1
|
Bezerra JAB, Limeira CH, Maranhão ACPDM, Antunes JMADP, de Azevedo SS. Global seroprevalence and factors associated with seropositivity for feline immunodeficiency virus (FIV) in cats: A systematic review and meta-analysis. Prev Vet Med 2024; 231:106315. [PMID: 39146687 DOI: 10.1016/j.prevetmed.2024.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus of the Lentivirus genus, distributed worldwide, that causes persistent infection with a significant impact on the cats' health. Due to the importance of this infection in feline medicine, this pioneering study aimed to obtain an integrated estimate of the global seroprevalence of FIV in cats and to characterize the factors associated with this infection. Four electronic databases were screened for observational studies with FIV seroprevalence in cats published globally for this systematic review and meta-analysis. The initial search method returned 873 studies, of which 113 met all predefined criteria and were therefore included in this review. Meta-analysis with general data was performed, and a combined global seropositivity of 9.43 % (95 % CI: 8.24 % - 10.78 %) was found. Seropositivity was 14.34 % (95 % CI = 10.92 % - 18.61 %) in Asia, 11.90 % (95 % CI = 9.82 % - 14.34 %) in Oceania, 10.90 % (95 % CI = 5.71 % - 19.82 %) in Central America, 9.43 % (95 % CI = 6.95 % - 12.66 %) in South America, 9 % (95 % CI = 0 - 80 %) in Africa, 8.98 % (95 % CI = 7.31 % - 10.98 %) in Europe, and 5.93 % (95 % CI = 4.33 % - 8.07 %) in North America. Meta-analysis of factors associated with seropositivity demonstrated that FIV seroprevalence was higher in male (Prevalence ratio [PR] = 2.53, 95 % CI = 2.16 - 2.95), adult (PR = 2.83, 95 % CI = 2.24 - 3.56), unowned status (PR = 1.47, 95 % CI = 1.07 - 2.03), sick status (PR = 2.46, 95 % CI = 1.97 - 3.06), and cats with outdoor access (PR = 4.38, 95 % CI = 2.26 - 8.47). The results demonstrated that FIV is globally distributed and has a high seroprevalence in some geographical areas. Information compiled from this research is relevant to understanding the worldwide epidemiology of FIV. It presents the potential to contribute to the planning of strategies focused on controlling and reducing cases in cat populations.
Collapse
Affiliation(s)
- José Artur Brilhante Bezerra
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| | - Clécio Henrique Limeira
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| | | | | | - Sérgio Santos de Azevedo
- Academic Unit of Veterinary Medicine (UAMV), Federal University of Campina Grande (UFCG), Patos 58708-110, Brazil.
| |
Collapse
|
2
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Rasri N, Tabtimmai L, Kraiya C, Yamabhai M, Sinthuvanich C, Rattanasrisomporn J, Choowongkomon K. Generation of a Single-Chain Variable Fragment Antibody against Feline Immunoglobulin G for Biosensor Applications. ACS OMEGA 2023; 8:27688-27696. [PMID: 37546656 PMCID: PMC10399156 DOI: 10.1021/acsomega.3c03581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
For many decades, feline infectious disease has been among the most common health problems and a leading cause of death in cats. These diseases include toxoplasmosis, feline leukemia virus (FeLV), and particularly feline immunodeficiency virus (FIV) disease. Early diagnosis is essential to increase the chance of successful treatment. Generally, measurement of the IgG level is considered to be indicative of an individual's immune status for a particular pathogen. The antibodies specific to feline IgG are crucial components for the development of a detection kit. In this study, feline IgG-bound scFv was selected using phage display technology. Three rounds of biopanning were conducted against purified feline IgG. Through an indirect enzyme-linked immunosorbent assay (ELISA), two scFv clones demonstrating the best binding ability to feline IgG were chosen for biochemical characterization. In addition, the selected scFv (N14) was expressed and purified in a bacterial system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the size of the purified N14 was 29 kDa. A sandwich ELISA was used to evaluate the binding capacity of the purified scFv to feline IgG. As expected, the purified N14 had the capacity to bind feline IgG. Furthermore, N14 was modified to create a scFv-alkaline phosphatase (scFv-AP) fusion platform. The surface plasmon resonance (SPR) results revealed that N14-AP bound to feline IgG with an affinity binding value of 0.3 ± 0.496 μM. Additionally, the direct ELISA demonstrated the binding capacity of N14-AP to feline IgG in both cell lysate and purified protein. Moreover, N14-AP could be applied to detect feline IgG based on electrosensing with a detection limit of 10.42 nM. Overall, this study successfully selected a feline IgG-bound scFv and developed a scFv-AP platform that could be further engineered and applied in a feline infectious disease detection kit.
Collapse
Affiliation(s)
- Natchaya Rasri
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Charoenkwan Kraiya
- Electrochemistry
and Optical Spectroscopy Center of Excellence, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Montarop Yamabhai
- Molecular
Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chomdao Sinthuvanich
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Department
of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Kim J, Behzadi ES, Nehring M, Carver S, Cowan SR, Conry MK, Rawlinson JE, VandeWoude S, Miller CA. Combination Antiretroviral Therapy and Immunophenotype of Feline Immunodeficiency Virus. Viruses 2023; 15:822. [PMID: 37112803 PMCID: PMC10146003 DOI: 10.3390/v15040822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Feline Immunodeficiency Virus (FIV) causes progressive immune dysfunction in cats similar to human immunodeficiency virus (HIV) in humans. Although combination antiretroviral therapy (cART) is effective against HIV, there is no definitive therapy to improve clinical outcomes in cats with FIV. This study therefore evaluated pharmacokinetics and clinical outcomes of cART (2.5 mg/kg Dolutegravir; 20 mg/kg Tenofovir; 40 mg/kg Emtricitabine) in FIV-infected domestic cats. Specific pathogen free cats were experimentally infected with FIV and administered either cART or placebo treatments (n = 6 each) for 18 weeks, while n = 6 naïve uninfected cats served as controls. Blood, saliva, and fine needle aspirates from mandibular lymph nodes were collected to quantify viral and proviral loads via digital droplet PCR and to assess lymphocyte immunophenotypes by flow cytometry. cART improved blood dyscrasias in FIV-infected cats, which normalized by week 16, while placebo cats remained neutropenic, although no significant difference in viremia was observed in the blood or saliva. cART-treated cats exhibited a Th2 immunophenotype with increasing proportions of CD4+CCR4+ cells compared to placebo cats, and cART restored Th17 cells compared to placebo-treated cats. Of the cART drugs, dolutegravir was the most stable and long-lasting. These findings provide a critical insight into novel cART formulations in FIV-infected cats and highlight their role as a potential animal model to evaluate the impact of cART on lentiviral infection and immune dysregulation.
