Laurier Blvd., Room T1-49, Québec, QC, Canada
| | | | | | | |
Collapse
|
27
|
Tomoiu A, Gravel A, Flamand L. Mapping of human herpesvirus 6 immediate-early 2 protein transactivation domains. Virology 2006; 354:91-102. [PMID: 16884756 DOI: 10.1016/j.virol.2006.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/10/2006] [Accepted: 06/23/2006] [Indexed: 11/21/2022]
Abstract
The immediate-early 2 (IE2) protein of human herpesvirus 6 (HHV-6) is a potent transactivator of multiple cellular and viral promoters. Deletion mutants of HHV-6 variant A IE2 allowed us to map functional transactivation domains acting on complex and minimal promoter sequences. This mapping showed that both the N-terminal and C-terminal domains of IE2 are required for efficient transactivation, and that deletion of the C-terminal (1397-1466) tail of IE2 drastically reduces both transactivation and the intranuclear distribution of IE2. Moreover, we determined that the ATF/CRE binding site within the HHV-6A polymerase promoter is not required for efficient transactivation by IE2, whereas the R3 repeat region of the putative immediate-early promoter of HHV-6A is responsive to and positively regulated by IE2. These results contrast sharply to that of human cytomegalovirus (HCMV) IE2, which down-regulates its promoter. Our characterization of HHV-6 IE2 transactivating activity provides a better understanding of the complex interactions of this protein with the viral and cellular transcription machinery and highlights significant differences with the IE2 protein of HCMV.
Collapse
Affiliation(s)
- Andru Tomoiu
- Laboratory of Virology, Rheumatology and Immunology Research Center, Centre de Recherche du CHUL and Faculty of Medicine, Laval University, 2705 Laurier Blvd., Room T1-49, Québec, Qc, Canada G1V 4G2.
| | | | | |
Collapse
|
28
|
Boggio R, Chiocca S. Viruses and sumoylation: recent highlights. Curr Opin Microbiol 2006; 9:430-6. [PMID: 16815735 PMCID: PMC7108358 DOI: 10.1016/j.mib.2006.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/20/2006] [Indexed: 12/02/2022]
Abstract
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
Collapse
|
29
|
Lam V, Boehme KW, Compton T, Yin J. Spatial patterns of protein expression in focal infections of human cytomegalovirus. Biotechnol Bioeng 2006; 93:1029-39. [PMID: 16506244 DOI: 10.1002/bit.20786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human cytomegalovirus (HCMV) is a medically significant human pathogen that infects a wide range of cell and tissue types. During infection, HCMV activates a variety of signal transduction pathways that induce profound changes in cellular processes and dramatically affect cellular gene expression patterns. To better define how these virus-host interactions affect the local microenvironment and influence the spatial and temporal spread of HCMV, we initiated HCMV focal infections on normal human dermal fibroblast monolayers and monitored viral gene expression patterns and infection spread over 45 days. To establish baseline temporal measurements of HCMV infection and spread in cell monolayers, we characterized the influence of three experimental variables on viral gene expression: cell plating density, the presence of serum, and neutralization of cellular antiviral responses with an antibody against interferon-beta. We found that high cell plating density or the inclusion of serum correlated with enhanced HCMV infection spread. Dramatic differences in the expression pattern of the viral immediate early 2 (IE2) gene were observed under these conditions as compared to low plating density or the absence of serum. In the latter case round, uniform foci were observed with a clear wave of IE2 expression visible in advance of a late stage viral protein, envelope glycoprotein B. By contrast, larger irregular foci with arms of IE2 expression were observed in the presence of serum. Addition of the antibody had little effect on the rate of spread, which is consistent with the knowledge that HCMV represses antiviral responses during infection. This experimental system provides a useful means to visualize and quantify complex virus-host interactions.
Collapse
Affiliation(s)
- Vy Lam
- Department of Chemical and Biological Engineering, 1415 Engineering Dr., University of Wisconsin, Madison, USA
| | | | | | | |
Collapse
|
30
|
DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD. Prolonged activation of NF-kappaB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 2005; 346:15-31. [PMID: 16303162 PMCID: PMC2600890 DOI: 10.1016/j.virol.2005.09.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 08/12/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023]
Abstract
Infection of fibroblasts by human cytomegalovirus (HCMV) rapidly activates the NF-kappaB signaling pathway, which we documented promotes efficient transactivation of the major immediate-early promoter (DeMeritt, I.B., Milford, L.E., Yurochko, A.D. (2004). Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J. Virol. 78, 4498-4507). Because a second, sustained increase in NF-kappaB activity following the initial phase of NF-kappaB activation was also observed, we investigated the role that this prolonged NF-kappaB activation played in viral replication and late gene expression. We first investigated HCMV replication in cells in which NF-kappaB activation was blocked by pretreatment with NF-kappaB inhibitors: HCMV replication was significantly decreased in these cultures. A decrease in replication was also observed when NF-kappaB was inhibited up to 48 h post-infection, suggesting a previously unidentified role for NF-kappaB in the regulation of the later class of viral genes.