Collapse
Affiliation(s)
- Jeffrey Kim
- Comparative Medicine Research Unit, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Elisa S. Behzadi
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mary Nehring
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Shannon R. Cowan
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Megan K. Conry
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer E. Rawlinson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Wootton F, Glanemann B, Langley-Hobbs S, Breheny C, Fowlie S, Whitworth F, Silvestrini P, Threlfall A, Sorrell S, Black V. Feline non-erosive immune-mediated polyarthritis: a multicentre, retrospective study of 20 cases (2009-2020). J Feline Med Surg 2022; 24:e401-e410. [PMID: 35762267 PMCID: PMC10812303 DOI: 10.1177/1098612x221107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CASE SERIES SUMMARY Cats with non-erosive immune-mediated polyarthritis (IMPA) were identified from seven referral hospitals between 2009 and 2020 for a multicentre retrospective case series. Data were obtained from hospital records and referring veterinarians were contacted for follow-up. Twenty cases were identified: 12 castrated males (60%), one entire male (5%) and seven spayed females (35%). Common clinical signs included lameness (n = 20/20) and pyrexia (n = 10/18). Three cats presented with and two cats developed ligament laxity during treatment. Thirteen cats (65%) were diagnosed with non-associative IMPA and seven (35%) with associative IMPA. Comorbidities identified included chronic enteropathy (n = x/7), feline immunodeficiency virus (n = x/7) feline herpesvirus (n = x/7), bronchopneumonia (n = x/7) and discospondylitis (n = x/7). Sampling of the tarsal joints most frequently identified an increased proportion of neutrophils, consistent with IMPA. Eighteen cats (90%) received immunosuppressants. Eleven cats were started on prednisolone; eight had a poor response resulting in the addition of a second agent, euthanasia or acceptance of the persisting signs. One cat received ciclosporin and required an alternative second agent owing to adverse effects. Five cats were started on prednisolone and ciclosporin; three had a poor response and required an alternative second agent. One cat received prednisolone and chlorambucil and had a good response. Two cats (10%) received meloxicam and had a good response, although the clinical signs recurred when medication was tapered. A good outcome was achieved in 14/20 cats (70%) with IMPA. In the cats with a poor outcome 4/6 were euthanased and 2/6 had chronic lameness. RELEVANCE AND NOVEL INFORMATION Prognosis for feline IMPA can be good. Multimodal immunosuppression was often required. IMPA should be considered in lame cats, with or without pyrexia, when there is no evidence of trauma or infection. The tarsal joints should be included in the multiple joints chosen for sampling. Ligament laxity can occur in non-erosive feline IMPA.
Collapse
Affiliation(s)
- Florence Wootton
- Queen Mother Hospital for Animals, Department of Clinical Science and Services, Royal Veterinary College, North Mymms, UK
| | - Barbara Glanemann
- Queen Mother Hospital for Animals, Department of Clinical Science and Services, Royal Veterinary College, North Mymms, UK
| | | | - Craig Breheny
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, Easterbush Campus, Edinburgh, UK
| | - Samuel Fowlie
- Small Animal Hospital, University of Glasgow, Glasgow, UK
- Southfields Veterinary Specialists, Southfields, Laindon, UK
| | - Fiona Whitworth
- Langford Veterinary Services, University of Bristol, Bristol, UK
- Veterinary Specialists Scotland, Livingston, UK
| | - Paolo Silvestrini
- Department of Small Animal Clinical Science, School of Veterinary Science, University of Liverpool, Liverpool, UK
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anna Threlfall
- Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hitchin, UK
| | - Stephanie Sorrell
- Willows Veterinary Centre and Referral Service, Solihull, UK
- The Mindful Vet Limited, Henlow, UK
| | - Vicki Black
- Langford Veterinary Services, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Carlton C, Norris JM, Hall E, Ward MP, Blank S, Gilmore S, Dabydeen A, Tran V, Westman ME. Clinicopathological and Epidemiological Findings in Pet Cats Naturally Infected with Feline Immunodeficiency Virus (FIV) in Australia. Viruses 2022; 14:2177. [PMID: 36298731 PMCID: PMC9608632 DOI: 10.3390/v14102177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in experimentally infected domestic cats produces characteristic clinical manifestations including hematological changes, neurological disease, neoplasia (most notably lymphoma) and lymphopenia-mediated immunodeficiency predisposing cats to a range of secondary infections. Conflicting reports exist, however, with regard to disease associations and survival time in naturally FIV-infected cats. The purpose of this retrospective case−control study was to investigate the effect of natural FIV infection on hematological, blood biochemical and urinalysis parameters and survival time in three cohorts of pet cats in Australia. Cohorts 1 and 2 were recruited from a large veterinary hospital in Melbourne, Victoria (n = 525 and 282), while a third cohort consisted of cats recruited from around Australia as part of a FIV field vaccine efficacy trial (n = 425). FIV-infected cats in cohorts 1, 2 and 3 were found to have 15/37 (41%), 13/39 (33%) and 2/13 (15%) clinicopathological parameters significantly different to FIV-uninfected cats, respectively. Two changes in FIV-infected cats in cohort 1, hypochromia (low hemoglobin) and hyperglobulinemia, were outside the supplied reference intervals and should serve as diagnostic triggers for FIV testing. Kaplan−Meier survival analysis of cats in cohorts 1 and 2 combined did not find any difference between FIV-infected and FIV-uninfected cats, however a confounding factor was a large euthanasia rate within the first 12 months in both groups. Three significant (p < 0.05) spatial clusters of FIV infection were identified in Melbourne. A possible relationship between FIV infection status and socioeconomic disadvantage was discovered, based on three government indices of socioeconomic status (p < 0.001). Until longitudinal field studies are performed in Australia to further investigate the long-term effects of natural FIV infection, Australian veterinarians should consider FIV to be an important infection of pet cats, and recommend measures to prevent FIV infection.
Collapse
Affiliation(s)
- Caroline Carlton
- Lort Smith Anim al Hospital, 24 Villiers Street, North Melbourne, VIC 3051, Australia
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Evelyn Hall
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephanie Blank
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shelby Gilmore
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anjuli Dabydeen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Vivian Tran
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E. Westman
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Westman ME, Coggins SJ, van Dorsselaer M, Norris JM, Squires RA, Thompson M, Malik R. Feline immunodeficiency virus (FIV) infection in domestic pet cats in Australia and New Zealand: Guidelines for diagnosis, prevention and management. Aust Vet J 2022; 100:345-359. [PMID: 35578381 PMCID: PMC9546031 DOI: 10.1111/avj.13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/25/2023]
Abstract
Despite the passage of over 30 years since its discovery, the importance of feline immunodeficiency virus (FIV) on the health and longevity of infected domestic cats is hotly debated amongst feline experts. Notwithstanding the absence of good quality information, Australian and New Zealand (NZ) veterinarians should aim to minimise the exposure of cats to FIV. The most reliable way to achieve this goal is to recommend that all pet cats are kept exclusively indoors, or with secure outdoor access (e.g., cat enclosures, secure gardens), with FIV testing of any in‐contact cats. All animal holding facilities should aim to individually house adult cats to limit the spread of FIV infection in groups of animals that are stressed and do not have established social hierarchies. Point‐of‐care (PoC) FIV antibody tests are available in Australia and NZ that can distinguish FIV‐infected and uninfected FIV‐vaccinated cats (Witness™ and Anigen Rapid™). Although testing of whole blood, serum or plasma remains the gold standard for FIV diagnosis, PoC testing using saliva may offer a welfare‐friendly alternative in the future. PCR testing to detect FIV infection is not recommended as a screening procedure since a negative PCR result does not rule out FIV infection and is only recommended in specific scenarios. Australia and NZ are two of three countries where a dual subtype FIV vaccine (Fel‐O‐Vax® FIV) is available and offers a further avenue for disease prevention. Since FIV vaccination only has a reported field effectiveness of 56% in Australia, and possibly lower in NZ, FIV‐vaccinated cats should undergo annual FIV testing prior to annual FIV re‐vaccination using a suitable PoC kit to check infection has not occurred in the preceding year. With FIV‐infected cats, clinicians should strive to be even more thorough than usual at detecting early signs of disease. The most effective way to enhance the quality of life and life expectancy of FIV‐infected cats is to optimise basic husbandry and to treat any concurrent conditions early in the disease course. Currently, no available drugs are registered for the treatment of FIV infection. Critically, the euthanasia of healthy FIV‐infected cats, and sick FIV‐infected cats without appropriate clinical investigations, should not occur.
Collapse
Affiliation(s)
- M E Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - S J Coggins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - J M Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,The Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - R A Squires
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - M Thompson
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - R Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia.,School of Veterinary and Animal Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
8
|
Hartmann K, Möstl K, Lloret A, Thiry E, Addie DD, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Hofmann-Lehmann R, Lutz H, Marsilio F, Pennisi MG, Tasker S, Truyen U, Hosie MJ. Vaccination of Immunocompromised Cats. Viruses 2022; 14:v14050923. [PMID: 35632665 PMCID: PMC9147348 DOI: 10.3390/v14050923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Immunocompromise is a common condition in cats, especially due to widespread infections with immunosuppressive viruses, such as feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), but also due to chronic non-infectious diseases, such as tumours, diabetes mellitus, and chronic kidney disease, as well as treatment with immunosuppressive drugs, such as glucocorticoids, cyclosporins, or tumour chemotherapy. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from eleven European countries, discusses the current knowledge and rationale for vaccination of immunocompromised cats. So far, there are few data available on vaccination of immunocompromised cats, and sometimes studies produce controversial results. Thus, this guideline summarizes the available scientific studies and fills in the gaps with expert opinion, where scientific studies are missing. Ultimately, this review aims to help veterinarians with their decision-making in how best to vaccinate immunocompromised cats.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
- Correspondence:
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium;
| | - Diane D. Addie
- Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Hans Lutz
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Ltd., Shirley, Solihull B90 4BN, UK
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| |
Collapse
|
9
|
Equal contributions of feline immunodeficiency virus and coinfections to morbidity in African lions. Int J Parasitol Parasites Wildl 2021; 16:83-94. [PMID: 34466379 PMCID: PMC8385399 DOI: 10.1016/j.ijppaw.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) is a pathogenic lentivirus related to human and simian immunodeficiency viruses that has been associated with AIDS-like pathologies in domestic and wild cats, as well as in hyenas. Despite known pathologies, progressive immunosuppression and ill health effects driven by these lentiviruses in association with other secondary infections remain understudied in free-ranging species. Here, the role of coinfections by gastrointestinal parasites and tick-borne hemoparasites for FIV disease progression was explored in 195 free-ranging African lions (Panthera leo) living in Kruger National Park (KNP), South Africa. Using statistical methodology, we evaluated the effects of FIV on a range of health indicators to explore how direct and indirect effects of FIV and associated coinfections align to determine lion health outcomes. Findings show direct negative effects of FIV on host immunity and nutritional status, and exacerbation of aggressive behaviors, conditions which may increase exposure/susceptibility to other secondary infections. When taken together, the contribution of coinfecting parasites to morbidity in lions is of similar magnitude as direct effects of FIV infection alone, suggesting that the particular coinfection assemblage may play a role in mediating disease progression within natural lion populations. Immunosuppression by FIV increases richness and abundance of secondary parasites. Infection by gastrointestinal parasites drives severe malnourishment in FIV hosts. Hemoparasite infection contributed to liver pathology and clinical wasting. Contributions of secondary infections to morbidity equal the direct effects of FIV.
Collapse
|
10
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
Decreased Sensitivity of the Serological Detection of Feline Immunodeficiency Virus Infection Potentially Due to Imported Genetic Variants. Viruses 2019; 11:v11080697. [PMID: 31370217 PMCID: PMC6722909 DOI: 10.3390/v11080697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus of domestic cats worldwide. Diagnosis usually relies on antibody screening by point-of-care tests (POCT), e.g., by enzyme-linked immunosorbent assays (ELISA), and confirmation using Western blot (WB). We increasingly observed ELISA-negative, WB-positive samples and aimed to substantiate these observations using 1194 serum/plasma samples collected from 1998 to 2019 primarily from FIV-suspect cats. While 441 samples tested positive and 375 tested negative by ELISA and WB, 81 samples had discordant results: 70 were false ELISA-negative (WB-positive) and 11 were false ELISA-positive (WB-negative); 297 ambiguous results were not analyzed further. The diagnostic sensitivity and specificity of the ELISA (82% and 91%, respectively) were lower than those reported in 1995 (98% and 97%, respectively). The diagnostic efficiency was reduced from 97% to 86%. False ELISA-negative samples originated mainly (54%) from Switzerland (1995: 0%). Sixty-four false ELISA-negative samples were available for POCT (SNAPTM/WITNESSR): five were POCT-positive. FIV RT-PCR was positive for two of these samples and was weakly positive for two ELISA- and POCT-negative samples. Low viral loads prohibited sequencing. Our results suggest that FIV diagnosis has become more challenging, probably due to increasing travel by cats and the introduction of new FIV isolates not recognized by screening assays.
Collapse
|
12
|
Sahay B, Yamamoto JK. Lessons Learned in Developing a Commercial FIV Vaccine: The Immunity Required for an Effective HIV-1 Vaccine. Viruses 2018; 10:v10050277. [PMID: 29789450 PMCID: PMC5977270 DOI: 10.3390/v10050277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 11/16/2022] Open
Abstract
The feline immunodeficiency virus (FIV) vaccine called Fel-O-Vax® FIV is the first commercial FIV vaccine released worldwide for the use in domestic cats against global FIV subtypes (A⁻E). This vaccine consists of inactivated dual-subtype (A plus D) FIV-infected cells, whereas its prototype vaccine consists of inactivated dual-subtype whole viruses. Both vaccines in experimental trials conferred moderate-to-substantial protection against heterologous strains from homologous and heterologous subtypes. Importantly, a recent case-control field study of Fel-O-Vax-vaccinated cats with outdoor access and ≥3 years of annual vaccine boost, resulted in a vaccine efficacy of 56% in Australia where subtype-A viruses prevail. Remarkably, this protection rate is far better than the protection rate of 31.2% observed in the best HIV-1 vaccine (RV144) trial. Current review describes the findings from the commercial and prototype vaccine trials and compares their immune correlates of protection. The studies described in this review demonstrate the overarching importance of ant-FIV T-cell immunity more than anti-FIV antibody immunity in affording protection. Thus, future efforts in developing the next generation FIV vaccine and the first effective HIV-1 vaccine should consider incorporating highly conserved protective T-cell epitopes together with the conserved protective B-cell epitopes, but without inducing adverse factors that eliminate efficacy.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA.
| |
Collapse
|
13
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
14
|
Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides. J Virol 2018; 92:JVI.01631-17. [PMID: 29263258 DOI: 10.1128/jvi.01631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu63 and Trp167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine.IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp167 blocks the left side of pocket A, causing P1D to conflict with Glu63 We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Collapse
|
15
|
Spada E, Perego R, Sgamma EA, Proverbio D. Survival time and effect of selected predictor variables on survival in owned pet cats seropositive for feline immunodeficiency and leukemia virus attending a referral clinic in northern Italy. Prev Vet Med 2017; 150:38-46. [PMID: 29406082 DOI: 10.1016/j.prevetmed.2017.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are among the most important feline infectious diseases worldwide. This retrospective study investigated survival times and effects of selected predictor factors on survival time in a population of owned pet cats in Northern Italy testing positive for the presence of FIV antibodies and FeLV antigen. One hundred and three retrovirus-seropositive cats, 53 FIV-seropositive cats, 40 FeLV-seropositive cats, and 10 FIV+FeLV-seropositive cats were included in the study. A population of 103 retrovirus-seronegative age and sex-matched cats was selected. Survival time was calculated and compared between retrovirus-seronegative, FIV, FeLV and FIV+FeLV-seropositive cats using Kaplan-Meier survival analysis. Cox proportional-hazards regression analysis was used to study the effect of selected predictor factors (male gender, peripheral blood cytopenia as reduced red blood cells - RBC- count, leukopenia, neutropenia and lymphopenia, hypercreatininemia and reduced albumin to globulin ratio) on survival time in retrovirus-seropositive populations. Median survival times for seronegative cats, FIV, FeLV and FIV+FeLV-seropositive cats were 3960, 2040, 714 and 77days, respectively. Compared to retrovirus-seronegative cats median survival time was significantly lower (P<0.000) in FeLV and FIV+FeLV-seropositive cats. Median survival time in FeLV and FIV+FeLV-seropositive cats was also significant lower (P<0.000) when compared to FIV-seropositive cats. Hazard ratio of death in FeLV and FIV+FeLV-seropositive cats being respectively 3.4 and 7.4 times higher, in comparison to seronegative cats and 2.3 and 4.8 times higher in FeLV and FIV+FeLV-seropositive cats as compared to FIV-seropositive cats. A Cox proportional-hazards regression analysis showed that FIV and FeLV-seropositive cats with reduced RBC counts at time of diagnosis of seropositivity had significantly shorter survival times when compared to FIV and FeLV-seropositive cats with normal RBC counts at diagnosis. In summary, FIV-seropositive status did not significantly affect longevity of cats in this study, unlike FeLV and FIV+FeLV-seropositivity. Reduced RBC counts at time of FIV and FeLV diagnosis could impact negatively on the longevity of seropositive cats and therefore blood counts should always be evaluated at diagnosis and follow-up of retrovirus-seropositive cats.