Collapse
Affiliation(s)
- Ian B. DeMeritt
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jagat P. Podduturi
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - A. Michael Tilley
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Maciej T. Nogalski
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
- *Corresponding Author: Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, Phone: (318) 675-8332, Fax: (318) 675-5764, E-Mail:
| |
Collapse
|
31
|
Sadanari H, Yamada R, Ohnishi K, Matsubara K, Tanaka J. SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein. Arch Virol 2005; 150:1763-82. [PMID: 15931461 DOI: 10.1007/s00705-005-0559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that two proteins with apparent molecular masses of 91- and 102-kDa (p91 and p102, respectively) in human cytomegalovirus (HCMV)-infected cells are antigenically and structurally related to the major immediate-early (IE) 1 and 2 proteins (IE1p68 and IE2p80, respectively) of HCMV, respectively. In this study, we extended the characterization of p91 and p102 and our results were as follows; (i) Lysine at amino acid position 450 in IE1p68 and at amino acid position 175 or 180 in IE2p80, to which SUMO-1 has been shown to be covalently linked, are required for production of p91 and p102, respectively. (ii) A reversal of cycloheximide (CH) block in the presence of actinomycin D imposed at the time of infection inhibited production of p91, but not p102. (iii) The steady-state levels of p91, but not p102, were remarkably decreased by treatment with proteasome inhibitor MG132, but coincubation with CH inhibited this decrease of p91. (iv) Cell fractionation by differential detergent extraction demonstrated that p91 is preferentially found in detergent-insoluble fraction, although p102 as well as IE1p68 and IE2p80 distributes into all fractions. These results demonstrate that p91 and p102 correspond to SUMO-1-modified IE1p68 and IE2p80, respectively, that the production and degradation of SUMO-1-modified IE1p68 is regulated by mechanisms different from those of SUMO-1-modified IE2p80, and that SUMO-1 modification modulates the intracellular localization of IE1p68, but not IE2p80.
Collapse
Affiliation(s)
- H Sadanari
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
32
|
Asmar J, Wiebusch L, Truss M, Hagemeier C. The putative zinc finger of the human cytomegalovirus IE2 86-kilodalton protein is dispensable for DNA binding and autorepression, thereby demarcating a concise core domain in the C terminus of the protein. J Virol 2004; 78:11853-64. [PMID: 15479827 PMCID: PMC523240 DOI: 10.1128/jvi.78.21.11853-11864.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.
Collapse
Affiliation(s)
- Jasmin Asmar
- Laboratory for Molecular Biology, Department of Pediatrics, Charité, Humboldt-University, Ziegelstr. 5-9, D-10098 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Xu Y, Cei SA, Rodriguez Huete A, Colletti KS, Pari GS. Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J Virol 2004; 78:11664-77. [PMID: 15479808 PMCID: PMC523242 DOI: 10.1128/jvi.78.21.11664-11677.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplification of the human cytomegalovirus (HCMV) lytic origin (oriLyt) in human fibroblasts is dependent upon six core replication proteins and UL84, IE2, and UL36-38. Using a telomerase-immortalized human fibroblast cell line (T-HFs), oriLyt-dependent DNA replication no longer required the gene products of UL36-38. To determine the role of IE2 in DNA replication in human fibroblasts, we examined potential IE2-binding sites within HCMV oriLyt. We now show that a strong bidirectional promoter (oriLyt(PM)) (nucleotides 91754 to 92030) is located in the previously identified core region of the origin and is required for efficient amplification of oriLyt. It was determined that a 14-bp novel DNA motif (oriLyt promoter activation element), which was initially identified as a binding element for the immediate-early protein IE2, was essential for oriLyt(PM) activity. In Vero cells the oriLyt(PM) was constitutively active and strongly repressed by IE2, but it was reactivated by UL84. In contrast, transfection of the oriLyt(PM) into human fibroblasts resulted in a very low basal level of promoter activity that was dramatically up-regulated upon infection with HCMV. Cotransfection assays demonstrated that the transfection of UL84 along with IE2 transactivated the oriLyt(PM) in human fibroblasts. Further activation was observed upon cotransfection of the set of plasmids expressing the entire replication complex. Efficient oriLyt amplification in the absence of IE2 in human fibroblasts was observed by replacing the oriLyt(PM) with the simian virus 40 early promoter. Under these conditions, however, UL84 was still required for amplification of oriLyt. These results suggest that the mechanism of initiation of HCMV lytic replication in part involves transcriptional activation.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Microbiology and Cell and Molecular Biology Program, University of Nevada-Reno, Howard Bldg., Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
34
|
Lee HR, Ahn JH. Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts. J Gen Virol 2004; 85:2149-2154. [PMID: 15269353 DOI: 10.1099/vir.0.79954-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus has been shown to increase transactivation activity in target reporter gene assays. This study examined the role of IE2 sumoylation in viral infection. A Towne strain-based bacterial artificial chromosome clone was generated encoding a mutated form of the IE2 protein with Lys-->Arg substitutions at positions 175 and 180, the two major sumoylation sites. When human fibroblast (HF) cells were infected with the reconstituted mutant virus, (i) viral growth kinetics, (ii) the accumulation of IE1 (UL123), IE2 (UL122), p52 (UL44) and pp65 (UL83) proteins and (iii) the relocalization of the cellular small ubiquitin-like modifier (SUMO)-1, p53 and proliferating cell nuclear antigen proteins into viral DNA replication compartments were comparable with those of the wild-type and the revertant virus. The data demonstrate that sumoylation of IE2 is not essential for virus growth in cultured HF cells.