Collapse
Affiliation(s)
- Eva Spada
- Department of Veterinary Medicine (DIMEVET), University of Milan, Via G. Celoria 10, 20133 Milan, Italy.
| | - Roberta Perego
- Department of Veterinary Medicine (DIMEVET), University of Milan, Via G. Celoria 10, 20133 Milan, Italy
| | - Elena Assunta Sgamma
- Department of Veterinary Medicine (DIMEVET), University of Milan, Via G. Celoria 10, 20133 Milan, Italy
| | - Daniela Proverbio
- Department of Veterinary Medicine (DIMEVET), University of Milan, Via G. Celoria 10, 20133 Milan, Italy
| |
Collapse
|
16
|
Hartmann AD, Wilhelm N, Erfle V, Hartmann K. Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2016; 44:417-423. [PMID: 27808347 DOI: 10.15654/tpk-150890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/18/2016] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The bee venom melittin shows an antiviral efficacy against the human immunodeficiency virus in cell culture. It was shown to be non-toxic for cats. Aim of this pilot study was to investigate the clinical efficacy and side-effects of melittin in cats naturally infected with feline immunodeficiency virus (FIV). MATERIAL AND METHODS The study was performed as a prospective, placebo-controlled double-blinded trial. Twenty cats were included, of which 10 cats each were treated with either melittin (500 µg/kg body weight) or phosphate-buffered saline (placebo) subcutaneously twice per week. During the treatment period of 6 weeks, the cats' general health status, determined by the Karnofsky's score, and the severity of clinical signs (conjunctivitis and stomatitis) using a clinical scoring system were evaluated. Haematology, biochemistry profiles, lymphocyte subpopulations, CD4/CD8 ratio, and pterines (biopterine, 7-xanthopterine) as surrogate parameters were also compared. RESULTS The general health status and the clinical scores for conjunctivitis and stomatitis improved in cats treated with melittin. A statistically significant improvement however could only be detected for conjunctivitis in cats treated with melittin compared to cats treated with placebo which was likely due to different scores between both groups at the beginning. No influence on the lymphocyte subpopulations, CD4/CD8 ratio, and pterine concentrations was observed. No side effects occurred in this study. CONCLUSION AND CLINICAL RELEVANCE In the protocol used in the present study, no significant efficacy of melittin could be detected. However, efficacy of melittin, especially if applied in a higher dosage as in the present study or for a longer period, could be evaluated in further studies. Synergistic effects if used in combination with classic antiretroviral drugs could be an interesting future approach.
Collapse
Affiliation(s)
- Anja D Hartmann
- Dr. Anja Hartmann, KS-Tierarztpraxis, Robert-Koch-Straße 1, 64331 Weiterstadt, E-Mail:
| | | | | | | |
Collapse
|
17
|
Eckstrand CD, Hillman C, Smith AL, Sparger EE, Murphy BG. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS One 2016; 11:e0146285. [PMID: 26741651 PMCID: PMC4704817 DOI: 10.1371/journal.pone.0146285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Examination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV) for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs) harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag), and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs) and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP). Results PLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP) cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN. Conclusion Collectively our data indicates that PLNs harbor important reservoirs of ongoing viral replication during the asymptomatic phase of infection, in spite of undetectable viral activity in peripheral blood. A thorough understanding of tissue-based lentiviral reservoirs is fundamental to medical interventions to eliminate virus or prolong the asymptomatic phase of FIV infection.
Collapse
Affiliation(s)
- C D Eckstrand
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - C Hillman
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - A L Smith
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - E E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - B G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
18
|
Beatty J. Viral causes of feline lymphoma: Retroviruses and beyond. Vet J 2014; 201:174-80. [DOI: 10.1016/j.tvjl.2014.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/11/2014] [Accepted: 05/17/2014] [Indexed: 11/30/2022]
|
19
|
Maher I, Griffith J, Lau Q, Reeves T, Higgins D. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR. PeerJ 2014; 2:e280. [PMID: 24688858 PMCID: PMC3961157 DOI: 10.7717/peerj.280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 11/20/2022] Open
Abstract
Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by any of the protocols. Expression of CD4 and CD8β was down-regulated by mitogen stimulation. We found that the reference genes GAPDH and 28s are valid for normalising cytokine expression by koala lymphocytes after mitogen stimulation.
Collapse
Affiliation(s)
- Iona E. Maher
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
| | | | - Quintin Lau
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
| | - Thomas Reeves
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
| | - Damien P. Higgins
- Faculty of Veterinary Science, The University of Sydney, NSW, Australia
| |
Collapse
|
20
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
21
|
Murphy B, Hillman C, McDonnel S. Peripheral immunophenotype and viral promoter variants during the asymptomatic phase of feline immunodeficiency virus infection. Virus Res 2013; 179:34-43. [PMID: 24291288 DOI: 10.1016/j.virusres.2013.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
Feline immunodeficiency virus (FIV)-infected cats enter a clinically asymptomatic phase during chronic infection. Despite the lack of overt clinical disease, the asymptomatic phase is characterized by persistent immunologic impairment. In the peripheral blood obtained from cats experimentally infected with FIV-C for approximately 5 years, we identified a persistent inversion of the CD4/CD8 ratio. We cloned and sequenced the FIV-C long terminal repeat containing the viral promoter from cells infected with the inoculating virus and from in vivo-derived peripheral blood mononuclear cells and CD4 T cells isolated at multiple time points throughout the asymptomatic phase. Relative to the inoculating virus, viral sequences amplified from cells isolated from all of the infected animals demonstrated multiple single nucleotide mutations and a short deletion within the viral U3, R and U5 regions. A transcriptionally inactivating proviral mutation in the U3 promoter AP-1 site was identified at multiple time points from all of the infected animals but not within cell-associated viral RNA. In contrast, no mutations were identified within the sequence of the viral dUTPase gene amplified from PBMC isolated at approximately 5 years post-infection relative to the inoculating sequence. The possible implications of these mutations to viral pathogenesis are discussed.
Collapse
Affiliation(s)
- B Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | - C Hillman
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA
| | - S McDonnel
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA
| |
Collapse
|
22
|
Gil S, Leal RO, McGahie D, Sepúlveda N, Duarte A, Niza MMRE, Tavares L. Oral Recombinant Feline Interferon-Omega as an alternative immune modulation therapy in FIV positive cats: clinical and laboratory evaluation. Res Vet Sci 2013; 96:79-85. [PMID: 24332273 PMCID: PMC7111837 DOI: 10.1016/j.rvsc.2013.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/21/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022]
Abstract
Recombinant-Feline Interferon-Omega (rFeIFN-ω) is an immune-modulator licensed for use subcutaneously in Feline Immunodeficiency virus (FIV) therapy. Despite oral protocols have been suggested, little is known about such use in FIV-infected cats. This study aimed to evaluate the clinical improvement, laboratory findings, concurrent viral excretion and acute phase proteins (APPs) in naturally FIV-infected cats under oral rFeIFN-ω therapy (0.1 MU/cat rFeIFN-ω PO, SID, 90 days). 11 FIV-positive cats were treated with oral rFeIFN-ω (PO Group). Results were compared to previous data from 7 FIV-positive cats treated with the subcutaneous licensed protocol (SC Group). Initial clinical scores were similar in both groups. Independently of the protocol, rFeIFN-ω induced a significant clinical improvement of treated cats. Concurrent viral excretion and APP's variation were not significant in the PO Group. Oral rFeIFN-ω can be an effective alternative therapy for FIV-infected cats, being also an option for treatment follow-up in cats submitted to the licensed protocol.