Collapse
Affiliation(s)
- Hye-Ra Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| |
Collapse
|
35
|
Lee HR, Kim DJ, Lee JM, Choi CY, Ahn BY, Hayward GS, Ahn JH. Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 2004; 78:6527-42. [PMID: 15163746 PMCID: PMC416510 DOI: 10.1128/jvi.78.12.6527-6542.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In one of the earliest events in human cytomegalovirus (HCMV)-infected cells, the major immediate-early (IE) protein IE1 initially targets to and then disrupts the nuclear structures known as PML oncogenic domains (PODs) or nuclear domain 10. Recent studies have suggested that modification of PML by SUMO is essential to form PODs and that IE1 both binds to PML and may disrupt PODs by preventing or removing SUMO adducts on PML. In this study, we showed that in contrast to herpes simplex virus type 1 (HSV-1) IE110 (ICP0), the loss of sumoylated forms of PML by cotransfected IE1 was resistant to the proteasome inhibitor MG132 and that IE1 did not reduce the level of unmodified PML. Reduced sumoylation of PML was also observed in U373 cells after infection with wild-type HCMV and proved to require IE1 protein expression. Mutational analysis revealed that the central hydrophobic domain of IE1, including Leu174, is required for both PML binding and loss of PML sumoylation and confirmed that all IE1 mutants tested that were deficient in these functions also failed both to target to PODs and to disrupt PODs. These same mutants were also inactive in several reporter gene transactivation assays and in inhibition of PML-mediated repression. Importantly, a viral DNA genome containing an IE1 gene with a deletion [IE1(Delta290-320)] that was defective in these activities was not infectious when transfected into permissive fibroblast cells, but the mutant IE1(K450R), which is defective in IE1 sumoylation, remained infectious. Our mutational analysis strengthens the idea that interference by IE1 with both the sumoylation of PML and its repressor activity requires a physical interaction with PML that also leads to disruption of PODs. These activities of IE1 also correlate with several unusual transcriptional transactivation functions of IE1 and may be requirements for efficient initiation of the lytic cycle in vivo.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, 300 Chunchundong Jangangu, Suwon, Kyonggido 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
White EA, Clark CL, Sanchez V, Spector DH. Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J Virol 2004; 78:1817-30. [PMID: 14747546 PMCID: PMC369462 DOI: 10.1128/jvi.78.4.1817-1830.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is a key viral transactivator and an important regulator of HCMV infections. We used the HCMV genome cloned as a bacterial artificial chromosome (BAC) to construct four HCMV mutants with disruptions in regions of IE2 86 that are predicted to be important for its transactivation and autoregulatory functions. Three of these mutants have mutations that remove amino acids 356 to 359, 427 to 435, and 505 to 511, which disrupts a region of IE2 86 implicated in the activation of HCMV early promoters, a predicted zinc finger domain, and a putative helix-loop-helix motif, respectively, while the fourth carries three arginine-to-alanine substitution mutations in the region of amino acids 356 to 359. The resulting recombinant viruses are not viable, and by using quantitative real-time reverse transcription-PCR and immunofluorescence we have determined the location of the block in their replicative cycles. The IE2 86 Delta 356-359 mutant is able to support early gene expression, as indicated by the presence of UL112-113 transcripts and UL112-113 and UL44 proteins in cells transfected with the mutant BAC. This mutant does not express late genes and behaves nearly indistinguishably from the IE2 86R356/7/9A substitution mutant. Both exhibit detectable upregulation of major immediate-early transcripts at early times. The IE2 86 Delta 427-435 and IE2 86 Delta 505-511 recombinant viruses do not activate the early genes examined and are defective in repression of the major immediate-early promoter. These two mutants also induce the expression of selected delayed early (UL89) and late genes at early times in the infection. We conclude that these three regions of IE2 86 are necessary for productive infections and for differential control of downstream viral gene expression.