Collapse
Affiliation(s)
- S Gil
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Av. Universidade Técnica, 1300 477 Lisbon, Portugal.
| | - R O Leal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Av. Universidade Técnica, 1300 477 Lisbon, Portugal
| | - D McGahie
- Virbac, 13(e) rue LID - BP 27, F 06511 Carros cedex, France
| | - N Sepúlveda
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, United Kingdom; Centro de Estatística e Aplicações da Universidade de Lisboa, FCUL, Bloco C6-Piso 4 Campo Grande, 1749 016 Lisboa, Portugal
| | - A Duarte
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Av. Universidade Técnica, 1300 477 Lisbon, Portugal
| | - M M R E Niza
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Av. Universidade Técnica, 1300 477 Lisbon, Portugal
| | - L Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon (ULisboa), Av. Universidade Técnica, 1300 477 Lisbon, Portugal
| |
Collapse
|
23
|
Hohdatsu T, Yamazaki A, Yamada M, Kusuhara H, Kaneshima T, Koyama H. Ability of CD8+T Cell Anti-Feline Immunodeficiency Virus Activity Correlated with Peripheral CD4+T Cell Counts and Plasma Viremia. Microbiol Immunol 2013; 47:765-73. [PMID: 14605443 DOI: 10.1111/j.1348-0421.2003.tb03446.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the host defense mechanism against feline immunodeficiency virus (FIV) infection, CD8(+) T cells specifically attack virus-infected cells and suppress the replication of the virus in a non-cytolytic manner by secreting soluble factors. In this study, we measured CD8(+) T cell anti-FIV activity in 30 FIV-infected cats. We investigated its relationship with the number of peripheral blood lymphocytes, particularly the CD4(+) T cell and CD8(+) T cell counts, and the relationship between anti-FIV activity and the number of T cells of CD8alpha(+)beta(lo) and CD8alpha(+)beta(-) phenotypes. A clearly significant correlation was observed between anti-FIV activity and the number of CD4(+) T cells. A weaker anti-FIV activity was associated with a greater decrease in the number of CD4(+) T cells. However, there was no significant correlation between anti-FIV activity and the number of B or CD8(+) T cells. Compared with SPF cats, FIV-infected cats had significantly higher CD8alpha(+)beta(lo) T cell and CD8alpha(+)beta(-) T cell counts, but, no significant correlation was observed between these cell counts and anti-FIV activity. This anti-FIV activity significantly correlated with plasma viremia, which was detected in cats with a weak anti-FIV activity. These results suggest that the anti-FIV activity of CD8(+) T cells plays an important role in plasma viremia and the maintenance of CD4(+) T cells in the body. It is unlikely that CD8alpha(+)beta(lo) or CD8alpha(+)beta(-) T cells appearing after FIV infection represent a phenotype of CD8(+) cells with anti-FIV activity.
Collapse
Affiliation(s)
- Tsutomu Hohdatsu
- Department of Veterinary Infectious Diseases, School of Veterinary Medicine and Animal Sciences, Kitasato University, Aomori 034-8628, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Stickney AL, Dunowska M, Cave NJ. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance. Vet Rec 2013; 172:607-14. [PMID: 23749359 DOI: 10.1136/vr.f101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
Collapse
Affiliation(s)
- A L Stickney
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
25
|
Domestic cat microsphere immunoassays: detection of antibodies during feline immunodeficiency virus infection. J Immunol Methods 2013; 396:74-86. [PMID: 23954271 DOI: 10.1016/j.jim.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Microsphere immunoassays (MIAs) allow rapid and accurate evaluation of multiple analytes simultaneously within a biological sample. Here we describe the development and validation of domestic cat-specific MIAs for a) the quantification of total IgG and IgA levels in plasma, and b) the detection of IgG and IgA antibodies to feline immunodeficiency virus (FIV) capsid (CA) and surface (SU) proteins, and feline CD134 in plasma. These assays were used to examine the temporal antibody response of domestic cats infected with apathogenic and pathogenic FIVs, and domestic cats infected with parental and chimeric FIVs of varying pathogenicity. The results from these studies demonstrated that a) total IgG antibodies increase over time after infection; b) α-CA and α-SU IgG antibodies are detectable between 9 and 28 days post-infection and increase over time, and these antibodies combined represent a fraction (1.8 to 21.8%) of the total IgG increase due to infection; c) measurable α-CD134 IgG antibody levels vary among individuals and over time, and are not strongly correlated with viral load; d) circulating IgA antibodies, in general, do not increase during the early stage of infection; and e) total IgG, and α-CA and α-SU IgG antibody kinetics and levels vary with FIV viral strain/pathogenicity. The MIAs described here could be used to screen domestic cats for FIV infection, and to evaluate the FIV-specific or total antibody response elicited by various FIV strains/other diseases.
Collapse
|
26
|
Lin J, Litster A. Fluorescence flow cytometry methodology to exclude platelet aggregate interference when measuring feline CD4 and CD8 lymphocyte counts. Vet J 2013; 198:275-8. [PMID: 23846026 DOI: 10.1016/j.tvjl.2013.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
Abstract
Changes in individual feline lymphocyte subsets over the course of infection, immune-mediated disease, or treatment can be used clinically to monitor disease progression. However, interference by platelet aggregates is a common problem when measuring feline lymphocyte subtype counts using flow cytometry in whole blood specimens. In this study, buffer was used to lyse red blood cells so that lymphocytes could be isolated, and then a gate containing a highly purified population of lymphocytes was characterized and fixed using fluorescence flow cytometry analysis. After tagging platelets with anti-CD61AF647 antibody to reduce aggregate interference, lymphocyte subtypes were measured using simultaneous 3-color channels with fluorescent anti-CD markers. When CD61AF647 exclusion of platelet aggregates was used, CD4%, CD8%, CD8low% and CD4:CD8 counts increased significantly (all specimens, n=66, P<0.001; >20% CD61 in the fixed gate, n=21, P<0.01). The methodology showed robust stability and precision over 3 days (n=10 specimens), yielding average day-to-day coefficients of variation (CVs) of 2.15%, 5.01%, 7.33%, 7.77% and 9.35% for white blood cell (WBC) counts, lymphocyte counts, CD4 lymphocyte counts, CD8 lymphocyte counts and CD4:CD8, respectively.
Collapse
Affiliation(s)
- Juiming Lin
- Research and Development Department, IDEXX Laboratories, Westbrook, ME, USA
| | | |
Collapse
|
27
|
McDonnel SJ, Sparger EE, Murphy BG. Feline immunodeficiency virus latency. Retrovirology 2013; 10:69. [PMID: 23829177 PMCID: PMC3707804 DOI: 10.1186/1742-4690-10-69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022] Open
Abstract
Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication.