Collapse
Affiliation(s)
- Elizabeth A White
- Molecular Biology Section and Center for Molecular Genetics, University of California-San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
37
|
Lee JM, Kang HJ, Lee HR, Choi CY, Jang WJ, Ahn JH. PIAS1 enhances SUMO-1 modification and the transactivation activity of the major immediate-early IE2 protein of human cytomegalovirus. FEBS Lett 2004; 555:322-8. [PMID: 14644436 DOI: 10.1016/s0014-5793(03)01268-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The protein inhibitor of activated STAT1 (PIAS1), known to be a small ubiquitin-like modifier (SUMO) E3 ligase, was found to interact with the human cytomegalovirus IE2 protein. We found that the sumoylation of IE2 was markedly enhanced by wild-type PIAS1 but not by a mutant containing a Cys to Ser substitution at position 351 (C351S) within the RING finger-like domain. In target reporter gene assays, wild-type PIAS1, but not the C351S mutant, enhanced the IE2-mediated transactivations of viral polymerase promoter and cellular cyclin E promoter and this augmentation required the intact sumoylation sites of IE2. Our results suggest that PIAS1 acts as a SUMO E3 ligase toward IE2 and that it may regulate the transactivation function of IE2. To our knowledge, IE2 is the first viral target found to be regulated by a SUMO E3 ligase.
Collapse
Affiliation(s)
- Jang-Mi Lee
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Samsung Biomedical Research Institute, 300 Chunchundong, Jangangu, Kyonggido 440-746, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Scott GM, Barrell BG, Oram J, Rawlinson WD. Characterisation of transcripts from the human cytomegalovirus genes TRL7, UL20a, UL36, UL65, UL94, US3 and US34. Virus Genes 2003; 24:39-48. [PMID: 11928987 DOI: 10.1023/a:1014033920070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The genome of human cytomegalovirus (HCMV) has been studied extensively in some regions, but not others. In this study, transcripts of the genome were further characterised for open reading frames (ORFs) TRL7, UL36, UL65, UL94, US3 and US34, and for the previously unrecognised ORF, UL20a. Reverse transcription-PCR demonstrated the presence of spliced transcripts from the putative glycoprotein gene, UL20a, at early and late times post-infection. US3 full-length and spliced transcripts, including a previously unidentified transcript (US3ii), were described at immediate early times. Sequencing of the complete ORFs of UL20a and US3 from 21 clinical isolates showed that US3 is well conserved in all isolates (97-100% identity), whereas UL20a shows more variation at the nucleotide level, with 90-100% identity. The limits of transcription, and splice donor and acceptor sequences for UL20a and US3 were conserved in all isolates, indicating likely conservation of mRNA splicing patterns. Sequencing a late cDNA library identified the limits of transcription for ORFs TRL7, UL94 and US34 and transcription from the TRL7 ORF was confirmed by northern blotting. Transcripts were found that were congruent with UL36 and UL65, but these differed in the limits previously predicted for these ORFs. These findings show the variation between predicted and actual transcription and indicate the complex nature of transcription from HCMV ORFs.
Collapse
Affiliation(s)
- Gillian M Scott
- Virology Division, Department of Microbiology SEALS, Prince of Wales Hospital, Randwick NSW, Australia
| | | | | | | |
Collapse
|
39
|
Youil R, Toner TJ, Su Q, Casimiro D, Shiver JW, Chen L, Bett AJ, Rogers BM, Burden EC, Tang A, Chen M, Emini EA, Kaslow DC, Aunins JG, Altaras NE. Comparative analysis of the effects of packaging signal, transgene orientation, promoters, polyadenylation signals, and E3 region on growth properties of first-generation adenoviruses. Hum Gene Ther 2003; 14:1017-34. [PMID: 12869219 DOI: 10.1089/104303403766682278] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
First-generation adenovectors have been developed for gene therapy and vaccine applications. The construction of these adenovectors has entailed the use of numerous types of expression cassettes. It has long been known that first-generation adenovectors can be rescued more easily and to higher titers with some transgenes than with others. This study has systematically shown that there can be marked differences in growth properties of recombinant adenovectors attributable to the use of promoters, the orientation of the transgene within the E1A/E1B-deleted region, and the inclusion of the E3 region. In addition, we had demonstrated the benefit of extending the packaging signal region to include elements V, VI, and VII. The effects of the complete packaging region were studied by plasmid competition studies between original and modified adenovectors. Similar competition studies between E3(+) and E3(-) adenovectors were performed and showed that the E3(+) vector had a growth advantage over its E3(-) counterpart. By making various changes, we have enhanced the growth capacity of our recombinant adenovector by more than 3-fold under serum-free and cell suspension growth conditions. Along with this enhanced growth, our adenovectors have maintained their genetic stability after 21 successive passages in cell culture. This increased robustness will be critical when adapting first-generation recombinant adenovectors to commercial production.