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | |
Collapse
|
28
|
Chan CN, Dietrich I, Hosie MJ, Willett BJ. Recent developments in human immunodeficiency virus-1 latency research. J Gen Virol 2013; 94:917-932. [PMID: 23364195 PMCID: PMC3709588 DOI: 10.1099/vir.0.049296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
Collapse
Affiliation(s)
- Chi Ngai Chan
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
29
|
Magden E, Miller C, MacMillan M, Bielefeldt-Ohmann H, Avery A, Quackenbush SL, Vandewoude S. Acute virulent infection with feline immunodeficiency virus (FIV) results in lymphomagenesis via an indirect mechanism. Virology 2013; 436:284-94. [PMID: 23290868 DOI: 10.1016/j.virol.2012.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/30/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
Four cats (24%) experimentally infected with FIV unexpectedly developed neoplastic changes within four months of inoculation. While FIV has previously been associated with neoplasia, the rapidity and high attack rate seen here is highly unusual. PCR for antigen receptor rearrangements (PARR) detected clonally rearranged T cells in two animals diagnosed with B cell follicular lymphoma by classical means. All cats were negative for feline leukemia virus; gamma-herpesvirus DNA was not amplified using degenerate primers. FIV proviral load in neoplastic tissue was two orders of magnitude lower than in the periphery, lower in neoplastic vs non-neoplastic lymph node, and clonal integration was not detected. We hypothesize that neoplasia was secondary to FIV immune dysregulation, and show that PARR can augment our capacity to phenotype these tumors and distinguish follicular hyperplasia from lymphoma. Age of exposure and relative virulence of the inoculum likely contributed to this unusual presentation of FIV infection.
Collapse
|
30
|
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia), and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less commonly diagnosed than in the previous 20 years; prevalence has been decreasing in most countries. However, FeLV importance may be underestimated as it has been shown that regressively infected cats (that are negative in routinely used FeLV tests) also can develop clinical signs. FIV can cause an acquired immunodeficiency syndrome that increases the risk of opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. This article provides a review of clinical syndromes in progressively and regressively FeLV-infected cats as well as in FIV-infected cats.
Collapse
Affiliation(s)
- Katrin Hartmann
- Medizinische Kleintierklinik, LMU University of Munich, Germany, Veterinaerstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
31
|
Poli A, Tozon N, Guidi G, Pistello M. Renal alterations in feline immunodeficiency virus (FIV)-infected cats: a natural model of lentivirus-induced renal disease changes. Viruses 2012; 4:1372-1389. [PMID: 23170163 PMCID: PMC3499810 DOI: 10.3390/v4091372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.
Collapse
Affiliation(s)
- Alessandro Poli
- Department of Animal Pathology, Prophylaxis and Food Hygiene, Veterinary Faculty, University of Pisa, Viale delle Piagge 2, Pisa 56124, Italy;
| | - Natasa Tozon
- Clinic for Small Animal Medicine and Surgery, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, Ljubljana 1000, Slovenia;
| | - Grazia Guidi
- Department of Veterinary Clinic, Veterinary Faculty, University of Pisa, Via Livornese, San Piero a Grado, Pisa 56122, Italy;
| | - Mauro Pistello
- Department of Experimental Pathology, University of Pisa, Via S. Zeno, 35/39, Pisa 56127, Italy
- Author to whom correspondence should be addressed; ; Tel.: +39-050-221-3781; Fax: +39-050-221-3524
| |
Collapse
|
32
|
Tenaya IWM, Heel K, Stumbles PA, Wilcox GE. Flow cytometric analysis of lymphocyte subset kinetics in Bali cattle experimentally infected with Jembrana disease virus. Vet Immunol Immunopathol 2012; 149:167-76. [PMID: 22776774 DOI: 10.1016/j.vetimm.2012.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 04/24/2012] [Accepted: 06/11/2012] [Indexed: 11/17/2022]
Abstract
Jembrana disease virus (JDV) is an unusual bovine lentivirus that causes an acute and sometimes fatal disease after a short incubation period in Bali cattle (Bos javanicus). The pathological changes occur primarily in lymphoid tissues, which feature proliferating lymphoblastoid-like cells predominantly throughout parafollicular (T-cell) areas, and atrophy of follicles (B-cell) areas. Five Bali cattle were experimentally infected with JDV and all developed typical clinical signs of Jembrana disease characterised by a transient febrile response, enlargement of superficial lymph nodes and a significant leukopenia. Flow cytometric analysis of PBMC during the acute (febrile) disease phase showed that the reduced number of lymphocytes was due to a significant decrease in both the proportion and absolute numbers of CD4(+) T cells, but not CD8(+) T-cells or CD21(+) B-cells. At the end of the febrile phase, total numbers of both CD8(+) T-cells and CD21(+) B-cells increased significantly, while CD4(+) T-cell numbers remained below normal values, resulting in a significantly reduced CD4(+):CD8(+) ratio. We speculate that the persistent depletion of CD4(+) T cells following JDV infection, through lack of CD4(+) T cell help to B cells, may explain the lack of production of JDV-specific antibodies for several weeks after recovery despite an increase in CD21(+) B cell numbers. Further, our previous data showing that IgG(+) plasma cells are targets for JDV infection, correlated with our current data demonstrating an increase in CD8(+) T cell numbers, supports the suggestion that anti-viral cytotoxic T cell or other cell-mediated immune responses may be critical in the recovery process, although this remains to be formally demonstrated for JDV.
Collapse
Affiliation(s)
- I W Masa Tenaya
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | | | | | | |
Collapse
|
33
|
Feline immunodeficiency virus in South America. Viruses 2012; 4:383-396. [PMID: 22590677 PMCID: PMC3347033 DOI: 10.3390/v4030383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022] Open
Abstract
The rapid emergence of AIDS in humans during the period between 1980 and 2000 has led to extensive efforts to understand more fully similar etiologic agents of chronic and progressive acquired immunodeficiency disease in several mammalian species. Lentiviruses that have gene sequence homology with human immunodeficiency virus (HIV) have been found in different species (including sheep, goats, horses, cattle, cats, and several Old World monkey species). Lentiviruses, comprising a genus of the Retroviridae family, cause persistent infection that can lead to varying degrees of morbidity and mortality depending on the virus and the host species involved. Feline immunodeficiency virus (FIV) causes an immune system disease in domestic cats (Felis catus) involving depletion of the CD4+ population of T lymphocytes, increased susceptibility to opportunistic infections, and sometimes death. Viruses related to domestic cat FIV occur also in a variety of nondomestic felids. This is a brief overview of the current state of knowledge of this large and ancient group of viruses (FIVs) in South America.
Collapse
|
34
|
Baxter KJ, Levy JK, Edinboro CH, Vaden SL, Tompkins MB. Renal disease in cats infected with feline immunodeficiency virus. J Vet Intern Med 2012; 26:238-43. [PMID: 22269003 DOI: 10.1111/j.1939-1676.2011.00871.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 11/07/2011] [Accepted: 12/13/2011] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) infection cause similar clinical syndromes of immune dysregulation, opportunistic infections, inflammatory diseases, and neoplasia. Renal disease is the 4th most common cause of death associated with HIV infection. OBJECTIVE To investigate the association between FIV infection and renal disease in cats. ANIMALS Client-owned cats (153 FIV-infected, 306 FIV-noninfected) and specific-pathogen-free (SPF) research colony cats (95 FIV-infected, 98 FIV-noninfected). METHODS A mixed retrospective/prospective cross-sectional study. Blood urea nitrogen (BUN), serum creatinine, urine specific gravity (USG), and urine protein:creatinine ratio (UPC) data were compared between FIV-infected and FIV-noninfected cats. In FIV-infected cats, total CD4+ and CD8+ T lymphocytes were measured using flow cytometry, and CD4+:CD8+ T lymphocyte ratio was calculated. Renal azotemia was defined as a serum creatinine ≥ 1.9 mg/dL with USG ≤ 1.035. Proteinuria was defined as a UPC > 0.4 with an inactive urine sediment. RESULTS Among the client-owned cats, no association was detected between FIV infection and renal azotemia (P = .24); however, a greater proportion of FIV-infected cats were proteinuric (25.0%, 16 of 64 cats) compared to FIV-noninfected cats (10.3%, 20 of 195 cats) (P < .01). Neither neuter status nor health status were risk factors for proteinuria in FIV-infected cats, but UPC was positively correlated with the CD4+:CD8+ T lymphocyte ratio (Spearman's rho = 0.37, P = .01). Among the SPF research colony cats, no association was detected between FIV infection and renal azotemia (P = .21) or proteinuria (P = .25). CONCLUSIONS AND CLINICAL IMPORTANCE Proteinuria but not azotemia was associated with natural FIV infection.
Collapse
Affiliation(s)
- K J Baxter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | |
Collapse
|
35
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
36
|
Hartmann K. Clinical aspects of feline immunodeficiency and feline leukemia virus infection. Vet Immunol Immunopathol 2011; 143:190-201. [PMID: 21807418 PMCID: PMC7132395 DOI: 10.1016/j.vetimm.2011.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with a global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FIV can cause an acquired immunodeficiency syndrome that increases the risk of developing opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia) and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less important as a deadly infectious agent as in the last 20 years prevalence has been decreasing in most countries.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, LMU University of Munich, Veterinaerstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
37
|
Dietrich I, Hosie MJ, Willett BJ. The role of BST2/tetherin in feline retrovirus infection. Vet Immunol Immunopathol 2011; 143:255-64. [PMID: 21715020 DOI: 10.1016/j.vetimm.2011.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pathogenic retroviral infections of mammals have induced the evolution of cellular anti-viral restriction factors and have shaped their biological activities. This intrinsic immunity plays an important role in controlling viral replication and imposes a barrier to viral cross-species transmission. Well-studied examples of such host restriction factors are TRIM5α, an E3 ubiquitin ligase that binds incoming retroviral capsids in the cytoplasm via its C-terminal PRY/SPRY (B30.2) domain and targets them for proteasomal degradation, and APOBEC3 proteins, cytidine deaminases that induce hypermutation and impair viral reverse transcription. Tetherin (BST-2, CD317) is an interferon-inducible transmembrane protein that potently inhibits the release of nascent retrovirus particles in single-cycle replication assays. However, whether the primary biological activity of tetherin in vivo is that of a restriction factor remains uncertain as recent studies on human tetherin suggest that it is unable to prevent spreading infection of human immunodeficiency virus type 1 (HIV-1). The feline tetherin homologue resembles human tetherin in amino acid sequence, protein topology and anti-viral activity. Transiently expressed feline tetherin displays potent inhibition of feline immunodeficiency virus (FIV) and HIV-1 particle release. However, stable ectopic expression of feline tetherin in a range of feline cell lines has no inhibitory effect on the growth of either primary or cell culture-adapted strains of FIV. By comparing and contrasting the activities of the felid and primate tetherins against their respective immunodeficiency-causing lentiviruses we may gain insight into the contribution of tetherins to the control of lentiviral replication and the evolution of lentiviral virulence.
Collapse
Affiliation(s)
- Isabelle Dietrich
- Retrovirus Research Laboratory, MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G611QH, United Kingdom.
| | | | | |
Collapse
|
38
|
Fadel HJ, Poeschla EM. Retroviral restriction and dependency factors in primates and carnivores. Vet Immunol Immunopathol 2011; 143:179-89. [PMID: 21715018 DOI: 10.1016/j.vetimm.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5α, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin.
Collapse
Affiliation(s)
- Hind J Fadel
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
39
|
Takano T, Hosoya S, Shibao A, Nagasaki B, Yoshioka H, Satoh R, Hohdatsu T. Comparative study of the plasma globulin level, CD21(-) B-cell counts and FOXP3 mRNA expression level in CD4(+) T-cells for different clinical stages of feline immunodeficiency virus infected cats. Res Vet Sci 2010; 92:157-61. [PMID: 21074227 DOI: 10.1016/j.rvsc.2010.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 10/20/2010] [Indexed: 11/25/2022]
Abstract
Feline immunodeficiency virus (FIV) infection leads to hypergammaglobulinemia through mechanisms that remain poorly understood. We investigated changes in plasma globulin level, B cells, and T cells with progression of the clinical stage of FIV-infected cats. We classified FIV-infected cats into the stage of Asymptomatic carrier (AC) and AIDS-related complex (ARC) based on the clinical symptoms, and measured the plasma globulin level, the CD4(+) T-cell counts, and analyzed surface markers of B cells. We investigated the relationship between the plasma globulin level and regulatory T cells (Tregs) using the Forkhead box P3 (FOXP3) mRNA expression level. In FIV-infected cats, the plasma globulin level and the surface immunoglobulin (sIg)(+) CD21(-) B-cell counts were increased, whereas the CD4(+) T-cell counts were decreased compared with specific-pathogen free (SPF) cats. The mRNA expression of Blimp-1 (master gene of plasma cells) was increased in peripheral blood, and the FOXP3 mRNA expression level was decreased in CD4(+) T-cells. These immunological changes were marked in the ARC stage. These data indicate that the decrease of Tregs and the increase of plasma cells lead to hypergammaglobulinemia.
Collapse
|
40
|
Tanahara M, Miyamoto S, Nishio T, Yoshii Y, Sakuma M, Sakata Y, Nishigaki K, Tsujimoto H, Setoguchi A, Endo Y. An epidemiological survey of feline hemoplasma infection in Japan. J Vet Med Sci 2010; 72:1575-81. [PMID: 20686353 DOI: 10.1292/jvms.10-0143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemoplasma (hemotropic mycoplasma) often causes hemolytic anemia in infected cats, especially those with immune suppression. An updated nationwide epidemiological survey of feline hemoplasmosis was conducted in Japan. Blood samples were collected from 1,770 outdoor-accessing cats from March to October 2008. The infections were molecularly detected by PCR analyses, which are able to distinguish Mycoplasma haemofelis (Mhf), `Candidatus M. haemominutum' (CMhm), and `Candidatus M. turicensis' (CMt) infections. Of the 1,770 cats, 468 cases (26.4%) revealed a single- or co-infection of feline hemoplasmas [Mhf alone, 42 cases (2.4%); CMhm alone, 280 cases (15.8%); CMt alone, 48 cases (2.7%); Mhf+CMhm, 28 cases (1.6%); Mhf+CMt, 6 cases (0.3%); CMhm+CMt, 50 cases (2.8%); Mhf+CMhm+CMt, 14 cases (0.8%)]. In addition, male gender, middle to old age, history of fight wounds, and feline immunodeficiency virus infection were shown to be risk factors for hemoplasma infection. Close attention must be paid to the acute onset of disease in feline practice because a prevalence of hemoplasma infection was detected even in clinically healthy cats.