Collapse
Affiliation(s)
- Rima Youil
- Merck & Company, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barrasa MI, Harel N, Yu Y, Alwine JC. Strain variations in single amino acids of the 86-kilodalton human cytomegalovirus major immediate-early protein (IE2) affect its functional and biochemical properties: implications of dynamic protein conformation. J Virol 2003; 77:4760-72. [PMID: 12663783 PMCID: PMC152111 DOI: 10.1128/jvi.77.8.4760-4772.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 86-kDa major immediate-early protein, IEP86 (IE2, IE2(579aa), or ppUL122a), from the Towne and AD169 strains of human cytomegalovirus show four amino acid variations, namely, R68Q, K455E, T541A, and seven consecutive serines beginning at position 258 in Towne and eight serines in AD169. A commonly utilized IEP86 cDNA expression clone (herein called the original cDNA) (E. Baracchini, E. Glezer, K. Fish, R. M. Stenberg, J. A. Nelson, and P. Ghazal, Virology 188:518-529, 1992) shows the Towne R68 and seven serines but contains the AD169 E455 and A541 plus two amino acid mutations, M242I and A463T. In transcriptional activation analyses using several promoters, the IEP86 produced by the original cDNA was 40 to 60% less active than wild-type (WT) Towne IEP86, whereas AD169 IEP86 was two to three times more active than WT Towne IEP86. To determine which amino acid variations or mutations accounted for the differences in transcriptional activation, they were individually tested in the WT Towne IEP86 background. K455E, M242I, and the eighth serine had little effect on transcriptional activation or sumoylation when inserted into the Towne background. T541A significantly increased transcriptional activation on all promoters tested and showed increased sumoylation; T541A is the primary reason that WT AD169 IEP86 has increased activity over WT Towne IEP86. The increased sumoylation seen with T541A was quantitatively reduced to WT Towne levels when the K455E alteration was present, suggesting that K455 may be a sumoylation site or that E455 may cause alterations in the IEP86 structure which affect overall sumoylation. A463T was very deleterious to transcriptional activation and caused reduced sumoylation. The A436T mutation in the original cDNA is partially compensated by the presence of the T541A variation. Phosphopeptide mapping suggests that a threonine at 463 or 541 does not introduce a phosphorylation site. However, the A463T mutation does affect phosphorylation at a distant site, suggesting that it alters the conformation of the protein. Promoter-specific effects were noted with some of the amino acid variations, particularly T541A. Structural modeling is presented which suggests how A463T and T541A alter the functional structure of WT Towne IEP86. A hydrophobic core containing A463 is predicted to be responsible for the functional integrity of the carboxy-terminal region of IEP86 between amino acids 344 and 579.
Collapse
Affiliation(s)
- M Inmaculada Barrasa
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | |
Collapse
|
41
|
Ellsmore V, Reid GG, Stow ND. Detection of human cytomegalovirus DNA replication in non-permissive Vero and 293 cells. J Gen Virol 2003; 84:639-645. [PMID: 12604816 DOI: 10.1099/vir.0.18812-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) displays an exceptionally restricted host range in tissue culture with human fibroblasts being the principal fully permissive system. Nevertheless, immediate early (IE) proteins are expressed following infection of many non-permissive cell types of human, simian and murine origin, and viral origin-dependent DNA synthesis has been reconstituted by transfection of plasmids into Vero cells, a non-permissive line from African green monkey. We have examined the accumulation of HCMV strain AD169 DNA, and the replication of transfected HCMV origin-containing plasmids, in infected Vero and human embryonic kidney 293 cells, which were previously reported to express the major IE protein in a small proportion of infected cells but to be non-permissive for viral DNA synthesis. In Vero cells accumulation of origin-containing plasmid but not viral DNA occurred, whilst in 293 cells both DNAs accumulated. Immunofluorescence experiments indicated that following infection with 3 p.f.u. per cell, a small fraction of both cell types expressed the UL44 DNA replication protein. Neither cell line, however, supported the generation of infectious progeny virus. These results suggest that IE proteins expressed in Vero and 293 cells can induce the synthesis of early proteins capable of functioning in viral DNA replication, but there is a failure in later events on the pathway to infectious virus production. This provides further support for transfected Vero cells being a valid system in which to study HCMV DNA synthesis, and suggests that 293 cells may also prove useful in similar experiments.
Collapse
Affiliation(s)
- Victoria Ellsmore
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - G Gordon Reid
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Nigel D Stow
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
42
|
Isomura H, Stinski MF. The human cytomegalovirus major immediate-early enhancer determines the efficiency of immediate-early gene transcription and viral replication in permissive cells at low multiplicity of infection. J Virol 2003; 77:3602-14. [PMID: 12610136 PMCID: PMC149520 DOI: 10.1128/jvi.77.6.3602-3614.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the effect of the human cytomegalovirus (CMV) major immediate-early (MIE) enhancer or promoter on the efficiency of viral replication in permissive human cells, we constructed recombinant viruses with their human MIE promoter, enhancer, and promoter plus enhancer replaced with the murine CMV components. After a low multiplicity of infection (MOI) (0.01 PFU/cell), recombinant human CMV with the murine CMV promoter replicated like the wild type but recombinant virus with the murine enhancer replicated less efficiently. Immediate-early (IE) viral protein pIE72 (UL123), early viral protein (UL44), and viral DNA synthesis were significantly decreased. The effect of the human CMV enhancer substitution with the murine CMV enhancer was also demonstrated in different cell types by using recombinant virus with the UL127 promoter, driving the expression of green fluorescent protein (GFP). After an MOI of 1, GFP expression was high with the human CMV enhancer and significantly lower with the murine CMV enhancer. Even though at a high MOI (10 PFU/cell), the murine CMV enhancer was as efficient as the human CMV enhancer for the transcription of IE genes in human foreskin fibroblast cells, at lower MOIs, the murine CMV enhancer was less efficient. Proximal and distal chimeras of the human and murine enhancers also replicated less efficiently at a low MOI and expressed lower levels of GFP from the UL127 promoter. These experiments demonstrate that the entire human CMV enhancer has evolved for the efficient expression of the viral IE and early genes in human cells. Possible functions of the human CMV enhancer and promoter at a low MOI are discussed.
Collapse
Affiliation(s)
- Hiroki Isomura
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
43
|
Bain M, Mendelson M, Sinclair J. Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J Gen Virol 2003; 84:41-49. [PMID: 12533699 DOI: 10.1099/vir.0.18633-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repression of human cytomegalovirus immediate-early (IE) lytic gene expression is crucial for the maintenance of the latent viral state. By using conditionally permissive cell lines, which provide a good model for the differentiation state-dependent repression of IE gene expression, we have identified several cellular factors that bind to the major immediate-early promoter (MIEP) and whose expression is down-regulated after differentiation to a permissive phenotype. Here we show that the cellular protein Ets-2 Repressor Factor (ERF) physically interacts with the MIEP and represses MIEP activity in undifferentiated non-permissive T2 embryonal carcinoma cells. This factor binds to the dyad element and the 21 bp repeats within the MIEP - regions known to be important for the negative regulation of MIEP activity. Finally, we show that following differentiation to a permissive phenotype ERF's repressive effects are severely abrogated.
Collapse
Affiliation(s)
- Mark Bain
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Marc Mendelson
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
44
|
Nyquist AC, Zhang L, Weinberg A. Human fibroblasts transfected with cytomegalovirus immediate-early genes show increased MHC class I expression and are targets for natural killer cell-mediated cytotoxicity. Viral Immunol 2002; 15:147-54. [PMID: 11952136 DOI: 10.1089/088282402317340297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are an important line of defense against viral infections, such as those caused by cytomegalovirus (CMV), but in the context of solid organ transplantation NK responses to CMV-infected graft cells might be deleterious to the graft survival. To gain a better understanding of NK responses to CMV-infected human lung fibroblasts (HLF), we transfected HLF with a plasmid expressing CMV immediate-early (IE) genes under the control of the CMV major IE promoter and compared major histocompatibility complex (MHC) class I expression and NK-mediated lysis of transfected cells, CMV-infected cells, and appropriate controls. HLF transfected with CMV IE genes showed increased MHC Class I expression and triggered NK-mediated cytotoxicity at the same level as CMV-infected HLF and at significantly higher levels than mock-infected or mock-transfected controls. Transfection of CMV genes provides an experimental model for molecular studies of CMV- and allograft-specific cell-mediated immunity and modulation.
Collapse
Affiliation(s)
- Ann-Christine Nyquist
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, USA.
| | | | | |
Collapse
|
45
|
Yang Z, Wara-aswapati N, Yoshida Y, Walker N, Galson DL, Listman J, Auron PE. Dual regulatory role of human cytomegalovirus immediate-early protein in IL1B transcription is dependent upon Spi-1/PU.1. Biochem Biophys Res Commun 2002; 294:854-63. [PMID: 12061786 DOI: 10.1016/s0006-291x(02)00562-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of IL1B gene transcription has been shown to play a crucial role in human cytomegalovirus (HCMV) infection. We previously reported that HCMV immediate-early (IE) proteins vigorously transactivate IL1B expression without the need for a normally essential upstream enhancer. This activation appears to depend upon protein-protein tethering between IE2, which provides a transcription activation domain (TAD), and the DNA-binding domain of the transcription factor Spi-1. We now show a distinct mechanism by which IE1 and IE2 mediate both weak Spi-1-independent and vigorous Spi-1-dependent IL1B transcription from the -59 to +12 IL1B core promoter. These results demonstrate that in contrast to non-viral, enhancer-mediated, transactivation of IL1B, the IE mechanism is not absolutely dependent upon Spi-1. However, Spi-1 is required for vigorous transcription. Additionally, we have discovered that IE1, which cooperates with IE2 to transactivate IL1B, has minimal activity in the absence of IE2 and Spi-1. Furthermore, IE1 is a dual-acting factor, which can either activate or repress IL1B, depending on the presence of both IE2 and the Spi-1 TADs. Therefore, the relative expression of IE1 and IE2, which varies during HCMV infection, may provide a molecular mechanism by which IL1B can be repressed, thus, avoiding clearance by the host.