Collapse
Affiliation(s)
- Miki Tanahara
- Laboratory of Veterinary Internal Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Willett BJ, Kraase M, Logan N, McMonagle EL, Samman A, Hosie MJ. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody. Retrovirology 2010; 7:38. [PMID: 20420700 PMCID: PMC2873508 DOI: 10.1186/1742-4690-7-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Results Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. Conclusions The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Fletcher NF, Meeker RB, Hudson LC, Callanan JJ. The neuropathogenesis of feline immunodeficiency virus infection: barriers to overcome. Vet J 2010; 188:260-9. [PMID: 20418131 DOI: 10.1016/j.tvjl.2010.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 03/19/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
Feline immunodeficiency virus (FIV), like human immunodeficiency virus (HIV)-1, is a neurotropic lentivirus, and both natural and experimental infections are associated with neuropathology. FIV enters the brain early following experimental infection, most likely via the blood-brain and blood-cerebrospinal fluid barriers. The exact mechanism of entry, and the factors that influence this entry, are not fully understood. As FIV is a recognised model of HIV-1 infection, understanding such mechanisms is important, particularly as HIV enters the brain early in infection. Furthermore, the development of strategies to combat this central nervous system (CNS) infection requires an understanding of the interactions between the virus and the CNS. In this review the results of both in vitro and in vivo FIV studies are assessed in an attempt to elucidate the mechanisms of viral entry into the brain.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
43
|
Nakamura Y, Nakamura Y, Ura A, Hirata M, Sakuma M, Sakata Y, Nishigaki K, Tsujimoto H, Setoguchi A, Endo Y. An updated nation-wide epidemiological survey of feline immunodeficiency virus (FIV) infection in Japan. J Vet Med Sci 2010; 72:1051-6. [PMID: 20224240 DOI: 10.1292/jvms.09-0574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An updated nation-wide epidemiological survey of feline immunodeficiency virus (FIV) infection was conducted in Japan. Blood samples were collected from 1,770 outdoor accessing cats from March to October 2008. Serologically, 410 cats (23.2%) were positive for anti-FIV antibody. Proviral DNA of the FIV env V3-V5 region isolated from 348 cases could be phylogenetically analyzed. The present study disclosed a geographic distribution of four subtypes (A, B, C and D) of FIV in Japan. Even though an FIV vaccine was introduced in Japan, we do not currently know whether this vaccine is effective against all strains of FIV in Japan or not. Therefore, close attention still has to be paid to epidemic and genotypic trends of FIV.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Feline immunodeficiency virus env gene evolution in experimentally infected cats. Vet Immunol Immunopathol 2009; 134:96-106. [PMID: 19897254 DOI: 10.1016/j.vetimm.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Feline immunodeficiency virus (FIV), an immunosuppressive lentivirus found in cats worldwide, is studied to illuminate mechanisms of lentiviral pathogenesis and to identify key components of protective immunity. During replication, lentiviruses accumulate errors of nucleotide mis-incorporation due to the low-fidelity of reverse transcriptase and recombination between viral variants, resulting in the emergence of a complex viral "quasispecies". In patients infected with HIV-1, env sequences may vary by up to 10% and the detection of quasispecies with greater heterogeneity is associated with higher viral loads and reduced CD4+ T cell numbers [1], indicating that transmission of more complex quasispecies may lead to disease progression. However, little is known about how FIV evolves as disease progresses, or why some cats develop AIDS rapidly while disease progression is slow in others. The aim of this study was to determine whether disease progression may be governed by viral evolution and to examine the diversity of viral variants emerging following infection with an infectious molecular clone. The FIV env gene encoding the envelope glycoprotein (Env) was examined at early (12 weeks) and late (322 weeks) stages of FIV infection in two groups of cats infected experimentally with the FIV-GL8 molecular clone. Viral variants were detected within quasispecies in cats in the late stages of FIV infection that contained differing amino acid compositions in several variable loops of Env, some of which were identified as determinants of receptor usage and resistance to neutralization. Therefore these results indicate that the FIV env gene evolves during the course of infection, giving rise to variants that resist neutralization and likely lead to disease progression.
Collapse
|
45
|
Samman A, Logan N, McMonagle EL, Ishida T, Mochizuki M, Willett BJ, Hosie MJ. Neutralization of feline immunodeficiency virus by antibodies targeting the V5 loop of Env. J Gen Virol 2009; 91:242-9. [PMID: 19776242 DOI: 10.1099/vir.0.015404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutralizing antibodies (NAbs) play a vital role in vaccine-induced protection against infection with feline immunodeficiency virus (FIV). However, little is known about the appropriate presentation of neutralization epitopes in order to induce NAbs effectively; the majority of the antibodies that are induced are directed against non-neutralizing epitopes. Here, we demonstrate that a subtype B strain of FIV, designated NG4, escapes autologous NAbs, but may be rendered neutralization-sensitive following the insertion of two amino acids, KT, at positions 556-557 in the fifth hypervariable (V5) loop of the envelope glycoprotein. Consistent with the contribution of this motif to virus neutralization, an additional three subtype B strains retaining both residues at the same position were also neutralized by the NG4 serum, and serum from an unrelated cat (TOT1) targeted the same sequence in V5. Moreover, when the V5 loop of subtype B isolate KNG2, an isolate that was moderately resistant to neutralization by NG4 serum, was mutated to incorporate the KT motif, the virus was rendered sensitive to neutralization. These data suggest that, even in a polyclonal serum derived from FIV-infected cats following natural infection, the primary determinant of virus-neutralizing activity may be represented by a single, dominant epitope in V5.
Collapse
Affiliation(s)
- Ayman Samman
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
McEwan WA, Schaller T, Ylinen LM, Hosie MJ, Towers GJ, Willett BJ. Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. J Virol 2009; 83:8270-5. [PMID: 19494015 PMCID: PMC2715776 DOI: 10.1128/jvi.00670-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/26/2009] [Indexed: 11/20/2022] Open
Abstract
TRIM5alpha mediates a potent retroviral restriction phenotype in diverse mammalian species. Here, we identify a TRIM5 transcript in cat cells with a truncated B30.2 capsid binding domain and ablated restrictive function which, remarkably, is conserved across the Feliformia. Cat TRIM5 displayed no restriction activity, but ectopic expression conferred a dominant negative effect against human TRIM5alpha. Our findings explain the absence of retroviral restriction in cat cells and suggest that disruption of the TRIM5 locus has arisen independently at least twice in the Carnivora, with implications concerning the evolution of the host and pathogen in this taxon.
Collapse
Affiliation(s)
- William A McEwan
- Institute of Comparative Medicine, University of Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
47
|
Roelke ME, Brown MA, Troyer JL, Winterbach H, Winterbach C, Hemson G, Smith D, Johnson RC, Pecon-Slattery J, Roca AL, Alexander KA, Klein L, Martelli P, Krishnasamy K, O'Brien SJ. Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions. Virology 2009; 390:1-12. [PMID: 19464039 PMCID: PMC2771374 DOI: 10.1016/j.virol.2009.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 01/09/2023]
Abstract
Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains (FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health. Reported CD4+ T-lymphocyte depletion in FIVple-infected lions and anecdotal reports of lion morbidity associated with FIV seroprevalence emphasize the concern as to whether FIVple is innocuous or pathogenic. Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive (N=47) as compared to FIVple-negative (N=17) lions anesthetized and sampled on multiple occasions between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple-infected lions displayed a significant elevation in the prevalence of AIDS-defining conditions: lymphadenopathy, gingivitis, tongue papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters, depressed serum albumin, and elevated liver enzymes and gamma globulin. Spleen and lymph node biopsies from free-ranging FIVple-infected lions (N=9) revealed evidence of lymphoid depletion, the hallmark pathology documented in immunodeficiency virus infections of humans (HIV-1), macaques, and domestic cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical, immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca).
Collapse
Affiliation(s)
- Melody E Roelke
- Laboratory of Genomic Diversity, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gleich S, Hartmann K. Hematology and Serum Biochemistry of Feline Immunodeficiency Virus-Infected and Feline Leukemia Virus-Infected Cats. J Vet Intern Med 2009; 23:552-8. [DOI: 10.1111/j.1939-1676.2009.0303.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Genetically divergent strains of feline immunodeficiency virus from the domestic cat (Felis catus) and the African lion (Panthera leo) share usage of CD134 and CXCR4 as entry receptors. J Virol 2008; 82:10953-8. [PMID: 18715917 DOI: 10.1128/jvi.01312-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.
Collapse
|
50
|
Cattori V, Pepin AC, Tandon R, Riond B, Meli ML, Willi B, Lutz H, Hofmann-Lehmann R. Real-time PCR investigation of feline leukemia virus proviral and viral RNA loads in leukocyte subsets. Vet Immunol Immunopathol 2008; 123:124-8. [DOI: 10.1016/j.vetimm.2008.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|