Collapse
Affiliation(s)
- Zhiyong Yang
- The New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Sanchez V, Clark CL, Yen JY, Dwarakanath R, Spector DH. Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J Virol 2002; 76:2973-89. [PMID: 11861863 PMCID: PMC135995 DOI: 10.1128/jvi.76.6.2973-2989.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using bacterial artificial chromosome (BAC) technology, we have constructed and characterized a human cytomegalovirus recombinant virus with a mutation in the exon specific for the major immediate-early region 2 (IE2) gene product. The resulting IE2 86-kDa protein (IE2 86) has an internal deletion of amino acids 136 to 290 and is fused at the carboxy terminus to enhanced green fluorescent protein (EGFP). The deletion also removes the promoter and initiator methionine for the p40 form of IE2 and initiator methionine for the p60 form of the protein, and therefore, these late gene products are not produced. The mutant virus IE2 86 Delta SX-EGFP is viable but exhibits altered growth characteristics in tissue culture compared with a full-length wild-type (wt) IE2 86-EGFP virus or a revertant virus. When cells are infected with the mutant virus at a low multiplicity of infection (MOI), there is a marked delay in the production of infectious virus. This is associated with slower cell-to-cell spread of the virus. By immunofluorescence and Western blot analyses, we show that the early steps in the replication of the mutant virus are comparable to those for the wt. Although there is significantly less IE2 protein in the cells infected with the mutant, there is only a modest lag in the initial accumulation of IE1 72 and viral early proteins, and viral DNA replication proceeds normally. The mutation also has only a small effect on the synthesis of the viral major capsid protein. The most notable molecular defect in the mutant virus infection is that the steady-state levels of the pp65 (UL83) and pp28 (UL99) matrix proteins are greatly reduced. In the case of UL83, but not UL99, there is also a corresponding decrease in the amount of mRNA present in cells infected with the mutant virus.
Collapse
Affiliation(s)
- Veronica Sanchez
- Molecular Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | | | |
Collapse
|
47
|
Murphy JC, Fischle W, Verdin E, Sinclair JH. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 2002; 21:1112-20. [PMID: 11867539 PMCID: PMC125876 DOI: 10.1093/emboj/21.5.1112] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Permissiveness for human cytomegalovirus (HCMV) infection is dependent on the state of cellular differentiation and has been linked to repression of the viral major immediate early promoter (MIEP). We have used conditionally permissive cells to analyze differential regulation of the MIEP and possible mechanisms involved in latency. Our data suggest that histone deacetylases (HDACs) are involved in repression of the MIEP in non-permissive cells as inhibition of HDACs induces viral permissiveness and increases MIEP activity. Non-permissive cells contain the class I HDAC, HDAC3; super-expression of HDAC3 in normally permissive cells reduces infection and MIEP activity. We further show that the MIEP associates with acetylated histones in permissive cells, and that in peripheral blood monocytes the MIEP associates with heterochromatin protein 1 (HP1), a chromosomal protein implicated in gene silencing. As monocytes are believed to be a site of viral latency in HCMV carriers and reactivated virus is only observed upon differentiation into macrophages, we propose that chromatin remodeling of the MIEP following cellular differentiation could potentially play a role in reactivation of latent HCMV.
Collapse
Affiliation(s)
- Jane C. Murphy
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | - Wolfgang Fischle
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | - Eric Verdin
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | | |
Collapse
|
48
|
Xu Y, Ahn JH, Cheng M, apRhys CM, Chiou CJ, Zong J, Matunis MJ, Hayward GS. Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. J Virol 2001; 75:10683-95. [PMID: 11602710 PMCID: PMC114650 DOI: 10.1128/jvi.75.22.10683-10695.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) major immediate-early protein IE1 is an abundant 72-kDa nuclear phosphoprotein that is thought to play an important role in efficient triggering of the lytic cycle, especially at low multiplicity of infection. The best-known properties of IE1 at present are its transient targeting to punctate promyelocytic leukemia protein (PML)-associated nuclear bodies (PML oncogenic domains [PODs] or nuclear domain 10 [ND10]), with associated displacement of the cellular PML tumor suppressor protein into a diffuse nucleoplasmic form and its association with metaphase chromosomes. Recent studies have shown that the targeting of PML (and associated proteins such as hDaxx) to PODs is dependent on modification of PML by ubiquitin-like protein SUMO-1. In this study, we provide direct evidence that IE1 is also covalently modified by SUMO-1 in both infected and cotransfected cells, as well as in in vitro assays, with up to 30% of the protein representing the covalently conjugated 90-kDa form in stable U373/IE1 cell lines. Lysine 450 was mapped as the major SUMO-1 conjugation site, but a point mutation of this lysine residue in IE1 did not interfere with its targeting to and disruption of the PODs. Surprisingly, unlike PML or IE2, IE1 did not interact with either Ubc9 or SUMO-1 in yeast two-hybrid assays, suggesting that some additional unknown intranuclear cofactors must play a role in IE1 sumoylation. Interestingly, stable expression of either exogenous PML or exogenous Flag-SUMO-1 in U373 cell lines greatly enhanced both the levels and rate of in vivo IE1 sumoylation during HCMV infection. Unlike the disruption of PODs by the herpes simplex virus type 1 IE110(ICP0) protein, the disruption of PODs by HCMV IE1 proved not to involve proteasome-dependent degradation of PML. We also demonstrate here that the 560-amino-acid PML1 isoform functions as a transcriptional repressor when fused to the GAL4 DNA-binding domain and that wild-type IE1 inhibits the repressor function of PML1 in transient cotransfection assays. Furthermore, both IE1(1-346) and IE1(L174P) mutants, which are defective in displacing PML from PODs, failed to inhibit the repression activity of PML1, whereas the sumoylation-negative IE1(K450R) mutant derepressed as efficiently as wild-type IE1. Taken together, our results suggest that proteasome-independent disruption of PODs, but not IE1 sumoylation, is required for efficient IE1 inhibition of PML-mediated transcriptional repression.
Collapse
Affiliation(s)
- Y Xu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ahn JH, Xu Y, Jang WJ, Matunis MJ, Hayward GS. Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 2001; 75:3859-72. [PMID: 11264375 PMCID: PMC114877 DOI: 10.1128/jvi.75.8.3859-3872.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 01/19/2001] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early protein IE2 is a nuclear phosphoprotein that is believed to be a key regulator in both lytic and latent infections. Using yeast two-hybrid screening, small ubiquitin-like modifiers (SUMO-1, SUMO-2, and SUMO-3) and a SUMO-conjugating enzyme (Ubc9) were isolated as IE2-interacting proteins. In vitro binding assays with glutathione S-transferase (GST) fusion proteins provided evidence for direct protein-protein interaction. Mapping data showed that the C-terminal end of SUMO-1 is critical for interaction with IE2 in both yeast and in vitro binding assays. IE2 was efficiently modified by SUMO-1 or SUMO-2 in cotransfected cells and in cells infected with a recombinant adenovirus expressing HCMV IE2, although the level of modification was much lower in HCMV-infected cells. Two lysine residues at positions 175 and 180 were mapped as major alternative SUMO-1 conjugation sites in both cotransfected cells and an in vitro sumoylation assay and could be conjugated by SUMO-1 simultaneously. Although mutations of these lysine residues did not interfere with the POD (or ND10) targeting of IE2, overexpression of SUMO-1 enhanced IE2-mediated transactivation in a promoter-dependent manner in reporter assays. Interestingly, many other cellular proteins identified as IE2 interaction partners in yeast two-hybrid assays also interact with SUMO-1, suggesting that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interactions between IE2 and other SUMO-1-modified or SUMO-1-interacting proteins. When we investigated the intracellular localization of SUMO-1 in HCMV-infected cells, the pattern changed from nuclear punctate to predominantly nuclear diffuse in an IE1-dependent manner at very early times after infection, but with some SUMO-1 protein now associated with IE2 punctate domains. However, at late times after infection, SUMO-1 was predominantly detected within viral DNA replication compartments containing IE2. Taken together, these results show that HCMV infection causes the redistribution of SUMO-1 and that IE2 both physically binds to and is covalently modified by SUMO moieties, suggesting possible modulation of both the function of SUMO-1 and protein-protein interactions of IE2 during HCMV infection.
Collapse
Affiliation(s)
- J H Ahn
- Molecular Virology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
50
|
Scholz M, Doerr HW, Cinatl J. Inhibition of cytomegalovirus immediate early gene expression: a therapeutic option? Antiviral Res 2001; 49:129-45. [PMID: 11428240 DOI: 10.1016/s0166-3542(01)00126-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The replication cycle of the human cytomegalovirus (HCMV) is characterized by the expression of immediate early (IE), early (E), and late (L) gene regions. Current antiviral strategies are directed against the viral DNA polymerase expressed during the early phase of infection. The regulation of the IE-1 and IE-2 gene expression is the key to latency and active replication due to their transactivating and repressing functions. There is growing evidence that the pathogenic features of HCMV are largely due to the abilities of IE-1 and IE-2 to transactivate cellular genes. Consequently, current drugs used to inhibit HCMV infection would have no impact on IE-1 and IE-2-induced effects that are produced before the early phase. Moreover, when HCMV DNA replication is inhibited, IE gene products accumulate in infected cells causing disturbances of host cell functions. This review summarizes the biological functions of HCMV-IE gene expression, their relevance in pathogenesis, as well as efforts to develop novel treatment strategies directed against HCMV-IE expression.
Collapse
Affiliation(s)
- M Scholz
- Klinik für Thorax-, Herz- und thorakale Gefässchirurgie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|